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In recent years, forward-backward stochastic differential equations (FBSDE) have been
extensively studied because of their numerous applications in many areas such as control and
game theory, mathematical economics, and mathematical finance. Due to the pressing need
of treating large-scale systems, there has been increasing effort of dealing with mean-field
interactions, systems with mean-field interactions, and related control problems, and games.
To deal with large-scale switching systems, the mean-field types of FBSDEs with Markovian
switching naturally come into play when one needs to treat the mean-field control problems.
In this work we derive useful estimates for the solutions of the backward stochastic differential
equations (BSDE) with Markovian switching. We also work on the FBSDEs with regime-
switching and FBSDEs with mean-field and regime-switching, providing sufficient conditions
for the existence and uniqueness of the solutions. Then we consider a nonzero-sum game
problem with N players in which the dynamics and cost functionals of each player depend
on conditional mean-field terms and a regime-switching process, presenting conditions on

the coefficients such that a Nash equilibrium point of the differential game exists and the
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relationship of the existence of the Nash equilibrium point and the solution of the conditional

mean-field FBSDE with regime switching.
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INTRODUCTION

In the new era, numerous complex and large-scale systems come into play. A common
feature of such systems is the inclusion of both continuous dynamics and discrete events, and
their interactions. The discrete events cannot be described by the usual stochastic differential
equations, but can be recast as stochastic systems driven by pure jump processes [38, 50} 57,
58, 59]. In responding to the increasing needs from modeling, analysis, and computation,
this dissertation focuses on a class of hybrid systems known as Markov switching diffusions
where the switching between discrete events is driven by a continuous-time Markov chain.
Because of the switching, some well-known results for systems without the switching do
not carry over. For example, as explained in [57, Section 5.6, pp. 229-233] by putting two
equations (e.g., linear equations) together switching back and forth, even if both equations
are stable, the resulting switched system may be unstable. Thus, the intuition we have does
not always work. This indicates that we cannot quickly come to the conclusion regarding
the corresponding properties.

In recent years, FBSDESs have been extensively studied because of their numerous appli-
cations in many areas such as control and game theory [45] 62], mathematical economics [23],
and mathematical finance [I8, 29]. There are three main approaches for the wellposedess
of the FBSDES, each of which has its own advantages and disadvantages. In [I1] and then
[43], the method of contraction mapping was studied, which works well for small time du-
rations. In [34], the four-step-scheme was first introduced to establish the existence and
uniqueness of solutions of FBSDEs under non-degenerate condition of the forward equation
and some regularity requirements of the coefficients (see also [20, [64]). In [25], the existence

and uniqueness of solutions of FBSDEs are proved under monotonicity condition without



non-degeneracy condition of the forward equation. The monotonicity condition is then re-
markably weakened and developed in subsequent works [24], [44], [60]. For the progress and
related works on FBSDESs, we refer the reader to [35] [37] and the references therein.

Since the pioneering works [32 26, 27] and because of the pressing need of treating
large-scale systems, there has been increasing effort of dealing with mean-field interactions,
systems with mean-field interactions (in which the coefficients also depend on the their
distributions), and related control problems, and games. The stochastic maximum principles
for both mean-field games and mean-field control problems naturally lead to a class of mean-
field type FBSDESs (see [12], [16, [T, [61] and references therein). To study the well-posedness of
this new class of FBSDEs, the approaches in [44] and [24] are extended in the recent works
[13] and [19].

In contrast to the vast literature on FBSDESs, such equations with Markovian switching
have not received as needed attention. Although BSDEs with Markovian switching were
studied in [22 [33] and were used to formulate stochastic recursive control problems [65], to
the best of our knowledge, there is no available well-posedness result even for the FBSDESs
with Markovian switching. To deal with large-scale switching systems, the mean-field types
of FBSDEs with Markovian switching naturally come into play when one needs to treat
the mean-field control problems. Nevertheless, a main issue we encountered was that the
associated limit mean-field measure was not known for the systems involving both mean-field
interactions and random switching. To settle this issue, in the recent work of [9], they showed
that the mean-field limit measure is not deterministic, but a conditional (random) measure
that is a solution of a system of McKean-Vlasov stochastic differential equations. It is worth
mentioning that conditional mean-field also appears in such problems as mean-field games
and control with common noise [30} 46], major-minor mean-field games [39, 41], mean-field
games with leader-follower [52], and filtering for McKean-Vlasov SDEs or mean-field control
with partial-observations [14], 50]. In our setting, the conditioning is taken with respect to

the past information generated by the switching process-the Markov chain. Thanks to this



conditional measure, it enabled us to obtain maximum principles of such switching diffusion
systems in [8), 40].

Continuing our study, in this dissertation we devote our attentions to a number of
important issues. We begin by developing different approaches to examine well-posedness
of FBSDEs with Markovian switching and then mean-field type FBSDEs with Markovian
switching. The appearance of the switching process leads to two main differences from the
FBSDEs in [11], 24, 25, [44], 60] and mean-field type FBSDEs in [13] [16, [19].

First, apart from the Brownian motions, the backward equations are also driven by
martingales associated to the Markov switching process whose quadratic variations are ran-
dom, not deterministic as those of Brownian motion. Second, the mean-field terms in the
mean-field type FBSDEs with Markovian switching are represented by conditional (random)
distributions of the processes involved given the history of the switching process. These
differences make the estimates needed in the analysis more complex. It, in turn, requires us
developing several new supporting results. We end the dissertation by treating the nonzero-
sum conditional mean-field games using the new wellposedness results for FBSDEs. Condi-
tions on the coefficients of the nonzero-sum conditional mean-field linear-quadratic stochastic
differential game with regime switching and open-loop strategies are provide to guarantee a
Nash equilibrium point for any (not necessarily small) time duration.

The rest of the dissertation is arranged as follows. Chapter [2] concentrates on for-
ward—backward stochastic differential equations with Markov switching diffusions with non-
degeneracy of the diffusion matrix. We prove a result of existence and uniqueness of solutions
in two steps. The first part, section |1, studies the problem of existence and uniqueness over
a small enough time duration. The second one, section [2 explains, by using the connection
with a system of PDEs and the local result, how we can deduce the existence and uniqueness
of a solution (under a non-degeneracy assumption) over an arbitrarily prescribed time du-

ration. This approach relaxes the regularity assumptions required on the coefficients by the
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Four-Step scheme. Section 3| gives some related PDE in the weak sense. Chapter |3| concen-
trates on Markov switching diffusions, developing the continuation method and monotonicity
conditions to examine the well-posedness of FBSDEs with Markovian switching. The empha-
sis is on the corresponding backward stochastic differential equations, and forward-backward
stochastic differential equations. Chapter [4 section [I] is devoted to stochastic differential
equations with Markov switching with mean-field interactions and obtains certain results
that tie up the conditional mean-field measure with that of the underlying systems. Finally,
chapter [p| deals with linear (in continuous state) mean-field games.

Compared with the existing works, the main technical challenges stem from the appear-
ance of the switching process and the conditional mean-field term used. The appearance of
the switching process leads to two main differences from the FBSDEs in [11} 24] 25| [44] [60]
and mean-field type FBSDEs in [13, 16, 19]. First, apart from the Brownian motions, the
backward equations are also driven by martingales associated to the Markov switching pro-
cess whose quadratic variations are random, not deterministic as those of Brownian motions.
Second, the mean-field terms in the mean-field type FBSDEs with Markovian switching are
represented by conditional (random) distributions of the processes involved given the history
of the switching process. These differences make the estimates needed in the analysis more

complicated. It, in turn, requires us developing several new supporting results.



CHAPTER 1
Stochastic Differential Equations

This chapter is devoted to introducing preliminaries on probability, conditional expec-
tations, several important stochastic processes such as martingales, Brownian motions and
Markov chains, stochastic integrals, several classes of stochastic differential equations, and
Ito’s formula. In order to study common properties of stochastic processes, stochastic inte-
grals driven by martingales and some useful inequalities are also presented.

1 Probability Space and Conditional Expectations
In this section, we recall basic definitions and theorems probability theory needed to
further our study of stochastic calculus.
1.1 Preliminaries on Probability Space
A o-algebra F on a given set {2 is a family of subsets of {2 with the following properties
(i) geF
(ii) A e F = A% e F where A is the complement of F in
(i) Ay, Ag,...e F = UL A eF
The pair (2, F) is called a measurable space. A probability measure is a function P : F —
[0, 1] such that
(a) P() =0 and P(2) =1
(b) For disjoint {A4;};>1 = F we have IP’( UZ, A,;) =37 P(A).
Finally we denote (2, F,P) as a probability space. Any A € F is called an event. Two events
Ay, Ay € F are said to be independent if P(A; n Ag) = P(A;)P(Ay). Two o-algebras F; and
Fo of F are independent if any event A € F; and B € F, are independent for all A € F; and

B e F,. An F-measurable set is a subset A that belongs to 2. A complete probability space
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is a probability space such that F contains all subsets of {2 with P outer measure zero. If
the event A occurs such that P(A) = 1, we say A holds P-a.s. (almost surely). A function
X : Q — R4 is called F-measurable if

XA) = {we Q% X(w) e A} e F,for all open sets A € R?,

For any function X, denote the o-algebra o(X) generated by X as the smallest o- algebra
on (2 containing all the sets X !'(A), where A = F open. When Q = R", we call B(R") the
Borel o-algebra and B € B(R™) Borel sets. For a measurable space (R", B(R")), a B(R")-
measurable function is called a Borel measurable function. For a complete probability space
(Q, F,P), a random variable X is an F-measurable function X : @ — R9. A family of
random variables is independent if the o-algebras generated by them are independent, and
a random variable X is independent of a o-algebra G if the o-algebra generated by X is
independent of G. Additionally, the law (or distribution) of the real-valued random variable

X is the pushforward measure py, defined
Px(B) =P(X Y(B)) =P(w: X(w) € B).

for some B € B(R™). Two random values X : @ — R" and Y : @ — R are independent if

and only if
Plw: X(w)e A)Y(w)e B) =P(w: X(w) e A)P(w : Y (w) € B)

for all A e B(R"), B € B(R™).
If §, | X (w)]|dP(w) < oo, (hence integrable) The ezpectation of X is defined as

E[X] — LX(w)d]P’(w)

For an R"-valued random variable X, the law induced by X on (R™, B(R")) allows for the

expectation to be written

E[X] = JRd 2P, ()
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A stochastic process is a collection {X;};>¢ of random variables defined on a probability
space (Q, F,P) and taking values in RY. Fixing t gives the random variable X,(w) € R™,
while fixing w gives a function X;(w) € R™. We will commonly denote the stochastic process
{Xi}i=0 as X, or X(1).

Definition 1.1. (i) A filtration on (2, F) is an increasing family {Fi}i=0 of o-algebras
Fi; © F; that is, if 0<s <t then Fs < F;.

(ii) A process {X;}i=0 is called adapted to the filtration {F;}i=o if X; is Fy-measurable for all
t.

A filtration is right continuous if F; = Ny Fs for all t = 0. A filtered probability
space (Q,F, P, {F;})i=0) is said to satisfy the usual conditions if the space is complete, the
filtration {F;}i=o is right-continuous, and Fy contains all P-null sets in F. A stochastic
process X;(w) is said to be adapted to the filtration {F;}i=o or {F:}-adapted if for each =0,
X;(w) is an F-measurable random variable. A stochastic process X; is said to be continuous
if for almost all w € Q, X;(w) is continuous on ¢ > 0. A stochastic process X; on R is called
a cadlag process if

(i) X is right-continuous

(ii) For almost all w € Q, the left hand limit lim,_,;- X (w) exists and is finite for all ¢ > 0.
We will commonly denote such left limits as X;_. The smallest o-algebra on R, x Q where
every left-continuous process is a measurable function of (¢,w) is denoted P. A stochastic
process X, is said to be predictable if it is P-measurable when regarded as function of
(t,w). An Rvalued stochastic process X; is said to be F-progressively measurable if for all
t € [0,T], the map (s,w) — X (w) is B[0, ) x F;/B(R%)-measurable. A random variable
7 :Q — [0,00] is called a stopping time with respect to filtration {F}, if {7(w)<t} € F; for

all t=0.



1.2 Conditional Expectations

Let (Q,F,P) be a probability space with a random variable X : © — R¢ such that
E[|X]|] < co. For a o-algebra G < F, we define the conditional expectation of X given F as
follows:

Definition 1.2. The conditional expectation of X given G, E[X|G] is the a.s. unique func-
tion from Q to R? satisfying

(i) § JE[X|G]dP = § , XdP, for all A€ G

(i1) E[X|G] is G-measurable.

Additionally, for B € F, we define the conditional probability of B given F as P[B|F]| =
E[1p]F].

We list a few important properties of conditional expectation
Lemma 1.3. Let Y be a F;-measurable random variable with F, < F; and G < F. Then,
(a) B[E[X|G]] - E[X]

(b) For a G-measurable random variable X, E[X|G] = X, a.s.
(¢) Fora,peR, ElaX + 8Y|F| = oE[X|F] + SE[Y]|F]

(d) For an X independent of F, E[X|F] = E[X]

(e) E[E[X|F]|G] = E[E[X[G]|F] = E[X]|]]

(f) If o : R — R is conver and E[|¢(X)|] < o then

O(E[X|F])<E[¢(X)|F].

We conclude this section recalling the definitions of Markov kernels and that of regular

conditional distributions.

Definition 1.4. Let (©,.41), (Qa2,.A2) be measurable spaces. A map k : Oy x Ay — [0, 0]
1s called a Markov kernel if

(i) wy — K(wr, Ag) is Aj-measurable for any Ay € As.

(ii) As — K(wy, Ag) is a probability measure on (Qg, As) for any wy € .
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Definition 1.5. Let X be a random variable taking values in the measurable space (E,E),
and let G < F be a sub o-algebra. A Markov kernel kx r from (Q,F) to (E,E) is called a

reqular conditional distribution of X given G if
kxr(w,A) =P(X € A|G)(w)

for P-almost all w € Q) and for all A€ &.

When F = o(X) for a random variable X, we denote Ky, »(x)(X *(z), A) as the regular
conditional distribution of Y given X.

2 Martingales, Brownian Motions, and Markov Chains

For a positive integer d, vectors x,y € RY, denote by {(z,y) their dot product and by 27
the transpose of x. Let (0, F,P, {F;}i>0) be a fixed probability space satisfying the usual
conditions.
2.1 LP(RY) Spaces

Denote

LP(RY) = {¢: Q — R F-measurable, E[¢P < 0}, p=>1,

S?(0,T;RY) = {gp :[0,T] x Q — R?, F-adapted cadlag process, E l sup \gptP] < oo} ,

o<t<T

and

£°0,T;RY) = {w [0, 7] x Q — R?, F-progressively measurable process},
T

L0, T;R?) = {1/; e L2000, T;RY) : Y3 = E U |¢t2dt} < oo} :
0

It can be shown that £2(0,T;R?) is a Hilbert spaces; see [21, Lemma A.2.5].
2.2 Martingales
This subsection is devoted to the definitions and basic properties of martingales, super-
martingales, submartingales. First, we have the following definitions.
Definition 1.6. An n-dimensional stochastic process {U;}i=o on (2, F,P) is called a mar-

tingale with respect to a filtration {Fi}i=o and measure P if
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(i) U is {Fi}i=0-adapted,
(ii) E[|U,|] < o0 for all t,
(iii) E[U,|F] = Uy for all s>t=0.

A supermartingale is defined similarly but replace (iii) by
E[U,|R]<U;, forall s>t>0.

A submartingale is defined similarly but replace (iii) by
E[U,|R]=U;, forall s>t>0.

Further, we define another important class of martingale.
Definition 1.7. A process {V;} is said to be a local martingale if there exists a sequence of
stopping times T such that V;™* is a martingale, with 7, — 00 a.s. increasing.

Of course, every martingale is a local martingale, and additionally every bounded local
martingale is a martingale. We now look at the conditions needed to ensure convergence of
martingales.

Theorem 1.8. Let U be a right-continuous supermartingale such that supg<,<., E{|U:|} < 0.
Then V' = limy_,o, Uy ezists a.s., and E[|V]] < .

Next, we have the Doob-Meyer decompsotion theorem.

Theorem 1.9. The Doob-Meyer decomposition expresses a submartingale in continuous time
as the unique way as the sum of a martingale and a nondecreasing predictible process. That

18, if Uy is a submartingale, then
U= My — Ay, 0<t<T,

where M; is a F-martingale and Ay is a nondecreasing process.
To proceed, we mention the definitions of quadratic variations (optional and predictable
quadratic variations) and covariations which will be needed for important estimates in the

next chapters.
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Definition 1.10. (i) If X,(-) : Q@ — R is a continuous stochastic process, then the quadratic

variation process of Xy, [X]; is defined by

[X]i(w) = Altiknio Z | Xy, (W) — Xip (w)|? (limit in probability)
te <t

where 0 =t <ty <...<t, =1t and Aty = tp 1 — ti.

(ii) More generally, the covariation of two processes X and'Y is

[X,Y]i(w) = lim (Xtpys (W) = X4 (W) Vi, (W) = Y (w)) (limit in probability).

Atk—>0
te<t

The predictable quadratic variation is sometimes used for locally square integrable martin-
gales. This is written as (U, ), and is defined to be the unique right-continuous and increasing
predictable process starting at zero such that U? — (U) is a local martingale. Its existence
follows from the Doob—Meyer decomposition theorem and, for continuous local martingales,

it is the same as the quadratic variation.

Definition 1.11. A square integrable martingale is called purely discontinuous martingale if
it is (strongly) orthogonal to all the square integrable martingales with continuous trajectories.
According to Theorem 3 in Section 1.5 in [51], any square integrable martingale can be de-
composed into the sum of a martingale with continuous trajectory and null at 0 and a purely
discontinuous martingale. The (optional) quadratic variation of a purely discontinuous mar-

tingale is a pure jump process.

Now we are in a position to state the Burkholder-Davis-Gundy inequality, which is frequently
used throughout the dissertation.
Theorem 1.12 (Burkholder-Davis-Gundy inequality). For any 1<p < oo there ezist positive

constants c,, C, such that, for all local martingales X with Xo = 0 and stopping times T,
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the following inequality holds

o E [[X]2?] <E lsup ]X5|p] <G,E[[X]??].

ST
Furthermore, for continuous local martingales, this statement holds for all 0 < p < c0.
Finally, let us mention some important martingale convergence theorems.
Theorem 1.13 (Doob’s martingale convergence theorem I). Let U; be a right-continuous
supermartingale with the property that

supE[U; ]| < oo,

t>0

where U, = max(—U;,0). Then the pointwise limit

U(w) = lim Uy(w)

t—o0

ezists for a.a. w and E[U~] < 0.

Theorem 1.14 (Doob’s martingale convergence theorem II). Let U; be a right-continuous
supermartingale. Then the following are equivalent:

(i) {Ui}i=0 is uniformly integrable.

(ii) There exists U € LY(P) such that Uy — U a.e. (P) and Uy — U in L'(P); that is,

fUt—U\dIP)HO as t — .

2.3 Brownian Motions
On (Q,F,F;,P), a (one-dimensional) process W (-) is called a (standard) Brownian
motion if it satisfies the following conditions
(i) W, is almost surely continuous. That is, P(w : W;(w) is continuous in ¢) = 1.
(ii) W; has stationary, independent increments.

(i) W, is a Gaussian process. That is, Wy — W, ~ N(0,¢ — s) for 0< s <t.
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Note that W; has independent increments means that for all 0 < t; < ... < t;, < o0, the

random variables
Wy Wy =Wy, ..., W, —W,,_, are independent.

Equivalently, W, — W, is independent of F; for any s > t=>0. In addition, W, has stationary
increments means that the process {W; ., — W;},>o has the same distribution for all £=0.
Furthermore, the quadratic variations of a one-dimensional Brownian motion W is [W]; = ¢
a.s.

A d-dimensional process W (-) = (Wi (-), Wa(), ..., Wa(:))" is a d-dimensional Brownian
motion if each W;(-), 1<i<d, is a standard one-dimensional Brownian motion and all d
components {Wi(-), Wa(+),..., Wy(-)} are independent.

Due to the property of independent increments, every d-dimensional Brownian motion W} is
a martingale with respect to the o-algebras F; generated by {W; | s<t}. More precisely, we
have

E(W;|F,) = W, forall 0<s<t.

2.4 Markov Chains
Let M = {1,2,...,mg} be a finite set and p a probability measure on M. A transition
matrix P(t) = (Diyjo(t))io.joem 18 & mg x my matrix that satisfies the following conditions for

every g, Jjo € M and s, t=0,

(i) DPigjo (t)}o,

(ii) Z piojo(t) = L
JoeM

(iﬁ) Z pioko(s)pkojo (t) = Piojo (S + t)'
k’oGM

A transition matrix P is called standard if lim,_,o, p;yj,(t) = 0 In addition, matrix P is

0o
called measurable if p; ;,(-) is a measurable function in (0, 0). Note that if P(t) satisfies the

first two conditions, it is called a stochastic matrix. The last condition is often referred to
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as the Chapman-Kolmogorov equation. We shall always assume that the transition matrix
P is standard and measurable.

Definition 1.15. A continuous-time process «(-) defined on (2, F,P) with values in the
state space M is called a Markov chain with initial distribution p and transition matriz P(t)
of

(i) P(ag = ip) = p(io), and

(i) for any jo,ip,i1,...,in € M and s >t >ty > ... > t,>0,
P<045 = j0|at = 1o, Qg = U lékén) = P(as = j0|at = iO) = pioj()(s - t)'

It can be shown that P(t) is differentiable at 0 (See the book by Kai Lai Chung [2], Sections

[1.2-3.) In other words, for any iy # jo € M, the limits

1 — Digio (1) . Digjo(?)
LA pgojo(o) = tl_l)%i %

exist and finite. Denote @ = (giyj,) = P'(0) then P satisfies the following initial value linear

ordinary differential equation

aP(t)
- P)Q, =0,
P(O) = [mo

which leads to the explicit presentation
00] tn
_ L tQ _ n
P(t) = e = Eo—n!Q : t=0.

Since P(t) is a stochastic matrix, it is clear that the matrix @ = (QiojO)io JoeM satisfies the

following properties for any 79 # jo € M

(1) qiojo >O?

(i) Z Gigjo = 0-

JjoeM
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Note that beside the Definition we can also define a Makov chain in two other ways
using a matrix ) satisfied above conditions (which is called the generator of the Markov
chain), or using the jump chain and holding times. It is obvious that for a Markov chain
with the generator matrix (), we have

. . Tijot +o(h), ifig # jo,
P(a(t + h) = jola(t) = ig) =

1+ qioiot + O(h), if io = jo.
Martingales Associated with a Markov Chain.
Definition 1.16. For a Markov chain o(-) with state space M and generator matriz Q,

associated with each pair (io, jo) € M x M satisfying ig # jo, define the process

Miojo () = [ Migjo | () — (Mg, )(t) (1.2.1)

where
t
[Miojo] (t) = 2 ]1(05(5*) = io)n(@(s) = jO)’ <Mi0jo>(t) = J;) qiojon(@(8*> = io)ds’
0<s<t
and 1 denotes the usual zero-one indicator function.
It follows from [22] that the process M, ;,(t), 0<t<T is a discontinuous and square in-
tegrable martingale with respect to F;*, which is null at the origin. The processes [M;,;,](t)

and (M;,;,)(t) are the optional and predictable quadratic variations, respectively. For con-

venience, we define
Mioio (t) = [Mioio](t) = <Mioio>(t) =0, ip € M.

From the definition of optional quadratic covariations we have the following orthogonality
relation

[Migjo, W] =0, [Miyje, Myogo] = 0 when (ig, jo) # (po, o), (1.2.2)
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where [MinO,W] and [MZ Mpoqo] are the optional quadratic covariations of the pairs

0J0 3

(Migio, W) and (M0, Mpogo ), Tespectively; see [22), [33]. Denote

M?0,T;RY) = {)\ = (Aiojo 2 1o, Jo € /\/l) such that \;,j, € £°(0,T;RY), M\iyip = 0,

1010
T 2
and Z IEJ ‘Aiojo(t)]d[MinO](t)<oo}.
io,joem YO

For a collection of F-progressively measurable functions \; = (/\l-0 jo (t)) t=0, we denote

i0,joEM?
t t
f AjedM, = > f Nijo ($)dMiyj(s) and N, dMy = > Nigjo (£)d Mg, (1).
0 i0,joeM V0 i0,joEM
It can be shown that M?(0,T;R?) is a Hilbert space; see [21, Lemma A.2.5].
3 Stochastic Integrals with Martingales
In this section, we expand upon what we have discussed so far to define the stochastic
integrals needed to make sense of the SDEs we will see. We begin with the standard stochastic
integral, then the case with a continuous markov chain, and finally with jump. With these
martingale and stochastic integral connections established, we are able to work with such
stochastic differential equations. This section closely follows Watanabe [2§], chapter I, which
can be consulted for a details on the concepts which follow.
3.1 Stochastic Integrals
We first begin with the original formulation of the stochastic integral courtesy of K. Ito
himself, as described by Watanabe [28]. Let (Q, F, P, {F:}:=0) be a fixed probability space
satisfying the usual conditions. Let W, be a one dimensional F;-Brownian motion. To begin,
we introduce the the following spaces
Definition 1.17. Let I.? be the space of all real-valued measurable processes {¢:}i=o on

which are adapted to the filtration {F;}i=0 such that for every T > 0

T
16y = E [ f ¢2(S,w)ds] .
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We consider ¢1 = ¢ if ||d1 — ¢2||2.7 = 0 for every T > 0. Further we define for every ¢ € L2

|
¢z = Z 2—n(|!¢|!2,n A1)

Note that ||¢ — ¢o||2 defines a metric on L, which is complete. Additionally, note that we
can always take a ¢ € IL? such that ¢ is predictable without loss of generality. Further we
define another class of processes:

Definition 1.18. Let LY be the space of processes ¢ € L2 that satisfies the following proper-
ties:

(i) There exists a sequence of real numbers 0 =tg <t; < .. <t, <..<®©

(i) There exists a sequence of random variables {f;};=, such that f; is Fi,-measurable, with

sup; || fillo < 0 and

o(t,w) = (1.3.1)
filw), te(titiy], i=0,1,..

It is known that L° is dense in IL? with the metric || - ||o. See Watanabe [28], lemma 1.1
from chapter II, for the proof. Next, we define the space of all square integrable martingales.
Definition 1.19. Let M? be the space of all square integrable martingales { X, }1=o on (2, F,P)
with respect to filtration (F;)i=0 and Xo = 0 almost surely. Let M? = {X € M? : ¢ —
X is continuous a.s.}.

Definition 1.20. For X € M?, we set
1X]3 = E[X7]7, T >0

and

o]

1 a
X1 =] o (X A 1),
n=1

It is known that M2 is a complete metric space with || X —Y||°, for X, Y € M2, Moreover,

M2 is a closed subspace of M?. Finally, we can define the stochastic integral. Let W (t) be

C
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an J,-Brownian motion on our probability space, and ¢ € .°. By, (1.3.1)), we then set

I(¢)(t,w) = 2 Ji@)(W (tivr,w) = W(ti,w)) + fo(w)(W(t,w) = W(tn, w))

for t, <t <t,y1,n=0,1,.... Note we can then express I(¢) as the infinite sum
0¢]
L(o)(t) = DL FilW(t Atisr) = W(s A )
i=0

For s < t, we have
E[fi(W(t Atiy1) = W(s At)|Fs] = fi W(t Atiyr) = W(s A ty))
Thus 1(¢)(t) € M2. Additionally,

ELI(O)07] = St 7 i)~ ¢ 1 0)] = E| [ (5,005

Hence

@)z = ll¢ll2r (1.3.2)
11D = [l (1.3.3)

Now, for ¢ € 2, we know through IL° being dense in I.? with respect to || - ||o that there
is a ¢, € LY such that ||¢ — ¢,,||a — 0. We also know I(¢,,) is a Cauchy sequence in M? since
by (3.3) we have ||I(¢)n, — I1(¢)m||® = ||¢n — dm||2 and hence through the completeness of
M?2, it converges to a unique limit which we denote I(¢) € MZ.

Definition 1.21. I(¢) € M? as defined above is called the stochastic integral of ¢ € IL? with
respect to the Brownian motion Wy, with representation 1(¢)(t) = SS O dWs.

Thus the stochastic integral is defined as a stochastic process itself, and one should now
note for a fixed ¢ we also call the random variable I(¢)(t) a stochastic integral. Further, for
an m-dimensional Fj-Brownian motion W;, and ¢, ..., ¢7* € L2, we can define the stochastic
integrals Sé ¢LdW™ for i = 1,2,..,r. We refrain from listing the properties of the stochastic

integral until we have defined it for martingales.
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We now expand the stochastic integral to that of local martingales. The framework for
this formulation is quite similar to the construction of the previous stochastic integral, so
we instruct the reader to persue the construction in its entirety from Watanabe [28], page
51. However, due to the definition of semimartingales (to be seen) requiring that of local
martingales, we will list the required definitions. Similar to Definition [1.17] we have
Definition 1.22. Let .2 be the space of all real-valued measurable processes {¢}i=0 on
which are adapted to the filtration {F;} such that for each T > 0
Sg ®?*(s,w)ds < 0 a.s.

Similarly, we write ¢; = ¢y if §§|¢1(t,w) — ¢o(t,w)|?dt = 0 a.s. . Again, we take
¢ € L2 . as a predictable process without loss of generality. Recall the definition of a local
martingale per Definition [1.7]

Definition 1.23. Let M2 be the space of locally square integrable { F;}i=o martingales { X; }1=o
with Xo = 0. Let M, = {X € M : t — X, is continuous a.s.}

As stated, the stochastic integral I(¢) € M2

i 1s defined in a similar manner to the

previous.

Now we look to another formulation of the stochastic integral, which is constructed
using M € M? martingales rather than solely Brownian motion.
3.2 Stochastic Integrals with Martingales

In this section, we wish to define the stochastic integral S(t) é(s)dM(s) where M € M2,
This is concurrent with our original formulation when M is an {F;};>o-Brownian motion.

Let (92, F,P, {F;}1=0) be a fixed probability space satisfying the usual conditions. Let
M e M? with (M) as its corresponding quadratic variation. We proceed to begin to define
the stochastic integral with respect to martingales in the same manner as Section [3.1] first

introducing the following similar spaces
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Definition 1.24. IL?(M) is the space of real-valued {Fi}i=o-predictable processes such that

for every T > 0,

T
ol | [ sacan(s)| <= (134
Similarly as the previous section we set
> 1
ol = > (181120 A 1) (1.3.5)
n=1

Similar to the previous section, it can be shown that L° is dense in I.?(M) in the metric

| - [|37. The stochastic integral with respect to a martingale is thus defined in the same

manner as Section for a ¢ € LY defined by a similar function as (1.3.1]), and setting
n—1
M(@)(t,w) = Y filw)(M (b1, w) = M(ti,w)) + falw) (M(t,w) = M(t,w))
i=0

for t, <t < tni1, n =0,1,.... By the same isometry for ||[IM(¢)||® = ||6]|}} we can take a
similar conclusion to Definition [[.21l

Definition 1.25. I™(¢) € M? is called the stochastic integral of ¢ € L2(M) with respect to
M e M2. We denote IM(¢) = Sé o(s)dM(s)

Note that if M € M2, then I™(¢) € M2 Additionally, the case when M is an F;-
Brownian motion is the stochastic integral as defined by Definition [1.21, Next there are
some properties of the stochastic integrals.

Lemma 1.26. The stochastic integral I™(¢), ¢ € L?(M), M € M? has the following proper-
ties:

(a) T (¢)(0) =0 a.s.

(b) For eacht > s =0,

E[IY(6)(t) — I"(¢)(s)|Fs] = 0

(c) If ¢,9p € L3A(M) and ci,co € R, then

M1+ cop)(t) = er IM (9)(t) + eol™ ()(t)  for eacht =0 a.s.
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(d) If ¢, 4 € L*(M)

E[(IM (6)(t)— " (8)(s) (I () (1)~ I () (3))| Fu] = E [ f (6 - 6)(r)d(M(r) fs]

S

(e) X = IM(¢) is characterized as the unique X € M? such that

(X, N)(t) = f o(r)d(M, N (r)
for each N € M? and all t > 0.

Proof. See Watanabe [28], pages 55-57. O]

3.3 Itd’s Formula

This section gives all of the relevant forms of I1t6’s formula for the conditional Mckean-
Vlasov diffusion we study in Chapter[d] Let (€2, F,P, {F;}:>0) be a fixed probability space sat-
isfying the usual conditions, with a given m-dimensional Brownian motion Wy = (Wy, ..., W,,,)T, t >
0 defined on the space.
Definition 1.27. An n-dimensional R"-valued continuous and adapted process
z(t) = (21(t), ..., 2, ()T on t = 0 with form

t ¢
z(t) = x(0) + Jo f(s)ds + L o(s)dW (s),

where f = (f1,..., fa)T € LR, R™) and 0 = (045)nxm € L*(Ry, R™*™)

1s called an n-dimensional Ito process.

Let C*1(R" x R, ;R) denote family of all real-valued functions V (x,t) such that it is
twice continuously differentiable in x and once in t.
Theorem 1.28. Let z(t) be an n-dimensional Ité process on t = 0 that satisfies Defini-

tion [1.27, Let V e C*1(R™ x R, : R). Then, V(x(t),t) is a real valued Ité process with its
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stochastic differential given by

1

dV (x(t),t) = | Vi(a(t), 1) + Va(x(t), 1) f(t) + §T7’(0T(t)%x($(t),t)0(t)) dt

+ Vi(z(t),t)o(t)dW(t) a.s.

Proof. See Oksendal [42], Thm 4.2.1. O

Now, we seek to formulate a version of the Ito formula in a similar respect when we
have added a Markov chain to our problem. Let (ay)s=0 be a right-continuous Markov chain
with finite state space M = {1,2,...,my} and generator matrix Q = (Giyj, )is.joem Satisfying
Giojo=0 for do # jo and X5 g Gigjo = 0. We shall assume the a(-) is adapted to the Brownian
motion W. Consider the process n-dimensional process X; defined for each n =1,..., N

N
dX] = b (t, Xy, )t + > T (£, Xy, 002 ) AW (1.3.6)

m=1

Xy =i, a.s., (1.3.7)

for some zf} € R. The following is a formulation of Donnelly [3] for the It6 formula of such

a Process

Theorem 1.29. If V e C*3([0,T] x R™) for each i = 1,..., D, then

t
Ve, o) = VO, Xos00) + [ LV (s, X0 )ds

ZJ Ty 50 Xy Qo) Z T (8, X, s )dW,"

m=1

+ZJ (s, Xa,5) = V(s, Xo,0))dM; (1)

J#i
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where

N PN | |
LV (t,x,1) 25(25,35,2) + Z —(t,,9)b,(t, x,17)

1 & o2 N
+3 Z Z (t,x,1) Zanl(t,x, 0)om(t, x, 1)

=1

for all (t,x,1) € [0,T] x R" x M.
Proof. See Protter [48], Thm 18, page 278. O

Now, we consider 1t0’s formula for a very general class of processes we call semimartin-
gales. Semimartingales are the largest class of processes for which the It6 integral can be
defined, and as such, they have a special place in the theory. Particularly in the conditional
Mckean-Vlasov diffusions we study further on, we use a form of 1t6’s formula given for a
function on a space of pushforward probability measures for a specific class of semimartin-
gales.

Definition 1.30. A process x; such that v, = xo + Ay + M, where xy € Fo, {Ai}i=0 is a
continuous finite-variational process with Ag = 0 that is adapted to F;, and {M;} € M? 18

c,loc?

called a a continuous semimartingale.

Theorem 1.31. If f(z) € C*(R), then

! ! ! ! 1 ! "
Fla) = floo) = | Fladaacs | flaast+ 3 | fa)don,
Proof. See Rong [49], Thm. 92. O

Proposition 1.32 (General It6’s Formula). If X = (X!, X2 ... X% is a d-dimensional

semimartingale and f is a twice continuously differentiable real valued function on R¢ then
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f(X) is a semimartingale, and

F(X) =f(Xo) +ij, )X+ S fo” d[ X7, X7,

1]1

+3 (Af( i L)AX! - Z fii(Xso)AX] AXJ)

s<t ij=1
where Xy 1is the left limit in t, AX, = Xy — Xy_ are the jumps, d[X]; is the quadratic
variation of Xy and d[ X, Y], is the quadratic covariation of X; and Yy, f; is the first derivative
of the ith element, and f; ; is the second derivative of the jth element with first derivative of
the ith element. People often write d[X|; = (dX;)* and d[X,Y]; = (dX;)(dY:). This differs
from the formula for continuous semimartingales by the use of the left limits X,_, to ensure
predictability, and the additional term summing over the jumps of X, which ensures that the
gump of the right hand side at time t is Af(Xy).
4 Stochastic Differential Equations

This section gives a brief introduction into stochastic differential equations (SDEs) and
the results which give us the existence and uniqueness of their solutions. Of particular note,
we introduce the classical SDE, the case with an added jump process, and the case with
Markovian switching. This section follows the material provided from Mao and Yuan [38],
Ikeda and Watanabe [28], Yong and Zhou [62], Li and Zheng [33], Rong [49], Ma, Protter,
and Yong [34], and Platen [47].
4.1 Stochastic Differential Equations

Let (2, F,P) be a complete probability space with filtration {F;}i=o, with W, = (W4, ..., W,,)T,
t = 0 an m-dimensional Brownian motion defined on the space. Let both functions
f:[to, T]xR? — R and o : [tg, ] x R? — R¥*? be Borel measurable. Consider the following

classical stochastic differential equation
dXy = f(t, Xe)dt + o(t, Xp)dWy, to<t<T (1.4.1)

with X, = X, = ¢&.
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Definition 1.33. Let (Q, F, {F}iy<t<r, P) be given, with Wy a given m-dimensional {F;}=o-
Brownian motion space with filtration {F;}i=o, and & Fo-measurable. An R¥-valued stochastic
process { Xi}iy<i<r 15 called a solution of if it has the following properties

a. {Xi} is continuous and adapted to F; with Xo =&  P-a.s.,

b. {f(t, Xs)} € LYto, T;RY) and {g(t, X;)} € L2(to, T; R*9),

c. Xi=Xo+ Sfo f(s, Xs)ds + SEO o (s, Xs)dWy holds with probability 1 for all t € [to, T].
A solution is considered unique if P(X; = X; for all ty <t <T) = 1 where X, is any other
solution {X,}. Under the above conditions, we denote this as a strong solution.

We now turn to the conditions which guarantee the existence and uniqueness for such

a solution.
Theorem 1.34. Let there be two constants Cy,Cy > 0 such that

(a) for all z,y € R? and t € [to, T]
[f(t,2) = f(ty)P* Alo(t,z) — a(t,y)]* < Clz -yl
(b) for all (t,z) € [to, T] x R?
[f(t, @) Aot )] < Ca(l + |])?

Then there exists a unique solution X; to equation (1.4.1) and the solution belongs to
LQ([to,T],Rd)
Condition (a) is commonly referred to as the Lipschitz condition while (b) is referred

to as the linear growth condition.
Proof. For a detailed proof of this result, see Mao and Yuan [38] page 82. ]

4.2 Stochastic Differential Equations with Regime Switching

Now, we turn to a set of similar results for SDEs which include Markovian switch-
ing. Let (Q,F,{F}i<t<r,P) be given, with W; a given m-dimensional and F;-adapted
Brownian motion. Let (as)s=0 be a right-continuous Markov chain with finite state space

M = {1,2,...,mp} and generator matrix Q = (Gipjo)io.joem Satisfying g, j,~o for iop # Jjo
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and 35 v Qigjo = 0. We shall assume the a(-) is independent to the Brownian motion W.

Consider the following SDE with Markovian switching
dXt = f(t, Xta Oét)dt + O'(t, Xta Oét)th, t() g t < T (142)

with X;, = Xo = ¢ and oy, = 79, where iy is an M-valued F;,-measurable random variable,
and f: Ry xR¥x M — R?and 0 : R, x R x M — R¥>™,
Theorem 1.35. Let there be two constants Cy,Cy > 0 such that

(a) for all x,y € R? and t € [to, T] and i e M
[f(t@, i) = [y, d)|* Alo(tz,4) — oty i) < Cile —yl*
(b) for all (t,2,4) € [ty, T] x R? x M
|f(t,2,9)]* A |o(t,z,i)]* < Co(1 + |2])?
Then there exists a unique solution X; to equation and the solution belongs to
L2([to, T]; RY).
Proof. See Mao and Yuan [38], Thm. 3.13. ]

5 Backward Stochastic Differential Equations
This section is devoted to introducing a class of stochastic differential equations with
terminal conditions conditions called backward and forward-backward stochastic differen-
tial equations. We first consider such equations without switching process. For the cases
with regime switching, the martingales associated with the Markov chain will be needed to

formulate the backward equations.
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5.1 Backward Stochastic Differential Equations
Let g : [0, 7] x R? x R?P x Q — R and £ € L% (R?). A double of functions (Y;, Z;) €
S§2%(0,T;RY) x £2(0,T;R7P) is called a solution of the BSDE

dY, = g(t,Y,, Z,)dt + Z,dW,,  0<t<T,
(15.1)
YT = §7

if they satisfy the following equation
T T
Yi=¢- J 9(s,Ys, Zs)ds — f ZdW, 0<t<T.
t t

Theorem 1.36. Let for any (y,2),(y,z) € R? x R™*P g(t,y,z) is {Fi}i=0-adapted with

g(-,0,0) € £L2(0,T;RY). Moreover, there exists an L > 0 such that

90,0, 2) — 9(t,5,2)|<LAly — 7] + |2 — 21}, ¥t € [0,T], P-a.s
Then for any given & € L% (RY), the BSDE (L5.1) admits a unique adapted solution
(Yi, Z,) € S2(0,T;R) x £2(0, T; RI*P).
Proof. See Yong and Zhou [62], Chapter 7, Thm. 3.2. ]

5.2 BSDEs with Regime Switching
Let g : [0,T] x RT x RT"? x M x Q — R? and § € L% (R9). A triple of functions
(Ye, Z, Ay) € S2(0,T;R?) x L2(0,T; RT*P) x M?(0,T;R?) is called a solution of the BSDE

dY; = g(t, Yy, Zy, i) dt + ZydW, + Ay @ dMy,  0<t<T,
(1.5.2)
YT = 57

if they satisfy the following equation
T T T
Y, =§—J g(s,Ys,Zs,aS)ds—f stWs_f Ag o dM,, 0<t<T.
t t t

Theorem 1.37. Given a pair (£, g) satisfying
(a) B¢ <o,
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(b) g:Qx[0,T] x R? x RI”*P x M — R? such that
(i) g(t,y, z,1) is Fy-progressively measurable for all y, z,
(ii) g(t,0,0,4) € L%(R?)

(ii1) g satisfies uniform Lipschitz condition in (y, z), i.e 3C > 0 such that

|g(tayl7zlai) - g(t7y27227i)‘2 < C(’yl - 92‘ + |Z1 - 22‘)7

Vyr,y2 € RY, 21, 20 € RP PR Leb a.e..

Then there exists a unique solution (Y;, Z, At) € §2(0, T;R?) x L0, T; R7*P) x M?(0,T;RY)

to the regime switching BSDE (|1.5.2)).
Proof. See Li and Zheng [33], Thm. 5.15. O

6 Forward-Backward Stochastic Differential Equations

This section continue to introducing another class of stochastic differential equations
with combined initial-terminal conditions called forward-backward stochastic differential
equations. Again, we first consider such equations without regime switching. As seen in the
previous section, for the cases with regime switching, the martingales associated with the
Markov chain will be needed to formulate the backward equations in the forward-backward
systems. Different from the backward stochastic differential equations, the coupled forward-
backward stochastic differential equations normally require complicated conditions for their
well-posedness.

FBSDEs have been studied extensively since 1990s because of their numerous applica-
tions in many areas such as control and game theory [45] [62], mathematical economics [23],
and mathematical finance [18, 29]. However, while in many situations the solvability of the
original (applied) problems is essentially equivalent to the solvability of certain type of FBS-
DEs, these FBSDESs are often beyond the scope of any existing frameworks, especially when
they are outside the Markovian paradigm, where the PDE tool becomes powerless. In fact,

the balance between the regularity of the coefficients and the time duration, as well as the
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nondegeneracy (of the forward diffusion), has been a longstanding problem in the FBSDE
literature, especially in a general non-Markovian framework.
6.1 Forward-Backward Stochastic Differential Equations

There are three main approaches for the wellposedess of the FBSDEs, each of which
has its own advantages and disadvantages. In [I1] and then [43], the method of contraction
mapping was studied, which works well for small time durations. In [34], the four-step-scheme
was first introduced to establish the existence and uniqueness of solutions of FBSDEs under
non-degenerate condition of the forward equation and some regularity requirements of the
coefficients (see also [20] 64]). In [25], the existence and uniqueness of solutions of FBSDEs
are proved under monotonicity condition without non-degeneracy condition of the forward
equation and use the continuation method. The monotonicity condition is then remarkably
weakened and developed in subsequent works [24] [44] [60]. For the progress and related works
on FBSDEs, we refer the reader to [35, [37] and the references therein. It is worth noting
that these three methods do not cover each other.

Let the coefficient functions

F:[0,T] x 2 x RP x R? x RT”*? — RP,
g:[0,T] x Q x R? x R? x R”*P — R?,
o:[0,T] x 2 x R? x R? x RT*P — R*P,

h:Q xRP - R?

be measurable functions with respect to the Borel o-fields. We consider a measurable process

(X4, Ys, Zy) € 820, T; RY) x §2(0,T;RY) x L£2(0, T; R?*P) which is a solution of the problem

t t
Xt = é + J f(S,XS,Y;, Zs)ds + J 0(87X57Y9) Zs)dW57
0o o (1.6.1)
Y, = h(Xr) — f g(s, X5, Yy, Zs)ds — f ZdWs, te|0,T].
t t
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First, the Method of Contraction Mapping. This method, first used by Antonelli [11]
and later detailed by Pardoux and Tang [43], works well when the duration T is relatively
small.

Second, the Method of Continuation. This was a method that can treat non-Markovian
FBSDEs with arbitrary duration, initiated by Hu and Peng [25] and Peng and Wu [44],
and later developed by Yong [60]. The main assumption for this method is the so-called
“monotonicity conditions” on the coefficients, which is restrictive in a different way. This
method has been used widely in applications (see, e.g., Wu [54], Wu and Yu [55], Yu [63])

because of its pure probabilistic nature.

Third, the Four Step Scheme. This was the first solution method that removed restric-
tion on the time duration for Markovian FBSDEs, initiated by Ma, Protter and Yong [34];
the trade-off is the requirement on the regularity of the coefficients so that a “decoupling”

quasi-linear PDE has a classical solution.

Theorem 1.38. Let
(a) The functions f,g,0,0 and h are smooth functions taking values in RP R RP*P RI*P
and R, respectively, and with first order derivatives in x,y,z being bounded by some

constant L > 0.

(b) The function o satisfies
olt,z,y)o(t,z,y) =v(y)l, Y(t,z,y) € [0,T] x R? x RY,

for some positive continuous function v(-).
(c) For each fized (t,x,y,z) € [0, T] x RP x RY x R¥*? the linear map 6,(t,x,y, z) € L(RI*P)

(the space of all linear transforms on RY*P) is invertible with the inverse &,(t,z,y,z) ™"
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satisfying
Ha-z(taxvya'z)il”C(Rq”’)g/\qu?
(t,z,y,2) € [0,T] x RP x R? x R?*P

for some continuous function \(-). Moreover, for any (t,x,y) € [0,T] x R x R,
{o(t,z,y, z)|x e RI*P} = RT*P;
and there exists a positive continuous function k(-), such that
sup{\z]}&(t,:v,y, z) = O}<k(ly]),Y(t,z,y) € [0, T] x R x RY.
(d) There exists a function p and constants C' > 0 and « € (0,1), such that h is bounded in
C**(RY) and for all (t,x,y,2) € [0,T] x R? x RY x R"*™,

o(t,z,y)|<C,

|f(t, 2,9, 0)[<pu(lyl),

l9(t, 2,0, 2)|<C.
Then the forward-backward SDE (1.6.1) admits a unique adapted solution (X,Y,Z).
Proof. See Ma, Protter and Yong [34], Thm. 4.1. N

6.2 FBSDEs with Regime Switching

In contrast to the vast literature on FBSDESs, such equations with Markovian switching
have not received as needed attention. Although BSDEs with Markovian switching were
studied in [22 [33] and were used to formulate stochastic recursive control problems [65], to
the best of our knowledge, there is no available well-posedness result even for the FBSDESs

with Markovian switching.
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To proceed, let the coefficient functions

f10,T] x 2 x RP x R? x RT*P x M — RP,

([0, 7] x Q@ x RP x RT x RT*P x M — RY,

s

0:[0,T] x 2 x R? x R? x RT”*P x M — R?*?,

h:OQxRPx M — R?

be measurable functions with respect to the Borel o-fields. We consider a measurable
process (X3, Yi, Z;, Ay) € S2(0, T; RP) x §2(0, T;RY) x L2(0,T; R7*P) x M?(0,T;R?) which is

a solution of the problem

t t
X, =€+ f F(5 X, Yoy Zor c)ds + f o (5, Xo, Yo, Zs, 000)dVVs.
0 0

Y = h(Xr,ar) — ng(s,XS, Ys, Zs, ag)ds — JT ZydW, — JT AgedM,, te0,T].
t t t (1.6.2)
7 McKean-Vlasov Stochastic Differential Equations

The topic of weakly interacting systems has a long history beginning with the study of
systems of interacting particles by the Austrian physicist Ludwig Boltzamann.

The more mathematically rigorous construction was introduced by Kac and expanded
upon by Mckean.

We introduce the following construction for a linear Mckean-Vlasov process. Let {F;}i=0
be a filtered probability space with R? valued independent Brownian motion {W,};~¢ Let
the function f(-,-) : R? x R? — R? be Lipschitz continuous and bounded. Allow Xj to be an

Fo-measurable, R? valued random variable with distribution ug. We introduce the equation

(1.7.1)

Xt:0 = X07
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where u;(dy) is the law of X;. This is the original specialized linear case as originally studies
by Mckean and Sznitman. The following result can be found in Sznitman [53], Thm 1.1.
Theorem 1.39. The SDE has a unique strong solution.

The proof ends up being a fixed point argument. With this result established, we

introduce the interacting diffusion system,

dXPN = dwi+ 230 (XN, XPN)dt, i=1,2,. N
X(?N =zl

The desired result is that each X*" tends to a limit X*" as N goes to infinity. It turns out
this X%V is none other than the nonlinear process as described by (1.7.1)). Let X i>1 be

given as the solution of (using the previous theorem)

X) =l + W+ f Jf y)us(dy)ds (1.7.2)

where us(dy) is the law of X?. Then we have the following result,
Theorem 1.40.

sup\ﬁE[sup XN — XZ|]

t<T

The particular case detailed above is a special linear version used to introduce the
concepts. The limit result of Theorem is commonly found in the literature as propagation
of chaos. A more generalized version of where the coefficients depend on the law
exists, commonly found in the literature as the nonlinear Mckean-Vlasov process. This is
the general case that we study in our research hereafter, with the added complexities of
Markov switching. To introduce the generalized version we first define the Wasserstein
metric. Let P(R?) denote the set of all probability measures on (R%, B(RY)). {P;};>o are
commonly denoted as flows of probability measures in the literature. For each p>1, let
P,(RY), be the subset of P(RY) containing all measures with bounded p-moments, that is
Pp(RY) = {ppe P(RY) : §pu |Pre(de) < oo}, We endow P(R?) with the p-Wasserstein metric
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Wy(+,-) defined as follows:

1/p
pr,n):mf{(fm o= alatdody) ) :ﬂeﬂ(um)}, pePy(RY,  (173)

where I1(y,n) = {m € P(R??) : (A x RY) = pu(A), 7(R¢ x B) = n(B), VA, B € B(RY)}.

Counsider the Mckean-Vlasov diffusion
dXt = f(Xt, Pt)dt + U(Xt, ]P)t)th (174)

where W, is a Brownian motion and P, is the law of X;. Naturally, one might see this equation
and think of the notion of differentiation along flows of probability measures. While there is
much relevant research which provides answers to this question, Pham [45] derived a form
of Ito’s formula for flows of measures on a class of semimartingales. Furthermore, regarding
the existence and uniqueness of ,

Theorem 1.41. Let Py € Py(RY). Assume that for b and o there exists C' > 0 such that all

x,y € R and for all u,v € Po(RY) it holds that

|f(z, 1) — f(y,v)| + |o(z, 1) — oy, v)| < Clz — y| + Wa(p,v)),

where Wy denotes the Wasserstein metric with p = 2. Then for any T > 0 the SDE (|1.7.4)
has a unique strong solution on [0,T].

The proof for this result can be found in Carmona [15].
With these results established, we are ready to move on to a similar set of equations, this

time dependent upon the conditional law with added Markovian switching.



CHAPTER 2
Local Solutions to FBSDEs with Regime Switching

Let

f:]0,T] x R? x R? x RT”? x M — RP,
g:[0,T] x R? x RY x R”*? x M — R?,
o:[0,T] x R x RY x M — R¥*P,

h:RP x M — R?

be measurable functions with respect to the Borel o-fields. We consider a measurable process
(X, Ys, Zi, Ay) € §%(0,T;RP) x 82(0,T;R?) x L0, T;RI*P) x M?(0,T;RY) solution of the
problem

-

t t
Xy =¢ +J f(s,Xs,Ys, Zs, a5)ds +f o(s, Xs, Ys, a)dWs,
0 0

T T T
1Y, = h( Xy, ar) +J 9(s, X, Yy, Zs, s )ds —f Z,dW, —f A, o dM,, (2.0.1)
t t t

t €0, T].

\

1 Existence and Uniqueness of Local Solutions
Assumption (A) We say that the functions f, g, h, and o satisfy Assumption (A) if

there exist constants K and L such that

35
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(A1) For all t € [0,T], i € M, and (x,y, 2), (¢/,y/,2) € RP x R? x R?*P,

‘f(taxvyaz7i0) - f(t,x,y’,z/,io)KK(]y - y/‘ + HZ o Z/H)7
‘g(t:%ya%@h) - g<t7x/7y72/7i0>’<[((‘x - ‘T/| + HZ - ZIH)?
‘h(:c,z'o) — h(:c’,z'o)KK\x — 2|,

‘2

HO'(t’ 557y7i0) - 0(t7 x/7y/7i0)‘ <K2(|$ - x/’2 + |y - y/‘2)'

(A2) For all t € [0,T], (z,y, z,10) € RP x R? x R*P x M, and (2/,y') € R? x R,

<.Z' - xla f(taxaya ZaiO) - f(tax/7y7z7i0)><K|x - .T/’Q,

<y - ylag(t7xay727i0> - g<t7x7y/7z7i0)><K‘y - y/’2'

(A3) For all t € [0,T] and (x,y, z,i9) € R? x R? x R?*P x M,

(8,2, y, 2,00)|<L (1 + || + |y| + |2]),
lg(t, x,y, 2, 00) |<L(1 + || + |yl + |2]),
|h(z,i0)|<L(1 + |z|),

lo(t, 2, y,d0) |[<L(1 + |z| + |y])-

(A4) For all t € [0,T],z € RP,y € R, z € R?*P and ig € M, the functions
u— f(t,u,y,z,1) and v — g(t,x,v, z,1g) are continuous.
Theorem 2.1. Assume that Assumption (A) holds. Then there exists a constant C} =
C1(K) > 0, only depending on K, such that for every T<C1, the equation admits a

unique solution.
Proof. Consider the mapping
I:  S8%0,T;RP) x S*(0,T;RY) x £L2(0, T;RP?) x M?(0,T;R?)
— S§%(0,T;RP) x §%(0,T;RY) x L0, T;R??) x M?(0,T;R?),

(Xt7 }/:‘,7 Zt7 At) = (Xb }7;57 Zt7 ]\t)7
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where ()_(t, Y,, Z,, /_Xt) is defined as follows
X, =¢ —|—f f(s, X5, Ys, Zs, cts)ds —i—f o(s, Xs, Ys, a5)dWs, te[0,T], (2.1.1)
0 0

and

T

T T
Y, = (X7, ar) + J 9(s, Xs,Ys, Zs, a)ds — J Z dW, — f A, edM,, tel[0,T]. (2.1.2)
t t t

Note that X, is defined as the solution of which is a forward SDE, whereas (Y}, Z, A)
are defined as the solution of the BSDE . The solutions to BSDEs with regime switch-
ing are investigated in [33] with respect to the the o-field generated by the Brownian and
Markov chain only. However, in our case with o{{} is included in Fy, the martingale repre-
sentation theorem (see [21, Theorem B.4.6]) is still valid. That is, every square integrable
{F;}-martingale can be represented as a stochastic integral with respect to W; and M;. As a
consequence, the existence and uniqueness of solutions to BSDEs given in [33, Theorem 5.15]
can be extended to our case. Therefore, has a unique solution and I' is well-defined.

Next, we will show that there exists a constant C; = C1(K) > 0, only depending on K,
such that for every T'<C1, I' is a contraction. Without any loss of generality we can assume
that T<1. Let (S;, Uy, Vi, Ty) € S2(0, T; RP) x S?(0, T; RY) x £2(0, T; RT*P) x M2(0, T; RY) and
denote (S;, U;, V;, Ty) = T'(S;, Uy, Vi, Y1), In view of Assumption (A) and the Itd’s formula

for |X - S !2, there exists a constant yg, only depending on K, such that



X = 5[ =2 ft@?s = 8, f(5, X5, Y, Zg, ) = f(5, 85, Us, Vi, 000) yds
0
b2 [ 8006, eV — (s, 5 Ui )W)
0
N JO (s, Ko, Vor ) — 05, S, Uy )| ds
=2 [ 80 10 Ko Yo Z) — 105, Ko Vi
0
b2 [ 8o 0 U, Ve — (5,50, Vi
0
+ 2 Lt<XS — S, (0(s, Xy, Yy, a5) — 0(s, S5, U, as))dW,)
. f o5, Ko, Vor ) — (5, S, Uy )| ds
0
< 2Kf X = (Y. = U + |2~ vi] ) as
0
t
+ 2Kf0 X, — S["ds
b2 [ (0l XY — 05,8, Ui V)
0
+.K2JtQX;—nif—+hg—lgf>ds
0
Hence, there exists a constant vy, only depending on K, such that

E sup ‘Xt — St‘Q

o<t<T

T
<7K[EJ X = Sl (1% = S+ v~ U]+ |2~ Vi) s
0
Tro S 2
+EJQ&—&\HK—&”@]
0

+ Q]E{ sup
[0,7]

Jt <X8 — S, <0(S,XS,Y;,045) —o(s, S, Us,as)>dWS>
0

|
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In what follows, we can modify vx if necessary, so this constant may vary from place to

place. By Burkholder-Davis-Gundy’s inequality and Young’s inequality,

E sup })_{t — 5’,5\2

o<t<T
T
QW@LLa_&m&_&Hpgqu%_um@
T S = 12 2
+EJO&—&}HK—@”%
0
T
+E f Xs_557 ,Xm}/& s) 7gs,U57 s dWs
[ ( (o5, % Yorr) = 0(5. 5. V) )W)
T — — — —
@%@Ly&_&mufﬁqﬂn_mpwg_mmﬁ
T S = 12 2
+EJ (\XS—SS} + |V, = U] )ds
0
T 2 q1/2
+Elf ds] }
0
T — — — —
<wﬁz|&_&m&_&up@wqﬂm_mm@
0
T s = 12 2
+]Ef (15, = S + 1 = U[) s
0

T = 1201 = 12 2 12
+EU %= S (1%, = S+ v, - U] )ds] }
0

1]

B 2
Xs—Ss

0-(37 X57 }/sa 045) - 0(37 Ssa Usa as)

By Cauchy-Schwarz’s inequality we arrive at

E sup |X't — 5’t|2<vK\/T<E sup ‘XS — 58}2 + E sup ‘YS — US‘Q +E
0<t<T

T 2
f|@_mmg.
0<s<T 0<s<T 0

As a consequence,

T
(1 — VK\/T)]E sup !Xt — St|2<7K\/T<IE sup ‘YS — Us\z + EJ HZS — VSHst). (2.1.3)
0<t<T 0<s<T 0

Next, by 1to’s formula for non-continuous semimartingales,
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T T
v, -0+ f 12, — V,|Pds + j Re— T e d[M
t t
T
= ‘h(XTvaT) - h(gTa aT)‘Z + QJ\ <1_/:9 - Us;.g(&)?saf/:sa Zsa as) - 9(37557 Usa VsaOés)>dS

—2f <Y 0, (Z VdW>—2J <Y S,A—T> o dM,. (2.1.4)

Note that

T T
B[ (V- U (2~ V)W) = | (Fo- OB~ 1) edb, =0
t t
Y g, jo € M, by using Assumption (A) and Cauchy-Schwarz inequality we obtain

T T ~
EJ 12, -V dsﬂaf &, — T ed[M
t t

— E|h(Xr, ar) — h(Sr, ar)[* + 2 JT <Y — U g(5, X, Yy Zay o) — g (5,5, Ve, Za, ozs)>ds
+ ZEJ <Y 0., (5,50, Vo, Zoy 00) — g(s >ds

<k lE]XT 5P+ EJ V. (1%, = S|+ ¥~ 0] + | . - Vs>ds]

<one((1+ T8 s %~ [+ T8 s, ¥~ OfF) + 38 [ |7, Vlfas.

Hence,
L. = (12 L. + |2
]Ef 1Zs — V4| ds+JEf Ay — T, e d[M
t t

<7K<(1 +T)E sup |X; — Si|°+ TE sup |V; - Ut\2>. (2.1.5)

0<t<T 0<t<T
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By simple estimate, we can prove the following inequalities

L 1 5 =2 Toe o2
EU ¥, — 0,72, — V)| ds} <]E{— o [V, = 0.+ v 2.~ 7| ds],
4k o<s<T 0

T 1/2
[ == v )

0

T
[L sup ‘37; — (_]8}2 + 47KJ }/_Xs — TS‘Q ° d[M] ]
VK o<s<T 0 ®

»

-
<E

Using these inequalities and Burkholder-Davis-Gundy’s inequality and (2.1.5)) for (2.1.4)

we get

E sup ‘17} — [—]t‘z

0<t<T

T
<7K{]E\XT—S’T\2+EJ 7. O (1%, = 8] + 7. = O] + | 2. - V] ) as
0
T 1/2 T 1/2
IR R A T
0 0

T
E sup X~ S°+ TE sup [¥; - U]°) +%EJ 1Z, - Vi|[*ds
t

<7K<(1 +T)
o<t<T o<t<T
1 o =2 Tie o2
+E|— sup |V, —U,| +4'VKJ | Z, — Vi ds}
4k o<s<T 0
T
+E L sup |}7S — (_]5‘2 + 47KJ !/_\5 — Ts‘z ° d[M] ]
4V o<s<T 0 3
< ((1+ TIE sup | X, = S + TE sup |V, - 0°)
o<t<T o<t<T

This implies
(2.1.6)

(1 —~vxT)E sup ‘17} — Ut‘zény(l + T)E sup ‘)_(t — St} )

o<t<T o<t<T
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Combining (2.1.3)), (2.1.5) and (2.1.6) we obtain

E sup ’)_(t—gt’2< WK\/T (

0<t<T 1 —yxVT

L. = (|12 L. = 12
EJH@-MJ@+EJ1&—T4.ﬂML
t t

T
Esw\n—mf+EJH4—me)

0<s<T 0

<7K(1+T)<E sup ‘Xt—gt‘Q—HE sup ‘Yt—Ut‘Q)

0<t<T 0<t<T
— — 1+7T — -
E sup ’Y} — Ut’2<ME sup ’Xt — St’2.
o<t<T 1 —9kT  o<i<r

It is easily seen that there exists a constant C; = C1(K) > 0 only depending on K such that
for T<Cy, the mapping I is contractive from S%(0,T;RP) x S*(0,T;R?) x L2(0, T; RI*P) x
M0, T;RY) to itself. By the contraction mapping theorem, there exists a unique {F;}-
progressively measurable solution to . |

Proposition 2.2. Under Assumption (A) there exists a constant Cy = Co(K) € (0,C4]
only depending on K such that for every T'<Cs, for every quadruplet of functions (f,g, h, o)
satisfying Assumption (A) with the same constants K and L as (f, g, h,0), for every A € Fy,
and for all Fy-measurable random vectors & and € with finite second moment, we have the

following estimate

T
Eﬁﬂam;&—Xﬁ)+EOusw}K—ﬁﬁ)+Efﬂﬂ&—Zﬁ%
0

0<s<T 0<s<T

T
+EJH4&—A$-@ML
0

T
<7K{E(ILA}§ —&[*) + B(1aln - B (1)) + EJ oo — | (s, Xa, Ya, a)ds
0

T 2 T 2
+E [(J‘ ]]-A‘f - f‘(SaX&YS) Zsuas>d8) + <f ]]-A‘g - g‘(‘S)XSvY:;a ZS,OZS)dS> ] }
0 0

(2.1.7)

where Y 18 a constant only depending on K, the processes (Xs, Y, Zs, AS) and ()2'8, Y,, Z,, ]\S) ,
0<s<T, are respectively the solutions to the problems associated to the coefficients (f, g, h, o)

and (f,§,h,&) and to the initial conditions (0,€) and (0,€).
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Proof. According to Ito’s formula and Burkholder-Davis-Gundy inequality, we have

0<t<T

]E(]lA sup |Xt—Xt‘2>
= 2 g A 2
<]E<]1A‘§—§| ) +EJ ]1AH5(S,XS,Y;,045) —J(S,XS,Y;,QS)H ds
0
t
+2F sup (J ]1A<Xs ~ X, fls, X, Vo, Zaycrg) — f(s,Xs,Ys,Zs,as)>ds>
o<t<T 0
t
+2E sup (J 14( X, = X, (5(5, X, Vi ) —a(s,Xs,m,as))dWs>)
o<st<T 0
= 2 T 5O 2
<E(14¢ - ¢[*) +EJ Lalo(s, X, Vs, 05) = (s, X, Y, 05) [ ds
0
t
+ 2E sup (J ﬂA<XS — Xs,f(s,Xs,ﬁ7Zs,ozs) — f(s,Xs,Ys,Zs,ozs)>ds>
o<t<T 0

t 1/2
+ ’YE<J ]1A|)~(5 — X5‘2H&(s,)~(5, Y., as) — o(s, Xs, Y, 043)!2(13) )
0

By using simple estimates for the last two terms in the above inequalities and modifying ~

we arrive at

o<t<T

E(]].A sup ’Xt_Xt‘2>
T

< [E(Mé— ) +E [ 1alo(s Koo o5, XYoo s
0

t
+E sup (J ]1A<XS Xy, f(5, X, Yoy Zsy a0) — f(s,Xs,YS,Zs,as)>ds>
o<st<T 0

t 2
+E<J Lalf(s, X, Yy, Zs, ) —f(s,XS,Y;,ZS,aS)|ds> ]

0

Therefore, Assumption (A) implies that there exists a constant vyx only depending on
K such that
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E(]IA sup }Xt —Xt‘Z)
0<t<T
~ T ~ ~
<Yk [E(]IAK _ 5‘2) +]Ef ]1A<\Xs — XS}Q + ‘Ys _ 3/;‘2)615
0
T ~ ~ T
+ EJ Wa| X, — X|| Zs — Zs||ds + Ef 145 (5, Xs, Y, @) — (s, Xy, Y, )| ds
0 0

T 2
+E<J nA\f(s,XS,m,Zs,as)—f(s,XS,YS,ZS,aS)\ds) ] (2.1.8)
0

T
< [E(HA\g_ ) + ]Ef (| = X"+ [V = Vil 4+ |2, - 2] ) as
0
T 2
+EJ La|o(s, X, Y, ) — (s, X, Yy, o) “ds
0

T 2
+ E(J Lalf(s, Xs,Ys, Zs, ) — f(s, X,, Y, Zs, as)\dS) ]
0

Next, similar to (2.1.4]), by It6’s formula for non-continuous semimartingales, for 0<t<T

T T
Vi T [ 12 Zas e [ IR - AP ed]aa),
o t t - ) ) o
= }h(XTa OéT) - h(XT7 O{T)‘2 + QJ <YS - }/:Svg(saXS7Y97 ZS7 O[S) - 9(57 Xs; YS; Zsa Oés)>d8
T, B ' T 6 B
—2J <n—n,(zs—zs)dws>—2f (Vi = Yo Ry = A, ) 0 dM,.
t t
Hence, for any A € Fy and 0<t<T,
Cr |2 T ot 2 r e 2
E(ﬂA\Yg - Y| ) + Ef 14| Zs — Z| ds + Ef La|As — A" 0 d[M],
t t
= E<11AV@(XT, ar) — h(Xr, 04T)|2>

T
+ Q]EJ‘ ]]-A<?S - YS?.&(S7X$7 {/57 287 aS) - 9(87 XS7}/$7 ZS7 Oés)>d5.
t
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In addition, by using Burkholder-Davis-Gundy inequality we get

E(]IA sup ’Yz — }N/;g‘Z) SE(HAVL(XT,O(T) — h(XT,OéT)‘2>

o<t<T

T

+ 2E sup J 11A<}{9 — Y5, 9(s, Xs, Ys, Zs, as) — g(s, X, Y, Zs,as)>ds
o<t<T J¢

1/2

T ) - NN T R - )
+7E(J LY, - V.[|Z. - 2 ds) +7E<J L7, — VPR, - Al od[M]S>
0 0

which, together with the above equation, yields

T T
E(]lA sup m—f@f) 8 [ a2 s B [ nfA- A e d],
0 0

o<t<T
<Y [E<HA‘B(XT7 ar) — h(Xr, aT>’2>

T
+E sup J 11A<?; Y, (s, X, Ve, Zsy 1) —g(s,Xs,Ys,Zs,ozs)>ds
t

o<st<T
2
ds) ] . (2.1.9)

Combining (2.1.8) and (2.1.9)) and using Assumption (A) lead to

T
+ JE(J ]lA’,E/(S, X, Y5, Zs, 05) — g(8, X, Ys, Zs, )
0

T
E(IIA sup ‘Xt—f(t‘z) +E<]1A sup }Y}—f/tf) +EJ ]lAHZS—Zstds
0

0<t<T 0<t<T

T ~
; Ef 4R, — AP e d[M],
0
<YK [E(ﬂA\é - 5]2> + E(ILA]B(XT, ar) — h(Xr, aT)f) (2.1.10)

2

ds

T
+ EJ ]1AH5-<37 XS? }/sa 048) - U<S7 X57 }/87 045)
0
2
ds)
2
ds)

T T T
+EJ nAyXS—XSFdHEf ]1A]}73—Y5\2ds+EJ IIAHZS—ZsH2ds]
0 0 0

T
+ E(J ]]-A‘f(SaX87}g7 ZS,Oé5> - f(87X87Y97 Zsyas)
0

T
+ E(J ﬂA‘g(SgX&}/;y Zs;as) - 9(57X57Y57 Zsac(s)
0
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for some constant yx only depending on K. This implies that there exists a constant

Cy = C3(K) only depending on K such that for any T<Cy,

T
IE(]lA sup | X, —X’tf) +IE(]1A sup |Y; —thf) +EJ 14| Z, — 2| ds

o<st<T o<st<T 0
T
- EJ La|As — A" o d[M],
0
> 2 5o 2
<Yk [E(nAyg — ¢ ) n E(ﬂA\h(XT, or) — h(Xr, ar)| ) (2.1.11)

T 2
n EJ L3 (s, X, Yeran) — (s, X, Ve, 0) | s
0

T
-+ E(J ]lA‘f<Sst7}/;7 Z37as) - f(87XS7}/S7 Zs,Oés)
0

2
ds>

T 2
+E(f HA‘Q(S,XS,YS,ZS,%)—g(s,XS,YS,ZS,aS) ds) . (2.1.12)
0

This completes the proof. ]

Corollary 2.3. Assume that Assumption (A) holds then for any T<Cy and t € [0,T] and
for any Fi-measurable random wvector & with finite second moment, we define the process

(XIS yheon Zt&o ALLor) 4<s<T as the unique solution of the problem

X, —¢+ f F(r, X, Y, Zyy ) + j o (r, X, Y, ) AW,
t t

T T

Y; = h(XT, OéT) + f

S

o(r, X0, Yo, Z, 00 ) —f

s

T
Z.dW, — f A, edM,, seltT].

’ (2.1.13)
extended to the whole interval [0,T] if £ = x a.s. x € RP by pulting

t,x,or tx,or _ vbhT,ar tr,op 10,J0,t,T,008 i
Xs ' =, Y; ' _Y; ’ Zs ' _07 Asojo ' _Oa fOT O<8<t; Z07]06/\/1-

Then the following assertions hold.
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(i) There ezists a constant k., only depending on K and L such that for all (t,x) €
[0,T] x R,

T T
E sup [Xio" +E sup [YEou' +E f | Ztw|*ds + EJ |Abeer|® o d[M],

0<t<T 0<t<T 0 0

<vio(1+ |2]). (2.1.14)

(ii) There exist a constant vi only depending on K and a constant v, only depending on

K, L such that for all t,t" € [0,T] and x,2' € RP,

T
’ o 2 ’ o0 2 ’ o 2
E sup |[X[* — X"+ E sup [y — VI +E f |ZLwee — Zbme | Pds

0<t<T 0<t<T 0

T
FE [ A - e du)
0
<yklr — 2P + yrn (1 + [zt = ). (2.1.15)

Proof. Let 0<t<T'<C3;. We observe that the quadruplets of functions
(ll[th]f, L9, Lo, h) and (O, 0,0, 0) satisfy Assumption (A). Moreover,

(XLmer i glwow Ateor) 0<s<T is the unique solution of the FBSDE

( S S
X, —a+ f Lpa (1) £ (ry X Yy Zy, o) + f Ly (r)o (r, X, Yo, )AW,.
t t

T T

T
iy (r)g(r, Xo, Yo, Zp, oo )dr —J Z.dW, —f A, o dM,,

S

< Y; = h(XT,OéT) + f

S

s €]0,T].

\
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Therefore, as a direct consequence of Proposition we obtain

T T
E sup |X§’x’at|2 +E sup ’Y;’x’atf + EJ HZz’x’atH2ds - EJ ‘Ai’”’atf o d[M]

0<t<T 0<t<T 0 0 B

T 2 T 2
<7K[|x|2 + [h(0)]* + ]E(f ‘f(s,0,0, O,as)‘ds) + E(J ‘g(s,0,0,0, as)‘ds)
0 0

T 2
+ ]EJ Ha(s, 0,0, ) ds]

0

<7K,L(1 + |I’2)

Note that we have used Assumption (A) in the last inequality.
Next, let ¢,¢' € [0,T] and z, 2’ € RP. Again, as (]l[t;p]f, L9, Lo, h) and
(]l[t/,T] [ 1w mg, Ly o, h) both satisfy Assumption (A), a similar argument to that in the
above proves that
’ o 2 ’ oo 2 T ’ o 2
E sup \X;« 0 X;‘/,az,at‘ +E sup ‘Y;t xlor Y'St,x,at‘ + EJ HZ£ xlor Z;,:E,Olt H ds
o<st<T o<t<T 0
T ! 2
e [ A e ],
0

t'vit

<YK |£L‘/ - $|2 + EJ
t' At

t'vt 2
+E ( f |£(s, Xtwor ytoou gtaoan o) |ds>
t

N

2
U(S,X§7z7at,}/;t’x’at,O{S)H ds

t' vt 2
+E (J |g(s, X;ﬁ,x,at’ Yst’$’at, Z§’$’at, Ozs)\d8>
t

N’

<yklr — 2 + vrn (1 + [z = ¢,

We have used Assumption (A) (with the note that ZL** = 0 if s<t and that we can
assume t<t' as t and ¢’ play an equal role) and the estimates in part (i) in the last inequality.

This completes the proof. O

Proposition 2.4. Suppose that Assumption (A) is in force, then for any T<Cy, the mapping

0:[0.T] xR x MR, (La,0) = V™
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satisfies for any t,t' € [0, T], z, 2’ € RP, and 1 € M,

10(t, 2, ) <y (1 + |2]?), (2.1.16)

0, 2", 1) — 0(t, @, 0)[ <yl — 2 + yen (1 + |22) ¢ = 8], (2.1.17)

and for every 0<t<T, for every Fi-measurable random vector & with finite second moment,

there exists a P-null set Nf’é’at e Fo such that
VI8 (w) = 0(s, X090 (), as(w)), Vse[t,T], w¢ NS (2.1.18)

Proof. Note that for any 0<t<T and x € R?, Y;""** is o{a;}-measurable, so it is a function
of oy. That is, Y,""* = nb*(ay) for some function n** : M — R?. This implies that
O(t,z,1) = n"*(1) is well-defined and that 0(t, z, ay) = V"™, It is easily seen that
and respectively follows from and . It remains to prove .

To this end, let ¢ be a F;-measurable random vector such that E[£|? < oo. In view of

Proposition 2.2] for any € > 0 we have
2
E<H{|§—x|<e}‘y;t’£’at - Yst’m’at‘ >§’7KE(]1{|§_J;‘<E}|§ — J}|2>
Thus, the Lipschitz property (2.1.17)) implies

ot 2
E(n{\g_w\q}]e(t,ﬁ,at) — Y] )

<2[7KIE(11{|5_1|<5}|5 - fL‘IZ) + E<]1{|s—x|<e} 0(t, &, ar) — 0(t, x, Oét)\Q)]

<4/7K]E<]1{|£fx|<6}|€ - $|2>-

As a consequence, for any positive integer IV,

€, 0 |2 4P)/K
Z E<ﬂ{\£—k/N\w<1/N}|9(t>§aat) - Y, : t‘ ><—N2 Z ET e /N | <1/N} 5
kezZpr keZp

where | - |, denotes the sup norm on RP. This gives

2p+2 VK

NQ

E]@(t, & ay) — Y;t’g’mfé for all positive integer N
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which means

O, &, 0n) = Y0 as. (2.1.19)

Moreover, for t<s<T, (Xhoor, Yoo, ZEoo ALGer) s the solution to the FBSDE

X, — Xtéar 4 f f<r,Xr,n,ZT,ar>dr+f o (r, X, Yo, 0)dIV,

s
T

Y. =hXr,ar)+ f

u

o(rs X0, Yo, Zos ) — f

u

ZdW, — f A, o dM,.
Hence, (2.1.19)) shows that
YJ’E’” = Q(U,Xi’g’at,au) a.s.

Since @ and the trajectories of X% and X! &%t are all continuous, we have almost surely
for all u € [t,T],
Yut’&at = Q(U, Xi,ﬁ,at, au)’

O

Keep using the notations of Corollary [2.3] we have the following consequence on the
dependence of the solutions of the FBSDE on the coefficients.
Corollary 2.5. Assume that the Assumption (A) hold and T<Cy. Let (frn, gn, hn, 0n)n>1 be
a sequence of functions satisfying Assumption (A) with the same constants K, L as (f, g, h,o)

such that for almost all t € [0,T] and all (z,y,z,ip) € R? x R? x RT*P x M,

(fnagn;hnyo-n) (13797271'0) - (fuga h,O’) (xaywzui(]) as n — <0.

Let (th,O,f,ao’ Y;"’O’g’a“, Zf’o’g’ao,Af’o’g’ao), 0<t<T, be the solution of the problem

-

t t
Xy =&+ J fn(s, Xs, Yy, Zs, ag)ds + J on(s, Xs, Ys, ag)dW,
0 0

T T T
3 }/t = hn(XTa aT) + J gn(sa Xsa Y:97 Zsa as)ds - J ZSdWS - J As bt dMS?
t t t

t €][0,T].

\
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Then, as n — o,

E sup }X;z,o,ﬁ,ao —XS’E’O‘O\Z +E sup ‘)/;7170157060 B Y507§7a0

’2
0<s<T 0<s<T

T T
+E f | Zn08e0 _ Z0%00]2gs 4 E f An0€an _ A0€an2 g qar] 0. (2.1.20)
0

0

As a consequence, as n — 0, 0, — 0 uniformly on every compact set of [0,T] x RP x M.

2 Existence and Uniqueness of Global Solution in Non-Degenerate Diffusion
Coefficient Case

Assumption (B) We say that the functions f, g, h, and o satisfy Assumption (B) if

for some constants K and L and there exist constants k, A such that

(B1) For all t € [0,77], ip € M, and (z,y), (z’,y') € R? x R,

|h(.§C, ZO) - h(.ﬁL’/, ZO)‘gk’x o I,‘,

HO'(t, r,Y, ZO) - U<t7 xlv y/7 ZO)H2<k2<|m - Jf/|2 + |y - y/’2)‘
(B2) For all t € [0,T], (x,y,2,ip) € R? x R? x R?*? x M, and (2/,y') € R? x R,

|f(t 2y, 2, 00)|[<L(1 + |y + |2]),
|g(t, .y, 2, i0)|[<L(1 + [y| + ||z]),
|h(z,ig)|<L,

Ha(t,x,y,io)HéL(l + |y|)
(B3) For all (¢,z,y,i0) € [0,T] x R? x R? x M, and { € R?,
(Cralt,z,y,i0))=AC]%,
where the function a is defined on [0, 7] x R x R? x M as follows
a(t,z,y,40) = o(t,z,y,i0)o " (t,x,y,i0) for all (¢,z,y,40) € [0,T] x R? x R? x M.

(B4) For each ig € M, the function o(-,-,,ig) is continuous on [0,7] x RP x R
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Lemma 2.6. Assume that for each ig € M, the functions f(-,-, -, - i0), (-, - - %0), h(-, 7o),
and (-, -, -, 10) satisfy Assumption (B). In addition, assume that they are all bounded C'*

functions with bounded derivatives of all orders. Then the following system of PDFE

89k 1 & 020, .
s (t,z,10) + EZ txzo) Zo)a o, (t,m,zo)

06,

+Z fi (t,x,&(t,x,z’o),Vxﬁ(t,x,io)&(t,m,é(t,a:,io),io),io) o

=1

+§k <t,ZL’,é(t,ZL‘,io),Vxé(t,l',io)&(t,ﬂf,é(t,l’,io),io),ig) + Z Qiojoék(t7x7j0) = Oa
JoeM

R (t, 2, i)

O(T,x,io) = h(x i), Vte[0,T],zeRl k=1,2,...,q
(
(2.2.1)
admits a unique bounded solution é(, +1g) € 01’2([0, T] x RP, ]Rq) satisfying
o0 o0 %0
FrEl m are bounded on RP for any i,7 =1,2,...,p. (2.2.2)
Furthermore, there exists a constant K only depending on the constants K, L, T, k, X\, p,q
such that
sup 10(t, 2,40)| <K, (2.2.3)
(t,x,i0)€[0,T]xRP x M

sup |Vx9~(t,x,io)‘<f(, (2.2.4)
(t,x,i0)€[0,T]xRP x M

E|0(t,x,00) — O, z, a0 )|<K|t' —t|V?, Vt,t' €[0,T], xR (2.2.5)

In addition, for everyt € [0,T] and Fi-measurable random vector £ with finite second

moment, the SDE

X, =¢+ f f(r, X,, é(r, X, ap), Vi 0(r, X, ar)é(r, X,, é(r, X, o), ar),&T)dr
t

—i—f &(r, XT,é(r, Xr,ozT),ozr)dWT, se[t,T] (2.2.6)
t
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admits a unique solution, denoted by f(ﬁ’g’at, s € [t,T], and the process
(X’?E@t’}zt,é,at, Zz,ﬁ,ozt’]\io,jo,t,&at) given by

37;’5’0"5 = é(s,f(;’g’ai,ozs), Zﬁ’g’o‘t = Vmé(s,f(;’&"“,ozs)fr(s,Xﬁ’g’at,ﬁt’g’at,as), (2.2.7)
and

[\io,jo,t,&at = é(S7 X;’E’at , j()) — 5(8, X;’E’at, io), Z'(), jo € M, S € [t, T]

satisfies the FBSDE associate to (f,g, 7, 71) and to the initial condition (t,§).
Proof. For each iy € M and for any matrix 9 that contains gm, rows, we denote by 19;, the
submatrix of ¥ that contains rows (ig — 1)g+ 1,..., (i — 1)g + ¢; that is,

9= (9],9],....9] )" .

Let I, be the identity matrix of size ¢ and ® be the tensor product. For any 8 € R7"0*1
and 9 € R"*? put @ = (0,,...,0,,,) € R and

h(z) = vec (h(z,1), ..., h(z,mp)),
a;;(t,z,0) = diag (aij(t,x, 01,1), ...,a;(t,x,0p,, m0)> ® 1,
f£,(t,2,0,9) = diag (fi (t,2,01,910(t,2,01,1),1), ..., fi(t, 2,0y, Oy (£, 2, By, 1), m0)> ®I,

9 (ta Z, 917 ,'910-(t7 T, 017 ]-)7 1) e (ta L, emo)/ﬁmoa(t)xa emm mO)u m(])
g(t,z,0,9) = z | +6Q",

Yq (ta z, 017 7910(t7 xz, 917 1)7 1) -+ Yq (tv z, Omoa "-9m00-(ta z, 0m07 mO)v mO)

g(t,z,0,9) = vec (g(t,x, 9,19)).
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Moreover, we denote (¢, x) = vec (é(t, x)), where

01(t,,1) - Oy(t,z,mg)
0(t,z) =
0,(t,x,1) - B,(t,x,mp)
Then becomes
g—(:( % Zp_] a(t, H)aj;x](t ) + gf(t .6,V 0)52(15 ©) +g(t,,0,V.6) = 0,
(T, z) = h(z).

(2.2.8)
In view of [34, Proposition 3.3] and [31, Theorem VII.7.1], under Assumption (B) the system
(2.2.8) admits a unique bounded classical solution 8 € C12([0,T] x RP,R%™). Moreover,

the solution € has bounded partial derivatives 50 S (tx), § 20 5. (t,x), and 220 (t,x), 1<i, j<p,

ozi0x; ox;
n [0,7] x R?. This implies (2.2.2)).
Next, to prove the remaining part we first define for each (¢, x,iy) € [0,T] x RP x M

F(t,z, i) = f(t,x,é(t,x,io),Vzé(t,x,io)(r(t,x,é(t,x,ig),io),i()),

S(t,w,d0) = 6 (t, 2, 0(t, x,p), io).

Then for each t € [0,7] and a JF;-measurable R%-valued random vector & with bounded

second moment the equation
S S - -
Xhoor = ¢ f F(r, X142 o, )dr + f S(r, X5 a,)dW,
t t
posses a unique solution. For s € [¢,T] denote
i/sté’at = é(sa Xz,&at? Oés), Z?&at = vfé(& X?é’at? Oés> i(‘97 Xz’&ata Oés),

and

]\io;joi:i,at — 5(37 Xﬁ,ﬁ,at7j0) — é(s, X;,ﬁ,at’ io).
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Using It6 formula for 6 (s, Xbéor, as) and then applying ([2.2.1]) we obtain

T T T
g (7«’ Xﬁ’é’at, Yrt,&at’ Z;é,at ’ Oér) dr— J Z;{,at AW, — J A?f:at odM,
S

S

Free - o)

for each s € [t, T]. This implies that (Xt’fvat, ytéor gt At’fvat) is a solution of the FBSDE
associated to the coefficients f , q, iL, and ¢ and to the initial conditions %, &, 4.

Let v > 0 be an arbitrary fixed number. Note that M; is a purely discontinuous
and square integrable martingale. Using generalized It6 formula [48, Theorem V.18] for

~ 2
s t,m,at‘ } :
{6 }}/:9 t<s<T we arrive at

'YT (/ t,z,a ‘2
e ‘YT
= 673{}/‘;@7044 + ,YJ e’YT‘Y'rﬁx:Olt‘ dr — QJ 677"<Y':79€:01t7§(7,7 X;E:l“»at7 Y;ﬁ%%) Zﬁ’%at’ Oér)>d7”
s

s

T T

yr /N tx,ar A tx,an 'yrH ~z‘,,:):,oz,gHQ
CHEQ A\ >er+J e’ Z, dr

S

T
- 2J Y e ZErer gy, + 2 J

S S

T

S

for all 0<t<s<T and z € RP, which, together with Assumption (B), yields

T
~ 2 ~ 2 ~ ~ t 2
| Y| +f |zt dr + ) e yhmer — e

S s<r<T

T
~ ¢ , 2
<67T|YT’I at‘ +J

S

eV {2[1(1 + ‘}N/;t,a:,at| + HZ;?,:c,at H) |?;t,ac,at| . ,y}?;t@’at ‘2:| dr

T T
_ 2‘[ 67"”<}7;t7x,04t’ Zﬁ,x,atdWT> _ QJ e'YT<5;;t,SC7OLt’ Ai’x’at>er

S S

T
"yl t T, 2

s

o {L (3L + 2L —y)[Treee ] %sz\f] dr

T T
—9 J e'yr<}~/;t,a:,at’ Zﬁ,x,at dWr> —9 J e'yr<}'};ﬂt,z,at, Afjlﬂ’at >dMT

S S

By choosing v = 3L + 2L?, taking the conditional expectations with F;, and using
Assumption (B) we get
T

E<675‘}7st,z,at ‘Q‘E) <67TL2 + LJ ]E(ew

s

E)dr =, t<s<T,
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where C' = C(L,T) is a constant depending on L and T'. Therefore, there exists a constant C
such that |é(t, x,;)|<C for all (t,z) € [0,T] x RP. Since the Markov chain («) is irreducible,
it follows that

|0(t, 2,40)|<C Y(t,2,i0) € [0,T] x R? x M.

Next, to estimate }Vxé(t,x,io)‘ we apply [31, Theorem VII.6.8] for the solution € of
to the cylinders [0,T] x {x € RP, |z|<n} and [0,T] x {zr € RP |z|<n + 1}. Tt fol-
lows that supgejo,ry,z/<n} ‘Vxe(t, x)‘Q is bounded by a constant depending on the constants
C(L,T),K,L,k,\,p,q and the distance between {z € R?, |x|<n} and o{zx € RP, |z|<n + 1}
which is 1. As a consequence, there exists a constant C(K, L, T, k, \,p,q) such that

(t,m,io)e[?]}lTI])xRPxM }Vxé(t, x, io)KC’(K, L, T k,\p,q).
Finally, in order to prove the remaining inequality take ¢ and t' such that

0<t<t'<T. According to Corollary Assumption (B), (2.2.3), and (2.2.4)), there exists a
constant C' = C~'(K, L, T, k,\ p,q) such that

- ~ 2 - ~ 2 .
E|Y, % — Y7 <O —t), E)Xf;x’”“—Xf’z’o“ <C(t' —t).

Since Y;""* = 0(t, z, o) and Yo = ot X5 ay), by modifying C' if necessary and

Proposition [2.4] we obtain

]E’é(t, z,00) — Oz, o) ?

)

<2<E|é(t7 Z, Oét) — f/;,x,ai}z + E‘é(t,, X:,’m’at, Oéﬂ) — é(t,7 xZ, Oét/)

<é[(t’ — 1) + E| X} — xf] = C(t' —1).

This completes the proof. O

Remark 2.7. (i) In view of [20, Proposition 2.2], under Assumption (B) there exists a
sequence of C* functions (fy, gn, hn, 0n)n=1 satisfying for every n Assumption (B) with

respect to the constants K + 4L, k, 2L, and \/2 such that for almost all ¢ € [0,T] and all
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(,y,2,1p) € R? x R? x RI*P x M,
(frs Gny by 00) (2, y, 2,00) — (f, 9, R, 0)(t, 2y, 2,%9) asn — oo.

Denote a, = 0,0, then as a consequence of Lemma , the following system of PDE

((0(0,)
ot

p
(t,z,i) Z an) Z] t x, 0, (t, x, 1), 20) G20z, (t,z,10)

N)Ir—t

N (0 )
+Z(fn)i(t,x,9n<t,l’7i0),ngn(t,Jf,’io)Un(t,l',en(t,x,i0>,i0),i0) 0L (t x ZO)
1=1 %

+(gn)k(t,x,9n(t,:c,io),Vxﬁn(t,x,io)an(t,x,ﬁn(t,x,zo > 2 %0]0 t T ]0) 07
JjoeM

0.(T, z,i9) = hp(z,10), Vte[0,T],zeRP k=1,2,...,q
\
(2.2.9)

admits a unique bounded solution 6, (-, -, ip) € C2([0,T] x R?,RY) satisfying

00, 06, %0,

— are bounded on R? for any 7,5 =1,2.....p.
at ) aIZ” axlaxj y 7.] b b 7p

Furthermore, there exists a constant K only depending on the constants K, L, T, k, \,p,q

such that
sup 10,(t, 2, 0) |< K, (2.2.10)
(t,z,0)€[0,T] xRP x M
sup Vo0 (t, 2, 40) |[<K, (2.2.11)
(t,2,30)€[0,T] x RP x M
E|0,(t, z, at)) — 0.t 2, a(t)|<K[ —t[V?, V¥ e[0,T],zeR" (2.2.12)

(ii) Next, for simplicity, we denote the following constants
K* = max{k, K + 4L, K} and T* = Cy(K*), (2.2.13)

where K = K(K, L, T, \, p,q) is the constant given in Lemma and Cy(K*) is the constant
given in Proposition . Let N be the integer satisfying (N —1)T*<T < NT* and put tq = 0,

t; =T — (N —4)T* for each i = 1,2,..., N. Then according to Theorem [2.1] for each n>1,
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t € [t;,t;v1) for some 0<i<N —1, and a F;-measurable random vector £ with bounded second

moment, the following equation

XS = § + J fn(T7 XT?K’) ZT7 aT)dr + f O-n(/ra XT)}/T) ar>dWT7
t t

tit1 t

}/:9 = en(tiJrlu Xt¢+17 Oéti+1) + J

S

gn(ra XT‘J }/;“7 Z?“7 a?“>dr - J

S

i1 tit1
Z,dW, — J A, o dM,,

where s € [t,#;11], admits a unique solution denoted by (X460 yritsar Znitsor Anitsor),

In view of Lemma [2.6] this solution also satisfies the following equations

nzi)t7§704t — n?i1t7§1at
}/s - Qn(SaXs 7a5)7

Z;w,tfyat = V.0, (87 X;W:tufvat7 Oés)Un (s, X;z,z,t,&az’ Y;wﬂhfm7 Oés),
and
An’i7i07‘j0)t7€7&t i 0 Xnui’tyguat y _ 9 Xn7i7t)£7at y y y M [t t ]
s = Un\S, Ay »JO n\S, Ay »20), Lo, Jo € y S €L, Liy1]-

As a consequence, Assumption (B) together with the inequalities (2.2.10) and (2.2.11]) imply
that

| Zmitsar| | Amidodotéat| <KV dg, jo € M, s € [t tig]

for some constants K’ only depending on the constants K, L, T, k, A\, p, q.

Proposition 2.8. Under Assumption (B) and the notations in Remark 2.7 there exists a
mapping 6 : [0,T] x R? x M — RP such that, as n — o, 0,(t,x, ) converges uniformly
in L2(RP) to O(t,z, ;) on every compact subset of [0,T] x RP. In addition, the mapping 0

satisfies the following properties:

Q(T,l’,io) = h([E,i0>, v (t,JZ,io) € [OaT] x R? x M:
‘Q(t,x,io)KC, V (t,x,40) € [0, T] x RP x M,

E|0(t, z,00) — O(t', &', o) <SK(t—=t¢"?+z—2), V(ta),({t,2")e[0,T] xR
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Furthermore, for each n=1, t € [t;,t;11) for some 0<i<N — 1, and a F;-measurable

random vector & with bounded second moment, the following equation

XS = 5 + f f(T, XT7 )/7"7 Z'I‘7 Oér)dr + f O-(T7 XT7 Yl‘a aT)dWT7
t t

tit1 t

i+l tiv1
Y, =9<ti+1,Xtm,atm>+f Z,«dWT—f A, o dM,,

S

o(rs X0, Yo, Zy, ) —f

S
where s € [t,ti41], admits a unique solution denoted by (Xih&er Yit&er Zit&ar Ait&ar)
which satisfies

IP;(Ysz’,t,&,at - 9(S7X2,t7§,at’as) for all s € [t,ti+1]) =1,

P@M{(w, s) € Q x [t tin],

xitsen| s i =0

Proof. Let T*, N, and t;, 0<k<N, be defined as in previous Remark. We will define by
induction the mapping € on the intervals [¢;_1,%;) with & running downward from N to 1.
First, for k = N, in virtue of Theorem for any ¢ € [ty_1,T) and F;-measurable

random vector £ with bounded second moment, the FBSDE

X, =§+f F(r, X0, Yo Zs )i + f o (r, X, Vo ) dIW,
t t

T T

T
Y, =h(Xr,or)+ f Z.dW, — f Ay odM,, sel[t,T]

S

o(r, X0, Yo, Zy, p)dr —f

s

has a unique solution. Let us denote this solution by
(Xévfl,t,g,at’Y;Nfl,t,f,at’ Zé\ffl,t,f,at7Aé\/vfl,t,f,at)tgsglr. Deﬁne
O:[ty_1,T] x RP x M — RY, (t,x, ) — O(t, x, ) = YN bbmar
According to Corollary , it follows that Y;¥ 1h&t — 0(t,&, o) for all t<s<T with prob-

ability 1. O
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3 Related PDEs: Weak sense

Put
Ul(t,x,i0) = V,0(t,x,i0)5 (t, ,0(t, z,i0), ip),
W (t, 2,0, jo) = 0(t,x, jo) — O(t, =, 4o),
and
. 1 & . %0 ,
LOk(t, z,10) 5”2_:1 Y (t,x,ﬁ(t,x,zo),zo) 6%8; (t,z,19)
p ~ ~ ~
+Z Z(t,x,@(t,x,ig) Ul(t,x, i), zo> (t,x,10)
i=1 i
Then ([2.2.1) becomes
a(;itk(tv Z, 10) + Zék(t7 x, ZO) + gk <t7 z, é(t7 x, iO)? U(tu xz, Z.O)a ZO) + Zjoe/\/t Qiojoék(tv x;jO) = O’
0T, x,ig) = h(x,ig), VYte[0,T],zeR. k=1,2...4q.
(2.3.1)
Put
U(t,x, 1) = Vmﬁ(t,:p,io)a(t,x,Q(t,x,io),z’O),
and

W(t,x,io,jo) = 9(t7x7j0) - 9(t7x7i0)'

We define H the set of functions (s, z,i) such that (9, U) € £2([0,T] x R?;R?) ® L2 ([0, T] x RP; RI*P)

for each i € M with the norm

1/2
I10]|% = (J f (|0 (s,2,9)* + |U(s,z,9)|* + Z qii|W (s, 2,1, 7)| )dmds) :
RP JEM
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Definition 2.9. We say that 0 is a weak solution of the PDE ([2.2.1)) if 0 satisfies

T
f Ok (s, x,i0) Dspr (s, x)dxds + | O (t, z,i0)pr(t, x)dx — J hi(x,i0)ox (T, x)dx

RP RP

J J Z aij(s,x,H(S,x,io),i)DiQk(s,x,io)ngok(s,x)dxds
RP .

+ L . Or(s, 1) Z D;i((fi — A)pr(s, x))dxds

=1

T
—J J gr(t, x,0(s,x,i0), U(s,x,10), i0)pr(s, x)dxds
RP

J J Z qlojoek t T ]0)@0k(5 I)dIdS = 0
R

JoEM
(2.3.2)
where A;(s,x,i0) = 5 7_y Dj(ai;(s,2,0(s,2,10), io)).
Definition 2.10. We say that 0 is a weak solution of the PDE (2.2.1)) if @ satisfies
T
J 0(s,x)Dsp(s, x)dxds + f 0(t, x)p(t,x)dx — f h(x)(T, z)dx
RP Rp Rp
J J a;i(s,2,0)D;0(s,x)D;p(s, x)dxds
RP ij=1
, (2.3.3)
+ J J 0(s,x) Z D;((fi — Aj)p(s,z))dsdz
t JRP i=1
T
= f f g(s,2,0,V.0)p(s,v)dxds.
t Jre
where A; = £ 30 Dj(ay;(s,x,0)).
To proceed further, we need to use the following lemma (see [36, Lemma 2.10]).
Lemma 2.11 (Generalized equivalence of norm principle). We take p(z) := €@ as the

weight function, where F : RY — R is a continuous function. Moreover, we assume that there

exists a constant R > 0 such that for |x| > R, F € C7, (R%;R) and sup,ega |F'(z)z] < +o0.

o

For instance, we can take p(x) = (1+ |x])?, with ¢ € R or p(z) = e with a € R. If pp~*

Lt (Rd). Then there exist two constants ¢ > 0 and C' > 0 such that

e[ el <& | [ o ()@ <0 [ ol s
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Moreover if ¥ : Q x [t,T] x R? — R, U(s,-) is F* measurable for s € [t,T] and ¥p~!

L (Q x [0,T] x Rd), then there exist two constants ¢ > 0 and C' > 0 such that

CEJ J (s5,2)|p(x) tdr < f f 3X““)|p ) ldx
Rd
C’EJ J (s,2)|p(z) " tdx

The constants ¢ and C depend on T, p, the bounds of o and the bounds of the first (resp.
first and second) derivatives of b (resp. of o ).

Theorem 2.12. Let (XSt Yisor Zboor AL&er)  t<s<T be the unique solution of the
problem [2.1.13). Then O(t,z,i) = Y;"" is a weak solution of ([2.2.8) with (T, x,i) = h(x).
Proof. Let f™ (resp. g™,0™,6™) be smooth functions which approximate f (resp. g,0,0)

s,m s,m ) s,m

and satisfy Assumption (A) , and (XF&r Yioe Zboe Abo) $<s<T be the unique solution

of the following equations

-

Xs,m =T+ St fm T, eray;“nm Zrmaar d?" + St T er7Y;“m7 Zrmv&r)dWr

9 Y:S,m = 0m<XT7 aT) + SZ gm(ry Xr,ma Y;",ma Zr,m7 O./r)d’f‘ - SZ Zr,de S Arm dM, [

s e [t,T].

Put 6(t, -, i) = V" and 0" (t,- i) = YttmZO From , we know that 0™ (t, z, i) is
the unique solution of the following partial differential equation

aem Amgm : ~m m :

pn —E (4, 2, d0) + L™OT(L, 2, 40) + GF (t,x,& (t,z,i0), U™(t, ,40), ) + Z QiojoOr (t, 2, jo) = 0,

JoEM

0T, x,ig) = h(x i), Vte[0,T],zeRP k=1,2,...,q,
(2.3.4)

where
U™ (t,w,40) = V0™ (t,2,10)5™ (t, 2, 0™ (t, 2,40), %),

W™ (t, z,ig, jo) = 0™ (t, 2, jo) — O™ (t, 2, o),
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and
mm( I N ,
E 6 t.Z'Z[) 25]22 tx@ tl‘,lo),lo)m(f,l’,lo)
z L oo
Z <t x, 0™ (t, z,i0), Um(t,x,zo),zo) Zo> (t,x, 1)
Thus

T
f f 07 (s, 2, io) Duls, 2) duds + f 07 (T, . io)ou (b, ) der — f 07 (2 io)on (T, )
RP Rp

RP

J J (5,2,0™ (s, 2, i0),1) D0 (s, x,10) Djor(s, x)dxds
RP

i,7=1

—I—J Hmsxzo
t JRrp

T r 5
— f gt x, 0™ (s, z,i9), U™ (s, x,10),10), i0)r (S, z)dxds
t

JRP

— A™ (s, z))dxds

1 Ms

_J Z Qiojo Ok, V(t,x, Jo)pr(s, x)dxds = 0,
RY joeM

(2.3.5)
where A7 (s, z,iy) = 22 Dj(aj} (s, z,0™(s,x,10),10))-
On the other hand, let p be a weight function as mentioned in [Lemma 2.11, Then
107 (¢, @, 1) — 072(t, , 1) ||
_ EUT J (o (s, xtmd) = (s, X0 [ |07 (s, X0 ) = 07 (s, X0, i)H2
t R

3 s, X ) = s, X0 ) )dxds]
jel
‘ je./\/l

[ [ L

In view of Assumption (B), standard calculations (see |Corollary 2.5)) show that

o 7). X

as m — 0. So ||0"™ (¢, x,i) —0™2(t,x,1)||3y — 0 as my, mg — o0, which means that 0™ (¢, x, )

Azgtq}z Azgtxz

s,m1 S,m2

2
thz thz

s,m1 S,ma

thz Yta:z

s,m1 S,ma

qz‘j)ﬁ_l(ﬂf)df’fds]-

~ ~ 2 ~ . ~ ~
txd _ \ta,i t,xg 7ty 5,5,6,2,% A ,5,t,x,
YS:?’n? }/S 1 + Zs:,r,,;/ Z87 ’ A8777;L7 ’ A87 tadiat]

2
qij)p*(:v)dwds] ~0

is a Cauchy sequence in H. Therefore, there exists # € H such that ™ — 6 in H, which
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implies that (0™,V,.0"¢™) — (0,V,00). This result together with passing the limit as
m — oo in (2.3.5)) can verify that 6 is a weak solution of ([2.2.8)). ]



CHAPTER 3
FBSDEs with Regime Switching Under Monotoncity
Conditions

In this chapter, we first work on backward stochastic differential equations with Marko-
vian switching and derive useful estimates for the solutions. Then, we focus on forward-
backward stochastic differential equations and provide sufficient conditions for the existence

and uniqueness of the solutions.

1 Estimate of BSDEs with Markovian Switching

Lemma 3.1. Let F; : [0,T] x R x R4 x M x Q — RY, i = 1,2, satisfy
|Fi(t, 31, 21, 00) — Fi(t, 42, 22,10)|[<C (lyn — 2| + |21 — 22]),  P-a.s.

for any t € [0,T], yi,y2 € R%, 21,20 € R4 and iy € M (with the constant C being
deterministic). In addition, F;(-,0,0,40) € £2(0,T;R?Y) and F(t,y, z,4) is F-adapted for
anyi = 1,2, ye RY, 2z e R andige M. Let & € E%_—T(]Rd) and (Y, Zi, N;), i = 1,2, be
the solutions of the BSDFEs

Yi(t) =& — L F;(s,Yi(s), Zi(s), a(s))ds — ft Zi(s)dWg — L Ai(s)edM,, tel0,T].

Then

0<t<T

E( sup |Ya(t) — Ya(t)|* + JO |2, (t) — Zo(t) |t + JO AL () — As(t)[* o d[M]t>

<C<]E]§1 — &P+ EL |4 (t, Ya(s), Za(s), a(s)) — Fy(t, Ya(s), Zy(s), als)) \st).
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Proof. Denote }A/() =Yi1() — Ya(+), 2() = Z1() — Z(), £=¢ — &, and

F() = F(-Yi(), Z10),a() = B (- Yi(), Zu(), al).
Using Ito formula for [Y(-)[2 we have
PR+ [ 176+ [ AR
e -2 fT<ffs ) Fu(, V5), Z4(5), () — Fals,Yals)
_zf (P (s) dw>_2f (V(s), A(s) » dML)
<l +2 f [m A+ IR (1P ()] + \|Z<s>\)]ds
—2f (Y (s) dW>—2f (Y (5), A(s) o dM,),

which together with the Cauchy-Schwarz inequality implies
2 1 T 2 T s 2
POP+5 [ 120)Fds + | 1R«
t t
~ T ~ ~
<|¢]? + f [(1 +2C +2C%)|Y (s)]* + \F(s)|2]ds

—2] (Y (s) dW>—2f (Y (s),A(s) o dM,).

Taking the expectations in above inequality, we obtain

E|17()|2<]E<|y Jz )| ds+f IA(s)|2 e d[M )

<E(|§\2+L 1B (s)| ds) + (1+20+202)f E|Y (s)|%ds.

t

By the Gronwall inequality,
~ A~ T ~
BV (1)<, B (4] +J Po)Pds),  vie[o.T]
0

Using this inequality and (3.1.2)) (with ¢t = 0) yields

o ([ 12000+ [ AP edan.) <km(@+ [ #oras)

)>d$
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(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)
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Next, using S? = S(? — Sé for stochastic integrals in (3.1.1f), we obtain

POR+ 3 | 120 + | AR e )

<|E] + LT [(1 +2C + 202)]}7(3)\2 + ]ﬁ(s)P)]ds

2 [ 2awy 2 [ F )R eart)
+2f<Y dW>+2J<Y o dM,).

Subsequently, according to the Burkholder-Davis-Gundy inequality, the Holder inequality,

and the Cauchy-Schwartz inequality,

| s [P(OF]

te[0,T7]

<E [|g|2 + (1 + 20 +2C?) J Y (s)|*ds + f |F(s)|2ds]
0

[0 [0

<KE(|§\2 +f0 |ﬁ<s)|2ds> + i]E[ sup |f/(t)|2] +K2EL |Z(s)|ds

te[0,T]

+ 4E[ sup

te[0,T']

] +4El sup

te[0,T]

]

+ EE[ sup |§A/(t)|2] + K°E LT |/A\(3)|2 o d[M]s.

te[0,T7]

Thus,

s sup (7107 | <cm ({8 + | PGP+ [ 126+ [ RGP «d.)

A~ T ~
<CIE<|§|2+J |F(s)|2ds).
0

Note that we have used (| in the last inequality. Again, combining (3.1.4) with ( -

(3.1.5)

lead to

2 4 712 Tia 2
(tes%}% Y (1) f 1Z(s)| ds+f IA(s)]? o d| ])éCE(|§| +JO |F(s)| ds).

This completes the proof. |
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2 FBSDEs with Markovian Switching

In this section we will develop the theory of FBSDEs with Markovian switching using
a different approach. More precisely, we focus on the forward backward equations without
the presence of mean-field terms and will use the continuation method and monotonicity
condition to examine the well-posedness of the underlying FBSDEs. We will provide several
different conditions that guarantee the existence and uniqueness of solutions of such FBSDESs
with Markovian switching. The obtained results here are vital to further study these systems
in a much more general settings, where the conditional mean-fields are coupled in the systems.
For this section we will be working with equation

t t
X, =&+ J fo(s, Xs, Ys, Zs, a5)ds + J oo(s, Xs, Ys, Zs, as)dWs,
0 0

T T T
}/t = hO(XTa aT) - f gO(SaXsa Yts; ZS7 O./S)dS - J stWs - f As L dMS7 te [O,T]
t t t

(3.2.1)
Throughout this section, we assume the following assumption.
Assumption (Cy).
(Col) For each fixed ig € M, the functions fo(-,-, -+, %), go(*s+, s+, 5 %0), and ao(-, -, -+, o)

are F-progressively measurable and Lipschitz in (z,y, z) uniformly in (¢,w). That is, for
o = fo, go, or 0, there exists a (deterministic) constant Cy such that for any t € [0, 71,

ip€ M, and 0 = (z1,y1, 21), 02 = (22,12, 20) € R? x R x R4 we have
‘900(75,91,2'0) — @o(t, Gg,io)‘é()’guel — 92”, P-a.s.

where H@l - 02H = ‘xl — x2| + |y1 - y2| + H21 — 22H
(Cp2) For each fixed (,i9) € RY x M, the function hg(-, x,4y) belongs to £2(R%). In addition,
ho(w, -, 4g) is Lipschitz uniformly in (w,ig). That is, for any ig € M, and x;, 25 € RY,

there exist a (deterministic) constant ¢ such that

‘h() ($1,’i0) - ho ($2, i0>‘<c‘$1 — X9, P-a.s.
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For t € [0,T], i € M, and 0, = (z1,y1,21), 02 = (22, Ys, 22) € R x R? x R¥*4 denote

Wo(t, 01, 02,00) = {fo(t01,i0) — fo(t,02,%0),y1 — y2) + {go(t, 01.70) — go(t,02,%0), 21 — 22)

+ I:O'[) (t, 61, Zo) — 0y (t, (92, io),Zl — 22]. (322)

Recall that {(z,y) is the dot product of x and y and [A, B] = Z?:1<Ai, B;), where A; and B;,
1=1,2,...,d, are the i-th column of d x d matrices A and B. To obtain the existence and
uniqueness of solution of the forward backward system (3.2.1]), we first make the following

assumption.

Assumption (Hj).

(Hol) There exists a positive constant K}, such that for any z1, 2o € R? and iy € M,
. . 2
<h0 (,Tl, Zo) — ho (ZL‘Q, ZQ) , L1 — $2>>Kh|l’1 — .CEQ‘ N P-a.s.

(Ho2) There exists a positive constant Ky such that for any ¢ € [0,T], 61 = (z1,v1,21),602 =

(72,72, 22) € R x RY x R4 and i e M,
\Ilo(t,91,92,io)< - K\p(]m - I2|2 + ‘yl — ygf + H21 — ZQH2>, P-a.s.

We are now in a position to state the following theorem.

Theorem 3.2. Under assumptions (Cy) and (Hy), there exists a unique quadruple of pro-

cesses (X, Y, Z, \) which solves the system of FBSDFEs with Markovian switching .
In order to prove Theorem [3.2, we present some preliminary results on FBSDEs with

Markov switching. First, we consider linear FBSDEs in the following lemma.

Lemma 3.3. Suppose that (fo(-),50(-),go()) € £2(0,T;RY) x £2(0,T;R>4) x £2(0,T;RY)

and ho € L2(R?), then the following linear FBSDE

X, =x+ f (=Y, + fo(s))ds + f (= Zs + 5o(s))dW,,
0 0 T (323)

T T
Y, = (X7 + ho) —f (—Xs+§0(s))ds—f ZSdWs—f Ay o dM,
t t t
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has a unique adapted solution (X,Y,Z N).

Proof. We consider the following BSDE:
o T - T T
Y, = hy — J (Yf9 + go(s) — fo(s))ds — f (QZS - 50(3))dW5 - f A, o dM,.
¢ ¢ ¢

According to [8, Theorem 3.4], the above equation has a unique adapted solution (Y, Z, A).
Then we solve the following forward equation:
t

X, =x—|—Lt(—XS—§75—|—f0(s))ds—l—L (—Zs—i—ﬁo(s))dWs

andset Y = X +VY, Z =7, and A = A. It is easily seen that (X,Y,Z,A) is a solution of
equation (3.2.3). Hence, the existence is proved. Finally, the proof of uniqueness is similar

to that of Theorem O

Next, for v € R define

fg(t7$,y,2,i0) = 7f0(t7x7y7zai0> + (1 - '7)(_y),

O-g(trray)Z?iO) = VUO(t’x7ya ZviO) + (]' - 7)(_2’/)’
(3.2.4)

gg(taxayazvi()) = 790(@%.%%%) + (1 - 7)(_1‘)7
hi(z,i0) = vho(z,i0) + (1 — )z,

and consider the following system of equations

t

X, :x+f <fg(s,@s,as)+fo(s)>ds+f <Jg(s,@s,as)+6o(s)>dWS,

0 0

Y; = (h(Xr, ar) + ho) — JtT <gg(s,@s,ozs) + §o(8)>ds - L

T

Z.dW, — JT A, o dM.,

t (3.2.5)
where © = (XY, Z). To proceed, we present the following lemma.
Lemma 3.4. Assume that Assumptions (Co) and (Hy) are in force. In addition, assume
that for a given o € [0,1) and for any (fo(-),0(-), Go(-), ko) € L£2(0, T;R?) x £2(0, T; R¥*?) x
L£2(0,T;RY) x L2(R?), the system has an adapted solution. Then there exists a con-

stant &g € (0,1) depending only on Cy,c, K, Ky and T, such that for any v € [v0, 7 + do]
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and for any (.]FO(')760(')’§0(')7}_10) € EQ(O,T, Rd) X £2(O7Tu RdXd) X £2<OaTa Rd) X EQ(Rd)u
system (3.2.5) has a solution (X,Y, Z, ) € §%(0, T; R?) x S*(0,T; R¥>4) x £2(0,T; R*9) x
M?2(0,T;RY).

Proof. In view of (3.2.4)),

(;yo+6(t7'ray7z7i0) = go(t7xay7z720 +5(y+ fO t x, Y, z, 20))

030+6(t7$,y72,i0) = O-go(t7m7yaz720 +5 z +00 t LY, s ZO))

98/04‘5(75717’ Y, Z,iO) = ggo(t7xa Yy, =, ZO) + 6(1: + g()(t, LY, 2 Z.O))7

h ™t (,d0) = i (w,d0) + 6( — 2 + ho(w,0)).

Put (X°,Y? Z° A% = (0,0,0,0) and ©" = (X", Y", Z") for n = 0,1,2,.... According to
the assumption, the following recursive systems always have unique solutions.

( t

XZL+1:$+J
0

[ (s, 07 ) + (5(YS” + fo(s,@?,%)) + fo(s)]ds

¢

+f [030(3, 0" a,) + 6(Z" + 0o(s, 07, a)) + 60(5)]dW5,

0

VY = (AP ar) + (= X3+ ho(Xf,an)) + ho (3.26)
T

—J [ggo(s, o+t a,) + S(XI+ gols, 07, ) + go(s)]ds
t

T T
—f ZM AW, — f A" e dM,.
t t

\

Denote @?H = O/ —Or. In addition, put

th-&-l _ th-i-l _ le’ }A/;n-i-l _ Y;n-i—l _ Y;n’ ZAtn-&-l _ Ztn+l _ Ztnv A;H—l _ A;H_l N A?
hg(t) = hO(tha at) - hO(XZL_17 at)v hg’w(t) = hg(X?, at) - hg(X?_la at)?
and, for ¢ = fo, go, 00,

@n+1(t) = gD(t7 6?4_17 at) - 90(t7 @?7 at)a @n-‘rl,’y(t) = SO’Y@: @?+17 at) - QO,y(t, @?’ at)'



Applying It6’s formula to <Xf+1, SA/t”+1> and taking the expectation we obtain
E(X7H gt (T)) = OB(XG, X7 — hy(T))

T
_’_Ef (<Xn+1,§g+170 >+<Yn+1 n+1'yo >+ [Zn+1 An+170( )])ds

0

T
+ OE f (R, X () + (VY2 4 fos)y + [ 204, 22 + 63(s)] ) ds.
0

From Assumptions (Cy) and (Hy), it follows that
A T . (1+C A A T A
B (1 [ 16rm s ) < S s (i + [ jernieias),
0 0

where K = min(1, K3, Ky) and C' = max(c, Cy). Young’s inequality implies

-1, g AN o(1+C ? o1, g AN
B (L [ 16reas) < () B (15 [ 16riPas).

Recall that Vn > 1

T

fq&:JT[ 00(s) +o(YIT 4 f ())]ds—kf

0 0

72

[a"%( )+6(Z0 " + on (s))]dWS.

We can derive that there exists a constant ¢; > 0 that depends only on C' and T such

that
T . T R
B|Xp[? < E(f orids + | y@:—”ds), ns 1
0 0

Hence, there exists a constant ¢ > 0 that depends only on C', K, and T such that

T T T
EJ 1671 |2ds < c20°F (J 1672ds + f |®g—1||2ds> W1
0 0 0

So, there exists a dy € (0, 1) that depends only on C, K, and T" such that when 0 < § <

T 1 (T . 1 (T .
E J 1671 |2ds < ~E J 167|2ds + ~E J 1681 |2ds, ¥n > 1.
0 4 0 8 0

In view of [25, Lemma 4.1}, there exists a constant ¢ > 0 such that

T . 1 n
EJ \@Z\|2d5<é<§> Wm0,
0

50?
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This implies that (X7),¢ is a Cauchy sequence in £2(R%) and (X™),>0, (Y")nz0 and (Z™),=0
are Cauchy sequences in £2(0,T;R?), £2(0,T;R%), £2(0, T; R*%), respectively. Moreover,
similar to in the proof of Theorem we have that (A"),> is a Cauchy sequence
in M?2(0,T;R%). We denote their limits by (X,Y, Z, A), respectively. Passing to the limit in
equations (3.2.6), when 0 < & < 4y, (X,Y, Z, A) solves equations for v = 79+ 9. By
standard estimates we can show that X,Y e 8§%(0, T;R?). ]

Now we are ready to prove Theorem [3.2]

Proof of Theorem (3.2
First, we prove the uniqueness of the solution. Suppose that (X,Y, Z, A) and (X", Y', Z', )

are two solutions of (3.2.1]). Taking It6’s formula and the expectations we get
E(XT — X, ho(X7, o) — ho(X7, ar))

T
= EJ <<X; - XS?ng(S’X;’}/Z? Z;? CYS) - 90(87X57}/;7 ZS7as)>
0

+ <§/:9, - }/;7 fO(S7X/ Y/ Z;’ OZS) - f0(57X87 }/87 ZS7 Oés)>

R R

+ (2, = Z, 00(s, X, Y, 7, o) —UO(S,XS,YS,ZS,QS)Dds.

89 R

By virtue of Assumption (Hy), we obtain
T
KuE [|X’T - XT|2] + K\I,EJ

(X = X2 4 Y] Vif? 42— Z,]?)ds<0.
0
which implies X} = X, X' = X, Y' =Y, and Z' = Z. Moreover, according to Lemma ,

assumption (Cy2), and the fact that X/, = Xr, we get
T / 2 / 2 12 2
E | |A, = A|" 0 d[M],<CE|ho(X], ar) — ho(Xr, ar)| " <CE|X] — X7|” = 0.
0

This yields A’ = A in M?(0, T; R?).

Next, we prove the existence of solution. From Lemma [3.3, when v = 0, for any
(fo(-),50(-),go(+)) € L£2(0,T;RY) x £2(0,T;R™?) x £2(0,T;R?) and hg € L*(R?) the for-
ward backward system has an adapted solution. According to Lemma , for any
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(fo(-),50(-),go(+)) € £2(0,T;R?) x £2(0,T;R™?) x £2(0,T;R?) and ho € L*(R?), we can
solve the system successively for the case v € [0, dg], [do,200], - ... It turns out that,
when vy = 1, for any (fo(-),50(-),g0o(+)) € £2(0,T;R?) x £2(0,T;R™) x £2(0,T;R?) and
ho € L2(R?), the adapted solution of exists, then we deduce immediately that the
adapted solution of exists. ]

In what follows, we study how to weaken assumption (Hg) to get a solution of the FBSDE
with Markovian switching (3.2.1). In fact, we can establish the existence and uniqueness
of a solution to equation ({3.2.1)) if one of the following assumptions (Iy) and (Jo) below is

satisfied.

Assumption I,.

(Ip1) There exists a positive constant K} such that for any x1, 2z, € R? and ig e M |
. . 2
<h0 (.fL"l, Zo) — ho (iL’Q, ZQ) , L1 — a:2>>Kh|x1 — 5132‘ N P-a.s.

(Ip2) There exists a positive constant Ky such that for any ¢ € [0,T], 61 = (z1,91,21),602 =

(22,2, 22) € R? x RY x R™*? and 4y € M,

‘Ifo(t, 91, 02,i0)< — K\p‘xl — X9 2, P-a.s.

Assumption Jj.

(Jo1) For any z1, x5 € R? and iy € M, we have
<h0 (Il, Z()) — ho (372, ZQ) , L1 — $2>>0, P-a.s.

(Jo2) There exists a positive constant Ky such that for any t € [0,7T], 0; = (x1,v1,21),02 =

(@2, Y2, 22) € R¢ x R¢ x R¥*? and i, € M, we have

W (t,01,0,40)< — Km(‘% - y2!2 + |21 — ZQHQ), P-a.s.
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It is easily seen that both assumptions (Ip2) and (Jy2) are weaker than assumption (Hy2).
Hence, the following result is an improvement of Theorem [3.2]
Theorem 3.5. Let Assumption (Co) and either Assumption (L) or Assumption (Jo) hold.
Then there exists a unique process (X,Y, Z, ) € 82(0,T; R?) x S?(0, T; R?) x L2(0, T'; R¥*9) x
M?2(0, T;RY) which is the solution of the FBSDEs with Markovian switching .

The proof of Theorem is divided into two parts. First, Theorem is proved under

Assumptions (Cy) and (Iy). Then, it is proved under Assumptions (Cy) and (Jy).

Proof of Theorem under Assumptions (Cy) and (I).

(1) Existence of a solution: Let 6 > 0 and consider the sequence (X", Y™, Z" A™),>¢ of pro-

cesses defined recursively as follows: (X°, Y? Z% A% = (0,0,0,0) and
(Xl yntl Zntl Antl) e §2(0,T;R?) x 8%(0,T;RY) x L£2(0, T; R¥>4) x M2(0,T;R?) sat-

isfies

( t

X{L+1=£+J

(fO (S,Xngl’Y;nJrl, Zg+1’as) . (5YZL+1 + 5Y;n)d8
0

t
+J <00 (s, X2 Y Z0H o) — 020 + 5Z§‘> dW,
0

A

. (3.2.7)
Ytn+1 _ hO(X;H,ozT) _J gg(s,XgH,YS”H,Zgﬂ,as)ds
t

—§ Zrraw, — § AT e dM.

\

In view of Theorem [3.2] these recursive FBSDEs have unique solutions. For n > 0 and

t € [0,T], denote
ontl 1 rnl 1 Sntl 1 An+l . 1
Xt m XpHU o X, B Y S, B e it g, s A - A

AR () := ho(XT, o) — ho(X™Y, o).

In addition, put @"! — (X7l ynrtl zntl) @nil — (Xntl yntl gntly and for ¢ —
f0790a007

@n—i_l(t) = Qp(t’ @?—H? at) - QD(L @?7 at)'
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By taking the expectations after using 1t6’s formula for <Xf+1, ?;"+1>, it is clear that
A ~ T A A
BB T)) + 0 | (J920 + 12000 ) ds
0
T A A A A
O J (st vy + [z, 2] ) ds
0
T
_HEJ <<Yn+1 fn+1 )>+<X:’H,§6LH >_|_ [ZnJrl G071 (s >]) ds.
0
According to Assumption (Iy) and Young’s inequality, we obtain

KhE]X$+1\2+K\pEJT\X§+1]2ds+gEJT (1721222 >ds<5EJ (19 +1122(2) ds.
’ i (3.2.8)
Again, using [t0’s formula for ]Y”]Q and then taking the expectation yield
T T
E|Y;? +E£ | 27| %ds +E£ |A"? o d[M], = E|h2(T)|* — ZEJ (Y, go(s)Hds.

In view of Assumption (Cyl) and Young’s inequality, for ¢ < T', we have
. 1.7 . T
BT 4+ 5E [ 1Z0Pds + B | JR2P e i)
t t
A T A T A
< E|h(T)|? + CEJ X7 2ds + C’IEJ V7 2ds.
0 t
Then, applying Gronwall’s inequality and using (Cy2), we arrive at
A A T A A T A
B[V < CE(|ig(T)P + f [X72ds) < CE(| X7 + f X7 2ds).
0 0
Similarly to (3.1.3))-(3.1.4)), we obtain
TAn2 g S ||2 T’\n2 O |2 g O-n |2
B(| [rfds+ | [Z0fds+ | |Azf edin),)<CR(|5+ | 1%2[ds).  (3:29)
0 0 0 0
Combining ([3.2.9) and - lead to

n+1 n+1 oC o-n |2 JT o-n |2
(\X ? +J X \ds) TN (}XT\ + ] |X8|ds>.
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If we take § = w, then for any n > 1,

T T
X X 1 X X
E(| X5 +J ]X:”}st><2—nE<|X}|2 +J X2 ds)
0 0
and from ((3.2.9), we also get
T o2 T a2 e C o2 T ool
E(J v ds+f 127 ds+f Az e aln), ) <5 E(IXH +J X2 [ ds).
0 0 0 0
It follows that (X}),>0 is a Cauchy sequence in £L2(R?), (X™)n=0, (Y™)n=0 and (Z"),=0
are Cauchy sequences in £2(0,T;R?), £2(0,T;R%), and £2(0,T;R%*4), respectively, and
(A™),>¢ is a Cauchy sequence in M2(0,T;R?). Let X, Y, Z and A respectively be the limits

of (X™)nz0, (Y™")nz0, (Z")ns0 and (A™),>o in the corresponding spaces. Then, passing the
limit in equations (3.2.7)) yields that (X, Y, Z, A) is a solution of the FBSDEs with Markovian

switching (3.2.1)).

(2) Uniqueness of the solution: Let (X,Y, Z, A) and (X', Y, Z’, A") be two solutions of equa-

tions ([3.2.1)). Taking the expectations together with using Itd’s formula for (X' — X, Y —Y")
yields
E<X”fr’ — Xy, ho(X7, ar) — ho(Xr, aT)>

T
- EJ {<X; - Xs,g()(S,X;,YS/, Z;,Oés) - gO(S7XSaY;7 stas)>
0

+ <§/s, - }/:97 fO(S7X/ Y/ Z;7a5) - fO(S7XS73/37 ZS; a8>>

ER R

CR R

+ [Z; - ZS,O'()(S,X/ Y! Zéaas) - UO(S>X87Y:9’ ZS?QS)]}dS'

It follows from both assumptions of (Iy) that

T
KuE X, — Xr* + K\D]EJ X! — X,|*ds<0
0
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which implies X}, = X7 and X’ = X. Now we take the expectations in Itd’s formula for

v oyP,
T T
E]}Q’—}Q]2+EJ Z;—ZSstJrEJ A — AL e d[M].
t t

T

= E’hO(Xé“a CVT) - hO(XTa OéT)‘2 - QEJ <Y:g/ - Yi@; 90(57 X;a Y:g/a Z;7 as) - gO<37 X57 }{97 Zs> as)>d3-
t

(3.2.10)

Note that by both assumptions of (Cy), Young’s inequality and X7. = X7 and X’ = X imply

T T

|Z! — Z,|ds + EJ AL — Ag* e d[M],

t

1
E|Y, - Y|* + §EJ

t
T T

< Elho(X7, ar) — ho(Xr, ar)]* + Ef | X! — X,|*ds + EJ Y] — Y,|?ds (3.2.11)
t t

T T T
< cE|X) — Xp)? +IEJ X! — X,|*ds +EJ Y] — Y,|*ds = EJ |Y! — Yi|*ds.
t t t

By Gronwall’s inequality, we get

E‘YZ - }/;5’2 < 07
yielding Y’ = Y and, by (3.2.11), Z’ = Z in £2(0,T;R%¥>?) and A’ = A in M?(0,T;R?).
[

Proof of Theorem under Assumptions (Cy) and (Jo).

(1) Existence of a solution: Let 6 > 0 and consider the sequence (X", Y™, Z", A"),>0 of pro-

cesses defined recursively as follows: (X° Y? Z° A% = (0,0,0,0) and
(X1 Yy Zer AmH e §2(0, T3 RY) x 82(0,T; RY) x £2(0, T; Ry x M2(0, T; R?) sat-

isfies

(

t t
XZL-H — 5 +f fO(SJX;L+17Y;n+17 Z;L—H,O(s)ds +f 0'0(8,X?+1,}/Sn+1, Z;H_I,Oés)dWs,
0 0

vt = (ho(XpH, ar) + X3+ — 07

T
- f (g0(s, X2, Y20, 204 ) = GXIH 46X ) ds
t

N

T.

T T
—J ZM AW, — f A" e dM, 0<t
\ t t

(3.2.12)
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By Theorem , the recursive FBSDEs have unique solutions. Define for n>1, X " f/”, Z "

A”, /53, f(’}, gy, and 6 as in the proof of Theorem Now, for n > 0 and ¢t < T, taking

the expectations in It0’s formula, we have
A A A A A T A
B(CX D)) + 8L = O, X)) + 8B ||
0
T, r . .
EJ <<st+1 n+1 >+ <Xn+1 GrrL( >+ [Zn+1 G0 (s )D ds — 5EJ <X:/+17X;’l>d8'
0 0

By both assumptions of (Jy) and Young’s inequality, we arrive at

Y n+1]2 0 g n+1(2 g
§E|XT |+§E | X" 2ds + Ky E
0

0

. . ) R r -
(D/sn+1|2+ HZ;“rlH?)dsgéE (|Xﬁ2 + f |X;l|2ds> .
0
(3.2.13)
Now, we show that E[ sup,. |X§|2] < CE S?; (|f/8”]2 + ||Z§‘H2)ds Since X" is a continuous

semimartingale and fy and o are Lipschitz functions in (z,y, z) uniformly in (¢,w) then for

E[Ssg)!f(?ﬂ<CE[<Jt!f6"”(S)!dS) RCH ds]
CJEU s+ [ log ()1as]

< OB [[ (S 4 1777+ 12217) s
0

t<T,

Thus, for all t < T,

E[sup|)2:|2] < c{fE[supyXﬂ ]ds+]EJ (Y2 1P+ 12217 d }

s<t 0 U<Ls

Using Gronwall’s inequality, we obtain the desired inequality

T
E[sup ]XQ\Q] < CEJ (JY1? + | Z2]?)ds. (3.2.14)
0

s<T

Combining (3.2.14) and (3.2.13)), it follows that
T R R T R R
KoE f (V112 + |20 2) ds<SCE f (V2P + 1202 ds
0 0



80

Taking 0 small enough then the sequences (Y"),>¢ and (Z"),>¢ are Cauchy sequences
in £2(0,T;R?%) and £2(0,T;R%9), respectively. As in the proof of previous part, (X2),=o
is a Cauchy sequence in £2(R%) and (X™),0, is a Cauchy sequence in £2(0,7’; R?); which
implies (A™),>o is a Cauchy sequence in M?(0,T;R%). Let X, Y, Z and A respectively be
the limit of (X™),>0, (Y")nz0, (£2")n=0 and (A™),>o in the corresponding space and then
pass the limits in equations we can show that (X,Y, Z, A) is a solution of the system
of FBSDEs with Markovian switching.

(2) Uniqueness of the solution: Let (X,Y, Z, A) and (X', Y, Z’, A") be two solutions of equa-

tions ([3.2.1)). Taking the expectations in Ito’s formula for (X' — XY’ —Y") we get
E( X7 — X, ho(X, ar) = ho(X7, a7))

T
= ]EJ <<X; - Xs,go(s, Xé, YZ? Z;, Oés> - gO(S’Xsa Ys, Zs, Oés)>

0

+ (Y =Y, fols, X0, Y], Z0, o) — fols, X, Y, Zs,y )

(2= Zysools, XYL, 2L 0) = 00(s, Xo, Vi Zy )] ) ds

ERE-

By both assumptions of (Jy), we obtain

T
K\I,]EJ (Y~ Y. + |2 — Z,)ds<0
0

which implies Y/ =Y and Z' = Z.

Next, using It6’s formula for | X’ — X|? and then taking expectations lead to
t
EX; - Xi|* = 2Ef (XL = X, fols, XL Y], Z3, o) — fols, X, Ve, Zs, ) yds
0
t
n EJ loo(s, X2, Y, 2, ) — o0(s, Xo, Y, Za, )| 2ds.
0

ER R

Since fy and o¢ are Lipschitz functions in (z,y,2), Y/ =Y and Z' = Z give
t
E|X] - X,|? < BEJ | X! — X,|%ds.
0

Then, by Gronwall’s inequality,
E|X, — X|* <0,
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yielding X’ = X and X} = Xp. Moreover, taking the expectations in [td’s formula for

Y — Y|* we get (3.2.10). Since X/ = X7, Y/ =Y, Z' = Z, it follows from assumption
(C()Q) that

T
IEJ N = A2 o d[M], = Elho(Xh, az) — ho(Xr ar)2 < cE|X) — Xz[2 0.
t

Thus, A’ = A in M?(0,T;R?). O



CHAPTER 4
Conditional McKean-Vlasov Forward Backward
Stochastic Differential Equations with Regime
Switching

1 Conditional McKean-Vlasov FBSDEs with Regime Switching
Motivated by control and game problems for large-scale systems under random environ-
ments, in this section we will consider forward-backward stochastic systems with mean-field
and regime-switching where the mean-field terms are represented by random measures con-
ditioned on the history of the Markov chain. Conditions for existence and uniqueness of
solutions are obtained, which can be considered as generalizations of the results in the pre-

vious section.

Let Wy(-, ) be the 2-Wasserstein distance, defined in (1.7.3)), on P»(R?) defined by Note
that

1/2

Wa(,v) = inf { (Bl¢ = ()" 1 €,C € L2RY), Pe = o, P = v},

which implies that
1/2

W (Pe, o)< (Ef¢ — ¢[)

In addition, it follows from [I7, Lemma 7.2| that for any sub-o-field G of F and r>2, we

have

Wa (Peeioy: Preio)) <[E(j€ — ¢['|)]"",  P-as. (4.1.1)

82
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Let

f:00,T] x Q x R x R? x R x P(R*) x M — R?,

[0, 7] x Q x RY x R? x R x P(R*) x M — R?,

NS

o:[0,7] x Q x R* x R* x R4 x P(R*) x M — R™?,

h: QxR x P(RY) x M — R

be measurable functions with respect to the Borel o-fields.

For this section we will be working with the following conditional McKean-Vlasov FB-

SDE

f

t t
Xt = §+ f f(SaX87YS7ZSJIP(XS,YS|f§‘_)7aS)dS + J‘ 0(87X57)/SaZsa]:P)(XS7Y5|]:§¥_)7OéS)dW87
0

0

T T T
< }/; = h<XT7 ]P)(XT|.F%)7 OfT) - f 9(57 XS7 5/;7 Z87 P(XS,YS‘.F;)L); Oés>dS - f ZSdWs - J AS L4 dMSJ
t t t

(1€ [0,T7].

(4.1.2)
A quadruplet of measurable process (X;,Y;, Z;, A;) is called a solution of above equation if
(X1, Y, Zy, Ay) € S%(0,T;RY) x 820, T;RY) x £2(0, T; R™4) x M?(0,T;R?) and satisfies
E1.9).

Assumption (C).

are F-progressively measurable and Lipschitz in (z,y, z, u) uniformly in (¢,w). That is
for ¢ = f, g, or o, there exists (deterministic) constants Cy and C, such that for any
te [O,T], i € ./\/l, (91 = (I’l,yl, 21), (92 = (Z’Q,yg, ZQ) € Rd XRd XRdXd, and Vi,lV9 € P(R2d),

we have
|90(t7 01, Vhio) - 90(75, 02, VQaiO)‘<00H01 - 92H + C, Wy (V17 V2), P-a.s.

(C2) For each fixed (x, p,i9) € R x P(R?) x M, the function h(-,, 1, 79) belongs to L*(R?).

In addition, A(w,-,-,ip) is Lipschitz uniformly in (w,ip). That is, for any ic € M,
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T1, 79 € R and py, g € P(R?) there exist (deterministic) constants ¢ and C,, such that
‘h(ﬂﬂl, M1, Z'0) - h(l’mﬂz, io)KC}iﬁ - 352‘ + CMW2 (Ml:/ﬁz), P-a.s.

Fort e [O,T], 19 € M, 01 = (ZEl,yl, Zl), 6)2 = (mg,QQ,ZQ) e R¢ XRdXRdXd, and v € P(R2d>

we denote

\Il(tuelve%yu 7’0) = <f(t7917]/72.0) - f(t,027V, Z'O)ayl _y2>
+ <g(t7017V7 10) - g(ta927y7 Z.0)71:1 - ZE2>

+ [U(t,gl,y, Zo) —U(t,eg,y7i0)721 —22]. (413)
Similar to Assumption (Hg), we consider the following assumption:

Assumption (H).
(H1) There exists a positive constant Kj, such that for any x;,z, € R? p e P(R?), and

19 € M, we have

2
,  P-a.s.

Ch(@e, pyio) — h(xa, pyig), 21 — 22 )= Kp|ay — x5

(H2) There exists a positive constant Ky such that for any t € [0,T], 01 = (x1,y1,21),02 =

(72,12, 22) € R x RY x R4 1 e P(R?), and iy € M, we have
\Il(t,Hl, 92, v, Zo)< — K\p(‘l‘l — ZL‘Q‘Q + |y1 — yg}z + HZl — 22H2>, P-a.s.

The following theorem can be viewed as and extension of Theorem To make the
presentation more transparent, its proof is aggregated in the next subsection.

Theorem 4.1. Let assumptions (C) and (H) hold. If the constant
C,,C, < min{(\/g ~ 1)K, Kq,/\/ﬁ} (4.1.4)

then there exists a unique process (X,Y, Z, \) that solves the system of the conditional
mean-field FBSDE with Markovian switching.
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Next, similar to Theorem we shall study how to weaken Assumption (H) in Theo-
rem Different from the setting in Theorem the appearance of the mean-field terms
in (4.1.2) makes the problem more complicated. To simplify the calculations, we assume
that o does not depend on P(x, v, 7= ). Subsequently, the conditional mean-field FBSDE
with Markovian switching becomes:

r

t t
Xt = €+ f f(S7X87}/jS7ZSJP(XS,YA.F;{%O{S)dS + J 0(87X87)/;7Z87as)dW87
0 0

T
Y, = h(XT,IP(XT\f%), aT) - f 9(37X37Y9a 257P(X3,Ys|fg_),as)d5
‘ (4.1.5)

— {0 ZdW, — §] A, e dM,,

te[0,T].

\

We make the following assumption.

Assumption L.

(L1) For any z, 73 € RY, pue P(R?), and ig € M we have

2
, P-a.s.

Ch(w, pyio) — h(@a, p1d0), @1 — 2 )= K|y — 9

(L2) There exists a positive constant Ky such that for any ¢t € [0,T], 61 = (z1,y1,21),02 =

(72,12, 22) € R x RY x R4 1 e P(R*), and iy € M, we have
. 2 2
‘1’(7%91,927 v, Z0)< — K@(‘% — 962‘ + ‘yl — yz| >, P-a.s.

Notice that although Assumption (L) is weaker than Assumption (H), it is slightly different
from Assumption (Iy) and Assumption (Jy) in the previous section. Following similar steps
as in the proof of Theorem [4.1 we have the following result. Its proof is provided in the
next subsection.

Theorem 4.2. Let Assumptions (C) and (L) hold. If the constant

C,,C, < min {2(\@ — 1)K, K\y/\/ﬁ} (4.1.6)
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then there exists a unique process (X,Y, Z, \), which solves the system of the condi-
tional mean-field FBSDE with Markovian switching.
2 Proofs of Main Theorems
2.1 Proof of Theorem [4.1]
In this section we will prove the existence and uniqueness of solutions to conditional
mean-field FBSDEs with Markovian switching under Assumption (C) and (H). The
proof is divided into two parts. First, we prove the existence of solutions.

(1) Existence of a solution: Let 6 be a fixed positive number. We recursively define the

sequence of processes (X™, Y™ Z" A"),>o in S%(0,T;R?) x §%(0,T;R%) x L£2(0,T; R4 x
M2(0,T;R?) as follows: (X Y9 Z% A% = (0,0,0,0) and, forn > 0, (X", Yl Zntl Antl) e
S?2(0, T;R?Y) x §2(0,T; R?) x L£2(0,T;R>4) x M?(0,T;R?) satisfies the FBSDE

t

thJrl — f +f (f( Xn+1 Yn+1 ZnJrl,Vs, ) 5yn+1 + 5Yn>d8

0
t
_|_f ( ( Xn-‘rl Yn-i—l Zn+1,l/s, ) 5zn+1 + 52n>dW

0 (4.2.1)

A

as)ds

278

T
}/tn+1 _ h(X:;fH,,u%,aT) _J ( Xn+1 Yn+1 Zn+1 "

T

N

Y

T
—J Zg“dWS—f A e dM,, 0<t
t t

\
where vy 1= P(xnynro ) and pp 1= Pixpizey. In view of Theorem this FBSDE has a

unique solution. For n > 0 and t € [0,T], denote

Xz@-&-l — th-&-l _th7 }A/;n+1 — YZH_I _Y;n7 ZAZL-H — Ztn+1 _Ztn7 A;H—l — A?-H _A;L7 (422)

~

P () = D(XP, ™ o) = (X ™2, )
and for ©" = (X", Y™ Z") and ¢ = f,g,0
¢n+1(t) = Sp(t7 6?-"_1? th7at) - QO(t, G?a 1/27'_170475)7

(4.2.3)
@n(t) = @(ta 6?’ th7 at) - Sp(ta 6?7 th_la at)‘
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It follows from that
W3 v ™) S E(XPP + [V PIAL). (4.2.4)
According to Ito’s formula, we obtain
<Xn+1 }A/n+1> _ <Xn+1 }A/'n+1>
J (YL fril(s) — Y 4 0V Nds + J Y (6™ (s) — 620F + 627)dW,)
+ L (X g (s) s +L (X7 2 AW,y +JO (X AT e dM,)

+ J ' (20t 6" (s) — 620t + 527 ds.

’ (4.2.5)
Applying standard estimates of BSDEs and the Burkholder-Davis-Gundy inequality, it is easy
to see that the stochastic integrals in are true martingales. After taking expectations,

we obtain
A T A A
BCXE G, i ar) = BOCR i ar)) + 08 | (970 + 1201 ) ds
0
T
_E f (P 920y + 2, 221 ) s (4.2.6)
0

T
_HEJ <<}A/;n+1’fn+1 >+<Xn+1 An+1 )>+ [Z;Hl’&nﬂ({g)])ds'
0
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Using the Lipschitz continuity of & (assumption (C2)), Young’s inequality, (4.1.1]) and (H1),

we have

E<Xn+1 (XTH_I’/'LTvaT) h(X%,M%_l,CYT)>
- E<Xn+1 (Xn+17:uT7aT) h(X;“nuTaaT > + E<Xn+1 (X?WMT?Q/T) h(X;“nug“_laaT)>
> KnB|X3 2 = G| | X5 Walug, 157 |

Cpe

A C
> Kh]E|Xn+1|2 ]E|Xn+1|2 MEW?(M%, M%—l)
2¢

c, Cy A
>@q—3%Em%w B[E(551177)

C, c X
- (Kh — TE) E| X2+ — “E\X;EP, Ve > 0. (4.2.7)
2¢

Again, by the Lipschitz continuity of f, h, o, Young’s inequality, (4.1.1)) and (H2), we also

have
<th+17§n+1 >—|—<Yn+1 n+1 >+ [Zn+1 An+1(t>]
= W(t, 07,07, v on) + (X7, g (0)) + 7 ) + (204, 67 (1)]
< —K@(|Xt”“!2 + [V HZZ‘“HQ) +XPHg @) + 1Y)+ 1205 )]

< Ky (JXPRE P 2R G () (17 1 12

SC’

C, . . 5
< (57 = Ku) (IRPTP #0001 P 4 1200 P) + 52w 077 ™Y), Vee[0. 7] >0

2y
Now, it follows from that
T
EJ (<Xn+1 L ( > <Yn+1 fn+1 >>+ [Zg+1’&n+1(s)]>d8
0
T T
< EJ (Q — Ky ) (X[ [ o 202 ) ds + NG J E(|X7* + [v7*)ds
0o \2vy 2 Jo
(4.2.8)

On the other hand, in view of Young’s inequality, we also have for any p > 0,

T T
N . N . 1 A N 1.~ 1. -
B[ (e (20 2 )ds < 5B [ (9P 4 | Z0 P 4 SV 4 |22 ds
0 0 p P
(4.2.9)
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Combining ({277), [E23), and ([LZ9), to (T20), yields

C€ oni112 Cuponp2 g 412 Sn+112
(560 = =5 VG = QLRGP 4+ 0 | (V00 o+ 2 s
T C N . .
B[ (G- K) (K2R EIP 120 ds
0 \2Y

3vC, (F 2 2 Trp - DA 1~ 1, -
< E (X2 + 72[") d +5EJ (B 4+ 2120002 + 90 + o1 222 ds.
S| B ) ds 0B | (BN B2 VR 2

Rearranging the terms, we obtain

C . o (T
(Kh - —“€>E|X§E+1|2 + (K@ - —)EJ | X+ 2ds
2 2y 0

p C, JT Srnt1]2 5412
+(0(1—=)+ Ky —— |E Y. + |z d 4.2.10
(5= 8) + o= S2E [ (1t 122 ) s (42,10

3vC,
2

3vC,
2

< Srpipp 4 EJT B A AR Ol PN
2¢ 0 s 2p/) "¢ 20" ¢

Denote [O]% = |X[2 + [Y|? + | Z|? and

. Ce c, p C,

)\(675777P>_m1n{Kh_ 9 7K\IJ_27,5<1—2>+K\I/—%},
C, 3vC )

O(e. & & ¢ v

(67 777p) max{2€7 9 +2p},

we obtain
o T 0(¢,0,7%,0) . (1 % T
E Xn+1 2 +J @;Hl 2d$> < #E(Xn 2 +J @? zds) . (4‘2‘11)
(1 [ 1neipas) < o3 (12 + [ jen)

To proceed, we temporarily assume there exist constants ¢, d,y, and p such that
A€, 8,7, p) > 0(e, 6,7, p)- (4.2.12)

Then the inequality (4.2.11]) becomes a contraction, which subsequently implies that (X}),>0
is a Cauchy sequence in L?(Q,P) and (X"),>0, (Y")n>0 and (Z™),>¢ are Cauchy sequences

in L*([0,T] x Q,dt ® dP). Taking the expectation of It6’s formula, we have

T T T
BV +E [ 1Z0Pds + B | |ATP o d[M), = Bin(T)F - 28 | (82 67(5))ds — 0
t t t
(4.2.13)
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since (X72)n=0, (X™)nz0, (Y")ns0 and (Z"),>¢ are Cauchy. Thus, (A"),>¢ is also a Cauchy

sequence. This yields
E lsup <|X§ — X"+ Y - Ysm2>] — 0asn, m— .
s<T

By Banach fixed point theorem, there exist F-adapted cadlag processes X and Y, an F-
progressively measurable process Z, and a collection of F-progressively measurable functions

A such that
T T )
E [Sup <|X§ — X, P+ Y - Y5|2> + f |1z — Z,|*ds + f AT — A|" o d[M]S] —0asn— ©
s<T 0 0

and

 [sup (0« ) + [ 1zpas s I ean,] <o

s<T 0

Moreover, taking the limits in equation (4.2.1)) we obtain that (X,Y,Z, A) is a solution of
@E12).

To complete the proof, we are to show that such v,¢,d and p exist when the condition

4.1.4)) is satisfied. In fact, to make the contraction meaningful, we assume Kj— C“E Kg— g; ,
and 1 — £ are positive. Since (1 — %) < 2%) with equality obtained if and only if p = 1, we

will take p = 1 and set

C, 3vC,
ES _ 1-
0% (e, ) 6{%9(6,(5,7, 1) = max{ 50 5 }
and
« ) . Ce C,
N(e,7) = (151_1}(1)/\(6,(5,7, 1) = mm{Kh - T LKy — %}

If we have \*(e,v) > 6*(e, ) for some € and 7, then there exists § small enough such (4.2.12))

is satisfied. Note that A*(e,7y) > 0*(¢, ), equivalent to having the following inequalities:

C, Cue 3nC, Cpe
26+ 27 2 * 2

}, K\y>max{c ¢, 3G, +ﬁ}

K, > max{
2¢ 297 2 27y

(4.2.14)

To minimize C“ + C" and C” + 3”’0” we take e = 1 and v = \/Lg Let 11,12 > 0 such that

2e

C,,C, < min {n Kj,neKy}. Without loss of the generality, we can assume 7 K} < n2Ky.
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Then (4.2.14)) holds if following inequalities hold

K K
Ky>C, K> 7712 "(V3+1), Ky> 7“2 "(V3+1), Ky>+3C,.  (4.2.15)

From the second inequality, we obtain 7; < v/3 — 1. The third inequality in (4.2.15) holds if

the next inequality

K K
Uit h(\/§+1)<771 h
2 2

holds. This implies 75 < v/3—1. From the fourth inequality in (4.2.15) we have C, < ‘/TEK\I,.
Note that \/?g < v/3 — 1. Combining these we obtain the sufficient condition C,,C, <
min{(\/g— 1)Ky, ‘/?gK\p} for which A(e,d, o, p) > 6(¢,0,a,p) when e = p =1, v = \/?g and

0 > 0 small enough.

(2) Uniqueness of the solution: Let (X', Y”, Z’, A’) be another solution to (4.1.2). Let © =

(X,Y,Z)and © = (X', Y’', Z"). Applying It6’s formula to the product (X' — X, Y’ —Y") and

taking expectation, we obtain
E(Xp — X, Y] — Yr) =T, (4.2.16)

where

T
[r = EJ <<X§ — X5, 9(5, 05 Poxyyiire ), as) = 9(5, 05, Pix, v 7o ), @) )
0

+ Y] =Y, f (5,04, Pixyyire ), o) — f(5,05, Pix, vize ) as) )

+ I:O- (87 6;) ]P)(XQ,YS’LFSO‘_)) Oés) - 0(87 @Su ]P)(XS,YSU:;"_), O‘s), Z; - ZS]) ds.
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Using Assumption (C), Assumption (H1), (4.1.1]), and Holder’s inequality, we can obtain the

following lower bound for I'7.
Ir = E<X’T — X, M X7, Py 7, 1) — h (X, Prxpizp), aT)>
> KyB|X; — Xop|* - CMEOX’T — Xr| W2 (P(X/ﬂf%)aP(xT\f%)))
> KLE[ X7 — Xr[P = CE {’Xfr — X7 [E(\X’ff - XT|2|]:%)];} (4.2.17)
- KUEIX; — Xal? — GE{E(X; — Xnl| 7 [B(1X; - XeP177)
>(K;, — C)E| X} — Xp|*.

On the other hand, we can also have an upper bound for I'y as follow. First, by the triangle
inequality,
T
FT <E f [\II (87 957 6/37 IP(XS,YSU:SO:)a Oés)
0

+ CWa (Pog viire ), P viire ) (lXé = X+ Y] = Yil + [ 20 - Zs|>]d8-

Then, using the estimate (4.1.1)),

Wa (B vire ), B,y ) < 4 B(XL = X2 + V) = Vif2[ 7o) (4.2.18)
together with (H2) and the Cauchy-Schwarz inequality three times yields

T
rr<B [ | = Ka(1X0- P+ - P + 120 - )

T c,,\/E(p(; = X, P+ Y] = P F) (1K = X+ Y = Vil + 12, - ZS|)]ds

T
<k [— Ko (1X = X2+ V] = Vo2 + 12— 2.]7)

C, /1 C, 1 C,
+—<—+?w)|x;—xs|2+—(—+?w)|Y;—Ys|:’+—HZ;—ZSH2 ds.
2 \v 2 \v 27y

(4.2.19)
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Combining (4.2.17) and (4.2.19)), we obtain

0< (- KExg i +8 [ [ % () - kX -

C, 1 Gy
H= (2 +3y) - Ka |- v+ —K\I,>|Z;—ZS|2}ds.
2 \v 2y

Noting that if C,, (), < min { (\/3— 1)Kh, K\p/\/g}, with v = \/Lg, then all the coefficients of
the right-hand side of the above inequality are negative. This implies that X/ = X1 P-a.s.
and for all 0<s<T', X! = X;, Y/ =Y, and Z. = Z; P-a.s. Next, we take the expectation of

S

I[t6’s formula for [V — Y2,

T T
EY] - Yo[? +Ef 12 - z,Pds +Ef N, — AL e d[M],
0 0

T
= E|W X}, ar) — h( X7, ar)|* — QEJ (Y] =Y, 9(s, X0, Y], Z0 o) — g(s, X, Yy, Zs, ) yds.
0

Since X7, = X P-a.s. and, for all 0<s<T, X! = X,, Y] =Y}, and Z. = Z, P-a.s., we get

T
EJ A — A2 e d[M], = 0.
0

Thus, A, = A, in M?(0, T;R?), yielding that the solution of (4.1.2)) is unique. O
2.2 Proof of Theorem [4.2]

(1) Existence of a solution: We will follow the same approach as in Theorem 4.1} Let § > 0

and consider the sequence (X", Y™, Z" A"),>o defined recursively as follows: For n = 0,
put (X% Y° Z° A% = (0,0,0,0). For n = 0, let (X" yn+l Zn+l Ant1) he the stochastic
process in S%(0, T;R?) x §2(0,T;RY) x L£2(0,T;R¥>4) x M?(0,T;R?) which is the unique
solution of the following FBSDE

t

)78

)
xpt =£+J

(f(S,X;L+1,}/;n+1,Z;L+1 " Oés) _ 5}/;n+1 + (SYt:L)dS
0

t
+J o(s, X!yt znt o) dW,

0 . (4.2.20)
Y R(XEY e ar) — f gs, XYL 2000 n o) d
t

778

T T
—J ZM AW, — f A" e dM,, 0<t<T,
t t
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where vy := P(xn yn 7o ) and pg =P xn|Fe). By virtue of Theorem (under Assumptions
(Cp) and (Hy)), we know that this recursive FBSDE has a unique solution. For n > 1,

e [0,T], we define X+, Y+t Zzn+t AP+ pn(t), gnH(t), @™ (t) as in and (4.2.3).
As the diffusion coeflicient ¢ is assumed to be independent of the conditional measure,
implies 6" (t) = 0.

Using It0’s formula and then taking the expectations, we obtain
A T A
ECXE R(XPH, W, ar) — M(XF, p o)) + 5Ef Y+ Pds
0
T . T, R A
_ 5EJ <Y;”+17Ys”>d8+Ef <<st+1’fn+1 >+<Xn+1 " (s)) + [Z§+1,6n+1(8)]>d8.
0 0
(4.2.21)
Similar to (4.2.7)), for any € > 0, we have

B X5+ MK, i ) — WX 57 ar) )2 (K — ) BIXGP — SEB|Rp P
(4.2.22)
By the Lipschitz continuity of f, h, o (assumption (C1)), Young’s inequality, and using
a"(t) = 0 and applying assumption (L2) instead of (H2), for every 0 < ¢ < T and any v > 0,

we have
<ng+1,§n+1 >+<Yn+1 n+1 >+ [Zn+1 An+1(t)]

= W(t, 0", 07, v, o) + (XPT g (1) + (L ()

2>+

< Ky <|th+1‘2 n ‘fftnﬂf) LW, (V?a V:LA) (’thﬂ‘ n

< _K\P<|XZL+1‘2 n N

O+ )|

< (52— o) (0 + 9 F) 4 2C207).

Using (4.2.4) leads to the following inequality which is similar to (4.2.8)
J (<Xn+1 () + <Yn+1 Fry( (s)) + [ZAQH, 6"“(5)])d$

. , (4.2.23)
<EJ <2_7u B Kq;) <’X§L+1|2 n ‘}A/;nJrl‘Q)ds i ’YCVEJ (|X§’2 + h?;n’2>d8
0 0
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On the other hand, in view of Young’s inequality, we also have

T T
EJ (Y Yyds < gEJ (\1@““\2 + }?;"\2> ds. (4.2.24)
0 0

Applying now (4.2.22)), (4.2.23), and (4.2.24)), to (4.2.21)), yields

(55

Cy ’ on+1|2 Orn41]2
< (——KW)EJ (|t [ ) s
2y
5 T ~ 112 ~ 2
+4C, IEJ (1] + v )ds+§IEJ (I o [y ) s
0

Rearranging terms, we obtain

C - . 2
—LE|X2? + 6]EJ Y+ ds
2€ 0

(£ - 2)1@\)(”“\ + (K@ - f X7+ ds + (5

2+K\1,—— f V4 P ds

< Seg|xpP +7(JVEJ X7 ds + <7(Jy + é)]EJ V[ ds,
2€ 0 2 0

(4.2.25)
Define
) C e C, C 4]
)‘(67 577) = min {Kh - T“: K\I! - %} ) 0(67677) = maX{Q—:, chl/ + 5} .
Then (4.2.25)) implies
T T
N N N O(e. o N N N
E |X;+1|2 + J (|X;z+1|2 + |st+1|2)d8 < ME |X¥|2 + J (|X;z+1|2 + |st+1|2)d8 '
0 A€, d,7) 0
(4.2.26)
Now, we assume temporarily that if there exist €, §, and v such that
A€, 6,7v) > 0(€,9,7). (4.2.27)

Then the inequality m 4.2.26)) becomes a contraction, which implies that (X7),¢ is a Cauchy
sequence in £2(2,P) and (X"),>0 and (Y"),>0 are Cauchy sequences in £2([0, T]x, dt®dP).

As a consequence, we can show that (4.1.5) has a solution. Indeed, taking the expectation
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of It6’s formula, using (C1) and (4.2.4)), we have

T T
B +E | |20Pds + B | JA2P e i),

t t

T
~ B (1) - 2 | (974 (6))ds
t

T
<EI(T)? 4+ 28 |72 Coll 21+ 197+ 1221) + Con/ Bz 12 4 V2|7 ) s
t

<E|}"(T)? +EJ

t

T
~ N N N 1. -
[<20€2 +3Cy + C,,) YI2 + Co| X2+ C | X2+ C Y + 5\2?\]2]&9.
Subsequently,

. 1 r T
BIVP + 5F | 1Z2Pds B [ 1Az e g,
T

<E|i"(T)|? +EJ
0

[(203 +3Cy + CV> Y7 + Col X212 + C | X271 + cymn—lyz]ds — 0
since (X7)n=0, (X™)n=0, and (Y"),>¢ are Cauchy sequences. Thus, (Z"),>¢ and (A"),>o are
also Cauchy sequences. As a result,

E {sup (| Xr = X'+ Y] - YSmQ)] — 0asn, m— .

s<T

By the Banach fixed point theorem, there exist F-adapted cadlag processes X and Y, an F-
progressively measurable process Z and a collection of F-progressively measurable functions
A such that

T T
E [igg (X0 = X + Y =Y. ]?) + L |2} — Z|*ds + L |A7 - ASF . d[M]S] —0asn— ©

and

T T
E {sup (|XS|2 + |Y5|2) + f 1Z,|?ds + J |AS|2 o d[M]s] < 0.
s<T 0 0

Taking the limits in equation (4.2.20]), we obtain that (X,Y, Z, A) is a solution of (4.1.5]).
Next, we are to show that such v, ¢, and § exist when the condition (4.1.6)) is satisfied.

In fact, to make the contraction meaningful, we assume Kj — T’*E and Ky — % are positive.
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Since § > 0 can be chosen small enough, denote

0*(e,7) = (lsi_r>r(1]0(e,5, ) = max {g—:,fyCy} ,

N (e,7) = lim A(e,6,7) = min{K B %’K - %}

If we have \*(e,v) > 6*(e, ) for some € and 7, then there exists § small enough such (4.2.27))
is satisfied. Note that A*(e,7y) > 0*(¢, ), equivalent to having the following inequalities:

C 1 c c, ¢
Kh>—“<e+—>, Ky > 25480, Ky> 24+ 28
2 € 2 2y 2

Ky > C, (v + %) (4.2.28)
Similar to the proof in Theorem , we choose € = 1 and v = ‘/75 Let n1,m2 > 0 such that
C,,Cy < min {an h,ngK\p}. Without loss of the generality, we assume that 9, K, < n,Ky
(the result in the other direction turns out to be the same). Then holds if the

following system of inequalities hold

K K
Ki>Cu K> P2EV241), K> P2N0241), Ko >320,  (42:29)

From the second inequality, we obtain 1; < 2(v/2—1). The third inequality in (4.2.29) holds

if the next inequality

m Ky (\@+ 1) < mKy
2 M2

holds. This implies 7, < 2(v/2 — 1). From the fourth inequality in (4.2.29) we have C, <

‘/TEK\I,. Note that ‘/75 < 2(+v/2 — 1). Combining these we obtain the sufficient condition

C,,C, <min{2(v/2 — 1)K, \/7§K\1;} for which A(e, 9, a) > 0(¢,0, ) when e = 1, v = \/75 and

0 > 0 small enough.

(2) Uniqueness of the solution: Let (X', Y”, Z’, A’) be another solution to (4.1.5). Let © =
(X,Y,Z)and © = (X', Y’ Z’). Similar to the proof of Theorem , we take the expectation

of 1t6’s formula to the product (X' — X, Y’ —Y") and obtain

B(X} — Xp, Y] —Yr)y=Tr (4.2.30)
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where

T
I'p = EJ (<X§ — X, 9(5, 04, Pxsyzre ) as) — 9(5, 05, Pix, valre ), s))
0

(Y] = Yo, (5,04, Py vaire ), @) — f(5, 05, Pix, yvipe ), s)) (4.2.31)
+[o(s,0), a5) — 0(s,0,,04), 2, — ZS]>ds.
Note that Assumption (L1) is the same as Assumption (H1), so (4.2.17) still holds true.
That is,
Lr=(Ky, — C,)E|X) — Xr|. (4.2.32)

On the other hand, in view of Assumption (L2) and (4.2.18)), we have

T
FT < EJ [\I] (8) @57 6;7 ]P)(XS7YSIF§¥_)7 aS)

0

+ O W (Posvra ) Brxvapes ) (120 = Xl + Y] YLI)]dS

T
< Ef l — Ko (1X, — X,* + |Y] = Y,|) (4.2.33)
0

OB X vy = Yol (10— v vl s

) 1 g
< [%(m -) —Kw} B[ (1% X+ ¥ - Vi) ds
Y 0

Combining (4.2.32) and (4.2.33]), we obtain

C, 1 T
0 < (C\ — K)E| X% — Xof2 + [7(27 + ;> - Klp] IEJ (yx; XY - YsP)ds.
0

Noting now that C),, C), < min {2(\/5 — I)Kh, K\y/\/i}, with v = \%, all the coefficients of

the right hand side of the above inequality are negative, which implies that, X, = X7 P-a.s.
and for all 0<s<T, X! = X, and Y] = Y}, P-a.s.
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Now we take the expectation of It6’s formula for |V’ — Y |2

T T
H%—KP+EJz—Zﬁﬁ+EJ]M—Aﬁ.ﬂML
0 0

= ]E|h(X§w, OéT) — h(XT, O./T)|2
T
- QEJ Y] =Y, 9(s,05, Pixsynre y, o) — g(s, 04, Pix, vy 7o ), s) )ds.
0

Since X = X P-a.s. and for all 0<s<T', X! = X, and Y] = Y, P-a.s., we get
T T
ELH@—Z$®+EL|M—A$oﬂML:O
Thus, Z' = Z (in £2(0,T;R¥>9)) and A’ = A (in M?(0, T; R?)), yielding that the solution of
is unique. ]

Note that with a little effort, we can show that Theorem still hold true if P(x, y, 7= )
is replaced by P(x, v, z,|7e ) in . Nevertheless, with the present approach, we cannot
include A, to these probability measures. If A, is included, v = P(xn yn zn anjFe) and by
virtue of , to estimate the term involving W2(v", v~ 1), one needs some estimate of

the expected value E Sg |A?|2ds which is not possible because the quadratic variations of the

martingale associate with the Markov chain are random.



CHAPTER 5
Application in Conditional Mean-Field Nonzero-sum
Game

In this chapter, we consider a nonzero-sum game problem with N players in which the
dynamics and cost functionals of each player depend on conditional mean-field terms and
a regime-switching process. Let N, d;, 1<i<N, be positive integers. For each i, 1<i<N,
let U = L£(0,T;R%) be the set of admissible controls of the player i and denote U =
U' x U? x ... xUN. The dynamics of the system is given by the following conditional
mean-field SDE

t N
X, = a0 + L [A(s, o) X, + A(s, as)E(XS‘]:Sa_) + Z B'(s,as)ul + f(s,as) |ds
i=1

+ Lt [0(3, as) X + g(s, as)]dWS (5.0.1)

where for each iy € M and 1<i<N, u' € U', A(-,ig), A(-,i0), B'(-, i), f(-,40), and
g(-,io) are bounded continuous functions taking values in R4, R4xd Réxdi R4 and RY,
respectively. In addition, o(-, i) is a continuous function taking values in R%*<,

Note that the mean-field SDE is obtained as the mean-square limit as n — oo of
a system of interacting players of the form

t 1 n ' N ' '
X = A(s, ) XE" + —A(s, 0 )E Y X"+ ) Bl(s, o, Julb" S)|d
. xO—I—J [ (s,a5) X, —i—n (s, ) g (s, as)us™™ + f(s,a,)|ds

0 j=1 i=1

¢
+ f [0‘(8, ) X5 4 g(s, as)]de, 1<k<n,

0
where (W* k>1) is a collection of independent standard Brownian motions. Due to the

symmetry of the dynamics, we assume that the social planners apply the same control

100
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policies for all players in the feedback forms

In (5.0.1), the conditional expectation E(X,|F®) appears instead of the expectation E(Xj)
because of the effect of the common switching process «; to all the players.

For simplicity, through out this section we assume that W; is a scalar Brownian motion.
The case with multidimensional Brownian motion Wy can be treated in a similar way. Given

a control u = (u',u?,...,u") € U, the cost functional of the player i is given by

Ji(u) = %E{

+ XTR (ar) X1 + E(XE|FR) R (ar)E(X7|Ff) } (5.0.2)

T
f lXSTMi(S, as) X + ]E(X;|F§_)]\7i(s, as)E(XS}FS_) + (ul)TN(s, &s)ui]ds
0

where for each ig € M and 1<i<N, M'(-,ip) and M(-,4y) are bounded continuous symmetric
non-negative matrices with values in R¥*¢, N*(-,4,) and its inverse (N'(-, iy)) ~! are bounded
continuous symmetric positive matrices with values in R%*% and R'(iy) and R'(iy) are
symmetric non-negative matrices with values in R4*<,
An admissible control u* = (u*!,u*?, ... u*") € U is called a Nash equilibrium point
if for any 1<i<N,
Ji(uH)< T (w7 ), Yuleld!

where (u*~% u?) = (u™u*? ... unTut u T uN). We are interested in finding a

Nash equilibrium point for the aforementioned game problem.
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For each (¢, x, Z,ut,u?, ..., ul¥, p' ¢',ig) € [0, T x RIxRIx R xR x ... x RIV x RIxRIx M,
1<i< N, denote the Hamiltonian associated with the player ¢ as follow
Hi <t7 Z,T, ula UQ, ce 7uNapZ7 qu ZO) = (pz)T |:A(t7 ’LO)l’ + A(t7 ZO):Z‘ + Z B’ (t7 ’L.O)U’] + f(tv ZO):|
j=1

1 ) . ) . )
3 l"’”M%, io)a + &M (1, i0) + ()TNt >“]
. . T y
+ (o7t io)x + g(t.i0) o'
In addition, define the function 4° by
i i i -1/ i
a'tp) = —(N'(t,aw))  (B'(t,aw))Tp’, 0<t<T.
It is easy to check that the functions @, 1<i<N, satisfy

H'L <t7x7‘f7 al(t7p1)7a2(t7p2)7 A ’/&/N(t7pN)7pz’qZ7/i0>

<H, (t, z,z, 4 (t,p'), % (t,p?), ..., "t p ), Wl AT (@ pt Y, AN p™), L io)

for any u' € R%, p, ¢' € R%, 1<i<N. We have the following proposition.
Proposition 5.1. The process (X¢, (py,q}),---, (0. a ), A, .... AY) solves the following

conditional mean-field FBSDE with regime switching
Xt =Ty + J |:A(57 as)Xs + A(S, O‘s)E(Xs|JT_-sa—) + Z BZ(S7 as)al($7pls) + f(S, Ozs):|dS
0

=1

n Lt [0(8, as) Xs + (s, as)]dWs’

V2 = [Fan) X + RanB (Xl 73)] + |

t

T
lA(s, )Pl + E(A(& Oés)Tpi’fsoi)

T T
+M(s, a5) X + M(s, 0, )E(X | F) + o (s, as)qu]dS — f q-dW, — f A e dM,,
t t

(5.0.3)
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if and only if the admissible control t = (a*, 42, ..., ") = (a*(¢, p}), &*(t, p}), ..., aN (¢, p))
is a Nash equilibrium point of the conditional mean-field nonzero-sum quadratic stochastic

differential game.

Proof. First, we shall show that the condition is sufficient. Suppose that (X, (p}, q;),-- -, (0}, a),
AL, .., AY) is a solution of (5.0.3). Fix ¢, 1<i<N. Let v’ € Y’ and denote u’ = (0, u’) =

(ﬂl, R K T ,QN). Let X! be the state dynamics corresponding to the con-

trol u’. For simplicity, denote @'(s) = @'(s,pl), Xy = E(X,|F), X! = E(X{|F~), and

p. = E(pl|Fe) for 0<s<T. As a consequence, XT = E(XT|F¢ ) and (X))T = E[(X)T|Fe].

It suffices to prove that J;(u')=J; ().

To proceed, we observe that for any symmetric non-negative n x n matrix S and v!, v? €

R™ we have
(1) TS — (v*)TSv? = (vh —v?)TS(v! — v?) + 2(v' — V) TSV =2(v! — v?)TSV?.

Note that M’ (s, ), M(s, a,), N*(s, o), R (ar) and R'(ar) are all symmetric non-negative

matrices. Hence, using the definition of J;(-) and then above inequality yields

Jl(uz) — Jz(fl> = Ji(ﬂl, ce 7ﬂi_1,ui,fbi+1, ce ,fLN) — Jz(ﬂ)

1
~_F
2 {

£ ()TN (s, a)ul — ()TN (s, asmi]ds

T
J[@WM@MH—&M@M&+MWM@Mﬁ—ﬂM@M&
0

+ (X7)TR (ar) Xy — XJR (o) Xr + (X§) TR (o) X — X}Ri(aT)XT}

T
21@{ J [(X; — XS)TMi(s, as) X + (X; — XS)TMi(s, as) X, + (u; — ﬂi)TNi(s, as)ﬂi]ds

+ (X% — XT)TRi(OéT)XT + (X% - XT)TRi(OéT>XT}. (504)
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Next, we show that the rightmost of ([5.0.4) is equal to 0. Note that

t
XZ - Xt = J [A(Sa CKS) (X; - XS) + /_1(57 C“s)()?; - XS) + Bi(87 Oés) (uls - al(&p;)) ds
0

t
; f o(s,0) (X1 — X,)dIW,
0

and pl. = [Ri(ozT)XT + Ei(aT)E(XT|F%)]. Hence, by Ito formula and backward equation
in (5.0.3) we have

(X7 — X7)"pr
rT

(Xz — XS)T lA(s, o) TPl 4 A(s, o) P+ M(s, ) Xs + M (s, 05) X + 0(s, as)Tq;'] ds
0
rT

l(x;‘ X)) As, )T + (X1 — )T A(s, a0)" + (uf — (s, p1)) B (s, as)T] pids

_|_

J
!
J
J

+ ;T (X! — X,)To(s, as)"qids
; 0 (Xi— X)W, + JO (X = X,)To(s, an) AW, + L (X XN e dM,
(5.0.5)
Since

B[ (X]— X.)"A(s, )5l | = E{E[<X; ~ X,) As, )P

fg_]}
— B[(X] - X.) A(s.0,) 7]
- E[(X;’ — X,)TA(s, as)Tﬁi],

simplifying the right hand side of ([5.0.5)) and taking the expectations its both sides we obtain

B[ (X} — X1)Tp | - E{ (X5 — Xr)"| Ri(ar)Xr + Rf‘(am@]}

T
_E f { — (X0 = X)T| M (5, 00) X+ M (5, 00) X, | + (u — ) "B (s, cvsfpi}ds-
0



105

The equation @ = —(N'(s, as))_lBi(s, a,)"p! then implies
E{ (X% — XT)T [Ri(CYT)XT + RZ(@T)XT]}

T
= —]EJ {(X; - XS)T[Mi(S, ) X, + M'(s, Ozs))_(s] + (ul —al) N (s, as)ﬁi}ds,
0

which subsequently proves that the rightmost hand side of equals 0. Therefore, it
follows from that J;(u’) — J;(1)>0.

To complete the proof, we show that the condition is necessary. Suppose that 4 =
(G, Ug, ..., Uy) is a Nash equilibrium point of the game. Denote the corresponding state
trajectory by X. Clearly, if we fix the control @/ for j # i, 1<i, <N, then @' is the optimal
control for the player ¢ and the corresponding optimal trajectory is X. Since the control
problem for the player i is of conditional mean-field type with Markovian switching, we can
apply the maximum principle in [8] to get the necessary condition for optimality. The adjoint

equation associate to the control problem of player ¢ is
. . —_ —_ T . —_ .
b= (R + Blan o]+ [ | Als st + Als, 0 B2
t
+ M*(s,a5) Xs + M'(s,04) X5 + 0 (s, as)qu]ds — J q.dW, — J AL e M,
t t

which always admits a unique solution (see [8, Theorem 3.4]). According the [8, Theorem

3.7], for any vector v* € R% and t € [0,7],

~1 ~i—1 ~i ~itl ~N i i ~1
@Hi<taXtaXtaut7'--vut yUp Uy ey U (t)aptaQt7at—> (U _U’t)>0> P—a.s.

or, equivalently,
[Bi(t, o) ph + N(t, at)di} (v' — 4}) =0, P—a.s.

Since the inequality holds for any v’ € R%  we must have Bi(t, a;)"pi + Ni(t,a;)il = 0. As

a consequence, U = —(Ni(t,ozt))_lBi(t,ozt)Tpi. Plug this value of 4} in the above adjoint
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equation we derive that (Xy, (p},q;),..., (Y. q),A\l,...,A)) is a solution of the FBSDEs

(5.0.3). This completes the proof. ]

Next, we present conditions on the coefficients such that a Nash equilibrium point of

the differential game exists. To this end, we first need the following assumptions.

Assumption (K)
(K1) For 1<i<N, the matrices B'(t,iy) = B* and N'(t,i9) = N* are independent of ¢ and 1.
Denote

K'= BY(N")"YB"T.
(K2) There exist constants 31, 32 > 0 such that for any r € R and 0 <t < T,
leZKZR’(iO)]x > By, leZK‘MZ(t,iO)]:C > Bolal®.
i=1 =1

(K3) For 1<i<N and 0 <t <7, P-as.
K AT(t,i0) = AT(t,io) K*,  K'AT(t,ig) = AT(t, i) K*, K07 (t,40) = o7(t, i) K.
For (t,i9) € [0,T] x M, denote
M(t,ig) = 2 K*'M(t,i0), R(io) = Z K*R'(io),
=1 =1
and, similarly, M (t,io) = S, K*M(t,io), R(ig) = Yo, KR (ig).

Let us consider the following conditional mean-field FBSDEs with regime switching:

t

X; =z + Jt [A(s, ) X + A(s, ) X — Y + f(s, as)]ds + J [a(s, as) Xs + g(s, as)]dWs,

0 0

T T
Y = (Rlar)Xr + Rlar)Xr) — J Z.dW, — J A, 0 dM, (5.0.6)
t t

T
+ f [A(s, )Y, + A(s, ) Yy + M(s, 06 ) X + M(s, 006 ) X + 0 (s, as)TZs]ds,
t

where XY € 8%(0,T;R?), Z € £L2(0, T; R¥™?) A e M?2(0,T;R?).
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Note that if (Xy, (p}.qt), ..., (Y, ), Al,...,AY) is a solution of (5.0.3) and Assumption

(K) holds, then applying Itd’s formula we obtain

T
K'p, =| KR (ar) Xr + K' R (ar)E(X7| Fp_) | + f | Als, 00K + B(A(s, o) K9 F2)
t
T
+ K'M"(s,05) X5 + K'M'(s, ) X + o (s, as)TKiqg]ds - J

t

K'qldw, — JT K'\. o dM,.
Y507

By taking the sum of where 2 = 1,2,..., N, we easily see that the process (Xt, Y, =

SN UKl Z= 3N Kigh Ay =3 K'X}) is a solution of FBSDEs .

Now we are in a position to show that the coefficients in satisfy all conditions in

Section 3. For any t,x,v, 2, i, and v € P(R*), i € P(R?),

f(t> x, Y,z ZO) = A(t> ZO):U + A(t7 20) J Cllj(dCh dCZ) -y + f(ta Z‘0)7
Rd+d

Gty 20, d0) = —A(Li0)Ty — A(t, ig)T J Couldy, dGy)

Rad+d

- M(t, 20)37 - M(t, 20) J‘ Cll/(dcl, dCQ) - O'(t, io)TZ,

Rd+d

o(t,z,y,z,v,1y) = o(t,ig)x + g(t,ip),

h(z, p,i0) = R(io)x + R(io) » Cu(dq).

Because of the boundedness of A(s,d), f is uniformly Lipschitz with respect to v. The
linearity implies that f satisfies assumption (C1). Similarly, we obtain that g and o satisfy
assumption (C1) and h satisfy assumption (C2). More precisely, it can be shown that in
the present setting, we can take Cp = maxy; {1, |A(t,d0)|, | M(t, )], |o(t,ip)|} and C, =
V2max, i, {|A(t, o), | M(t,i0)|} in (C1) and ¢ = maxy, |R(ip)| and C, = max;, |R(io)| in

(C2). Due to the linearity, it is trivial to verify the constants Cy and ¢. For C,, it suffices to
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verify for ¢ = g in assumption (C1). If v; = Py, , v,,) and vy = Py, 1,,), then

‘g<t7 T, Y, %, V1, 20) - g(ta T, Y, %z, V2, Z0)|
- ‘fl(t, i) (ET 0 — EYo) — M(t, o) (ET,; — ETQJ)\

. - 1/2
<v2max { | AL, io)], IM(t,io)| } (B|T12 = Taaf* + E[T11 = Tau°)

_ _ 1/2
_ 2maX{HA(t,i0)H, ||M(t,i0)H}(IE|T1 - T2|2> .
Hence,
‘g<t7 T, Y, %z, Vlvio) - g(t7x7 Y, =z, Ve, i0)|<\/§maX {|‘A(t7 7’0)“7 HM(t7 io)‘|}WQ(V17 VQ)'

By a similar way, we can verify C,, < max;, |R(io)| in (C2).
In addition, in the present setting, the operator ¥ defined in (4.1.3), related to (/5.0.6]),
becomes
\Il(t7 07 6/7 v, Z0) = _|y - y,|2 - M(t7 Zo)|$ - ‘I/|2‘
In Proposition below, we show that if Assumption (K) holds then ¥ and h satisfy

Assumption (L) with the constants Ky = min{l, 5>} and K} = 5.

Proposition 5.2. Assume that Assumption (K) holds and

(1) VA i) 32 )] < min {2 = V)81, 552 )

- %

5 (5.0.8)
2) HR(Z'O)H < min {2(\6 ~ 1B, 752}.

Then the conditional mean-field FBSDFEs has a unique solution (Xt, (L), . (PN, q),
AL AY), where X, p' e S%(0,T;RY), ¢ € L£*(0,T;R?), and X' € M?*(0,T;R?) for all
i=1,...,N.

Proof. Because Assumption (K) holds,

\Il(t7 97 9,7 v, ZO) = _|y - y/’2 - M(t,lo)|l‘ - l’/|2 < _’y - y/|2 - ﬁQ’x - I,|2. (509)
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This implies that K¢ = min{1, 3,}. In addition, for any x, 2’ € R? and u € P(R??),

<h(ZL’, My ZO) - h(l’/, Hs iﬂ)) T — I/> = (ZE - I/>TR(20)(J] - l’,) = ﬂ1|:)j - I/|27 (5010)
which implies that K, = ;. As a consequence, ([5.0.8) and the inequalities

< 1 . w . < — .
Coev s ([A(tio)l. [31(ti0)l}. G ma | R(io)|

imply that Assumptions (C) and (L) are satisfied. Hence, we can apply Theorem to
derive the existence of a unique process (X, Y, Z, A) that solves the conditional mean-field
FBSDE with regime switching .
Next, according to [8, Theorem 3.4], fori = 1,..., N, there exists (p’, ¢*, \?) € S?(0, T'; R?) x
L£2(0,T;RY) x M2(0,T;R%) unique solution of the following BSDE:
T
p = (Ri(aT)XT + }_%i(ozT)XT> + f [A(s, o) Tp! + A(s, as)TE(pi‘fg_)
. t . T . T .
+ M*(s,a5) X5 + o(s, as)qu]ds — f q.dW, — f AL edM,, tel0,T].
t t (5.0.11)
Hence, the processes <X, Y = ZZJL Kip', 7 = Zf\il Kigt, A = Zf\il Ki/\i> is a solution of
(5.0.6)). Because the solution of (5.0.11)) is unique, then Y = Zfil Kipt, 7 = Zfil Kiqg" and
A=Y KiX. Substitute Y, Z and A to ‘D we obtain that (Xy, (p, i), -, 0. @), Ay, AY)
is a solution of . This completes the proof. O

Combining Proposition [5.1] and Proposition [5.2] the next result follows.

Theorem 5.3. Assume Assumption (K) holds and

(1) VA i) 32 )] < min {2 = V)81, 552 )

2) HR(Z’O)H < min {2(\/5 ~ 1), g@}.

Then the admissible control 0 = (4,42, ..., 4"), where 4} = —(Ni)lei(at_)Tpi, 0<t<T,

1<i<N, and (X4, (pt.q}), o 0N, @), A\, ..., AY) is the solution of FBSDE , is a
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Nash equilibrium point of the conditional mean-field nonzero-sum quadratic stochastic differ-

ential game.



CHAPTER 6
Conclusion and Future Work

In this work we derive useful estimates for the solutions of the backward stochastic
differential equations with Markovian switching and forward-backward stochastic differential
equations with Markovian switching.

We also provide sufficient conditions for the existence and uniqueness of the solutions
of the FBSDEs with regime-switching and FBSDEs with mean-field and regime-switching.
For the FBSDEs with regime-switching we use two different approaches. The first approach
is obtained in two steps. The first step, find existence and uniqueness of a solution over
a small enough time duration. The second step, by using the connection with a system
of PDEs and the local result, we can deduce the existence and uniqueness of a solution
(under a non-degeneracy assumption) over an arbitrarily prescribed time duration. The
second approach is used for FBSDEs with regime-switching and FBSDEs with mean-field and
regime-switching, it concentrates on developing the continuation method and monotonicity
conditions to examine the well-posedness of the systems.

Then we consider a nonzero-sum game problem with N players in which the dynamics
and cost functionals of each player depend on conditional mean-field terms and a regime-
switching process, presenting conditions on the coefficients such that a Nash equilibrium
point of the differential game exists and the relationship of the existence of the Nash equi-

librium point and the solution of the conditional mean-field FBSDE with regime switching.

Achievements:
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We have extended and developed the theory of FBSDE for a very general class of
equations that can capture the sudden jumps in dynamics as well as describe the limit of
weakly interaction systems with both initial and terminal conditions. Several conditions
for the well-posedness of these systems were given using different approaches. Finally, the

results are used to solve a nonzero-sum game problem.

Future Works:

This work has opened new venues for the studies of conditional mean-field systems with
regime switching and both initial and terminal conditions and their applications in modelling,
control, and game problems. To further these researches there are several interesting and
important problems for our on-going projects. For instance, while this thesis managed to
generalize the conditions required to guarantee the existence and uniqueness of solutions to
FBSDEs that admit conditional mean-field and Markovian-switching dynamics, there are
practical needs consider some more general models which can also admit jumps or common
noise. Also, while £2 solutions are widely studied and have had a lot of applications, there
are also needs to generalize the results to £? solutions. From application point of view, delay
systems are very important in the real life. Hence, we also would like to address the issue of
modeling delays in the system together with the impact of a Markovian switching or jump.
Finally, we have a long plan to study numerical approximation for systems of FBSDEs.
These directions will have immediate applications to solve control problems numerically in

very general settings.
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