Show simple item record

dc.contributor.advisorKeyantuo, Valentin
dc.contributor.advisorWarma, Mahamadi
dc.contributor.authorSeoanes Correa, Fabian
dc.date.accessioned2024-11-08T21:54:42Z
dc.date.available2024-11-08T21:54:42Z
dc.date.issued2019-10-04
dc.identifier.urihttps://hdl.handle.net/11721/3952
dc.description.abstractLet Ω ⊂ RN be an arbitrary open set and denote by (e−t(−∆)sRN )t≥0 (where 0 < s < 1) the semigroup on L2 (RN) generated by the fractional Laplace operator. In the first part of the thesis we show that if T is a self-adjoint semigroup on L2(Ω) satisfying a fractional Gaussian estimate in the sense that |T(t)f| ≤ Me−bt(−∆)sRN |f|, 0 ≤ t ≤ 1, f ∈ L2(Ω), for some constants M ≥ 1 and b ≥ 0, then T defines a bounded holomorphic semigroup of angle π/2 that interpolates on Lp (Ω), 1 ≤ p < ∞. Additionally, if T0 is a semigroup on C0(Ω) such that T0(t)f = T(t)f for all f ∈ C0(Ω) ∩ L2 (Ω), we prove that the same result also holds on the space C0(Ω). If Ω is bounded then the same conclusion holds for C(Ω). Also, we apply the above results to the realization of fractional order operators with the exterior Dirichlet conditions.en_US
dc.description.sponsorshipAir Force Office of Scientific Research (AFOSR)en_US
dc.language.isoen_USen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectFractional Gaussian estimatesen_US
dc.subjectFractional Laplace operatoren_US
dc.subjectFractional order operatorsen_US
dc.subjectHolomorphyen_US
dc.subjectSemigroupen_US
dc.subject.lcshBanach spacesen_US
dc.subject.lcshLaplacian operatoren_US
dc.subject.lcshSemigroups of operatorsen_US
dc.titleFractional Gaussian estimates and holomorphy of semigroupsen_US
dc.typeDissertationen_US
dc.rights.holder© 2019 Fabián Seoanes Correaen_US
dc.contributor.committeeEl-Mennaoui, Omar
dc.contributor.committeeLi, Liangquing
dc.contributor.committeeShan, Lin
dc.contributor.campusUniversity of Puerto Rico, Río Piedras Campusen_US
dc.description.graduationSemesterFall (1st Semester)en_US
dc.description.graduationYear2019en_US
thesis.degree.disciplineMathsen_US
thesis.degree.levelPh.D.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States