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In this work, we undertake a comprehensive reformulation, modification, and ex-

tension of Smith & Spiegelhalter’s [14] and [15] Bayes Factor work within the evolving

subject of Objective Bayes Factors. Our primary focus centers on defining and computing

empirical and theoretical bounds for the Intrinsic Bayes Factor (IBF) across various mod-

els, including normal, exponential, Poisson, geometric, linear, and ANOVA. We show

that our new bounds are useful, feasible, and change with the amount of information. We

also propose a methodology to construct the least favorable (for the null model) intrinsic

priors that result in the lower and upper bounds of the Intrinsic Bayes Factors under cer-

tain conditions. Notably, our lower bounds exhibit superior performance compared to the

well-known −ep log(p) bound proposed by Sellke et al. (2001) [13] based on p-values.
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CHAPTER 1
INTRODUCTION

The misuse of classical hypothesis testing methods, specifically p-values, has been

the subject of substantial critique in the statistical literature (Wasserstein and Lazar, 2016

[17]; Wasserstein et al., 2019 [16]). Despite these warnings, the practice of p-value

null hypothesis significance testing (NHST) continues to be a predominant technique

for model selection. However, alternatives do exist. Among them, the Bayesian test-

ing methodology developed by Sir Harold Jeffreys (1961) [7] stands as one of the most

widely accepted and used. Jeffreys’s methodology, premised on the concept that the null

hypothesis carries a positive point mass, quantifies the support for or against a model

based on the data. Additionally, it offers practical applications through derived approx-

imations for complex or analytically infeasible solutions. A significant contribution of

Jeffreys’s framework is the Bayes factor, a measure of support for one model over an-

other, irrespective of the absolute correctness of these models. Its effectiveness spans

various inference desiderata, including interpretability, adherence to Occam’s razor, and

consistency in large samples. Kass and Raftery (1995) [8] offer an extensive introduc-

tion to Bayes factors. Our research primarily concentrates on the pivotal role of training

samples within statistical methodologies. These methodologies include classification and

discrimination, robustness, model selection, and cross-validation. Recent advancements

in Bayesian model selection, namely the intrinsic Bayes factor by Berger and Pericchi

(1996a) [3] and the expected posterior prior by Perez and Berger (2002) [10], have em-

ployed training samples to transition improper objective priors into more suitable distri-

butions for model selection.
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A challenge often faced is the indeterminacy of classical Bayes Factors, due to the de-

pendence on an undefined ratio of constants derived from the improper priors. To circum-

navigate this, Jeffrey suggested conventional proper priors for the extra-parameters under

the larger hypothesis, albeit improper for common parameters. Various techniques have

been proposed to address this issue, including those by Smith and Spiegelhalter (1980)

[14] and Spiegelhalter and Smith (1982) [15]. Though approximate, these techniques fa-

cilitate sensible scaling for Bayes Factors and bear a direct relationship with more recent

approaches like the Intrinsic Bayes Factor, the Intrinsic Priors, and EP-priors. To eluci-

date these connections, we will re-conceptualize Smith and Spiegelhalter’s approach and

the associated Bayes Factor, hereby referred to as SSBF’s (BSS), drawing parallels to other

methodologies.

Chapter three specifically focuses on the quasi-Bayes factor, which emerges as a

universal lower bound for the Intrinsic Bayes factor. In Chapter four we introduce the

concept of SP Priors (Superior Posterior priors) that either generate the Intrinsic Bayes

Factors bound under specific assumptions or serve as an asymptotic approximation of the

bounds. These priors are the least favorable priors for the null hypothesis and through

chapter three to chapter eight we performed numerical simulations and verified the con-

sistency of the SP, the empirical and the theoretical Intrinsic Bayes Factor bounds across

various essential distributions such as the normal, exponential, Poisson, geometric, and

negative binomial. Furthermore, we calculated the bounds for two nested normal-linear

models and ANOVA. We discussed model selection problems across different distribu-

tions and hypothesis tests such as nested and separated hypotheses, and for those cases

we provided closed forms for the Intrinsic Bayes factors Bounds, the SP Priors, and the

SP Bayes Factors.



CHAPTER 2
LITERATURE REVIEW

2.1 Bayes factors

Traditional point estimation methods, such as the maximum likelihood estimator

(MLE) or the method of moments (MoM), typically involve the utilization of specific

estimates for each model parameter based on the available data. In contrast, Bayesian

inference takes a different approach by assigning a probability distribution to each model

parameter.

Let y = (y1, ...,yn) represent a set of n random samples obtained from a random

variable Y with a density fi(y|θi), where θi denotes a vector of parameters associated with

model Mi. Employing the Bayes’ Theorem, the posterior distribution for model Mi can be

expressed as:

π(θ i|y) =
fi(y|θ))πi(θ i)

mi(y)
=

fi(y|θi)π(θ i)∫
fi(y|θi)π(θ i)dθ i

where mi(y) is called the marginal, evidence, or global likelihood, and πi(θ) is the prior

distribution of the parameters for Mi. Suppose that we are comparing two models for the

data y

Mk : Y has a density fk(y|θ k) k = i, j

where θ k are unknown model parameters associated with model Mk. Suppose we have

available prior distributions πk(θ k) for the unknown parameters. Define the marginal or

predictive densities of y as

mi(y) =
∫

fi(y|θ i)πi(θ i)dθ i.

3
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The Bayes factor of Mi to M j is given by

Bi j =
mi(y)
m j(y)

=

∫
fi(y|θ i)πi(θ i)dθ i∫

f j(y|θ j)π j(θ j)dθ j

.

The Bayes factor is often interpreted as the evidence provided by the data for the model

Mi vs. the alternative model M j, but the Bayes factor depends also on the priors. Alterna-

tively, Bi j can be interpreted as the weighted likelihood ratio of Mi to M j. with the priors

being the "weighting functions."

2.2 Prior and Posterior Model Probabilities

Suppose that prior probabilities π(Mi), i = 1, ...,n, of the n models, are available,

then we can obtain for each model Mi the posterior probability from the Bayes factor

given the data y by calculating

P(Mi|y) =
π(Mi)mi(y)

n

∑
k=1

π(Mk)mk(y)

This equation can also be written as

P(Mi|y) =
[ n

∑
k=1

π(Mk)

π(Mi)
Bki(y)

]−1

where Oki = π(Mk)/π(Mi) is known as the prior odds of the model Mk over the model

Mi, and the posterior probabilities odds are given by

P(Mi|y)
P(M j|y)

=
π(Mi)mi(y)
π(M j)m j(y)

= Oi jBi j

Hence, the posterior odds are given the product of the prior odds and the Bayes factor. A

common unbiased choice of the prior model probabilities is given by π(Mi) = 1/n where

each model has the same prior probability. Note that using those uniform priors we can
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obtain the re-normalized marginal distributions from the posterior model probabilities as

mi(y) =
mi(y)

∑
n
k=1 mk(y)

and also the Bayes Factor can be in terms of the re-normalized marginals as

Bi j(y) =
mi(y)
m j(y)

2.3 Jeffreys’s objective priors

Consider the Fisher information matrix when there are n parameters, so that θ is a

n×1 vector θ =

[
θ1,θ2, . . . ,θn

]T

, then the Fisher information takes the form of an n×n

matrix with typical element

Ii j (θ) = E
[(

∂

∂θi
log f (y|θ)

)(
∂

∂θ j
log f (y|θ)

)∣∣∣∣θ].
Jeffreys prior is a non-informative (objective) prior distribution for a parameter space;

it is proportional to the square root of the determinant of the Fisher information matrix

π
N (θ) ∝

√
det I (θ)

and this prior is invariant under reparameterization of the parameter vector θ and this

property makes it of special interest for use with location and scale parameters.

2.4 Objective Bayes Factors

The unscaled Bayes factors are obtained using the non-informative objective priors

πN
i (θi) and πN

j (θ j) for the models Mi and M j respectively and can be calculated as

BN
i j(y) =

∫
fi(y|θi)π

N
i (θi)dθi∫

f j(y|θ j)π
N
j (θ j)dθ j

Non-informative priors can be used for one-sided hypothesis testing but unfortu-

nately, when we are using improper priors for point null hypotheses the Bayes Factor

depends on an undetermined ratio of constants Ci/C j, which comes from the improper
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priors. Some techniques are widely used to overcome this issue which can approximate

the desired ratio of constants and those will be studied and extended in the next sections.

2.5 Minimal training samples

There are different approaches to calculate Bayes Factors based on the concept of

a proper ’minimal training sample’ which is a subset of the entire data y.

Definition: A training sample y(ℓ)⊂ y, is called proper if 0 < m(y(ℓ))< ∞, and minimal

if it is proper and no subset is proper.

2.5.1 A formal definition for the set of all minimal training samples

The formal definition and formula for the set of all possible minimal training sam-

ples can be obtained using the definition above and extending the concept. Let y(ℓi) =

y(i1, i2, ..., ik) = {yi1,yi2, ...,yik} be any minimal training sample with k ≤ n. The set

{y(ℓ1), ...,y(ℓL)} of all possible minimal training samples (non-repeated subsets of size

k) can be defined as the set

Dn,k =

{{{
· · · {y(i1, i2, ..., ik)}in

ik=i(k−1)
· · ·
}in

i2=i1

}in

i1=1
: 1 ≤ i1 < i2 < i3 < · · ·< ik ≤ n

}

Hence,

|Dn,k|=
(

n
k

)
= L and D∞,k = lim

n→∞
Dn,k

Therefore,

|D∞,k|= | lim
n→∞

Dn,k|= lim
n→∞

|Dn,k|= lim
n→∞

(n)(n−1)(n− (k+1))
k!

= ∞

For ease of notation, we will denote the set D∞,k as D throughout this thesis.

The determination of the set Dn,k, encompassing all minimal training samples of

size k from a sample of size n, will be facilitated by an original, exhaustive, albeit sub-

optimal algorithm. This algorithm yields the computation of Bayes factors involving

these terms?such as the Arithmetic Intrinsic Bayes Factor, Median Intrinsic Bayes Factor,
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EP-Bayes factors, and SS-Bayes factors?which will be expounded upon in subsequent

chapters.

Similarly, considering L =
(n

k

)
„ we can derive the following computationally intu-

itive formula applicable to the Arithmetic Intrinsic Bayes Factor (AIBF)

1
L

in

∑
i1=1

in

∑
i2=i1

· · ·
in

∑
ik=i(k−1)

1(1 ≤ i1 < i2 < · · ·< ik ≤ n)B01(y(i1, ..., ik)) =
1
L ∑

d∈Dn,k

B01(d).

In the next section, we will present the general definition algorithm that can receive a

vector of observations, and will generate the set of all possible minimal training samples.

2.5.2 An algorithm to generate the set of all minimal training samples

We present here an original algorithm devised for the purpose of generating the set

of all minimal training samples. It is important to note that the algorithm proposed in this

study may not be suitable for processing very large sample sizes due to its computational

complexity, which amounts to approximately O(nk) operations. For future investigations,

it is recommended to explore more efficient algorithms for generating the matrix M based

on the algorithm discussed herein.

Alternatively, a generalized version of this algorithm can be constructed using a re-

currence relation instead of nested for loops. Such an approach would enable the devel-

opment of a versatile algorithm applicable to any given values of n and k. In cases where

the sample sizes are substantial, it is advisable to employ randomization techniques to

generate a representative subset of minimal training samples, which can yield satisfactory

approximations of the Intrinsic Bayes Factors (IBFs).
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Algorithm 1 An algorithm to produce the set of all possible minimal training samples
Input: n,k ∈ N,n ≥ k
Output: A matrix with k columns and

(n
k

)
rows with the indexes of all of the possible

minimal training samples of size k from a sample of size n.
function MTS((n,k))
Initialize an empty matrix M

for i1 in 1 : n do
for i2 in i1 : n do

...
for ik in ik−1 : n do

if 1 ≤ i1 < i2 < ... < ik ≤ n then
Add the row with values (i1, ..., ik) to the bottom of the matrix M.

end if
end for

...
end for

end for
Return M
end function

2.6 The Intrinsic Bayes Factor

Suppose that non-informative (usually improper) priors πN
i (θ i), i= 1, ...,n are avail-

able for the models M1, ...Mn respectively. The general recommendation is that we choose

those priors as "reference priors" (Berger and Bernardo 1992 [2]), but there are many other

choices and approximations with good results and advantages over the reference priors in

terms of computational and mathematical complexity.

The Intrinsic Bayes Factor (IBF) is calculated using a minimal training sample y(ℓ)

which converts the improper prior πN
i (θ i) to proper posteriors πN

i (θ i|y(ℓ)). The Bayes

factor is calculated using this proper posterior as the prior distribution of the remaining of

the data y(−ℓ) = y\y(ℓ) as follows

BI
i j = Bi j(ℓ) =

∫
fi(y(−ℓ)|θ i,y(ℓ))πi(θ i|y(ℓ))dθ i∫

f j(y(−ℓ)|θ j,y(ℓ))π j(θ i|y(ℓ))dθ j
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where Bi j(ℓ) = Bi j(y(−ℓ)|y(ℓ)). There are L =
(n

k

)
different minimal training sam-

ples for n i.i.d samples, where k is the number of parameters of the density under con-

sideration. Denote by BN
i j(y), the Bayes Factor with the whole sample y and un-scaled

objective (Non-Informative) priors πN
k (θ k),k = i, j, and, Bi j(y(−ℓ)|y(ℓ)), the "trained"

Bayes Factor after the training sample has been employed to get a proper scaling of the

Bayes Factor. A fundamental Lemma with Bayes Factors is the following (Berger and

Pericchi(1996) [3]

Lemma 2.6.1. Let y = {y1, ...,yn} be independent and identically distributed random

samples, and assume that y(ℓ) ∈ D with y(−ℓ)∪ y(ℓ) = y, then

Bi j(ℓ) = BN
i j(y)B

N
ji(y(ℓ)),∀ℓ. (2.1)

Proof. The Bayes Factor of the remaining samples given the training samples can be

written as

Bi j(y(−ℓ)|y(ℓ)) = mi(y(−ℓ)|y(ℓ))
m j(y(−ℓ)|y(ℓ))

=

∫
fi(y(−ℓ)|θi)π(θi|y(ℓ))dθi∫
fi(y(−ℓ)|θ j)π(θ j|y(ℓ))dθ j

The proper posterior distribution of the parameters given the MTS can be written as

π(θk|y(ℓ)) =
fk(θk|y(ℓ))πN

k (θk)

mN
k (y(ℓ))

, for k = i, j

Hence,

∫
fi(y(−ℓ)|θi)π(θi|y(ℓ))dθi∫

f j(y(−ℓ)|θ j)π(θ j|y(ℓ))dθ j

=

∫
fi(y(−ℓ)|θi)

fi(θi|y(ℓ))πN
i (θi)

mN
i (y(ℓ))

dθi∫
f j(y(−ℓ)|θ j)

f j(θ j|y(ℓ))πN
j (θ j)

mN
j (y(ℓ))

dθ j

=
mN

j (y(ℓ))
mN

i (y(ℓ))

∫
fi(y(−ℓ)|θi) fi(θi|y(ℓ))πN

i (θi)dθi∫
f j(y(−ℓ)|θ j) f j(θ j|y(ℓ))πN

j (θ j)dθ j

(2.2)
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Since fk(y(ℓ)|θ k) fk(y(−ℓ)|θ k) = fk(y|θ k) for k = i, j, the ratio of the marginals is

mN
j (y(ℓ))

mN
i (y(ℓ))

= BN
ji(y(ℓ))

Hence, equation (2) becomes

BN
ji(y(ℓ))

∫
fi(y|θi)π

N
i (θi)dθi∫

f j(y|θ j)π
N
j (θ j)dθ j

= BN
ji(y(ℓ))B

N
i j(y).

By employing the methodology elucidated in the aforementioned lemmas, we have

successfully mitigated the reliance of Bi j on the scales of the priors, thereby resolving

the issue of undetermined constants associated with the Bayes factor. However, a new

dependence arises, contingent upon the arbitrary selection of the minimal training sample

denoted as y(ℓ). To address this dependency and enhance stability, we propose to perform

an "average" of Bi j(l) over all feasible training samples y(ℓ), where ℓ= 1, ...,L.

2.7 The Expected Posterior Bayes Factors

Suppose that non-informative (typically improper) priors πN
i (θ i), where i= 1, . . . ,n,

associated with the models M1, . . . ,Mn, respectively are available. The concept of Ex-

pected Posterior (EP) priors, introduced by Perez and Berger in 2002 [10], allows for the

calculation of proper posteriors πN
i (θ i|y(ℓ)) using a minimal training sample y(ℓ). The

EP prior for model Mi is then defined as:

π
EP
i (θi) =

1
L

L

∑
ℓ=1

π
N
i (θ i|y(ℓ))
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The EP Bayes factor, which enables the comparison between models Mi and M j, is

computed as follows:

BEP
i j (y) =

∫
fi(y|θ i)π

EP
i (θ i)dθ i∫

f j(y|θ j)π
EP
j (θ j)dθ j

In the above equations, fi(y|θ i) and f j(y|θ j) represent the likelihood functions associ-

ated with models Mi and M j, respectively. The EP prior, derived from improper priors

using the minimal training sample y(ℓ), allows for the calculation of the EP Bayes factor,

facilitating model comparison and selection.



CHAPTER 3
A UNIVERSAL ROUBUST BOUND

3.1 The Smith and Spiegelhalter’s method

This chapter presents an innovative methodology for computing Bayes Factors,

building upon the seminal work of Spiegelhalter and Smith (1982) [15]. Their approach,

which encompassed examining an alternative prior specification, could be interpreted as

a genuine subjective Bayesian analysis based on specific prior beliefs, or alternatively, as

a formal analysis serving as a theoretical tool for comparing a model M0 with a localized

subset of models within another model M1. Spiegelhalter and Smith employed the concept

of "imaginary training samples" to maximize support for the simpler model M0. While

their paper primarily focused on assigning the constant c0/c1 in equation (5), Lempers

(1971) [9] and Atkinson (1978) [1] emphasized that assigning vague prior information

directly to c0 and c1 is inherently arbitrary without incorporating a training sample to de-

termine appropriate variable scaling. Consequently, they proposed partitioning a portion

of the data for a pre-comparison inference phase, enabling the formation of suitable priors

for the parameters within each model.

The method suggested by Spiegelhalter and Smith involved determining y0 as the

argument that maximizes mN
0 (y(ℓ))/mN

1 (y(ℓ)) and subsequently solving the equation

cBN
01(y0) = 1.

This approach yielded the Bayes factor expressed as

BSS
10(y) = cBN

10(y) = BN
01(y0)B

N
10(y).

12
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While Spiegelhalter and Smith’s technique focused exclusively on nested point hy-

potheses, the upcoming sections will expand upon this method to encompass more general

cases and examples. Furthermore, a novel lower bound will be introduced, leveraging the

concept of "imaginary training samples" to maximize support for M0. However, there is

a distinction between this proposed method and the aforementioned approach by Smith

and Spiegelhalter. Our method does not concern itself with the constant c; instead, we

aim to establish a lower bound for various forms of Intrinsic Bayes Factors, including the

arithmetic, geometric, expected and harmonic. This bound encompasses both theoretical

and empirical versions, with the empirical version providing the tightest bound. The sub-

sequent section will outline the procedures for obtaining both theoretical and empirical

bounds.

3.2 The universal robust bound for the Intrinsic Bayes Factors

In this study, we propose a novel method that generates a lower bound for the

Bayes factor and corresponding priors, employing an approach that is closely related to

the concept of Intrinsic Bayes Factors and the technique employed by Spiegelhalter and

Smith. Let y(ℓ) denote a minimal training sample, and π(θi|y(ℓ)) represent the posterior

distribution of parameter θ i given the minimal training sample for two models, Mi and

M j. Our aim is to compare models Mi and M j. To achieve this comparison, we define

the set D as the aggregate of all possible minimal training samples with size k, where k is

determined as the maximum of {dim(θi),dim(θ j)}.

Definition 1. The Intrinsic Bayes Factor Lower Bound (BI
01), is the theoretical lower

bound of all possible Intrinsic Bayes Factors obtained by computing the infimum over the

set of all possible imaginary training samples D.

Definition 2. The Empirical Intrinsic Bayes Factor Lower Bound (BI∗
01) is the empirical

lower bound obtained by computing the minimum over the set of all possible empirical

training samples Dn,k.
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3.3 A bridge between the universal bound and the IBF

In this section, we will explore various approaches to construct lower bounds for

the Intrinsic Bayes factor, ultimately contributing to the field of model comparison and

selection. There is a bridge between IBF and the Least Favorable Intrinsic Bayes Factor

approach that we want to explore by considering the AIBF, defined as,

BAI
10(y) = BN

10(y)×
1
L

L

∑
ℓ=1

BN
01(y(ℓ)) (3.1)

where L =
(n

m

)
, where m is the minimal training sample size. The AIBF is asymmetric

the more complex model has to be placed above to guarantee the convergence.

BI
10 := BN

10 sup
y(ℓ)∈D

B01(y(ℓ))≥ BN
10

1
L ∑B01(y(ℓ)) = BA

10. (3.2)

By forming the reciprocals, we have the important consequence for a bound on the prob-

ability of a null hypothesis:

BI
01 := BN

01 inf
ℓ

B10(y(ℓ)) = BN
01

1
supy(ℓ)∈D B01(y(ℓ))

≤ BN
01

1
1
L ∑B01(y(ℓ))

= BAI
01. (3.3)

where y(ℓ) is a theoretical training sample from the set of all possible training samples.

By construction, all Bayes Factors obey: B01 = 1/B10 and BI
10 ≥ BAI

10, since the supremum

is necessarily bigger or equal than the arithmetic average. On the other hand, for general-

izing the bound we may consider another bound based on empirical training samples,

BAI
01 ≥ BN

01 inf
y(ℓ)∈Dn,k

B10(y(ℓ)) = BI∗
01, (3.4)

where y(ℓ) are empirical real training samples, and BI∗
01 is formed over all the real training

samples, of a minimal size m. Clearly, BI∗
10 ≤ BI

10 and BAIBF
01 ≥ BI∗

01 ≥ BI
01. Thus, BI∗

01 and

BI
01 are the least favorable lower bounds on the Bayes Factor. In addition, the results

obtained with the AIBF are valid for other related types of Intrinsic Bayes Factors.
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3.3.1 A comparison with the p-value based lower bound

In this section, we aim to illustrate the superiority of our bound in comparison to the

well-known p-value-based robust lower bound introduced by Sellke et al. (2001) [13]. To

commence our discussion, we will first establish the definition of a p-value.

Definition 3. A p-value p(Y) is a statistic satisfying 0 ≤ p(y)≤ 1 for every sample point

y. Small values of p(Y) give evidence that H1 : θ ∈ Θc
0 is true, where Θ0 is some subset of

the parameter space and Θc
0 is its complement. A p-value is valid if, for every θ ∈ Θ0 and

every 0 ≤ α ≤ 1,

Pθ (p(Y)≤ α)≤ α.

The asymptotic behavior of the p-value as the sample size tends toward infinity is

contingent upon both the null hypothesis and the fundamental distribution of the test

statistic. Generally speaking, in the context of a two-sided hypothesis test, if the null

hypothesis holds true, the p-value follows a uniform distribution within the range [0,1].

This implies that, irrespective of the sample size, the p-value will be uniformly distributed

provided that the null hypothesis is valid.

The Robust Lower Bound offers a framework for calibrating p-values and is defined

as follows:

BL
01(p) =


−ep log(p) if p < 1

e

1 if p ≥ 1
e

(3.5)

We postulate that given any sample size n and for a fixed p, our IBF Lower Bound as a

function of the p-value, BI
01(p), is superior to the robust lower bound BL

01(p). It can be

mathematically expressed as

BI
01(p)≥ BI

01(p)≥ BL
01(p).
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The last part of this inequality was proven by Sellke et. al (2001) [13] and it should

be noted that BI
01(p) is dynamic, changing with the sample size, akin to a real Bayes

Factor, whereas BL
01(p) remains static with n. In the next theorem, we use the Laplace

approximation to show that the robust lower bound stays constant under H0 while our

lower bound converges to the correct decision as the sample size increases. The Laplace

approximation is a method used to approximate a probability distribution with a normal

distribution and it’s valid under the following regularity conditions:

1. Smoothness of the Logarithm of the Density: For a density function f (y), if log( f (y))

is twice continuously differentiable in a neighborhood around the mode of the distribu-

tion, then the Laplace approximation tends to work well.

2. Existence of a Unique Mode: The distribution should have a single, well-defined mode

within the region of interest.

3. Curvature of the Log Density: The curvature (second derivative) of log( f (y)) at the

mode should not be zero. A non-zero curvature ensures that the distribution can be

well-approximated by a quadratic form, which is the characteristic shape of a normal

distribution.

4. Convergence to Normality: As the sample size tends to infinity, the distribution should

converge to a normal distribution in a suitable sense (like the Central Limit Theorem).

These conditions, particularly the smoothness and curvature of the log density, are crucial

for the Laplace approximation to accurately represent the shape of the distribution around

its mode.

However, it’s important to note that while the Laplace approximation is often effec-

tive for many distributions that meet these conditions, it might not work well for highly

skewed or heavy-tailed distributions where the normality assumption might not hold. In

such cases, other approximation methods or numerical techniques might be more appro-

priate.
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Theorem 3.3.1. Let f0(y|θ0) and f1(y|θ1) be the densities that satisfies regularity con-

ditions (1)-(4). Let H0 ⊂ H1, k0 = dim(θ0) and k1 = dim(θ1) where k0 < k1, then under

H0

BL
01(p)
BI

01
→ 0 as n → ∞

Proof. For a proper minimal training sample y∗(ℓ),∃b,c such that 0 < b ≤ c < ∞ and

0 < b ≤ BN
10(y

∗(ℓ))≤ c

The Laplace approximation for BN
01(y) (Berger & Pericchi (2001) [4]) yields

( f0(y|θ̂0)|Î0|−1/2

f1(y|θ̂1)|Î1|−1/2
·

πN
0 (θ̂0)

πN
1 (θ̂1)

)
·b ≤ BN

01(y)B
N
10(y

∗(ℓ))≤
( f0(y|θ̂0)|Î0|−1/2

f1(y|θ̂1)|Î1|−1/2
·

πN
0 (θ̂0)

πN
1 (θ̂1)

)
· c

where Îi and θ̂i are the observed information matrix and m.l.e, respectively under

model Mi. The BIC approximation for BI
01 gives us

b · f0(y|θ̂0)

f1(y|θ̂1)
·
(
n
)(k1−k0)/2 ≤ BI

01 ≤ c · f0(y|θ̂0)

f1(y|θ̂1)
·
(
n
)(k1−k0)/2

In the nested hypothesis case under the null hypothesis, the likelihood ratio in the

equation above is bounded because −2 · log(LR01) is bounded (it converges to a central

Chi-square distribution by Wilks theorem). Hence, BI
01(y)→ ∞ and BI

10(y)→ 0 as n → ∞

and by definition, 0 ≤ BL
01(p)≤ 1. Hence,

0 ≤
BL

01(p)
BI

01
≤ 1

BI
01

= BI
10 −→ lim

n→∞
0 = 0 ≤ lim

n→∞

BL
01(p)
BI

01
≤ lim

n→∞
BI

10 = 0

By the Squeezing Theorem,

lim
n→∞

BL
01(p)
BI

01
= 0.

Although this proof is for nested hypotheses, we believe that this is true in general

and we support this claim with examples for separated hypotheses (see Geometric vs.

Poisson, Negative Binomial vs Poisson examples).
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A study of the p-value and the RBL vs. the SS Bayes factor under H1

We want to study the following limit under H1

lim
n→∞

BL
01(p)
BI

01

Using an approach similar to the one used in the previous theorem, we can see that

f1(y|θ̂1)

c ·nk1−k0 f0(y|θ̂0)
≤

BL
01(p)
BI

01
≤ f1(y|θ̂1)

b ·nk1−k0 f0(y|θ̂0)

To explore this limit we need the asymptotic distribution of the likelihood ratio un-

der the alternative hypothesis and related results by Self, S. G., & Liang, K. Y. (1987)

[12] known as the generalized likelihood ratio test (GLRT) can be used to handle the case

where the alternative hypothesis is true. The GLRT is a modification of the likelihood

ratio test that allows for testing of both null and alternative hypotheses, and it is based

on the same asymptotic theory as Wilks’ theorem. Specifically, as the sample size goes

to infinity, the distribution of the GLRT under the alternative hypothesis approaches a

non-central chi-squared distribution with a non-centrality parameter proportional to the

squared distance between the true parameter value and the null parameter value, and de-

grees of freedom equal to the difference in the number of parameters between the null and

alternative hypotheses. Mathematically, we can write this as:

LR ∼ χ
2(p,λ ) as n → ∞ under H1

where χ2(p,λ ) denotes the non-central chi-squared distribution with p degrees of

freedom, the non-centrality parameter λ and LR = 2∗ log(L(θ̂1)/L(θ̂0)). The GLRT can

be used to test hypotheses in a wide range of statistical models, including linear regres-

sion, logistic regression, and ANOVA, among others. So, while Wilks’ theorem applies

only to the null hypothesis, the related GLRT provides a way to handle testing of the

alternative hypothesis using the same underlying asymptotic theory.
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In some cases, it may be possible to write the asymptotic distribution of the likelihood

ratio test statistic as a function of n.

However, note that this formula applies only to specific cases, and the asymptotic

distribution of the likelihood ratio test statistic may be different for other models and hy-

potheses. Determining the non-centrality parameter λ for the asymptotic distribution of

the likelihood ratio test statistic can be challenging and requires knowledge of the true

parameter values under the alternative hypothesis. In general, there is no simple formula

that can be used to calculate λ for any hypotheses test. In some cases, simulation methods

may be used to estimate the non-centrality parameter λ . This involves generating simu-

lated data sets from the assumed distribution under the alternative hypothesis, calculating

the likelihood ratio test statistic for each data set, and then estimating the distribution of

the test statistic based on the simulated values. The estimated distribution can then be

compared to the theoretical distribution to estimate the non-centrality parameter.

In general, determining the non-centrality parameter and its rate of convergence

for the asymptotic distribution of the likelihood ratio test statistic is an active area of

research, and the methods used to estimate λ depend on the specific model and hypothesis

being tested. We conjecture that if there exist r > 0 such that limn→∞
LR
nr is constant under

H1, then

lim
n→∞

BL
01(p)
BI

01
= 0 if k1 − k0 > r (3.6)

because if this limit is zero, then similarly to the case when H0 is true, we can show that

the limit of the ratio is also zero. Further research is needed to determine if Theorem

3.1 is true under the alternative hypothesis in general, or if this theorem only holds under

certain conditions.



CHAPTER 4
THE SP BAYES FACTORS

In this chapter, we introduce a novel prior known as the SP Prior and leverage it to

establish what we term the SP Bayes Factor. The designation ’SP’ denotes the ’superior

posterior’ approach, which underpins the creation of these priors. The underlying concept

involves transforming an improper prior into a proper posterior distribution by identifying

either the theoretical or empirical minimal training sample that maximizes evidence for

the null hypothesis (or yields the least favorable prior for the alternative).

Both the prior and the Bayes factor are presented in two versions-empirical and

theoretical-similar to the universal lower bound discussed in the preceding chapter. These

priors exhibit a close relationship with IBF bounds, which we elucidate within this chap-

ter.

The empirical prior proves valuable in cases where theoretical maximization poses

challenges. Remarkably, the empirical SP Bayes Factor closely approximates the actual

Bayes factor value compared to the theoretical counterpart. Nevertheless, in scenarios

where theoretical maximization remains viable, the theoretical prior offers computational

efficiency over the empirical one. Employing both priors, the SP Bayes factors converge

towards accurate decisions with increasing sample sizes-a point we substantiate both the-

oretically and through numerical examples in subsequent sections.

20
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4.1 The SP Prior

Definition 4 (The Theoretical SP Prior). The Theoretical SP prior for B10 is defined as

π
SP
k (θk) = πk(θ1|y∗T (ℓ)) =

fk(y∗T (ℓ)|θk)π
N
k (θk)

mk(y∗T (ℓ))
,k = 0,1

where y∗T (ℓ) = arg[ sup
y(ℓ)∈D

B01(y(ℓ))].

Definition 5 (The Empirical SP Prior). The Empirical SP prior for B10 is defined as

π
SP∗
k (θk) = πk(θk|yE(ℓ)) =

fk(y∗E(ℓ)|θk)π
N
k (θk)

mk(y∗E(ℓ))
,k = 0,1

where y∗E(ℓ) = arg[ sup
y(ℓ)∈Dn,k

m0(y(ℓ))
m1(y(ℓ))

].

4.2 The SP Bayes Factor

Definition 6 (The Theoretical SP Bayes Factor).

If arg sup
y(ℓ)∈D

B01(y(ℓ))< ∞, then

BSP
10 =

mSP
1 (y)

mSP
0 (y)

=

∫
f1(y|θ1)π

SP
1 (θ1)dθ1∫

f0(y|θ0)π
SP
0 (θ0)dθ0

.

Definition 7 (The Empirical SP Bayes Factor).

Let y∗T (ℓ) = arg sup
y(ℓ)∈Dn,k

B01(y(ℓ)), and y(−ℓ) = y\y∗T (ℓ), then

BSP∗
10 =

mSP∗
1 (y)

mSP∗
0 (y)

=

∫
f1(y(−ℓ)|θ1)π

SP∗
1 (θ1)dθ1∫

f0(y(−ℓ)|θ0)π
SP∗
0 (θ0)dθ0

.
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4.3 Results

Theorem 4.3.1. The Empirical IBF upper and lower bounds can be obtained using the

Empirical SP Prior, that is

BSP∗
10 = BN

10[y] sup
ℓ=1,...,L

B01[y(ℓ)] = BI∗
10(y).

Proof. Let y(−ℓ) = y\{y∗E(ℓ)}, without loss of generality, we will prove it for the upper-

bound with the supremum since the proof for the infimum lower bound is identical. The

Empirical SP Bayes factor is

BSP∗
10 =

mSP∗
1 (y)

mSP∗
0 (y)

=

∫
f1(y(−ℓ)|θ 1)

f (y∗E(ℓ)|θ 1)π
N
i (θ 1)

m1(y∗E(ℓ))
dθ 1∫

f0(y(−ℓ)|θ 0)
f (y∗E(ℓ)|θ 0)π

N
j (θ 0)

m0(y∗E(ℓ))
dθ 0

The marginal distributions m0 and m1 do not depend on θ 0 and θ 1, hence we can take

those terms out of the integrals to obtain

m0(y∗E(ℓ))
m1(y∗E(ℓ))

∫
f1(y(−ℓ)|θ1) f (y∗E(ℓ)|θ1)π

N
i (θ1)dθ1∫

f0(y(−ℓ)|θ0) f (y∗E(ℓ)|θ0)π
N
0 (θ0)dθ0

=
m0(y∗E(ℓ))
m1(y∗E(ℓ))

m1(y(−ℓ),y∗E(ℓ))
m0(y(−ℓ),y∗E(ℓ))

= B01[y∗E(ℓ)]B
N
10[y(−ℓ),y∗E(ℓ)]

By definition, we have that

B01[y∗E(ℓ)] = B01[arg( sup
ℓ=1,...,L

B01(y(ℓ)))] = sup
ℓ=1,...,L

B01[y(ℓ)]

and {y∗E(ℓ)}∪{y(−ℓ)}= y and mk(y(−ℓ),y∗E(ℓ)) = mk(y), for k = 0,1

Therefore,

BSP∗
10 = BN

10[y] sup
ℓ=1,...,L

BN
01[y(ℓ)] = BI∗

10(y)
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Theorem 4.3.2. Let f (y|θ) be a p.d.f or p.m.f a random variable Y with support S = {y :

f (y|θ)> 0}. Suppose we want to calculate the Bayes factor for the following nested hy-

pothesis test H0 : θ = θ0 vs H1 : θ ̸= θ0, then the empirical SP-Prior and SP-BF converges

to the Theoretical SP-Prior and SP-BF.

Proof. Without loss of generality we can assume that dim(θ) = 1, so that the minimal

training sample size is one. In this case, the set Dn,k = Dn,1 = yn = (y1, ...,yn) ⊆ S,

lim
n→∞

Dn,1 = D and L =
(n

k

)
=
(n

1

)
= n. The proof will be divided in the discrete and con-

tinuous support cases.

Case 1: The support S is discrete

lim
n→∞

Dn,1 = lim
L→∞

{y(ℓ)}L
l=1 = {y(ℓ)}∞

l=1 = D = S

Therefore,

lim
n→∞

BSP∗
01 (y) = BN

01[y] lim
L→∞

sup
{y(ℓ)}L

ℓ=1

B10[y(ℓ)] = BN
01[y]sup

D
B10[y(ℓ)]

Hence,

lim
n→∞

BSP∗
01 (y) = BSP

01 (y)

Clearly, in the discrete support case, we can eventually (for some n) obtain the minimal

training sample y∗n(ℓ) that generates the theoretical supremum, and the empirical SS-BF

will be exactly equal to the theoretical SSBF.

Case 2: The support S is continuous

In the case of a continuous support S, we can only find a sequence of minimal train-

ing samples {y∗n(ℓ)} that gets arbitrarily close to a minimal imaginary sample y∗(ℓ) that

produces the theoretical supremum. We will construct such a sequence and prove its
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existence. Assume that y∗(ℓ) = argsupD B10(y(ℓ)) and for each n,

y∗n(ℓ) = y(ℓin), where in = arg min
i∈{1,...,(n

1)}
|y∗(ℓ)−y(ℓi)|

We claim that y∗n(ℓ)→ y∗(ℓ) for any y∗(ℓ) ∈ D

Proof:

Assume that y∗(ℓ) ∈ D and ∃ε > 0 such that

∀n ∈ N, |y∗(ℓ)−y∗n(ℓ)|> ε

Then the interval (y∗(ℓ)− ε

2 ,y
∗(ℓ)+ ε

2)∩D = /0 which is a contradiction since y∗(ℓ) ∈ D,

thus the intersection can not be empty. Similarly, if such a point does exist in D, then

∫ y∗(ℓ)+ ε

2

y∗(ℓ)− ε

2

f (y|θ)dy = 0 =⇒ f is not continuous in y∗(ℓ) =⇒ y∗(ℓ) /∈ D



CHAPTER 5
HYPOTHESIS TESTING WITH THE NORMAL

DISTRIBUTION

This chapter explores hypothesis testing for mean and precision (the inverse of scale)

parameters within the Normal Distribution. It covers essential concepts such as the uni-

versal lower bound, the SP/Intrinsic Priors, and the SP/Intrinsic Bayes factor. Through

numerical experiments and visual charts, we compare these approaches and visualize the

results. By blending theoretical foundations with practical applications, this chapter aims

to provide readers with a robust understanding of conducting and interpreting these cru-

cial statistical tests, leveraging our novel theoretical framework..

5.1 The Normal Scale Hypothesis Test

Assume y = {y1,y2, ...,yn} are i.i.d samples where yi ∼ N(yi|µ,h) for every i, and

that the mean µ is unknown. We wish to decide if the precision parameter h = 1/σ2

is a specified value. If we want to make a decision, we should perform the following

hypothesis test

H0 : h = h0 vs H1 : h ̸= h0,

The likelihood is f (y|µ,h) = ( h
2π
)n/2 exp[−h

2(S
2 +n(ȳ−µ)2, where S2 = ∑

n
i=1(yi − ȳ)2.

As a first step, use the so-called "Jeffrey’s rule" equating the prior to the square root

of the determinant of the Fisher Information. In the motivating example this leads to:

πJ(µ,h) =C0 · dµdh√
h

. For the so-called "independence" Jeffrey’s we have instead

π
J
I (µ,h) = π

J(µ)πJ(h) =C1 ·
dµdh

h

25
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Putting together both priors πJ(µ,h) = C/hr with r = 1/2,1 for the dependent or inde-

pendent Jeffreys prior respectively. It turns out that the Bayes Factor is,

BN
01(y) =

h(n−1)/2
0 exp(−h0S2/2)

(2/S2)(n−r)/2Γ((n− r)/2)
× C0

C1
, (5.1)

where r is equal to 1/2 for the dependent prior, and for the independent prior equal to

one. In this thesis, we assume the independent prior, as put forward by Jeffreys.It is

apparent from this expression that the Bayes Factor is undetermined since it depends on

the undefined ratio C0/C1, the undefined constants that come from the improper priors.

It can be argued, from several points of view, that the constants regarding the location µ

cancel out, leaving only the indeterminacy related to the hypothesis parameter h. Some

of these points of view are among others:

1. Mean and Precision parameters are orthogonal in the Fisher Information Matrix, and

thus "cancel-out" in the ratio of marginal likelihoods

2. It turns out that two location models are predictively matched (see Pericchi (2005) [11])

and when the scale is integrated into the denominator, models under both hypotheses

become location models, and the corrections cancel out.

5.1.1 The universal lower bound

It is evident from the previous example that, unfortunately, the Bayes factor

remains defined only up to the constant that pertains to the precision parameter under test.

This is why Jeffrey’s suggested conventional proper priors for the extra-parameters under

the larger hypothesis (but improper for common parameters like µ here). There have been

suggested techniques around this problem, as in Smith and Spiegelhalter (1980) [14] and

(1982) [15]. These techniques, although approximate, are useful in devising sensible

scaling for Bayes Factors. In fact, we proved there for the first time that this approach has

a very direct relationship with more recent approaches that have been studied in detail,

particularly the Intrinsic Bayes Factor, the Intrinsic Priors, and EP-priors.
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In the example of the section, the minimal training sample consists of two observa-

tions (y(ℓ1),y(ℓ2)), and the expression (2) turns out to be

BN
01(y)×BN

10(y(ℓ)) =
h(n−1)/2

0 exp(−h0S2/2)

(2/S2)p C0
C1

√
h0/π · exp(−h0D(ℓ)2/4)|D(ℓ)| · C1

C0

,

where D(ℓ) = y(ℓ1)− y(ℓ2) and p = (n− 1)/2Γ((n− 1)/2). It is apparent from (3)

that the undefined constants cancel out. As a specific example, take H0 : h0 = 1. The

crucial step is: what to do about the (theoretical or imaginary) training samples summary

statistics D(ℓ)? SSBF’s practical and simplifying approach is to take:

sup
y(ℓ)∈D

BN
10(D(ℓ)), (5.2)

which is attained at D̂ =
√

2 and the "correction" (4) is equal to 0.484. The IBF bound is

then BI
01 = BN

01×supy(ℓ)∈D BN
10(y(ℓ)). To see the relationship with more recent approaches

like Intrinsic Bayes Factors the sup above is replaced by the arithmetic mean or by the

theoretical expectation, on y(ℓ), under H1 ⊃ H0. The theoretical expressions in (4) and

(5), which take the formal maximum possible value for all possible training samples, can

be refined by the empirical observed maximum for the observed y(ℓ)’s:

sup
ℓ=1,...,L

BN
10(y(ℓ))≤ sup

y(ℓ)∈D
BN

10(y(ℓ)), (5.3)

where the distinction arises as y(ℓ) is the set of empirically observed training samples

and D which is the set of all possible minimal training samples from the whole support.

The empirical bound is then sharper than the theoretical bound, and we can refer to the

theoretical bound and the empirical bound of the Intrinsic Bayes Factors. In the Expected

IBF case, for any pair of i.i.d. training samples {y(ℓ1),y(ℓ2)}, assumed (when taking

expectations) to be drawn from H1 ⊃ H0, results in D(ℓ)∼ N(0,2/h). Then under H1:

BEIBF
10 (y)
BN

10(y)
=
∫ |D|√

π
exp(−D2

4
) ·

√
h · exp(−h ·D2/4)

2
√

π
dD =

2
√

h
π(h+1)

.
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In an applied problem with real data, the parameter h will be estimated by its MLE. In

this theoretical exercise, we study it as a function of h, and computation yields that its

maximum is attained at the null hypothesis h = h0 = 1 and its value at its maximum is

1/π = 0.318.

5.1.2 Remarks

1. Our ratio of constants is 0.484 and the Maximum of the Expected IBF of the Training

Sample is 0.318. This may seem like a big difference (the ratio is about .66). These

values are attained close to the null hypothesis, the difference far from the null, may be

much bigger but there, the dominant factor BN
01(y), will overwhelm that difference for a

moderate sample, and even small but larger than the training sample sizes.

2. The lower bound is robust, it does not depend on the fact that all the training samples

belong to the alternative hypothesis H1 and that all belong to the same population. This

bound achieves a very important robust effect. The bound has Universal validity: It

is still valid under violations of distributional assumptions, for example, Normality or

homogeneity of the population of training samples. It can also be used to check the

computations of IBFs and with Intrinsic Priors.

3. The SS’s bound on Intrinsic Bayes Factors is typically easy to compute and generalize

to realistic scenarios.

4. In terms of p-values, if it can be found a "tight" bound g(p) so that g(p)≤ BN
01 then

g(p)× 1
supBN

01(y(ℓ))
≤ BI

01 ≤ B01 (5.4)

which is a Universal Bound that adapts to the sample size n.
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5.1.3 The SP and Intrinsic Priors

In this section, we turn our attention to the calculation of Superior Posterior (SP)

and Intrinsic priors within the context of the Normal Scale Hypothesis testing scenario.

An in-depth exploration will be conducted to illuminate the nuanced attributes and sim-

ilarities shared between these two types of priors. To enhance the comprehension and

tangibility of the underlying principles, we shall include illustrative representations in the

form of charts. These graphical elucidations will serve as effective tools for visualizing

the properties and similarities of both SP and Intrinsic priors.

Moreover, to ensure results and facilitate the application of the presented methods,

we will accompany our discussion with executable R code snippets. These will illustrate

the computational procedures required to carry out the prior calculations and generate the

corresponding charts. By making this code available, we aim to provide a practical and

accessible means for readers to engage with our methodology. Consider the Bayes factor

for the minimal training sample of the normal scale example with an unknown mean

BN
10(y(ℓ)) ∝

1
exp{−h0D(ℓ)2/4}|D(ℓ)|

=
exp{h0D(ℓ)2/4}

|D(ℓ)|

To find the value of D(ℓ) that generates the sup of BN
10(y(ℓ)), we must take logarithms

on both sides, and differentiate the equation BN
10(y(ℓ)) = 0 with respect to D(ℓ),

d
dD(ℓ)

log(
exp{h0D(ℓ)2/4}

|D(ℓ)|
) = 2h0

D̂
4
− 1

D̂
= 0 =⇒ h0

D̂2

2
= 1 =⇒ D̂ =

√
2
h0

After calculating this value, we must consider the prior of µ and h given y(ℓ) which is

π(µ,h|y(ℓ))= f (y(ℓ)|µ,h)π(µ)π(h)∫
f (y(ℓ)|µ,h)π(µ)π(h)dµdh

=
1
h

h
2π

exp{−h
2 [(y(1)−µ)2 +(y(2)−µ)2]}

1
2π

∫
exp{−h

2
(
D(ℓ)2

2
+2(µ − ȳ(ℓ))2}dµdh

(5.5)
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Simplifying this equation, we obtain

exp{−h
2 [

D(ℓ)2

2 +2(µ − ȳ(ℓ))2]}∫
∞

0
exp{−h

4
D(ℓ)2}

√
2π√
2h

dh

To solve the last integral, we should consider the following change of variable

u =
hD(ℓ)2

4
, h =

4u
D(ℓ)2 , dh =

4
D(ℓ)2 du

4
√

π

D(ℓ)2

∫
∞

0
(

4u
D(ℓ)2 )

1
2−1 exp{−u}du = Γ(

1
2
)
4
√

π

D2
D
2
=

2π

D

Hence,

π(µ,h|D = D̂) =
exp{−h

2 [
D̂2

2 +2(µ − ȳ(ℓ))2]}D̂
2π

(5.6)

Integrating with respect to µ , we obtain the prior for h

π(h|D) =
∫

π(µ,h|D)dµ =
∫ D

2π
exp
{
−h

2

(
D2

2
+2(µ − ȳ(ℓ))2

)}
dµ

=
D
2π

exp
{
−h

2
D2

2

}√
2π√
2h

=
Dexp

{
−hD2

4

}
√

2π
√

2h

and by substituting D by D̂, we can obtain the SP prior for h

π
SP(h|D̂ =

√
2
h0

) =
1√

2πhh0
exp{− h

2h0
}

Evidently, the prior πSP(h) is Gamma(α = 1/2,β = 2h0). To find the prior for µ , we

must integrate with respect to h as follows

π
SP(µ|D) =

∫
∞

0
exp{−h

2
[
D2

2
+2(µ − ȳ(ℓ))2]} D

2π
dh =

8π

D2 +4(µ − ȳ(ℓ))

π
SP(µ|D̂ =

√
2
h0

) =
8π

2
h0
+4(µ − ȳ(ℓ))2

=
2π

1
2h0

+(µ − ȳ(ℓ))2
=

4h0π

1+(µ−ȳ(ℓ)√
2h0

)2
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The distribution of µ for B01 is proportional to a Cauchy(ȳ,γ) where γ =
√

2h0.

π
SP(µ) ∝

1

πγ

(
1+(µ−ȳ(ℓ)

γ
)2
)

Next, we will compute the intrinsic priors for the same hypothesis test above to compare

those with the SP priors. The improper intrinsic prior for µ is proportional to a constant

π I(µ) ∝ c. In the other hand, the intrinsic prior for the scale h is

π
I(µ,h) = π

N(µ,h)
∫ mN

0 (y(ℓ))
mN

1 (y(ℓ))
f (y(ℓ)|µ,h)dy(ℓ) =

∫
π(µ,h|y(ℓ))m0(y(ℓ))dy(ℓ)

π
I(h) ∝

1
π

√
h
h0

h+1
h0

1
h
=

1
πh0

( h
h0
)1/2−1

( h
h0
+1)

Evidently, the prior π I(h), is a SBeta2(h|p = 1/2,q = 1/2,b = h0) (Scale beta2

distribution). The Scale beta two density is given by

f (y|p,q,b) = Γ(p+q)
Γ(p)Γ(q)

(y/b)p−1

( y
b +1)(p+q)

, y, p,q,b > 0

The subsequent script is written in the R programming language that facilitates the gen-

eration of a comparative graphical representation of both priors. These priors are super-

imposed on the same set of axes to foster a direct comparison. This visual comparison is

executed across distinct values of the null hypothesis (H0 = 1 and H0 = 10).

R program
1 sp_prior = function(h,h0) { (1/sqrt(2*pi*h*h0))*exp(-h/(2*h0)) }

2 i_prior = function(h,h0) { (1/(pi*h0))*( (h/h0)^( -0.5) )/(h/h0+1) }

3 par(mfrow=c(1,2)); h = seq (0.1 ,5 ,0.01);h0=1; iprior = i_prior(h,h0); spprior = sp_prior(h,h0)

4 ymin = min(spprior ,iprior); ymax = max(spprior ,iprior)

5 plot(h,spprior ,type="l",main="Comparison of the SP and Intrinsic Priors of h",ylab="Priors")

6 mtext(text="Hypothesis test: H0 = 1 vs H0 != 1",side =3); lines(h,iprior ,type="l",col="red")

7 legend (3.4, 1.2, legend=c("SP", "Intrinsic"),col=c("black", "red"), lty=c(1,1), cex=0.8, title="Priors", text.

font=4, bg='lightblue ')

8 h = seq (1 ,15 ,0.01);h0=10; iprior = i_prior(h,h0); spprior = sp_prior(h,h0)

9 ymin = min(spprior ,iprior); ymax = max(spprior ,iprior)

10 plot(h,spprior ,type="l",main="Comparison of the SP and Intrinsic Priors of h",ylim=c(ymin ,ymax),ylab="Priors")

11 mtext(text="Hypothesis test: H0 = 10 vs H0 != 10",side =3); lines(h,iprior ,type="l",col="red")

12 legend (10.5 , 0.12, legend=c("SP", "Intrinsic"),col=c("black", "red"), lty=c(1,1), cex=0.8, title="Priors", text.

font=4, bg='lightblue ')
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Figure 5–1: A comparison between the SP Prior and the Intrinsic Prior for the Normal Scale Hypothesis
test for different null hypothesis values.

As illustrated in the preceding figures, a noteworthy characteristic of the Superior

Posterior (SP) Prior emerges. This prior assigns a heightened probability to the null hy-

pothesis in comparison to the Intrinsic Prior, specifically when the values of h are less than

that of the null hypothesis. It is furthermore observed that the probability ascribed by the

SP is invariably equal to or exceeds that of the Intrinsic Prior under these conditions. This

pattern elucidates the differential weights that these priors place on the null hypothesis,

offering valuable insights for our investigation.

5.2 The Normal Mean Hypothesis Test

This section is dedicated to exploring the domain of Normal Mean Hypothesis

Testing. Here, we uncover the core principles and methodologies that drive inference

regarding the mean parameter within the Normal Distribution. Assume that yi ∼N(µ,σ2
0 )

and consider the following hypothesis test

H0 : µ = µ0 vs H1 : µ ̸= µ0,σ0, known
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Hence, the non-informative prior is πN(µ) = 1 and a minimal training sample is only one

observation y(ℓ), for any ℓ = 1, ...,n. We will use that information to calculate different

Bayes factors and their bounds in the next sections.

5.2.1 The Expected Intrinsic Bayes Factor for the Normal Mean Hypothesis Test

Consider the general formula for the Expected Intrinsic Bayes Factor (EIBF)

BEI
10(y) = BN

10(y)E
θ̂

y(ℓ)|H0
(
mN

0 (y(ℓ))
mN

1 (y(ℓ))
)

For this specific hypothesis test, the EIBF can be obtained by solving the following inte-

gral

E θ̂

y(ℓ)|H0
(
mN

0 (y(ℓ))
mN

1 (y(ℓ))
)=

∫
∞

−∞

( 1√
2πσ0

)2
exp{− 1

2σ2
0
(y(ℓ)−µ0)

2}exp{− 1
2σ2

0
(y(ℓ)−µ)2}dy(ℓ)

This integral can be easily solved to obtain the following equality

E θ̂

y(ℓ)|H0
(
mN

0 (y(ℓ))
mN

1 (y(ℓ))
) = N(µ|µ0,2σ

2
0 ) =

1
√

2π

√
2σ2

0

exp{ −1
4σ2

0
(µ −µ0)

2}

In this case, the parameter µ is unknown and we should estimate it using the maximum

likelihood estimator ȳ to obtain

E θ̂

y(ℓ)|H0
(
mN

0 (y(ℓ))
mN

1 (y(ℓ))
) =

1
√

2π

√
2σ2

0

exp{ −1
4σ2

0
(ȳ−µ0)

2}

After finding this term, we can proceed to calculate the Expected Intrinsic Bayes

Factor

BEI
10 =

1
√

2π

√
2σ2

0

exp{ −1
4σ2

0
(ȳ−µ0)

2}

√
2π

σ0√
n

exp{ −1
2σ2

0
n(ȳ−µ0)2}

Simplifying the equation above yields

BEI
10 =

1√
2n

exp{ 1
2σ2

0
(n− 1

2
)(ȳ−µ0)

2}
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5.2.2 The Intrinsic Bayes Factor Bounds for the Normal Mean Hypothesis Test

Let us consider a scenario where the random vector Y = (Y1, . . . ,Yn) is composed

of independent and identically distributed (i.i.d) random variables Yi, following a normal

distribution with mean µ0 and standard deviation σ0 (known) under the null hypothesis

M0, and a normal distribution with mean µ and standard deviation σ0 (known) under the

alternative hypothesis M1. We adopt the non-informative prior, specifically πN
1 (µ) = 1.

BN
01(y(ℓ)) =

1√
2πσ0

exp{ −1
2σ2

0
(y(ℓ)−µ0)

2}∫
∞

−∞

1√
2πσ0

exp{ −1
2σ2

0
(y(ℓ)−µ)2}dµ

From the equation above, it is evident that the maximum value of the Bayes factor is

obtained when y(ℓ) = µ0, and the maximum value is

sup
y(ℓ)∈D

BN
01(y(ℓ)) =

1√
2πσ0

.

By using the result above, we can compute the Bayes factor bound

BI
10 = BN

10(y)× supBN
01(y(ℓ))

=

∫
∞

0
(

1√
2πσ0

)n exp{− 1
2σ2

0
∑[(y(ℓ)− ȳ)2 +n(ȳ−µ)2]}dµ

(
1√

2πσ0
)n exp{− 1

2σ2
0

∑(y(ℓ)−µ0)
2}

× supBN
01(y(ℓ))

=

√
2π

σ0√
n

exp{ −1
2σ2

0
n(ȳ−µ0)2}

supBN
01(y(ℓ)) =

√
2π

σ0√
n

exp{ −1
2σ2

0
n(ȳ−µ0)2}

1√
2πσ0

Simplifying the equation above yields

BI
10 =

exp{ 1
2σ2

0
n(ȳ−µ0)

2}
√

n

Similarly, we can obtain the IBF lower bound

BI
01 =

√
n
(

exp−{ 1
2σ2

0
n(ȳ−µ0)

2}
)
.
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5.2.3 Normal mean hypothesis test with unknown variance.

Let us consider a scenario where the random vector Y = (Y1, . . . ,Yn) is composed

of independent and identically distributed (i.i.d) random variables Yi, following a normal

distribution with mean µ0 and standard deviation σ0 under the null hypothesis M0, and a

normal distribution with mean µ and standard deviation σ1 under the alternative hypoth-

esis M1.

H0 : µ = µ0 vs H1 : µ ̸= µ0,σ unknown

We adopt non-informative priors, specifically πN
0 (σ0) = 1/σ0 and πN

1 (µ,σ1) = 1/σ2
1 . It

is important to note that the choice of πN
1 differs from that of πN

0 due to a seminal work

by Berger, Pericchi, and Varshavsky in 1998 [5], wherein they calculated the marginal

of y(ℓ) using πN
1 (µ,σ1) = 1/σ1. In this context, the expression for the density function

under the alternative hypothesis takes the form:

m1(y(ℓ)) =
1

2|y1 − y2|

where y(ℓ) represents the observed data. However, we face a challenge in evaluating the

Bayes Factor due to the nature of the above density function. Specifically, the infimum

and supremum of this function can potentially become either zero or infinity, leading to

indeterminate bounds for the Bayes Factor. To circumvent this issue and ensure well-

defined bounds, we opt for the aforementioned choice of priors. This strategic choice

of priors enables us to derive meaningful marginals and subsequently evaluate the Bayes

Factor.

mN
0 (y(ℓ)) =

1
2π(y2

1 + y2
2)
, mN

1 (y(ℓ)) =
1√

π(y1 − y2)2

and the Bayes factor is

B01(y(ℓ)) =
m0(y(ℓ))
m1(y(ℓ))

=
(y1 − y2)

2

2
√

π(y2
1 + y2

2)
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To find the IBF bounds, we found the supremum of the Bayes factor above

sup
y(ℓ)∈D

B01(y(ℓ)) =
m0(y(ℓ))
m1(y(ℓ))

=
(y1 − y2)

2

2
√

π(y2
1 + y2

2)
=

1√
π

The IBF upper bound can be obtained as

B10 = B10(y)supB01(y(ℓ)) =
m1(y)
m0(y)

1√
π

To find the upper bound, we must calculate the marginals m0 and m1. To obtain m0, we

must solve the following integral

m0(y)) =
∫

∞

0
(

1√
2π

)n exp{ −1
2σ2

0
[∑(yi −µ0)

2]} 1

σ
(n+1)
0

dσ0

Consider the change of variable β = 1
2 [∑(yi −µ0)

2], 1
σ2 = η , then

−2
σ3 dσ = dη =⇒ dσ =−σ3

2
dη

1
η1/2 = σ =⇒ dσ =−η

3/2/2dη

m0(y) =
1
2
(

1√
2π

)n
∫

∞

0
exp{−βη}η

n/2−1dη =
1
2
(

1√
2π

)n Γ(n/2)
β n/2

Similarly, we can calculate m1

m1(y) = (
1√
2π

)n
∫

∞

0

1
σ

n+2
1

∫
∞

−∞

exp{− 1
2σ2

1
(∑(yi −µ)2))}dµdσ1

Adding and subtracting ȳ inside the exponential function yields

∑(yi −µ)2 = ∑((yi + ȳ)− (µ + ȳ))2 = ∑(yi − ȳ)2 +n(µ − ȳ)2

Inserting this result inside the integral with respect to µ results in

∫
∞

−∞

exp{− 1
2σ2

1
(∑(yi −µ)2))}dµ = exp{ −1

2σ2
1

∑(yi − ȳ)2}
∫

∞

−∞

exp{ −1
2(σ1/

√
n)2 (µ − ȳ)2}dµ

= σ1
√

2π/nexp{− 1
2σ2

1
(∑(yi − ȳ)2)}
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To calculate m1, we insert this result to solve the integral with respect to σ1

1√
n
(

1√
2π

)n−1
∫

∞

0

1
σ

n+1
1

exp{− 1
2σ2

1
(∑(yi − ȳ)2)}dσ1

Let β = ∑(yi−ȳ)2

2 and η = 1
σ2

1
, then

1
2
√

n
(

1√
2π

)n−1
∫

∞

0
η

n/2−1 exp{−βη}dη

This integral is the kernel of a Gamma distribution which results in

m1(y) =
1

2
√

n
(

1√
2π

)n−1 Γ(n/2)

(∑(yi−ȳ)2

2 )n/2

After obtaining m0 and m1, we can calculate the Bayes Factor upper bound

B10 =
√

2/n(
∑(yi −µ0)

2

∑(yi − ȳ)2 )n/2 .

Similarly, the Bayes Factor Lower bound is

B01 =
√

n/2(
∑(yi − ȳ)2

∑(yi −µ0)2 )
n/2.



CHAPTER 6
THE EXPONENTIAL MODEL HYPOTHESIS TEST

In the exploration of statistical hypothesis testing, this chapter embarks on a compre-

hensive investigation into exponential hypothesis testing. Specifically, we delve into the

comparison of two hypotheses H0 : λ = λ0 and H1 : λ ̸= λ0 where λ is the parameter for

an exponential density f (y|λ ) = λe−λy. We will employ several robust methodologies to

asses this hypothesis test from different but consistent approaches.

Our focus centers on evaluating and contrasting several pivotal methodologies: the

EP Approach, the −ep log(p) lower bound, the Universal Robust Bound for the Intrinsic

Bayes Factor, and the SP Approach. These methodologies serve as our guiding com-

passes in the pursuit of discerning their effectiveness in hypothesis validation. We rely

on simulations to shed light on the performance and consistency of these methodolo-

gies. By employing these simulations, we aim to craft illustrative charts that will serve

as visual aids, elucidating the comparative efficacy and nuances of each approach. This

chapter unfolds as a meticulous exploration, aiming not only to identify the most effective

methodology but also to unravel the intricacies underlying their application.

The exponential density is defined as

f (y|λ ) = λe−λy, where y ≥ 0 and λ > 0

The likelihood, Jeffrey’s prior, and posterior distribution for an exponential density with

parameter λ are given by

L(λ |y) = λ
n exp(−λ

n

∑
i=1

yi), π
N(λ ) ∝

1
λ
, π(λ |y) = L(λ |y)πJ(λ )

m(y)

38
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After calculating the likelihood and Jeffrey’s prior for the exponential density we can

easily obtain the following marginal

m(y) ∝

∫
∞

0
λ
(n−1) exp(−λ

n

∑
i=1

yi)dλ =
(∑n

i=1 yi)
n

Γ(n)

Finally, we can obtain the posterior distribution for λ

π(λ |y) ∝

Γ(n)λ n−1 exp
(
−λ

n

∑
i=1

yi

)
(∑n

i=1 yi)n

In the following sections, we’ll tackle a hypothesis test:

H0 : λ = λ0 vs. H1 : λ ̸= λ0

We’ll use different methods to calculate Bayes Factors, bounds, and priors. This helps us

compare traditional approaches with our new methods, giving us a clearer understanding

of their outcomes.

6.1 The Intrinsic Bayes Factor Dynamic and Universal Lower Bounds

In this section, we’re computing our new bound for the Intrinsic Bayes Factor. To

derive this bound, we start by examining the Bayes factor for the minimal training sample:

BN
01(y(ℓ)) =

y(ℓ)λ0

expλ0y(ℓ)

Additionally, we need the full Bayes factor for this test

BN
01(y) =

λ n
0 exp(−λ0 ∑yi)∫

∞

0 λ n exp(−λ ∑yi)
1
λ

dλ
=

λ n
0 exp(−λ0 ∑yi)(∑yi)

n

Γ(n)

By minimizing the first Bayes factor, we obtain the Empirical IBF lower bound

BI∗
01 =

(∑yi)
nλ

n−1
0

y∗(ℓ)Γ(n)
exp(λ0[y∗(ℓ)−∑yi]), y∗(ℓ) = arg min

yi∈{y1,...,yn}

{ yiλ0

expλ0yi

}
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Our next goal is to obtain the theoretical IBF bound, and to achieve this we need to

find sup
y(ℓ)∈D

BN
01(y(ℓ)). This maximization can be attained by solving the following equation

d
dy(ℓ)

[log(BN
01(y(ℓ))] =

d
dy(ℓ)

[log(y(ℓ))+ log(λ0)−λ0y(ℓ)] = 0

=
1

y∗(ℓ)
+λ0 = 0

y∗(ℓ) =
1
λ0

To verify that this is a maximum, we take the second derivative with respect to y(ℓ)

d2

dy(ℓ)
[log(BN

01(y(ℓ))] =
−1

y(ℓ)2 < 0,∀ y(ℓ) ∈ R

Therefore, y∗(ℓ) the supremum in (0,∞) and BN
01(y

∗(ℓ)) = 1/e. By using these results, we

can obtain the following Intrinsic Bayes Factor upper bound

BI
10 = 1/e

Γ(n)exp(λ0 ∑yi)

(∑yi)nλ n
0

.

Similarly, the IBF lower bound is given by

BI
01 =

e(∑yi)
nλ n

0
Γ(n)exp(λ0 ∑yi)

6.2 The SP Bayes Factors

In this section, our focus lies in computing the SP priors and the SP Bayes factor

for the exponential hypothesis test. We aim to contrast the outcomes from the SP ap-

proach with the intrinsic Bayes factor bounds derived earlier. To bolster our findings,

we’ll conduct simulations and generate illustrative charts. These visual aids will fortify

and elucidate our conclusions.

The theoretical SP Priors for the exponential model for B10 are given by

π
SP
0 (λ ) = 1, π

SP
1 (λ ) =

1
λ0

exp−λ/λ0 , λ > 0
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It’s noteworthy that πSS
1 (λ ) follows an exponential distribution with the parameter 1/λ0.

Let’s assume, without loss of generality, that y1 = 1/λ0. The SP marginals for the hypoth-

esis test H0 : λ = λ0 versus H1 : λ ̸= λ0 are

mSP
0 (y) ∝ λ

n
0 e−λ0 ∑

n
i=1 yi

= λ
n
0 e−λ0 ∑

n
i=1 yi

mSP
1 (y) ∝

1
λ0

∫
∞

0
λ

ne
−λ (∑n

i=1 yi+
1

λ0
)

=
1
λ0

[Γ(n+1)(
n

∑
i=1

yi +
1
λ0

)(−(n+1))]

=
1
λ0

[Γ(n+1)(
n

∑
i=1

yi +
1
λ0

)−(n+1)]

Utilizing these marginals leads to the results of the SP Bayes factor as follows:

BSP
10 =

Γ(n+1)eλ0 ∑
n
i=1 yi

(∑n
i=1 yi +

1
λ0
)n+1λ

n+1
0

In order verify the validity of our calculations, and to compare the numerical values of

BSP
10 with BI

10, a simulation was conducted and the corresponding chart was obtained. The

simulation was implemented using the following code snippet:

R Program
1 b10_theoretical = function(n,h0 ,lambda=lambda0) {

2 y = c(); b10_t = c(); b10_sp = c(); s = c(); e = exp (1)

3 for (i in seq(1,n,1)) {

4 y = c(y,rexp(1,rate=1/lambda))

5 s = sum(y)

6 val = -log(e,e) + - n*log(s,e) - n*log(h0,e) + log(gamma(n),e)+ h0*s

7 b10_t = c(b10_t,val)

8 val = log(gamma(n+1),e) + h0*s - (n+1)*log(s + 1/h0,e) - (n+1)*log(h0,e)

9 b10_sp = c(b10_sp ,val)

10 }

11 plot(seq(1,n,1),b10_t,type="l",col="red",

12 xlab="Number of samples",

13 ylab="log(BF10)", ylim=c(min(b10_t,b10_sp),max(b10_t,b10_sp)),

14 main="Theorical SS Bayes Factor (Red) vs SP Bayes Factor (Blue) (H0 TRUE)")

15 lines(b10_sp,col="blue")

16 }
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Figure 6–1: BSS
10 vs BSP

10 under H0 for increasing sample size and exponential data.

This comparison serves to analyze the numerical relationship between BSP
10 and BI

10, thereby

contributing to the evaluation and understanding of their respective characteristics. The

obtained chart provides a visual representation of the convergence of the BI
10 to BSP

10 as the

number of samples increases.
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6.3 The EP Bayes Factors

The exponential Expected posterior prior under the alternative (EP-Prior) for the

exponential hypothesis test H0 : λ = λ0 vs H1 : λ ̸= λ0 can be calculated as

π
EP
1 (λ ) =

L

∑
i=1

π(y(ℓ)|θi)

n
=

n

∑
i=1

yie−λyi

n

It can be verified that the prior in question integrates unity with respect to λ by performing

integration overall positive values of λ . Additionally, the SP prior, which is an exponential

distribution with a parameter of 1/λ0, also integrates one.

The objective of this study is to compare the SP prior with the EP prior under dif-

ferent sample sizes, specifically for the cases of n = 10 and n = 100. To achieve this,

simulations were conducted utilizing the following R code:

R Program
1 prior = function(data ,lambda0 ,lambda) {

2 data = c(); object = c(); lambda0 = 0; ep1 = c(); ss1 = rep(0,length(lambda)); ss1 = (1/lambda0)*exp(-

lambda/lambda0)

3 for (j in 1: length(lambda)) {

4 epnew = 0

5 for (i in 1: length(data)) { epnew = epnew + data_[i]*exp(-data[i]*lambda[j]) }

6 ep1 = c(ep1 ,epnew)

7 }

8 object$ss = ss1; object$ep = ep1/length(data)

9 return(object)

10 }

11 data = rexp(n=100,r=1);lambda0 =1; lambda = seq (0.1 ,2 ,0.1)

12 object = prior(data = data ,lambda0=lambda0 ,lambda=lambda);

13 ss = exp(-lambda); ep = object$ep

14 plot(lambda ,ep,col="red",ylim=c(min(ss ,ep),max(ss ,ep)),type="b",ylab="Prior",

15 main="EP Prior under H1 (Red) / SP Prior under H1 (Blue)";

16 lines(lambda ,ss,col="blue")

By employing these simulations, we aim to investigate and evaluate the performance of

the SP prior relative to the EP prior in the context of various sample sizes. The obtained

results will contribute to enhancing our understanding and analysis of the behavior and

characteristics of these priors.
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(a) Exponential simulation with 10 samples for λ0 = 1

(b) Exponential simulation with 100 samples for λ0 = 1

Figure 6–2: Simulations with different number of samples for the exponential SP and EP Priors for λ0 = 1

The exponential EP-Bayes factor for λ = λ0 vs λ ̸= λ0 can be obtained by calculating

the following expression

BEP
10 (y) =

mEP
1 (y)

mEP
0 (y)

=

1
n

∫
∞

0
λ

n exp{−λ

n

∑
i=1

yi}
n

∑
i=1

yi exp{−λyi}dλ

λ n
0 exp{−λ0

n

∑
i=1

yi}

Our objective is to resolve the integral mentioned earlier. To facilitate this, let’s define

S =
n

∑
i=1

yi. Subsequently, the integral transforms into:

n

∑
i=1

yi

∫
∞

0
λ

n exp{−λ (S+ yi)}dλ
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Consider the change of variable α = n+1 and βi =
1

S+yi
, which leads to the transforma-

tion:
n

∑
i=1

yi

∫
∞

0
λ

n exp{−λ (S+ yi)}dλ =
n

∑
i=1

yi

∫
∞

0
λ

α−1 exp{−λ/βi}dλ

This new form represents the kernel of a Gamma density with parameters α and βi, re-

sulting in the integral:

Γ(n+1)
n

∑
i=1

yi

( 1
S+ yi

)n+1

Hence, the EP Bayes Factor, in this case, becomes:

BEP
10 (y) =

1
nΓ(n+1)

n

∑
i=1

yi

( 1
S+ yi

)n+1

λ n
0 exp{−λ0

n

∑
i=1

yi}

The principal objective of this numerical experiment is to compare the EP and SP Bayes

factors, previously derived, by creating 100 simulations, each consisting of 100 samples.

The process entails averaging the Bayes factor for each sample size, ranging from 1 to

100. Furthermore, we intend to plot the logarithm of each Bayes factor on the same axis to

discern their respective behaviors under two distinct scenarios: when the null hypothesis

is valid and when it is not. The forthcoming R program has been devised to generate the

anticipated output.
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R Program
1 #Initialize vectors and variables

2 finallogbf10 = c(); finallogbf10sp=c(); nsim = 100; n = 100;

3 data = c(); s = 0; sumdata = 0; logbf10=c();logbf10sp=c();

4 #H0 TRUE

5 true_lambda = 1; lambda0 = 1;

6 #Use this for H0 FALSE

7 #true_lambda = 1; lambda0 = 0.3;

8 for (k in 1:nsim) {

9 #Generate random samples

10 data =rexp(n=n,rate=true_lambda)

11 for (i in 1:n) {

12 s = sum(data [1:i])

13 for (j in 1:i) { sumdata = sumdata + data[j]*((1/(s+data[j]))^(i+1)) }

14 #EP marginals

15 m1_ep = (gamma(i+1)*sumdata)/i; m0_ep = (lambda0)^i*exp(-lambda0*s)

16 #Log EP Bayes factor

17 logbf10 = c(logbf10 ,log(m1_ep) - log(m0_ep))

18 #SP Marginals

19 m1_sp = gamma(i+1)*exp(lambda0*s); m0_sp = ((s + 1/lambda0)^(i+1) )*(lambda0 ^(i+1))

20 #Log SP Bayes Factor

21 logbf10sp = c(logbf10sp ,log(m1_sp) - log(m0_sp))

22 sumdata = 0

23 }

24 #Storing simulations

25 finallogbf10 = cbind(finallogbf10 ,logbf10); finallogbf10sp = cbind(finallogbf10sp ,logbf10sp)

26 }

27 logbf10_avg = rep(0,n); logbf10sp_avg = rep(0,n);

28 #Averaging Bayes factors for all the simulations

29 for (i in 1:n) {

30 logbf10_avg[i] = mean(finallogbf10[i,]); logbf10sp_avg[i] = mean(finallogbf10sp[i,])

31 }

32 x = 1:n

33 y1 = logbf10_avg[x]; y2 = logbf10sp_avg[x]

34 if (lambda0 == true_lambda) { h0 =TRUE } else { h0 = FALSE }

35 plot(x,y1 ,type="l",col="red",ylim=c(min(y1 ,y2),max(y1,y2)), main="log(EP Bayes Factor 10) (Red) vs log(SP Bayes

Factor 10) (Black)",xlab="Sample size",ylab="Log Bayes Factor 10")

36 lines(x,y2 ,type="l",col="black")

37 mtext(paste("H0 is ",h0," / Number of simulations: ",nsim ," / Number of samples: ",n," / lambda = ",true_lambda

, " / lambda_0 = ",lambda0 , sep=""),side =3)
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Figure 6–3: Logarithm of the SP and EP Bayes factor using one-hundred exponential simulations (100
samples each) for λ0 = 1,H0 True

Figure 6–3 demonstrates the consistency of both the SP and EP Bayes factors. The

figure illustrates that both Bayes factors approach zero when calculating the Bayes factor

of the alternative hypothesis over the null hypothesis. This observation is expected since

the data used for the calculations are random samples generated from the null hypothe-

sis. The decreasing trend of the Bayes factors indicates their convergence towards zero,

indicating consistency in the evidence provided by both methods.
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Figure 6–4: Logarithm of the SP and EP Bayes factor using one-hundred exponential simulations (100
samples each) for λ0 = 1,H0 False

Figure 6–4 demonstrates the consistency of both the SP and EP Bayes factors. The

figure illustrates that both Bayes factors increase in value with the sample size when cal-

culating the Bayes factor of the alternative hypothesis over the null hypothesis. This

observation is expected since the data used for the calculations are random samples gen-

erated from the alternative hypothesis. The increasing trend of the Bayes factors indicates

consistency in the evidence provided by both methods.
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6.4 The -eplogp lower bound

In this section we revisit the Sellke, Bayarri, and Berger (2001) [13] lower bound

for the Bayes factor that employs the classical p-value of the hypothesis test, represented

as −ep log(p) ≤ B01. We will perform a simulation to compare this this p-value approx-

imation of the Bayes factor to contrast it with the intrinsic Bayes factor lower bound for

the exponential test. In an attempt to compute the −ep log(p) lower bound of B01, we de-

termined the likelihood ratio for the hypotheses H0 against H1. The approximation of the

p-value was accomplished through the utilization of Wilk’s theorem and the chi-squared

distribution. The graphical representation provided demonstrates the lower bound and the

−ep log(p) in tandem as the sample size increases.

The forthcoming illustration elucidates how both the empirical and theoretical bounds

converge toward the appropriate decision as the sample size escalates. This is demon-

strated by drawing samples from an exponential distribution characterized by a known

rate parameter, while simultaneously altering the null hypothesis.
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R Program
1

2 exponential_simulations=function(n_sim ,n_data ,h0,rate) {

3 lambda = h0; sim = c(); bfbound = c(); bfssbound = c(); pval_seq= c(); epbound = c(); ssbound = c();

4 for (j in 1:n_sim) {

5 for (n in 1:n_data) {

6 sim = c(sim ,rexp(n=1,rate=rate))

7 lrt_null = n*log(lambda) - lambda*sum(sim)

8 lrt_alt = n*(log(n) - log(sum(sim)) - 1)

9 lrt = exp(lrt_null -lrt_alt)

10 ts = -2*log(lrt)

11 #p-value approximation wilks theorem

12 pval = 1-pchisq(ts ,1)

13 pval_seq = c(pval_seq ,pval)

14 #selke bound

15 if (pval > (1/exp(1))) { bfbound = c(bfbound ,1) }

16 else { bfbound = c(bfbound ,-exp(1)*pval*log(pval)) }

17 bfssbound = c(bfssbound ,(exp(1)*(sum(sim)*lambda)^n)/gamma(n)*exp(-lambda*sum(sim)))

18 }

19 epbound = cbind(epbound ,bfbound); ssbound = cbind(ssbound ,bfssbound)

20 }

21 epbound_avg = c(); ssbound_avg = c()

22 for (i in 1:n_data) {

23 epbound_avg = c(epbound_avg ,mean(epbound[i,]))

24 ssbound_avg = c(ssbound_avg ,mean(ssbound[i,]))

25 }

26 object = c(); object$epbound_avg = epbound_avg; object$ssbound_avg = ssbound_avg

27 return(object)

28 }

29

30 #100 Simulations and 100 Samples; H0 True

31 n_sim = 100; n_data = 100; h0 = 1; rate = 1

32

33 simulations = exponential_simulations(n_sim=n_sim ,n_data = n_data ,h0=h0,rate=rate)

34

35 par(mfrow=c(1,2))

36 plot (1:n_data ,simulations$epbound_avg ,type="l",col="red",xlab="Number of samples",ylab="Average of the Lower

bounds",ylim=c(min(simulations$epbound_avg ,simulations$ssbound_avg),max(simulations$ssbound_avg ,

simulations$epbound_avg)),

37 main="Comparison between the -eplogp and IBF lower bounds")

38 lines(simulations$ssbound_avg ,col="blue")

39

40 mtext(paste("Simulations: lambda = ",rate , " / Null hypothesis: lambda = ",h0, sep=""),side =3)

41 legend(0, 10, legend=c("-eplogp", "SS"),col=c("red", "blue"), lty=c(1,1), cex=0.8, title="Lower bounds", text.

font=4, bg='lightblue ')
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By employing the aforementioned code, a simulation was carried out to calculate

both the empirical and theoretical lower bounds of BI
01 for the exponential distribution.

This was executed to test the hypothesis H0 against H1 under two distinct circumstances:

when H0 holds true and when it does not. The objective was to examine the convergence

of the Bayes factor lower bound toward the accurate decision as the sample size expands.

The outcomes of this simulation are presented in the following figures.

Figure 6–5: The −ep log(p) and BI
01 using 100 exponential simulations (100 samples each) for λ0 = 1 (Null

hypothesis true), and 100 exponential simulations with 10 samples each for λ0 = 1 and the simulations rate
parameter r = 5 (false null hypothesis)

In Figure 6–5 we illustrated the consistency of the IBF lower bound in both scenarios. On

the other hand, the second figure (right) illustrates that both Bayes factor’s lower bounds

approach zero when calculating the Bayes factor of the null hypothesis over the alterna-

tive hypothesis. This observation is expected since the data used for the calculations are

random samples generated from the alternative hypothesis. The decreasing trend of the

lower bounds indicates their convergence towards zero, indicating consistency in the ev-

idence provided by both methods under the alternative, however, the −ep log(p) bound

does not provide decisive evidence to accept the null hypothesis when we draw random

samples from it, because the evidence is bounded by one.
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6.5 Conclusions

Our research indicates that the Theoretical SP Bayes Factor, derived using the SP-

Priors, is congruent with the Intrinsic Bayes factor Bound BI
10, albeit with the inclusion

of an additional observation being the supremum of BN
01(y(ℓ)). We demonstrated that the

SS-prior yields comparable results and that this methodology facilitates the generation of

a lower bound for the theoretical SS Bayes factor.

As the sample size increases, the discrepancy between these two methods diminishes,

given that we are more likely to encounter samples closer to the supremum (under H0).

In the context of comparing the EP and SP Priors for H1, it becomes evident that the

Theoretical SP prior remains unchanged for any sample, while the EP-prior fluctuates in

accordance with the samples.

Moreover, it can be inferred from the simulations and the chart that the SP prior

assigns a higher probability to the null hypothesis λ0 = 1, owing to its wider area from

0 to 1 compared to the EP-prior for both n = 10 and n = 100. Both the EP-Bayes factor

and the SP-Bayes factors exhibit similar patterns of convergence and values. However,

the SP-Bayes factor presents higher values under the null and lower values under the

alternative.

The consistencies observed in the results validate the results of the SP-Bayes factors

and confirm the accuracy of the computations performed in this study.



CHAPTER 7
LINEAR REGRESSION AND ANOVA HYPOTHESIS

TESTING WITH BAYES FACTORS

In the realm of statistical modeling, the avenues of linear regression and analysis of

variance (ANOVA) stand as cornerstones, offering valuable insights into relationships be-

tween variables and differences among groups. Traditional frequentist approaches have

long governed these methodologies, relying on p-values and significance testing. How-

ever, the burgeoning field of Bayesian statistics introduces a paradigm shift, emphasizing

coherent inference and robust evidence assessment through Bayes factors.

This chapter embarks on an exploration of linear regression and ANOVA within the

Bayesian framework. Departing from traditional methods, we delve into the application

of Bayes factor approximations, building upon the discussions from our previous chap-

ters. Moreover, we extend the foundations laid by Smith and Spiegelhalter, broadening

our insights by calculating these approximations through the utilization of a generalized

Jeffrey’s prior.

ANOVA, a stalwart technique in comparing group means, undergoes a transforma-

tion in this chapter as we explore its foundations through Bayesian inference. The com-

parison of multiple groups finds new light as Bayes factors unveil nuanced insights into

the evidence supporting differing hypotheses.

7.1 Linear regression

Linear regression is a statistical model that is commonly utilized in several disci-

plines, ranging from economics to engineering. At its core, linear regression is a con-

ditional model where the outcome variable is predicated on a linear combination of the

53
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predictor variables, in conjunction with an unobserved error term that introduces variabil-

ity into the relationship between the input and output variables.

The fundamental form of a simple linear regression model is as follows:

Y = θ0 +θ1X + ε (7.1)

where Y is the dependent or outcome variable, X is the independent or predictor variable,

θ0 is the Y-intercept, which represents the expected value of Y when all X are 0, θ1 is

the slope of the regression line, indicating the degree to which Y changes for each unit

change in X , and ε is the error term, embodying the difference between the observed and

predicted values of Y .

The goal of linear regression analysis is to estimate the coefficients θ0 and θ1 that

minimize the sum of the squared residuals, thus providing the "best fit" line for the ob-

served data.

In a multiple linear regression scenario, the model is expanded to include more than

one independent variable:

Y = θ0 +θ1X1 +θ2X2 + ...+θpXp + ε (7.2)

where p represents the number of predictor variables. Here, each θi (for i = 1,2, ..., p)

signifies the change in the expected value of Y for each unit change in the corresponding

predictor Xi, holding all other predictors constant.

Linear regression models assume linearity, independence, homoscedasticity (con-

stant variance), and normality of residuals. Violations of these assumptions may neces-

sitate the application of more complex models or transformations of the data. Linear re-

gression serves as a fundamental building block in understanding more intricate statistical

models.
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7.2 Two nested normal-linear models

Consider the comparison of two nested normal-linear models M0 ⊂ M1, defined as in

Smith and Spiegelhalter (1980) [14] by

Mi : y ∼ N(Aiθi,σ
2In), i = 0,1

where Ai is a full rank pi known matrix, y is a vector with dimension n, θi = (θi1, ...,θipi)

is a vector of pi unknown parameters and σ2 is unknown. This can be written in matrix

notation as

y = Aiθi + εi, i = 0,1

where ε i ∼ N(0,σ2In) for i = 0,1. Let

θ̂i = (AT
i Ai)

−1AT
i y and Ri = |y−Aiθ̂i|2

denote the least squares estimator of θi and the residual sum of squares, respectively. The

Bayes factor in this case is given by

B01 =

∫ ∫
p(y|A0,θ 0,σ)p(θ 0,σ |A0)dθ 0dσ∫ ∫
p(y|A1,θ 1,σ)p(θ 1,σ |A1)dθ 1dσ

Smith and Spiegelhalter showed that for the case when i = 0,1, p(θi,σ |Ai) has an

improper limit form representing vague prior information for all parameters inside each

linear model. The improper limiting version of the normal-inverse-χ2 conjugate prior can

be written in the form

p(θ i,σ |Ai) = p(θ i|Ai,σ)p(σ) = ci(2πσ
2)−pi/2

σ
−1

and the likelihood is given by

p(y|Ai,θi,σ) = (
1√

2πσ
)n exp{− 1

2σ2

[
Ri(y)+(θi −y)T AT

i Ai(θi −y)
]
}.
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The Bayes factor in this case is given by:

B01 =
c0

c1
[|AT

1 A1|/|AT
0 A0|]

1
2
[
1+

(p1 − p0)

(n− p1)
F
]−(n/2) (7.3)

Here, F represents the F-test statistic for comparing models M0 and M1. Due to the ratio

of undefined constants, this Bayes factor is inherently indeterminate. The formula for the

F-test statistic is:

F =

(
R0−R1
p1−p0

)
(

R1
n−p1

) ,

Moreover, the F value used in the Bayes Factor equation can be derived from the follow-

ing identity:
R0

R1
= 1+

( p1 − p0

n− p1

)
F

Spiegelhalter and Smith proposed a satisfactory solution to the problem of determining

the ratio c0/c1 by introducing the concept of an imaginary training sample. Let A0(ℓ) and

A1(ℓ) be the design matrix of M0 and M1 occurring in the "thought experiment" generating

the imaginary training sample, they obtained the following result

c0

c1
= [|A1(ℓ)

T A1(ℓ)|/|A0(ℓ)
T A0(ℓ)|]−

1
2 (7.4)

Our goal is to calculate the SS Bayes Factor, in general, using the generalized prior

π(θi,σ) ∝ σ−(1+qi) where different values of q will result in well-known priors such

as the reference, complete and modified Jeffrey’s priors. Additionally, we will calculate

this Bayes factor for ANOVA, to compare it with the results obtained by Spiegelhalter and

Smith (1980)[14].

Suppose that we want to generalize the result above and compare M0 vs M1 where

M0 has p0 unknown parameters, and M1 has p1 unknown parameters. Assume that our

prior has the general form

π(θi,σ |Ai) ∝ σ
−(1+qi), i = 0,1
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where there are many possible choices for qi. According to Berger and Pericchi (1996)

[3], qi = 0 is the reference prior (example above), and qi = p1− p0 is the modified Jeffrey’s

prior. In general, the marginal distribution for n samples and i = 0,1 is given by

mi(y) =
∫

∞

−∞

∫
∞

0

ci

σ1+qi
(

1√
2πσ

)n exp{− 1
2σ2

[
Ri(y)+(θi −y)T AT

i Ai(θi −y)
]
}dθidσ

Where Ri(y) = (y−Aiθ̂i)
T (y−Akθ̂i). Since the second term inside the exponential func-

tion is a multivariate normal distribution, we can integrate it with respect to θi. Let

dim(θi) = pi, then the marginal can be written as:

mi(y) = ci

( 1√
2π

)n−pi
|AT

i Ai|−1/2
∫

∞

0
(

1
σ
)n+qi−pi+1 exp{−Ri(y)

2σ2 }dσ .

We can solve this integral by employing the following change of variables

η =
Ri(y)
2σ2 , σ =

R1/2
i (y)√
2η1/2

, dσ =−
R1/2

i (y)√
2

1
2

1
η3/2 dη

mi(y) =
( 1√

2π

)n−pi
ci|AT

i Ai|−1/2
∫

∞

0
exp−η

η
n+qi+1−pi

2

( 2
Ri(y)

)(n+qi+1−pi)/2(Ri(y)
2

)1/2 1
2

1
η3/2 dη

= 2
n+q−pi−2

2

( 1√
2π

)n−pi
( 1

Ri(y)

) n+qi−pi+1
2

(
Ri(y)

)1/2
|AT

i Ai|−1/2 ci

2

∫
∞

0
exp−η

η
n+qi−pi+3

2 −1dη

Solving the integral above yields

∫
∞

0
exp−η

η
n+qi−pi+3

2 −1dη = Γ(
n+qi − pi +3

2
)

Therefore, the marginal for Mi is

mi(y) = ci 2
n+qi−pi

2

( 1√
2π

)n−pi
( 1

Ri(y)

) n+qi−pi+1
2

(Ri(y)
2

)1/2
|AT

i Ai|−1/2
Γ(

n− pi +qi +3
2

)

∝ ci

√
|AT

i Ai|−1 [4π]pi Ri(y)−(n+qi−pi)

After we obtain the marginals, we can calculate the Bayes factor as

BN
01(y) =

m0(y)
m1(y)

=
c0

c1

√
[4π](p0−p1)

|AT
1 A1|

|AT
0 A0|

[R1(y)]n+q1−p1

[R0(y)]n+q0−p0
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The following step involves computing the Bayes factor for the minimal training sample.

For this situation, where at least one observation per unknown parameter is necessary, the

minimal training sample size can be found as:

n01 = max{p0 +1, p1 +1}.

In this case, the Bayes factor for the minimal training sample takes the form:

BN
10(y(ℓ)) =

m1(y(ℓ))
m0(y(ℓ))

=
c1

c0

√
[4π](p1−p0)

|AT
0 (ℓ)A0(ℓ)|

|AT
1 (ℓ)A1(ℓ)|

[R0(y(ℓ))]n01+q0−p0

[R1(y(ℓ))]n01+q1−p1

The previously discussed Lemma 1 establishes that:

B01(y(−ℓ)|y(ℓ)) = BN
01(y)B

N
10(y(ℓ))

Consequently,

B01(y(−ℓ)|y(ℓ)) =

√
|AT

1 A1|
|AT

0 A0|
|AT

0 (ℓ)A0(ℓ)|
|AT

1 (ℓ)A1(ℓ)|
[R1(y)]n+q1−p1

[R0(y)]n+q0+p0

[R0(y(ℓ))]n01+q0−p0

[R1(y(ℓ))]n01+q1−p1

By leveraging these results, we derive the Empirical Intrinsic Bayes Factor (IBF) lower

bound for General Linear Models:

BGLI∗
01 =

√
|AT

1 A1|
|AT

0 A0|
[R1(y)]n+q1−p1

[R0(y)]n+q−p0
min

ℓ=1,...,L

√
|AT

0 (ℓ)A0(ℓ)|
|AT

1 (ℓ)A1(ℓ)|
[R0(y(ℓ))]n01+q0−p0

[R1(y(ℓ))]n01+q1−p1

Additionally, the Theoretical Intrinsic Bayes Factor (IBF) Lower bound for General Lin-

ear Models can be expressed as:

BGLI
01 =

√
|AT

1 A1|
|AT

0 A0|
[R1(y)]n+q1−p1

[R0(y)]n+q0−p0
inf

y(ℓ)∈D

|AT
0 (ℓ)A0(ℓ)|

|AT
1 (ℓ)A1(ℓ)|

[R0(y(ℓ))]n01+q0−p0

[R1(y(ℓ))]n01+q1−p1
(7.5)
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7.3 The One-way Layout (ANOVA)

The One-way Layout in analysis of variance (ANOVA) involves m groups of ob-

servations, each with ni observations ( j = 1, ...,ni) independently drawn from a normal

distribution yi j ∼ N(µi,σ
2), given µ1, ...,µm,σ

2.

The models considered are:

M0 : µ1 = ...= µm versus M1 : µi ̸= µ j for some i ̸= j.

In this scenario, p1 = m, p0 = 1, and the general form of the matrices A0 and A1 can be

derived. Let n = ∑
m
i=1 ni. Notably, the design matrices A0 and A1 for the one-way ANOVA

can generally be written as follows:

A0 =



1

·

·

·

1


, AT

0 =

[
1 · · · 1

]
, A1 =



1 0 · · · 0 0
...

... · · · ...
...

1 0 · · · 0 0

0 1 · · · 0 0
...

... · · · ...
...

0 1 ·· 0 0
...

... · · · ...
...

0 0 · · · 0 1
...

... · · · ...
...

0 0 · · · 0 1


The matrices A0 and A1 are (n×m) matrices, and each block of ones in A1 corresponds

to each of the m groups. In this case, every block i has ni rows and det(AT
0 A0) = n. The

matrix product of AT
1 and A1 can be expressed as:

AT
1 A1 =



n1 0 · · · 0

· n2 · · · ·

· · . . . ·

0 0 · · · nm


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The matrix resulting from the product of these two matrices is itself diagonal, with its

determinant expressed as:

det(AT
1 A1) =

m

∏
i=1

ni (7.6)

Thus, we can compute the term |AT
1 A1|/|AT

0 A0| in equation (7.3) as:

|AT
1 A1|/|AT

0 A0|=
∏

n
i=1 ni

n
(7.7)

In this case, the minimal training sample requires at least one observation in each group

plus one extra observation in any of the groups to estimate σ2. Thus, we require that

ni = 1, i = 1, ..., j−1, j+1, ...,n, and n j = 2, for some j ∈ [1,m].

For the case mentioned above, we can use equation (7.4), and the result obtained in

(7.6) to get c1 as:

det(A1(ℓ)
T A1(ℓ)) = (1 · · ·1 ·2 ·1 · · ·1) = 2 (7.8)

Similarly, c0 can be derived as:

det(A0(ℓ)
T A0(ℓ)) = n =

m

∑
j=1

n j = (1+ · · ·+1+2+1+ · · ·+1) = m+1 (7.9)

Thus, utilizing the outcomes from (7.8) and (7.9), we can evaluate the expression in equa-

tion (7.4) as follows:

c0

c1
=
(det(A0(ℓ)

T A0(ℓ))

det(A1(ℓ)T A1(ℓ))

) 1
2 =

(m+1
2
) 1

2 (7.10)

Now, by substituting (7.10) and (7.7) into (7.3), derive the following expression for the

Bayes factor:

BSS
01 =

(m+1
2
) 1

2
[ m

∏
i=1

ni
/

n
] 1

2
[
1+

(m−1)
n−m

F
]−n/2 (7.11)

The SS Bayes Factor can alternatively be expressed compactly as:

BSS
01 =

((m+1
2

)[
∏

m
i=1 ni

/
n
][

1+ (m−1)
n−m F

]n
) 1

2

(7.12)
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Furthermore, relating the F statistics to the p-value can be achieved through:

Fν1,ν2 = q f (1− p,ν1,ν2)

Here, q f denotes the quantile function for the F distribution, while ν1 and ν2 represent

the degrees of freedom. For this case, ν1 = p1 − p0 and ν2 = n− p1. Consequently,

expressing the SS Bayes factor in terms of the p-value yields:

BSS
01(p) =

( (m+1
2

)[
∏

m
i=1 ni

/
n
][

1+ (m−1)
n−m q f (1− p, p1 − p0,n− p1)

]n
) 1

2

This formula offers a straightforward method to convert p-values into Bayes factors. It’s

akin to the Sellke et al. (2001) [13] bound, but distinguishes itself by being dynamic, en-

hancing accuracy with increasing information. This technique is applicable to any Bayes

factor that relies on F-statistics.

Our subsequent aim involves computing BGSS
01 as in equation (7.5) for ANOVA mod-

els and comparing it with their findings. Considering that A0(ℓ) and A1(ℓ) remain inde-

pendent of observations in ANOVA models, and the square root is a monotonic function,

we can rewrite the expression as:

sup
y(ℓ)∈Dn

√
|AT

0 (ℓ)A0(ℓ)|
|AT

1 (ℓ)A1(ℓ)|
[R0(y(ℓ))]n01+qi−p0

[R1(y(ℓ))]n01+q−p1
=

√
|AT

0 (ℓ)A0(ℓ)|
|AT

1 (ℓ)A1(ℓ)|
sup

y(ℓ)∈Dn

[R0(y(ℓ))]n01+qi−p0

[R1(y(ℓ))]n01+qi−p1

The General Theoretical and Empirical SS Bayes factors for ANOVA can be expressed

respectively as:

BGSSA
10 =

√
|AT

1 (ℓ)A1(ℓ)|
|AT

0 (ℓ)A0(ℓ)|
|AT

0 A0|
|AT

1 A1|
[R0(y)]n+q0−p0

[R1(y)]n+q1−p1
sup

y(ℓ)∈D

[R1(y(ℓ))]n01+q1−p1

[R0(y(ℓ))]n01+q0−p0

BGESSA
10 =

√
|AT

1 (ℓ)A1(ℓ)|
|AT

0 (ℓ)A0(ℓ)|
|AT

0 A0|
|AT

1 A1|
[R0(y)]n+q0−p0

[R1(y)]n+q1−p1
max

ℓ=1,...,L

[R1(y(ℓ))]n01+q1−p1

[R0(y(ℓ))]n01+q0−p0
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7.3.1 The Full Jeffrey’s (no independence) qk = pk,, for k = i, j for ANOVA

In accordance with our earlier calculations pertaining to the General Empirical SS

Bayes factor for ANOVA, we apply the methodology proposed by Spiegelhalter and Smith

(1982) [15]. This involves the selection of the full Jeffrey’s prior where qi = pi. Through

the utilization of an imaginary training sample, which renders maximum support for M0,

we ascertain that Fy(ℓ) = 0. Consequently, we obtain the General Theoretical SS Bayes

Factor for ANOVA under the Full Jeffrey’s prior

BGESSAFJP
01 =

√
m+1

2
[ m

∏
i=1

ni
/

n
](R1(y)

R0(y)

)n
min

ℓ=1,...,L

(R0(y(ℓ))
R1(y(ℓ))

)m+1
.

Now, expressing the ratio of the residual sum of squares as an F-statistics results in:

BGESSAFJP
01 =

√
m+1

2
[ m

∏
i=1

ni
/

n
](

1+
(m−1)
(n−m)

Fy

)−n
max

ℓ=1,...,L

(
1+

(p1 − p0)

(n01 − p1)
Fy(ℓ)

)m+1

The General Theoretical SS Bayes factor for ANOVA results in:

BGSSAFJP
10 =

√
2

m+1
[
n
/ m

∏
i=1

ni
](

1+
(m−1)
(n−m)

Fy

)n
sup

y(ℓ)∈D

[R1(y(ℓ))
R0(y(ℓ))

]m+1

Observing that R0(y(ℓ))≥ R1(y(ℓ)), it follows that:

sup
y(ℓ)∈D

[R1(y(ℓ))]
[R0(y(ℓ))]

= 1 =⇒ sup
y(ℓ)∈D

[R1(y(ℓ))
R0(y(ℓ))

]m+1
= 1, ,∀m > 0

Consequently, the General Theoretical SS Bayes Factor, employing the full Jeffrey’s prior

for ANOVA models, simplifies to:

BGSSAFJP
10 =

√
2

m+1
[
n
/ m

∏
i=1

ni
](

1+
(m−1)
(n−m)

Fy

)n
= BSS

10.

Alternatively, this Bayes factor can be expressed as:

BGSSAFJP
10 =

√
2

m+1
[
n
/ m

∏
i=1

ni
][R0(y)

R1(y)

]n
.
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7.3.2 The Reference prior (qk = 0,k = i, j) for ANOVA

In this section, we delve into the theoretical SS Bayes factor for the ANOVA scenario,

employing the reference prior obtained by setting qk = 0 for k = i, j. The theoretical SS

Bayes Factor for ANOVA, specifically under the reference prior context, is formulated

as:

BGSSARP
10 =

√
|AT

1 (ℓ)A1(ℓ)|
|AT

0 (ℓ)A0(ℓ)|
|AT

0 A0|
|AT

1 A1|
[R0(y)]n+1

[R1(y)]n−(m+1)
sup

y(ℓ)∈D

( 1
R0(y(ℓ))

)m

Upon inspection of the aforementioned equation, it becomes clear that under this par-

ticular prior, the theoretical SS Bayes factor tends to either zero or infinity. Consequently,

the computation of the theoretical SS BF with this prior is rendered unfeasible. This im-

plies that for reference priors, the SS bounds do not exist. This limitation is not previously

highlighted in the works of Smith and Spiegelhalter (1980)[14] and (1982) [15], thereby

underscoring an important consideration for future research in this domain.

7.3.3 The Modified Jeffrey’s Prior (q j = p j − pi,qi = 0) for ANOVA

The General Empirical SS Bayes Factor for ANOVA, under the Modified Jeffrey’s

prior results in:

BGESSAMJP
10 =

√
2

m+1
[
n
/ m

∏
i=1

ni
](R0(y)

R1(y)

)n−1
max

ℓ=1,...,L

(R1(y(ℓ))
R0(y(ℓ))

)m
.

Similarly, the general Theoretical SS Bayes Factor for ANOVA, under the Modified Jef-

frey’s prior results in:

BGSSAMJP
10 =

√
2

m+1
[
n
/ m

∏
i=1

ni
](R0(y)

R1(y)

)n−1
sup

y(ℓ)∈D

(R1(y(ℓ))
R0(y(ℓ))

)m
.

Alternatively, this Bayes Factor can be expressed in terms of the F statistics as:

BGSSAMJP
10 =

√
2

m+1
[
n
/ m

∏
i=1

ni
](

1+
(m−1)
(n−m)

Fy

)n−1
.
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7.4 Conclusions

In conclusion, the ANOVA case analysis has provided valuable insights regarding

the use of different priors in the context of Full Jeffreys, Modified Jeffreys, and Reference

Prior. The SS bounds obtained for Full Jeffreys and Modified Jeffreys are informative,

useful, and exhibit close proximity to each other. Importantly, it has been demonstrated

that the Bayes Factor can be expressed as a function of the F-Statistics under both priors.

However, in the case of the Reference Prior, the SS bound fails to provide informative re-

sults, highlighting its lack of usefulness. Notably, it is intriguing to observe the sensitivity

of the SS bound to the initial objective prior, which further supports the conclusions drawn

by Berger and Pericchi (1996) [3] and others that the Modified Jeffreys prior is a supe-

rior choice, particularly within the Linear Gaussian Model and potentially in a broader

context. Additionally, it may be of interest to explore the extent to which the Modified

Jeffreys prior possesses additional properties, such as matching, besides its inherent sim-

plicity and the one-on-one relationship it establishes with the F-Statistics.



CHAPTER 8
SEPARATED HYPOTHESIS TESTING

Traditional hypothesis testing typically involves comparing a single hypothesis

to a pre-determined null hypothesis, assuming a single underlying distribution. However,

in certain scenarios, there arises a need to examine and compare two distinct distributions

simultaneously. This is the essence of separated hypothesis testing, a concept that expands

upon conventional approaches by accommodating situations where the hypothesis being

tested corresponds to two separate populations or data sources. By addressing this unique

requirement, separated hypothesis testing enables researchers to gain valuable insights

into the potential disparities or similarities between two distinct distributions, thereby

enhancing the accuracy and comprehensiveness of statistical inference. In this chapter,

we delve into the theoretical underpinnings, methodology, and applications of separated

hypothesis.

We explored the concept of separated hypothesis testing through practical examples

involving the comparison of different probability distributions. Specifically, we consider

the scenarios of Poisson vs. Geometric and Poisson vs. Negative Binomial distributions.

We computed IBF bounds for both comparisons, ensuring the reliability and consistency

of our results. To validate our findings, we conducted simulations where we progressively

augmented the sample size, observing a numerical convergence toward accurate decisions

in our experiments. Each example is accompanied by a comprehensive discussion of the

methodologies and code used in our analyses. The figures presented serve as compelling

visual evidence substantiating the validity of our conclusions.
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8.1 The Poisson vs. Geometric Separated Hypothesis Test

Let’s consider comparing two distinct models: the Poisson and the Geometric distri-

butions, where y = (y1, ...,yn) represents independently and identically distributed (i.i.d.)

observations. This frames our model selection problem as follows:

M0 : Y ∼ Poisson(λ ) vs M1 : Y ∼ Geometric(θ)

The densities for each model are:

f0(y|λ ) =
e−λ λ y

y!
,λ > 0, and f1(y|θ) = θ(1−θ)y,θ ∈ (0,1),y = 0,1,2, ...

The Jeffreys’s priors and likelihoods associated with M0 and M1 yield the following out-

comes:

π
J
0(λ ) =

c0

λ 1/2 , π
J
1(θ) =

c1

θ(1−θ)1/2

f0(y|λ ) =
e−nλ λ ∑

n
i=1 yi

n

∏
i=1

yi!
, and f1(y|θ) = θ

n(1−θ)∑
n
i=1 yi

Given that both models entail a single parameter, the minimal training sample size re-

quired is one. Utilizing the priors and likelihoods, we proceed to compute the marginals

and subsequently derive the Bayes factors as follows:

m0(y) =
c0

n

∏
i=1

yi!

∫
∞

0
e−nλ

λ ∑
n
i=1 yi

1
λ 1/2 dλ

m1(y) = c1

∫ 1

0
θ

n(1−θ)∑
n
i=1 yi

1
θ(1−θ)1/2 dθ

After straightforward algebraic manipulation, we find that the integral in m0(y) follows

a Gamma distribution, while the integral in m1(x) corresponds to a Beta distribution,

wherein:

m0(y) =
c0Γ(∑yi +

1
2)

n

∏
i=1

yi!
(1/n)(∑yi+

1
2 )
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m1(y) = c1

∫ 1

0
θ

n−1(1−θ)∑
n
i=1 yi−1/2dθ = c1

Γ(n)Γ(∑yi +1/2)
Γ(n+∑yi +1/2)

Thus, the Bayes Factor results in:

BN
01(y) =

c0

c1

Γ(n+∑yi +1/2)
n

∏
i=1

yi!Γ(n)n(∑yi+
1
2 )

.

The Empirical IBF upper bound can be obtained by computing:

BI∗
10(y) = BN

10(y) sup
y(ℓ)∈Dn,k

m0(y(ℓ))
m1(y(ℓ))

Evidently, the following marginals are required:

m0(y(ℓ)) = c0
Γ(y(ℓ)+1/2)

y(ℓ)!
, m1(y(ℓ)) = c1

Γ(1)Γ(y(ℓ)+1/2)
Γ(1+ y(ℓ)+1/2)

By using those marginals, we can calculate the Bayes factor for y(ℓ) as:

BN
01(y(ℓ)) =

c0

c1

1
Γ(y(ℓ)+1+1/2)

The above Bayes factor, as a function of y(ℓ) is decreasing. Therefore, calculating the

theoretical supremum, which occurs at y(ℓ) = 0, results in:

sup
y(ℓ)∈D

BN
01(y(ℓ)) =

c0

c1

1
Γ(1+1/2)

Utilizing the identity Γ(n+1/2) = (2n!
√

π)/(4nn!), we derived:

sup
y(ℓ)∈D

BN
01(y(ℓ)) =

c0

c1

2√
π

This results in the Theoretical IBF upper bound:

BI
10(y) =

n

∏
i=1

yi!(n−1)!n(nȳ+ 1
2 )

Γ(n(1+ ȳ)+1/2)
2√
π
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And the Theoretical IBF lower bound:

BI
01(y) =

Γ(n(1+ ȳ)+1/2)
n

∏
i=1

yi!(n−1)!n(nȳ+ 1
2 )

√
π

2

Similarly, the empirical IBF upper bound is:

BI∗
10(y) =

n

∏
i=1

yi!(n−1)!n(nȳ+ 1
2 )

Γ(n(1+ ȳ)+1/2)
1

Γ(y(1)+1+ 1
2)
, y(1) = min

i=1,...,n
{yi}

And the empirical IBF lower bound is:

BI∗
01(y) =

Γ(n(1+ ȳ)+1/2)Γ(y(n)+1+ 1
2)

n

∏
i=1

yi!(n−1)!n(nȳ+ 1
2 )

, y(n) = max
i=1,...,n

{yi}

We aim to ascertain the reliability and consistency of our obtained results by imple-

menting an R script specifically designed to calculate the Bayes factor in two distinct

scenarios: when the null hypothesis (H0) holds true and when the alternative hypothesis

(H1) is true. By conducting this analysis, we will demonstrate that when the samples are

drawn from the Poisson distribution, the computed Bayes factor approaches zero, indicat-

ing stronger support for H0. Conversely, when the samples originate from the Geometric

distribution, the Bayes factor exhibits values significantly greater than one, favoring H1.

Furthermore, we will calculate the empirical IBF bounds, providing numerical bounds for

both BN
01(y) and BN

10(y). The R script below generates one hundred simulations of thirty

independent samples from the Poisson distribution and from the Geometric distribution.

By employing this approach, we calculated the strength of evidence in favor of the null

hypothesis in both scenarios. As anticipated, the obtained values are consistent with our

prior knowledge about the data that we simulated, indicating the expected outcome of

growing indefinitely when the null is false and going to zero under the null. We smoothed

the results by calculating the average value for each sample size over all of the simulations.
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R Program
1

2 #100 simulations of 30 samples each

3

4 #Null hypothesis true , lambda =1

5 lambda = 1

6 n_sim = 100; n_data = 30; p=0.5

7 bf10ss_pois = c(); data_pois = c(); bfss10_pois = c();

8 bf10ss_geom = c(); data_geom = c(); bfss10_geom = c();

9 for (i in 1:n_sim) {

10 for (j in 1:n_data) {

11

12 data_geom = c(data_geom ,rgeom(n=1,prob=p));

13 data_pois = c(data_pois ,rpois(n=j,lambda=lambda));

14 s_geom = sum(data_geom)

15 s_pois = sum(data_pois)

16 y_fact_geom = factorial(data_geom)

17 y_fact_pois = factorial(data_pois)

18

19 #Marginals

20 m1_geom = (j^(s_geom + 0.5)*factorial(j-1)*prod(y_fact_geom)*2)

21 m0_geom = (gamma(j + s_geom + 0.5)*sqrt(pi))

22 bfss10_geom = c(bfss10_geom ,m1_geom/m0_geom)

23 m1_pois = (j^(s_pois + 0.5)*factorial(j-1)*prod(y_fact_pois)*2)

24 m0_pois = (gamma(j + s_pois + 0.5)*sqrt(pi))

25 bfss10_pois = c(bfss10_pois ,m1_pois/m0_pois)

26 }

27 bf10ss_pois = cbind(bf10ss_pois ,bfss10_pois)

28 bf10ss_geom = cbind(bf10ss_geom ,bfss10_geom)

29 }

30 bf10ss_avg_geom = rep(0,n_data)

31 bf10ss_avg_pois = rep(0,n_data)

32 for (i in 1:n_data) {

33 bf10ss_avg_geom[i] = mean(bf10ss_geom[i,])

34 bf10ss_avg_pois[i] = mean(bf10ss_pois[i,])

35 }

36 par(mfrow=c(1,2))

37 plot (1:n_data ,bf10ss_avg_pois ,type="l",col="red",main="Geometric vs Poisson Distribution Bayes Factor Bound",

ylab="Average SS B10 Bound",xlab="Sample size")

38 mtext(text="Data generated from the Poisson distribution",side =3)

39 plot (1:n_data ,bf10ss_avg_geom ,type="l",col="red",main="Geometric vs Poisson Distribution Bayes Factor Bound",

ylab="Average SS B10 Bound",xlab="Sample size")

40 mtext(text="Data generated from the Geometric distribution",side =3)
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Figure 8–1: Poisson vs. Geometric IBF 10 bound as the sample size increases when H0 is true (left) and
when H0 is false (right).

Once we obtain the vector of samples y, we can proceed to compute the empiri-

cal bound for BAI
10(y). The code below calculates the value of the Bayes Factor for each

sample in y and then identifies the maximum value among them, representing the empir-

ical maximum. By employing this code, we obtain a numerical measure that reflects the

strength of evidence in favor of the alternative hypothesis.

R Program
1 bfss01_mts = function(y,print=TRUE) {

2 n = length(y); bfss_01=c()

3 for (i in 1:n) { m1 = gamma(y[i] + 1.5); m0 = 1; bfss_01 = c(bfss_01,m0/m1) }

4 y_max = y[which.max(bfss_01)]; bfss_max = max(bfss_01)

5 if (print) {

6 print("Samples"); print(y); print("BFSS01 for each MTS"); print(bfss_01)

7 print("The value that maximize the BFSS 01 is"); print(y_max)

8 print("The maximal value of the BFSS 01 is"); print(bfss_max)

9 }

10 else { bfss = c(); bfss$y_max= y_max; bfss$bfss_max = bfss_max; return(bfss) }

11 }
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Upon implementing the aforementioned algorithm, leveraging a vector of samples

drawn from the Poisson distribution, we acquired the empirical supremum of the Bayes

Factor. Notably, this empirical outcome corresponded precisely with the theoretical supre-

mum. This concordance is attributable to the inclusion of the value ’0’ within the sample

set, as is evident in the code output below

R Program
1 > bfss01_mts(y)

2 [1] "Samples"

3 [1] 3 1 2 0 5 0 2 1 0 2

4 [1] "BFSS01 for each MTS"

5 [1] 0.085971746 0.752252778 0.300901111 1.128379167 0.003473606

6 [1] 1.128379167 0.300901111 0.752252778 1.128379167 0.300901111

7 [1] "The value that maximizes the BFSS 01 is"

8 [1] 0

9 [1] "The maximal value of BFSS 01 is"

10 [1] 1.128379

11 [1] "The theoretical sup of BFSS 01 is"

12 [1] 2/sqrt(pi)

13 [1] 1.128379

A valuable approach involves comparing the theoretical supremum with the em-

pirical supremum as the sample size (n) expands. This can be accomplished utilizing

specific computational methodologies, particularly when the underlying data are derived

from Poisson or Geometric distributions. The implementation of this comparison can be

conducted via the following code

R Program
1 y_pois = rpois(n=20, lambda =0.5); y_geom = rgeom(n=20,prob =0.8)

2 bfss10_comparison = function(y,c_theoretical = 2/sqrt(pi)) {

3 bfss10_empirical = c(); bfss10_theoretical = c(); s = 0

4 for (i in 1:n) {

5 s = s + y[i]; y_fact = factorial(y[1:i]);

6 m1 = (i^(s + 0.5)*factorial(i-1)*prod(y_fact)); m0 = (gamma(i + s + 0.5))

7 bfss01= bfss01_mts(y[1:i],print=FALSE); c_empirical = bfss01$bfss_max

8 bfss10_empirical = c(bfss10_empirical ,c_empirical*m1/m0); bfss10_theoretical= c(bfss10_theoretical ,c_

theoretical*m1/m0)

9 }

10 plot (1:n,bfss10_empirical ,type="l",xlab="Number of samples",ylab="BFSS 10 Empirical")

11 plot (1:n,bfss10_theoretical ,type="l",xlab="Number of samples",ylab="BFSS 10 Theoretical")

12 }
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The following charts were generated using the code above

(a)

(b)

Figure 8–2: (a) Empirical and Theoretical BI
10 when H0 is true (b) Empirical and Theoretical BI

01 when H0
is false
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Our methodological approach involves the generation of one hundred simulations,

each encompassing thirty samples. These simulations will be conducted under both the

null hypothesis and the alternative hypothesis. For each sample size, we aim to compute

the average Bayes factors derived from all the simulations. Further, our study entails the

graphical representation of these averaged Bayes factors against their respective sample

sizes. Both the averages under the null and the alternative hypotheses will be depicted

within the same coordinate system, facilitating a clear comparison and analysis. To au-

tomate the generation of such illustrative graphics, we utilize R programming language.

The corresponding script to generate these charts is
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R Program
1 Geometric_Poisson_SSBF = function(n,prob =0.5, lambda=1, simulations =100) {

2 geometric_data = c(); poisson_data = c(); bfss01_geometric = c(); bfss01_poisson = c(); bf01_geo_total = c();

bf01_pois_total = c(); ibf01_geometric = c(); ibf01_poisson = c();ibf01_geo_total = c(); ibf01_pois_

total = c()

3 for (k in 1: simulations) {

4 for (i in 1:n) {

5 geometric_data = c(geometric_data ,rgeom(n=1,prob=prob)); s = sum(geometric_data); y_fact = factorial(

geometric_data)

6 m1 = (i^(s + 0.5)*factorial(i-1)*prod(y_fact)*2); m0 = (gamma(i + s + 0.5)*sqrt(pi))

7 m1_ibf = (i^(s + 0.5)*factorial(i-1)*prod(y_fact)); m0_ibf = (gamma(i + s + 0.5))

8 ibf10_correction = mean(gamma(geometric_data + 1.5))

9 bfss01_geometric = c(bfss01_geometric ,m0/m1); ibf01_geometric = c(ibf01_geometric ,(m0_ibf/m1_ibf)*ibf10_

correction)

10 poisson_data = c(poisson_data ,rpois(n=1,lambda=lambda))

11 s = sum(poisson_data); y_fact = factorial(poisson_data)

12 m1 = (i^(s + 0.5)*factorial(i-1)*prod(y_fact)*2); s = sum(log(y_fact)); m0 = (gamma(i + s + 0.5)*sqrt(pi)

); m1_ibf = (i^(s + 0.5)*factorial(i-1)*prod(y_fact)); m0_ibf = (gamma(i + s + 0.5))

13 ibf10_correction = mean(gamma(poisson_data + 1.5))

14 bfss01_poisson = c(bfss01_poisson ,m0/m1); ibf01_poisson = c(ibf01_poisson ,(m0_ibf/m1_ibf)*ibf10_

correction)

15 }

16 bf01_geo_total = cbind(bf01_geo_total ,bfss01_geometric); bf01_pois_total = cbind(bf01_pois_total ,bfss01_

poisson); ibf01_pois_total = cbind(ibf01_pois_total ,ibf01_poisson); ibf01_geo_total = cbind(ibf01_geo_

total ,ibf01_geometric)

17 }

18 bf01_geo_avg = c(); bf01_pois_avg = c(); ibf01_geo_avg = c(); ibf01_pois_avg = c(); n = nrow(bf01_geo_total)

19 for (i in 1:n) {

20 bf01_geo_avg = c(bf01_geo_avg ,mean(bf01_geo_total[i,])); bf01_pois_avg = c(bf01_pois_avg ,mean(bf01_pois_

total[i,])); ibf01_pois_avg = c(ibf01_pois_avg ,mean(ibf01_pois_total[i,])); ibf01_geo_avg = c(ibf01_

geo_avg ,mean(ibf01_geo_total[i,]));

21 }

22 par(mfrow=c(1,2))

23 plot (1:n,bf01_pois_avg ,main="BFSS01 (Black) vs IBF10 (Red) with Poisson samples ",xlab="Number of samples",

ylab="BFSS01",type="l",ylim = c(min(bf01_pois_avg ,ibf01_pois_avg),max(bf01_pois_avg ,ibf01_pois_avg)))

24 mtext("Simulations: 100 / Samples: 30 / H0: TRUE",side =3)

25 lines (1:n,ibf01_pois_avg , type="l",col="red")

26 plot (1:n,bf01_geo_avg ,main="BFSS01 (Black) vs IBF10 (Red) with Geometric samples",xlab="Number of samples",

ylab="BFSS01",type="l", ylim=c(min(bf01_geo_avg ,ibf01_geo_avg),max(bf01_geo_avg ,ibf01_geo_avg)))

27 mtext("Simulations: 100 / Samples: 30 / H0: FALSE",side =3)

28 lines (1:n,ibf01_geo_avg , type="l",col="red")

29 }

30 Geometric_Poisson_SSBF(n=30,prob =0.5, lambda=1, simulations =100)
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Figure 8–3: AIBF10 and The IBF10 Lower Bound Comparison for the Poisson vs Geometric Test

Examining the presented figure above elucidates several significant observations. Most

prominently, it is discernible that BI
01 is a lower bound of the Average Intrinsic Bayes

Factor (AIBF). Further, we note that the IBF lower bound is a more stable and robust

form of evidence compared to the Arithmetic Intrinsic Bayes Factor (AIBF). In the sce-

nario where data is generated under the alternative hypothesis, the AIBF presents lower

values. However, these values do not furnish sufficient evidence to confidently reject the

null hypothesis, H0. On the other hand, the lower bound presents a more compelling case.

It succeeds in providing an accurate decision - one favoring the rejection of the null hy-

pothesis - when we deal with a sample size exceeding ten. This finding underscores the

valuable role that the IBF lower bound can play in hypothesis testing, particularly when

dealing with larger sample sizes.
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Moving forward, we now turn our attention to an empirical data-set that was previ-

ously studied by Cox (1962, p. 414) [6]. This data-set comprises a sample of 30 observa-

tions, which were drawn from a Poisson distribution. Notably, this Poisson distribution is

characterized by a mean value of 0.8. We aim to delve into a comprehensive analysis of

this data-set within the purview of our ongoing investigation.

Figure 8–4: Cox (1962) p. 414

The data utilized for this study was managed within the R programming environ-

ment. To ensure the robustness of our findings and to minimize the risk of any inherent

bias or patterns influencing the results, we employed a randomization process on the data.

This was achieved using the sample() function, a commonly used R command for random

sampling. Subsequent to this randomization, we proceeded to compute BI
10, specifically

for the comparison between Poisson and Geometric distributions. The detailed steps fol-

lowed in this computation are described next.
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R program
1 bfss10_comparison = function(y,c_theoretical = 2/sqrt(pi),type="empirical",chart=FALSE) {

2 bfss10_empirical = c();

3 bfss10_theoretical = c();

4 s = 0;

5 n = length(y)

6 for (i in 1:n) {

7 s = s + y[i]

8 y_fact = factorial(y[1:i])

9 m1 = (i^(s + 0.5)*factorial(i-1)*prod(y_fact))

10 m0 = (gamma(i + s + 0.5))

11 bfss01= bfss01_mts(y[1:i],print=FALSE)

12 c_empirical = bfss01$bfss_max

13 bfss10_empirical = c(bfss10_empirical ,c_empirical*m1/m0)

14 bfss10_theoretical= c(bfss10_theoretical ,c_theoretical*m1/m0)

15 }

16 if (chart) {

17 plot (1:n,bfss10_empirical ,type="l",

18 xlab="Number of samples",ylab="BFSS 10",

19 main="Poisson data with parameter 0.8 (Cox 1962) Table 2")

20 }

21 else {

22 if (type=="empirical") { return(bfss10_empirical) }

23 else if (type=="theoretical") { return(bfss10_theoretical) }

24 }

25 }

26 data = c(rep(0 ,12),rep(1 ,11),rep(2,6) ,3)

27 data = sample(data)

28 bfss10_comparison(y=data ,type="theoretical",chart=TRUE)
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Using the code above we obtained the following chart:

Figure 8–5: We used the randomized Cox data considered a growing vector with those samples and calcu-
lated the Bayes Factor as we added more data.

It is evident from the chart above that the IBF bound is consistent with the results

obtained by Cox (1962)[6] and the IBF bound converges to the correct decision in favor

of the adequate model which is the Poisson distribution. The graphical representation

depicted above yields insightful observations about the performance of the IBF bound.

Moreover, as sample sizes increase, the IBF bound shows convergence toward an optimal

decision. It correctly leans in favor of the model that accurately reflects the underlying

distribution of the data in this case, the Poisson. This empirical evidence reinforces the

strength and consistency of the IBF as a tool for model selection.



79

8.2 The Negative Binomial vs. Poisson Separated Hypothesis Test

In this section, we’ll focus on a separated hypothesis test comparing the Negative Bi-

nomial and Poisson distributions. The Negative Binomial distribution is a discrete prob-

ability distribution that models the number of failures in a sequence of independent and

identically distributed Bernoulli trials, before a specified (non-random) number of suc-

cesses (denoted r) occurs. An alternative formulation is to model the number of total

trials (instead of the number of failures). In fact, for a specified (non-random) number

of successes (r), the number of failures (n - r) is random because the total trials (n) are

random. For example, we could use the negative binomial distribution to model the num-

ber of days n (random) a certain machine works (specified by r) before it breaks down.

Imagine a sequence of independent Bernoulli trials: each trial has two potential outcomes

called "success" and "failure". In each trial, the probability of success is θ and of failure is

(1−θ). We observe this sequence until a predefined number r of successes occurs. Then

the random number of observed failures, Y follows the negative binomial distribution:

Y ∼ NB(r,θ). The pmf of Y is given by

P(Y = y|r,θ) =
(

y+ r−1
r−1

)
θ

r(1−θ)y

where r is the number of successes, y is the number of failures, and θ is the probability of

success on each trial. The likelihood of the Negative Binomial is given by

n

∏
i=1

(
yi + r−1

r−1

)
θ

rn(1−θ)∑yi.

The maximum likelihood estimator for θ , the Fisher Information Matrix and the Jeffreys’s

prior for the Negative Binomial are:

θ̂ =
r

ȳ+ r
, I(θ) =

r
θ(1−θ)2 ,

√
|I(θ)| ∝

r1/2

θ 1/2(1−θ)
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The marginal distribution in this case is:

m1(y) ∝

∫ 1

0

[
n

∏
i=1

(
yi + r−1

r−1

)]
θ

rn(1−θ)∑yi
r1/2

θ 1/2(1−θ)
dθ

=

[
n

∏
i=1

(
yi + r−1

r−1

)]
r1/2

∫ 1

0
θ

rn+1−1/2−1(1−θ)∑yi−1dθ

The change of variable β = nȳ,α = rn+1/2 yields:

∫ 1

0
θ

α−1(1−θ)β−1dθ =
Γ(α)Γ(β )

Γ(α +β )

The marginal above becomes:

m1(y) ∝

[
n

∏
i=1

(
yi + r−1

r−1

)]
r1/2 Γ(rn+1/2)Γ(nȳ)

Γ(n(r+ ȳ)+1/2)

In this case, our null hypothesis is that M0 is Poisson(λ ), thus

m0(y) =
c0Γ(∑yi +

1
2)

n

∏
i=1

yi!
(1/n)(∑yi+

1
2 )

The Bayes factor can be expressed as:

B10(y) =
c1

c0

[
n

∏
i=1

(
yi + r−1

r−1

)
yi!

]
r1/2 Γ(rn+1/2)Γ(nȳ)

Γ(n(r+ ȳ)+1/2)Γ(nȳ+1/2)
n(nȳ+1/2)

By definition, we have that(
yi + r−1

r−1

)
yi! =

(yi + r−1)!yi!
(r−1)!yi!

=
(yi + r−1)!
(r−1)!

Hence, the Bayes factor can be expressed as:

B10(y) =
c1

c0

[
n

∏
i=1

(yi + r−1)!
(r−1)!

]
r1/2 Γ(rn+1/2)Γ(nȳ)

Γ(n(r+ ȳ)+1/2)Γ(nȳ+1/2)
n(nȳ+1/2)

Similarly, the Bayes factor for a minimal training sample y(ℓ) is:

B10(y(ℓ)) =
c0

c1

[
(r−1)!

(y(ℓ)+ r−1)!

]
r−1/2 Γ(r+ y(ℓ)+1/2)Γ(y(ℓ)+1/2)

Γ(r+1/2)Γ(y(ℓ))
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The Intrinsic Bayes Factor in this case is:

B10(y(−ℓ)|y(ℓ))=

[ n

∏
i=1

(yi + r−1)!
]
n(nȳ+1/2)

Γ(r+ y(ℓ)+1/2)Γ(y(ℓ)+1/2)Γ(rn+1/2)Γ(nȳ)

(y(ℓ)+ r−1)![(r−1)!]n−1Γ(n(r+ ȳ)+1/2)Γ(nȳ+1/2)Γ(r+1/2)Γ(y(ℓ))

By using the identity (y(ℓ) + r − 1)! = Γ(y(ℓ) + r), we found the Empirical SS Bayes

factor upper bound for this test:

BI∗
10(y)=

[ n

∏
i=1

(yi + r−1)!
]
n(nȳ+1/2)

Γ(rn+1/2)Γ(nȳ)

[(r−1)!]n−1Γ(n(r+ ȳ)+1/2)Γ(nȳ+1/2)Γ(r+1/2)
sup

ℓ=1,...,L

Γ(r+ y(ℓ)+1/2)Γ(y(ℓ)+1/2)
Γ(y(ℓ)+ r)Γ(y(ℓ))

To obtain the supremum above, we must note that:

Γ(r+ y(ℓ)+1/2)Γ(y(ℓ)+1/2)≥ Γ(y(ℓ)+ r)Γ(y(ℓ)), ∀y(ℓ) = 0,1,2, ...

Thus,

sup
ℓ=1,...,L

Γ(r+ y(ℓ)+1/2)Γ(y(ℓ)+1/2)
Γ(y(ℓ)+ r)Γ(y(ℓ))

=
Γ(r+ y(n)+1/2)Γ(y(n)+1/2)

Γ(y(n)+ r)Γ(y(n))

The result above, allowed us to express the Empirical IBF upper bound as:

BI∗
10(y) =

[ n

∏
i=1

(yi + r−1)!
]
n(nȳ+1/2)

Γ(rn+1/2)Γ(nȳ)

[(r−1)!]n−1Γ(n(r+ ȳ)+1/2)Γ(nȳ+1/2)Γ(r+1/2)
Γ(r+ y(n)+1/2)Γ(y(n)+1/2)

Γ(y(n)+ r)Γ(y(n))

Alternatively, we can express the Empirical IBF lower bound as:

BI∗
01(y) =

[(r−1)!]n−1Γ(n(r+ ȳ)+1/2)Γ(nȳ+1/2)Γ(r+1/2)[ n

∏
i=1

(yi + r−1)!
]
n(nȳ+1/2)

Γ(rn+1/2)Γ(nȳ)

Γ(y(1)+ r)Γ(y(1))
Γ(r+ y(1)+1/2)Γ(y(1)+1/2)

Similarly, the Theoretical IBF Lower bound is:

BI
01(y) =

[(r−1)!]n−1Γ(n(r+ ȳ)+1/2)Γ(nȳ+1/2)[ n

∏
i=1

(yi + r−1)!
]
n(nȳ+1/2)

Γ(rn+1/2)Γ(nȳ)

Γ(r)
Γ(1/2)
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Figure 8–6: Poisson vs. Negative Binomial IBF lower bound as the sample size increases with samples
from H0.

1 bfss01 = function(y,m0="poisson",m1="nbinom",r=1) {

2 ybar = mean(y)

3 n = length(y)

4 lf1 = (n-1)*log(factorial(r-1)) + log(gamma( n*(r+ybar)+0.5 ) )

5 + log(gamma(n*ybar + 0.5)) + log(gamma(r+0.5)) + log(gamma(r))

6 summ = 0

7 for (i in 1:n) { summ = log(factorial(y[i] + r - 1)) + summ }

8 lf2 = (n*ybar +0.5)*log(n) + log(gamma(r*n+0.5)) + log(gamma(n*ybar)) + summ

9 exp(lf1)/exp(lf2)

10 }

11

12 n=30; y = c(); samples = c()

13 for (i in 10:n) {

14 samples = c(samples ,rpois(n=1,lambda =1))

15 y = c(y,bfss01(samples ,r=1))

16 }

17

18 plot (10:n,y,type="l",col="red",xlab="Sample size",

19 main="Bayes factor of Poisson vs Negative Binomial with Poisson data"

20 ,ylab="Bayes Factor")
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8.3 Conclusions

In conclusion, our exploration of separated hypothesis testing has provided valuable

insights. Upon comprehensive analysis involving Bayes factor bounds, numerical simula-

tions, and real-world data, our findings suggest a promising application of these bounds in

general hypothesis testing. However, a crucial consideration lies in the careful selection

of distributions for M0 and M1. It is imperative to choose these models in a manner that

ensures infB10(y(ℓ)) ̸= 0, or equivalently, supB01(y(ℓ)) < ∞. This selection criterion is

pivotal as the effectiveness of the bound is contingent upon the appropriate identification

of M0 and M1 and we used it in our examples, wheen we considered the Poisson as M0

and the Geometric or Negative Binomial as M1. Without this careful choice, the bound’s

utility in hypothesis testing will be affected.



CHAPTER 9
GHOSH AND SAMANTA ALTERNATIVE APPROACH

This chapter explores a crucial 2001 study by J.K. Ghosh and T. Samanta [4], pre-

senting two methodologies that, when specific conditions are met, align with the SS ap-

proach. One such method involves setting y0 = argsupy(ℓ)m0(y(ℓ)) and subsequently

resolving the equation cB01(y0) = 1. The Bayes factor that arises from this method is:

BGS
10 (y) = cB10(y) = B01(y0)B10(y).

9.1 The Normal Mean Hypothesis Test Example

Consider the following simple hypothesis test

H0 : N(0,1) vs. H1 : N(µ,1)

The marginal distributions for H0 and H1 are:

m0(y) = (
1√
2π

)n exp{−∑y2
i

2
} m1(y) = 1

To calculate the GS Bayes Factor, we calculated the following:

y0 = arg sup
y(ℓ)∈D

m0(y(ℓ)) = arg sup
y(ℓ)∈D

(
1√
2π

)exp{−y(ℓ)2

2
}= 0

Additionally, we must solve this equation:

cB10(y0) = 1 =⇒ c = B01(y0) =
1√
2π

84
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The Bayes Factor in this case is:

B10(y) = (
√

2π)n exp{∑y2
i

2
}

Similarly, the GS Bayes Factor is:

BGS
10 (y) =

1√
2π

(
√

2π)n exp{∑y2
i

2
}= (

√
2π)(n−1) exp{∑y2

i
2

}.

In contrast, the IBF upper bound for this test is:

BI
10(y) = BN

10(y)
1√
2π

Therefore,

BI
10(y) = BGS

10 (y).

9.2 The Exponential Hypothesis Test Example

Consider the following simple exponential hypothesis test

H0 : λ = λ0 vs. H1 : λ ̸= λ0

In the exponential case, for a sample y of size n, the marginal distribution is

m(x) ∝

∫
∞

0
λ
(n−1) exp(−λ

n

∑
i=1

yi)dλ =
(∑n

i=1 yi)
n

Γ(n)

The marginal distributions for this hypothesis test are:

m0(y) = λ
n
0 exp(−λ0

n

∑
i=1

yi) m1(y) =
(∑n

i=1 yi)
n

Γ(n)

To calculate we GS Bayes factor, we found that:

y0 = arg sup
y(ℓ)∈D

m0(y(ℓ)) = arg sup
y(ℓ)∈D

λ0 exp(−λ0y(ℓ)) = 0

The next step is to solve the following equation:

cB10(y0) = 1 =⇒ c = B01(y0) = λ0 exp(−λ0y0)
1
y0

= ∞
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Evidently, the GS Bayes Factor does not exists for this case.

9.2.1 Conclusions

The resemblance between the Ghost and Samanta (GS) approach and the IBF

upper bound is evident. It is clear that if the marginal distribution m1(y(ℓ)) is independent

of y(ℓ), then the two methods yield identical results. In other words, BGS
10 = BI

10. This

equality arises due to the following reasoning:

BGS
10 = B01(y0)B10(y)

= B01(arg sup
y(ℓ)∈D

m0(y(ℓ)))B10(y)

= B01(arg sup
y(ℓ)∈D

[m0(y(ℓ))/m1(y(ℓ))])B10(y)

= sup
y(ℓ)∈D

B01(y(ℓ))B10(y) = BI
10

However, it is important to note that in certain cases, such as the exponential distribution,

the IBF bound provides accurate results while the GS Bayes factor does not exist. Further

research can be conducted to compare the suitability of each approach for different hy-

pothesis tests in specific scenarios. Additionally, efforts can be made to identify general

conditions that dictate the existence of the IBF bound and GS Bayes factors. Such inves-

tigations will contribute to a deeper understanding of the applicability and limitations of

these alternative methodologies.



CHAPTER 10
RESEARCH CONTRIBUTIONS

My doctoral thesis makes significant contributions to the field of Bayes factors

theory. In this research, I introduce a new universal robust bound for Bayes factors that is

an alternative to previous methods and is applicable to a variety of models. The bound is

based on the SS Bayes Factor, which is a measure of evidence in favor of one hypothesis

compared to another. This research significantly advances our understanding of Intrinsic

Bayes Factors (IBF), presenting a noteworthy contribution to the field. Specifically, we

have established stringent lower/upper bounds on all types of IBF - arithmetic, geometric,

and median.

Our proposed bound surpasses the existing benchmark of −ep log(p) in two crucial

aspects. Firstly, it shares identical asymptotic behavior as a Bayes Factor, adhering more

closely to the foundational tenets of Bayesian analysis. Secondly, and more importantly,

our lower bound corresponds to an actual prior distribution. This prior can be interpreted

as a form of least favorable prior for the null hypothesis, embodying the spirit of conser-

vatism intrinsic to statistical hypotheses testing.

In contrast to other IBFs, our derived variant exhibits computational efficiency. The

ease of computation is particularly noteworthy given the generally arduous computational

demands of other IBFs. Therefore, our lower bound provides not only a stronger math-

ematical formulation but also a more practical tool for researchers employing Bayesian

methods. This approach bridged the gap between the Intrinsic Bayes Factors Theory with

the SS Bayes Factors and compared the arithmetic Intrinsic Bayes Factor with the IBF
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bounds. Moreover, I developed the "Empirical IBF Bounds" methodology, resulting in a

novel Empirical IBF lower bound that is even better than the theoretical bound.

To develop the Empirical Intrinsic Bayes Factor Bound, I constructed a mathematical

formula and an algorithm to determine the set of all possible empirical minimal training

samples and compared the empirical and theoretical Bayes Factor bounds. The thesis also

contains a comparison of the lower bound with the Sellke et. al (1990) [13] −ep log(p)

universal lower bound and the new Empirical and Theoretical SP Bayes Factors that are

defined for the first time.

The thesis includes several theorems that demonstrate the effectiveness of these new

methods. For example, Theorem 3.1 shows that the IBF lower bound gets better than the

−ep log(p) universal lower bound as the sample size increases under the null hypothesis,

Theorem 3.2 states and shows that using our novel Empirical SP Prior, we can obtain

our Empirical IBF Bound, and Theorem 3.3 states and shows that our novel Empirical

SP Prior and SP Bayes factor, converges to the Theoretical SP Prior and SP Bayes Fac-

tor. This work also includes several examples and simulations, such as the Normal and

Exponential distribution, ANOVA, and Linear models. In section 3.5, I generalized the

technique used to compare the AIBF with the IBF Bound, and I showed that the same can

be said for any other kind of Bayes factor that uses any measure of central tendency.

I also derived and calculated various Bayes factors and priors for linear models and

specifically for ANOVA. I developed the necessary calculations for the Theoretical and

Empirical Generalized IBF Bounds in General linear models by introducing a generalized

prior to obtain both empirical and theoretical IBF bounds for two nested linear models

and ANOVA. Using this generalization, we derived the ANOVA Bayes factors for differ-

ent priors such as the Full Jeffreys prior and the Modified Jeffrey’s prior. Furthermore,

through these developments, I was able to demonstrate that the Generalized SS Bayes

factor for ANOVA does not exist for the Reference Prior.



89

In this work, we also calculated the EP-Priors and EP-Bayes factor for the expo-

nential distribution and the hypothesis test λ = λ0 vs λ ̸= λ0 and compared their results

with the between the SP Priors and the SP Bayes factor through numerical simulations

and charts. We found that the results are similar but the prior obtained in the SP-Prior

approach does not depend on the samples, as in the EP-Prior and it’s much easier to cal-

culate while their difference is small. Additionally, for the exponential case, the GS Bayes

Factor was calculated in section 4.2 and compared to the SS Bayes factor and we’ve con-

cluded that the GS Bayes factor does not exist while the IBF Bound both the theoretical

and the empirical are well-defined and consistent. In the Geometric vs Poisson Separated

models example, we calculated the AIBF and we showed the usefulness consistency, and

stability of our lower bound of the AIBF.

These contributions have the potential to improve the accuracy and efficiency of sta-

tistical modeling methods, making them more accessible to researchers and practitioners

in various fields. Ultimately, this research provides a valuable contribution to the field

of Bayes factors theory and statistical modeling, with the potential to advance scientific

knowledge and improve decision-making in a variety of domains.
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