Show simple item record

dc.contributor.authorLizardi-Ortiz, José E.
dc.contributor.authorHyzinski-García, María C.
dc.contributor.authorFernández-Gerena, José L.
dc.contributor.authorOsorio-Martínez, Karen M.
dc.contributor.authorVelázquez-Rivera, Eric
dc.contributor.authorValle-Avilés, Félix L.
dc.contributor.authorLasalde-Dominicci, José A.
dc.date.accessioned2017-03-23T20:10:49Z
dc.date.available2017-03-23T20:10:49Z
dc.date.issued2008
dc.identifier.citationLizardi-Ortiz JE, Hyzinski-García MC, Fernández-Gerena JL, Osorio-Martínez KM, Velázquez-Rivera E, Valle-Avilés FL, Lasalde-Dominicci JA. Aromaticity at the water-hydrocarbon core interface of the membrane: consequences on the nicotinic acetylcholine receptor. Channels (Austin, Tex.). 2: 191-201. PMID 18836298en_US
dc.identifier.issn1933-6969
dc.identifier.urihttp://hdl.handle.net/11721/1564
dc.description.abstractAlmost all lipid-exposed transmembrane domains of integral proteins contain aromatic residues flanking the hydrophobic segment of the domains. These residues generally reside close to the carbonyl region of the membrane, and several structural and functional roles have been associated to these residues. Although the roles and physicochemical reasons for aromatic preference have been extensively studied using model systems, few studies have been done in a native membrane system. To gain insight about the mechanistic implication for this aromatic preference, we selected position αF426 of the muscle-type nicotinic acetylcholine receptor (nAChR). αF426 is a lipidexposed residue at the extracellular segment of the αM4 transmembrane domain and is highly conserved among different nAChR subunits and species. We used site-directed mutagenesis, α- Bungarotoxin-binding assay, and two-electrodes voltage clamp in Xenopus laevis oocytes to characterize mutations at position αF426, which impart different physicochemical properties like volume, polarity, hydrogen bonds, aromaticity and net electrical charge. All mutations except the aromatic residues resulted in a significant reduction of the nAChR cell-surface levels and the macroscopic currents to acetylcholine. These results suggest that position αF426 contributes to structural stability and open-close transitions of the nAChR. Finally, the present study also provides information about how intermolecular interactions at position α426 modulate open-close transitions of the nAChR.en_US
dc.language.isoenen_US
dc.publisherChannels (Austin)en_US
dc.subjectnicotinic acetylcholine receptoren_US
dc.subjectlipid-protein interfaceen_US
dc.subjectwater-hydrocarbon core interfaceen_US
dc.subjectmembrane-spanning domainen_US
dc.subjectaromaticityen_US
dc.titleAromaticity at the water-hydrocarbon core interface of the membrane: Consequences on the nicotinic acetylcholine receptoren_US
dc.typeArticleen_US
dc.contributor.campusUniversity of Puerto Rico, Río Piedras Campus


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, this item's license is described as All Rights Reserved