
University of Puerto Rico
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In recent years, forward-backward stochastic differential equations (FBSDE) have been

extensively studied because of their numerous applications in many areas such as control and

game theory, mathematical economics, and mathematical finance. Due to the pressing need

of treating large-scale systems, there has been increasing effort of dealing with mean-field

interactions, systems with mean-field interactions, and related control problems, and games.

To deal with large-scale switching systems, the mean-field types of FBSDEs with Markovian

switching naturally come into play when one needs to treat the mean-field control problems.

In this work we derive useful estimates for the solutions of the backward stochastic differential

equations (BSDE) with Markovian switching. We also work on the FBSDEs with regime-

switching and FBSDEs with mean-field and regime-switching, providing sufficient conditions

for the existence and uniqueness of the solutions. Then we consider a nonzero-sum game

problem with N players in which the dynamics and cost functionals of each player depend

on conditional mean-field terms and a regime-switching process, presenting conditions on

the coefficients such that a Nash equilibrium point of the differential game exists and the
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relationship of the existence of the Nash equilibrium point and the solution of the conditional

mean-field FBSDE with regime switching.
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2s ă 8

(

L0p0, T ;Rdq “

!

ψ : r0, T s ˆ Ω Ñ Rd, F -progressively measurable process
)

L2p0, T ;Rdq “

!

ψ P L0p0, T ;Rdq : }ψ}22 “ E
”

şT

0
|ψt|

2dt
ı

ă 8

)

C2,1pRn ˆ R`;Rq The family of all real-valued functions V px, tq such that it is twice contin-
uously differentiable in x and once in t.

Wt Brownian motion at time t.
M “ t1, 2, . . . ,m0u is the state space of the markov chain.
Q A generator matrix
αt A continuous-time Markov chain with state space M and generator matrix Q.

M2p0, T ;Rdq “

"

λ “
`

λi0j0 : i0, j0 P M
˘

such that λi0j0 P L0p0, T ;Rdq, λi0i0 ” 0,

and
ř

i0,j0PM E
şT

0

ˇ

ˇλi0j0ptq
ˇ

ˇ

2
d
“

Mi0j0

‰

ptq ă 8

*

şt

0
λs ‚ dMs =

ř

i0,j0PM
şt

0
λi0j0psqdMi0j0psq

λt ‚ dMt “
ř

i0,j0PM λi0j0ptqdMi0j0ptq
SDE Stochastic Differential Equation
BSDE Backward Stochastic Differential Equation
FBSDE Forward-Backward Stochastic Differential Equation
PpRdq The set of all probability measures on pRd,BpRdqq.
PppRdq “ tµ P PpRdq :

ş

Rd |x|pµpdxq ă 8u

rXst The quadratic variation of X at time t.
rX, Y st The covariation of X and Y at time t.
11 The usual zero-one indicator function.

ix



“

Mi0j0

‰

ptq “
ř

0ďsďt 11
`

αps´q “ i0
˘

11
`

αpsq “ j0
˘

@

Mi0j0

D

ptq “
şt

0
qi0j011

`

αps´q “ i0
˘

ds
W2p¨, ¨q The 2-Wasserstein distance
θ “ px, y, zq

Θ “ pX, Y, Zq
›

›θ1 ´ θ2
›

› “
ˇ

ˇx1 ´ x2
ˇ

ˇ `
ˇ

ˇy1 ´ y2
ˇ

ˇ `
›

›z1 ´ z2
›

›

xx, yy The dot product of x and y
rA,Bs “

řd
i“1xAi, Biy, where Ai and Bi, i “ 1, 2, . . . , d, are the i-th column of d ˆ d

matrices A and B.
Ψ
`

t, θ1, θ2, i0
˘

“
@

f
`

t, θ1, i0
˘

´ f
`

t, θ2, i0
˘

, y1 ´ y2
D

`
@

g
`

t, θ1, i0
˘

´ g
`

t, θ2, i0
˘

.x1 ´ x2
D

`
“

σ
`

t, θ1, i0
˘

´ σ
`

t, θ2, i0
˘

, z1 ´ z2
‰

.

x



INTRODUCTION

In the new era, numerous complex and large-scale systems come into play. A common

feature of such systems is the inclusion of both continuous dynamics and discrete events, and

their interactions. The discrete events cannot be described by the usual stochastic differential

equations, but can be recast as stochastic systems driven by pure jump processes [38, 56, 57,

58, 59]. In responding to the increasing needs from modeling, analysis, and computation,

this dissertation focuses on a class of hybrid systems known as Markov switching diffusions

where the switching between discrete events is driven by a continuous-time Markov chain.

Because of the switching, some well-known results for systems without the switching do

not carry over. For example, as explained in [57, Section 5.6, pp. 229-233] by putting two

equations (e.g., linear equations) together switching back and forth, even if both equations

are stable, the resulting switched system may be unstable. Thus, the intuition we have does

not always work. This indicates that we cannot quickly come to the conclusion regarding

the corresponding properties.

In recent years, FBSDEs have been extensively studied because of their numerous appli-

cations in many areas such as control and game theory [45, 62], mathematical economics [23],

and mathematical finance [18, 29]. There are three main approaches for the wellposedess

of the FBSDEs, each of which has its own advantages and disadvantages. In [11] and then

[43], the method of contraction mapping was studied, which works well for small time du-

rations. In [34], the four-step-scheme was first introduced to establish the existence and

uniqueness of solutions of FBSDEs under non-degenerate condition of the forward equation

and some regularity requirements of the coefficients (see also [20, 64]). In [25], the existence

and uniqueness of solutions of FBSDEs are proved under monotonicity condition without
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non-degeneracy condition of the forward equation. The monotonicity condition is then re-

markably weakened and developed in subsequent works [24, 44, 60]. For the progress and

related works on FBSDEs, we refer the reader to [35, 37] and the references therein.

Since the pioneering works [32, 26, 27] and because of the pressing need of treating

large-scale systems, there has been increasing effort of dealing with mean-field interactions,

systems with mean-field interactions (in which the coefficients also depend on the their

distributions), and related control problems, and games. The stochastic maximum principles

for both mean-field games and mean-field control problems naturally lead to a class of mean-

field type FBSDEs (see [12, 16, 1, 61] and references therein). To study the well-posedness of

this new class of FBSDEs, the approaches in [44] and [24] are extended in the recent works

[13] and [19].

In contrast to the vast literature on FBSDEs, such equations with Markovian switching

have not received as needed attention. Although BSDEs with Markovian switching were

studied in [22, 33] and were used to formulate stochastic recursive control problems [65], to

the best of our knowledge, there is no available well-posedness result even for the FBSDEs

with Markovian switching. To deal with large-scale switching systems, the mean-field types

of FBSDEs with Markovian switching naturally come into play when one needs to treat

the mean-field control problems. Nevertheless, a main issue we encountered was that the

associated limit mean-field measure was not known for the systems involving both mean-field

interactions and random switching. To settle this issue, in the recent work of [9], they showed

that the mean-field limit measure is not deterministic, but a conditional (random) measure

that is a solution of a system of McKean-Vlasov stochastic differential equations. It is worth

mentioning that conditional mean-field also appears in such problems as mean-field games

and control with common noise [30, 46], major-minor mean-field games [39, 41], mean-field

games with leader-follower [52], and filtering for McKean-Vlasov SDEs or mean-field control

with partial-observations [14, 50]. In our setting, the conditioning is taken with respect to

the past information generated by the switching process-the Markov chain. Thanks to this
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conditional measure, it enabled us to obtain maximum principles of such switching diffusion

systems in [8, 40].

Continuing our study, in this dissertation we devote our attentions to a number of

important issues. We begin by developing different approaches to examine well-posedness

of FBSDEs with Markovian switching and then mean-field type FBSDEs with Markovian

switching. The appearance of the switching process leads to two main differences from the

FBSDEs in [11, 24, 25, 44, 60] and mean-field type FBSDEs in [13, 16, 19].

First, apart from the Brownian motions, the backward equations are also driven by

martingales associated to the Markov switching process whose quadratic variations are ran-

dom, not deterministic as those of Brownian motion. Second, the mean-field terms in the

mean-field type FBSDEs with Markovian switching are represented by conditional (random)

distributions of the processes involved given the history of the switching process. These

differences make the estimates needed in the analysis more complex. It, in turn, requires us

developing several new supporting results. We end the dissertation by treating the nonzero-

sum conditional mean-field games using the new wellposedness results for FBSDEs. Condi-

tions on the coefficients of the nonzero-sum conditional mean-field linear-quadratic stochastic

differential game with regime switching and open-loop strategies are provide to guarantee a

Nash equilibrium point for any (not necessarily small) time duration.

The rest of the dissertation is arranged as follows. Chapter 2 concentrates on for-

ward–backward stochastic differential equations with Markov switching diffusions with non-

degeneracy of the diffusion matrix. We prove a result of existence and uniqueness of solutions

in two steps. The first part, section 1, studies the problem of existence and uniqueness over

a small enough time duration. The second one, section 2, explains, by using the connection

with a system of PDEs and the local result, how we can deduce the existence and uniqueness

of a solution (under a non-degeneracy assumption) over an arbitrarily prescribed time du-

ration. This approach relaxes the regularity assumptions required on the coefficients by the
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Four-Step scheme. Section 3 gives some related PDE in the weak sense. Chapter 3 concen-

trates on Markov switching diffusions, developing the continuation method and monotonicity

conditions to examine the well-posedness of FBSDEs with Markovian switching. The empha-

sis is on the corresponding backward stochastic differential equations, and forward-backward

stochastic differential equations. Chapter 4, section 1 is devoted to stochastic differential

equations with Markov switching with mean-field interactions and obtains certain results

that tie up the conditional mean-field measure with that of the underlying systems. Finally,

chapter 5 deals with linear (in continuous state) mean-field games.

Compared with the existing works, the main technical challenges stem from the appear-

ance of the switching process and the conditional mean-field term used. The appearance of

the switching process leads to two main differences from the FBSDEs in [11, 24, 25, 44, 60]

and mean-field type FBSDEs in [13, 16, 19]. First, apart from the Brownian motions, the

backward equations are also driven by martingales associated to the Markov switching pro-

cess whose quadratic variations are random, not deterministic as those of Brownian motions.

Second, the mean-field terms in the mean-field type FBSDEs with Markovian switching are

represented by conditional (random) distributions of the processes involved given the history

of the switching process. These differences make the estimates needed in the analysis more

complicated. It, in turn, requires us developing several new supporting results.



CHAPTER 1

Stochastic Differential Equations

This chapter is devoted to introducing preliminaries on probability, conditional expec-

tations, several important stochastic processes such as martingales, Brownian motions and

Markov chains, stochastic integrals, several classes of stochastic differential equations, and

Itô’s formula. In order to study common properties of stochastic processes, stochastic inte-

grals driven by martingales and some useful inequalities are also presented.

1 Probability Space and Conditional Expectations

In this section, we recall basic definitions and theorems probability theory needed to

further our study of stochastic calculus.

1.1 Preliminaries on Probability Space

A σ-algebra F on a given set Ω is a family of subsets of Ω with the following properties

(i) H P F

(ii) A P F ùñ AC P F where AC is the complement of F in Ω

(iii) A1, A2, ... P F ùñ Y8
i“1Ai P F

The pair pΩ,Fq is called a measurable space. A probability measure is a function P : F Ñ

r0, 1s such that

(a) PpHq “ 0 and PpΩq “ 1

(b) For disjoint tAiuiě1 Ă F we have P
´

Y8
i“1 Ai

¯

“
ř8

i“1 PpAiq.

Finally we denote pΩ,F ,Pq as a probability space. Any A P F is called an event. Two events

A1, A2 P F are said to be independent if PpA1 XA2q “ PpA1qPpA2q. Two σ-algebras F1 and

F2 of F are independent if any event A P F1 and B P F2 are independent for all A P F1 and

B P F2. An F-measurable set is a subset A that belongs to Ω. A complete probability space

5
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is a probability space such that F contains all subsets of Ω with P outer measure zero. If

the event A occurs such that PpAq “ 1, we say A holds P-a.s. (almost surely). A function

X : Ω Ñ Rd is called F -measurable if

X´1
pAq :“ tω P Ω;Xpωq P Au P F , for all open sets A P Rd.

For any function X, denote the σ-algebra σpXq generated by X as the smallest σ- algebra

on Ω containing all the sets X´1pAq, where A Ă F open. When Ω “ Rn, we call BpRnq the

Borel σ-algebra and B P BpRnq Borel sets. For a measurable space pRn,BpRnqq, a BpRnq-

measurable function is called a Borel measurable function. For a complete probability space

pΩ,F ,Pq, a random variable X is an F -measurable function X : Ω Ñ Rd. A family of

random variables is independent if the σ-algebras generated by them are independent, and

a random variable X is independent of a σ-algebra G if the σ-algebra generated by X is

independent of G. Additionally, the law (or distribution) of the real-valued random variable

X is the pushforward measure µX , defined

PXpBq “ PpX´1
pBqq “ Ppω : Xpωq P Bq.

for some B P BpRnq. Two random values X : Ω Ñ Rn and Y : Ω Ñ Rm are independent if

and only if

Ppω : Xpωq P A, Y pωq P Bq “ Ppω : Xpωq P AqPpω : Y pωq P Bq

for all A P BpRnq, B P BpRmq.

If
ş

Ω
|Xpωq|dPpωq ă 8, (hence integrable) The expectation of X is defined as

ErXs “

ż

Ω

XpωqdPpωq

For an Rn-valued random variable X, the law induced by X on pRn,BpRnqq allows for the

expectation to be written

ErXs “

ż

Rd

xdPxpxq
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A stochastic process is a collection tXtutě0 of random variables defined on a probability

space pΩ,F ,Pq and taking values in Rd. Fixing t gives the random variable Xtpωq P Rn,

while fixing ω gives a function Xtpωq P Rn. We will commonly denote the stochastic process

tXtutě0 as Xt or Xptq.

Definition 1.1. (i) A filtration on pΩ,Fq is an increasing family tFtutě0 of σ-algebras

Ft Ď F ; that is, if 0ďs ă t then Fs Ď Ft.

(ii) A process tXtutě0 is called adapted to the filtration tFtutě0 if Xt is Ft-measurable for all

t.

A filtration is right continuous if Ft “ XsątFs for all t ě 0. A filtered probability

space pΩ,F ,P, tFtuqtě0q is said to satisfy the usual conditions if the space is complete, the

filtration tFtutě0 is right-continuous, and F0 contains all P-null sets in F . A stochastic

process Xtpωq is said to be adapted to the filtration tFtutě0 or tFtu-adapted if for each tě0,

Xtpωq is an Ft-measurable random variable. A stochastic process Xt is said to be continuous

if for almost all ω P Ω, Xtpωq is continuous on t ě 0. A stochastic process Xt on R is called

a càdlàg process if

(i) Xt is right-continuous

(ii) For almost all ω P Ω, the left hand limit limsÑt´ Xspωq exists and is finite for all t ą 0.

We will commonly denote such left limits as Xt´. The smallest σ-algebra on R` ˆ Ω where

every left-continuous process is a measurable function of pt, ωq is denoted P . A stochastic

process Xt is said to be predictable if it is P-measurable when regarded as function of

pt, ωq. An Rd-valued stochastic process Xt is said to be F-progressively measurable if for all

t P r0, T s, the map ps, ωq ÞÑ Xspωq is Br0,8q ˆ Ft{BpRdq-measurable. A random variable

τ : Ω Ñ r0,8s is called a stopping time with respect to filtration tFut if tτpωqďtu P Ft for

all tě0.
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1.2 Conditional Expectations

Let pΩ,F ,Pq be a probability space with a random variable X : Ω Ñ Rd such that

Er|X|s ă 8. For a σ-algebra G Ă F , we define the conditional expectation of X given F as

follows:

Definition 1.2. The conditional expectation of X given G, ErX|Gs is the a.s. unique func-

tion from Ω to Rd satisfying

(i)
ş

A ErX|GsdP “
ş

AXdP, for all A P G

(ii) ErX|Gs is G-measurable.

Additionally, for B P F , we define the conditional probability of B given F as PrB|Fs “

Er11B|Fs.

We list a few important properties of conditional expectation

Lemma 1.3. Let Y be a Ft-measurable random variable with Fs Ă Ft and G Ă F . Then,

(a) ErErX|Gss “ ErXs

(b) For a G-measurable random variable X, ErX|Gs “ X, a.s.

(c) For α, β P R, ErαX ` βY |Fs “ αErX|Fs ` βErY |Fs

(d) For an X independent of F , ErX|Fs “ ErXs

(e) ErErX|Fs|Gs “ ErErX|Gs|Fs “ ErX|Gs

(f) If ϕ : R Ñ R is convex and Er|ϕpXq|s ă 8 then

ϕpErX|FsqďErϕpXq|Fs.

We conclude this section recalling the definitions of Markov kernels and that of regular

conditional distributions.

Definition 1.4. Let pΩ1,A1q, pΩ2,A2q be measurable spaces. A map κ : Ω1 ˆ A2 Ñ r0,8s

is called a Markov kernel if

(i) ω1 ÞÑ κpω1, A2q is A1-measurable for any A2 P A2.

(ii) A2 ÞÑ κpω1, A2q is a probability measure on pΩ2,A2q for any ω1 P Ω1.
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Definition 1.5. Let X be a random variable taking values in the measurable space pE, Eq,

and let G Ă F be a sub σ-algebra. A Markov kernel κX,F from pΩ,Fq to pE, Eq is called a

regular conditional distribution of X given G if

κX,Fpω,Aq “ PpX P A|Gqpωq

for P-almost all ω P Ω and for all A P E.

When F “ σpXq for a random variable X, we denote κY,σpXqpX
´1pxq, Aq as the regular

conditional distribution of Y given X.

2 Martingales, Brownian Motions, and Markov Chains

For a positive integer d, vectors x, y P Rd, denote by xx, yy their dot product and by x⊺

the transpose of x. Let pΩ,F ,P, tFtutě0q be a fixed probability space satisfying the usual

conditions.

2.1 LppRdq Spaces

Denote

Lp
pRd

q “ tξ : Ω Ñ Rd,F -measurable,E|ξ|
p

ă 8u, pě1,

S2
p0, T ;Rd

q “

"

φ : r0, T s ˆ Ω Ñ Rd, F -adapted càdlàg process, E
„

sup
0ďtďT

|φt|
2

ȷ

ă 8

*

,

and

L0
p0, T ;Rd

q “

!

ψ : r0, T s ˆ Ω Ñ Rd, F -progressively measurable process
)

,

L2
p0, T ;Rd

q “

"

ψ P L0
p0, T ;Rd

q : }ψ}
2
2 “ E

„
ż T

0

|ψt|
2dt

ȷ

ă 8

*

.

It can be shown that L2p0, T ;Rdq is a Hilbert spaces; see [21, Lemma A.2.5].

2.2 Martingales

This subsection is devoted to the definitions and basic properties of martingales, super-

martingales, submartingales. First, we have the following definitions.

Definition 1.6. An n-dimensional stochastic process tUtutě0 on pΩ,F ,Pq is called a mar-

tingale with respect to a filtration tFtutě0 and measure P if
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(i) Ut is tFtutě0-adapted,

(ii) Er|Ut|s ă 8 for all t,

(iii) ErUs

ˇ

ˇFts “ Ut for all sětě0.

A supermartingale is defined similarly but replace (iii) by

ErUs

ˇ

ˇFtsďUt for all sětě0.

A submartingale is defined similarly but replace (iii) by

ErUs

ˇ

ˇFtsěUt for all sětě0.

Further, we define another important class of martingale.

Definition 1.7. A process tVtu is said to be a local martingale if there exists a sequence of

stopping times τk such that V τk
t is a martingale, with τk Ñ 8 a.s. increasing.

Of course, every martingale is a local martingale, and additionally every bounded local

martingale is a martingale. We now look at the conditions needed to ensure convergence of

martingales.

Theorem 1.8. Let U be a right-continuous supermartingale such that sup0ďtď8 Et|Ut|u ă 8.

Then V “ limtÑ8 Ut exists a.s., and Er|V |s ă 8.

Next, we have the Doob-Meyer decompsotion theorem.

Theorem 1.9. The Doob-Meyer decomposition expresses a submartingale in continuous time

as the unique way as the sum of a martingale and a nondecreasing predictible process. That

is, if Ut is a submartingale, then

Ut “ Mt ´ At, 0ďtďT,

where Mt is a F-martingale and At is a nondecreasing process.

To proceed, we mention the definitions of quadratic variations (optional and predictable

quadratic variations) and covariations which will be needed for important estimates in the

next chapters.
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Definition 1.10. (i) If Xtp¨q : Ω Ñ R is a continuous stochastic process, then the quadratic

variation process of Xt, rXst is defined by

rXstpωq “ lim
∆tkÑ0

ÿ

tkďt

|Xtk`1
pωq ´ Xtkpωq|

2 (limit in probability)

where 0 “ t1 ă t2 ă . . . ă tn “ t and ∆tk “ tk`1 ´ tk.

(ii) More generally, the covariation of two processes X and Y is

rX, Y stpωq “ lim
∆tkÑ0

ÿ

tkďt

pXtk`1
pωq ´ XtkpωqqpYtk`1

pωq ´ Ytkpωqq (limit in probability).

The predictable quadratic variation is sometimes used for locally square integrable martin-

gales. This is written as xUty, and is defined to be the unique right-continuous and increasing

predictable process starting at zero such that U2 ´ xUy is a local martingale. Its existence

follows from the Doob–Meyer decomposition theorem and, for continuous local martingales,

it is the same as the quadratic variation.

Definition 1.11. A square integrable martingale is called purely discontinuous martingale if

it is (strongly) orthogonal to all the square integrable martingales with continuous trajectories.

According to Theorem 3 in Section 1.5 in [51], any square integrable martingale can be de-

composed into the sum of a martingale with continuous trajectory and null at 0 and a purely

discontinuous martingale. The (optional) quadratic variation of a purely discontinuous mar-

tingale is a pure jump process.

Now we are in a position to state the Burkholder-Davis-Gundy inequality, which is frequently

used throughout the dissertation.

Theorem 1.12 (Burkholder-Davis-Gundy inequality). For any 1ďp ă 8 there exist positive

constants cp, Cp such that, for all local martingales X with X0 “ 0 and stopping times τ ,
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the following inequality holds

cpE
“

rXs
p{2
τ

‰

ďE
„

sup
sďτ

|Xs|
p

ȷ

ďCpE
“

rXs
p{2
τ

‰

.

Furthermore, for continuous local martingales, this statement holds for all 0 ă p ă 8.

Finally, let us mention some important martingale convergence theorems.

Theorem 1.13 (Doob’s martingale convergence theorem I). Let Ut be a right-continuous

supermartingale with the property that

sup
tą0

ErU´
t s ă 8,

where U´
t “ maxp´Ut, 0q. Then the pointwise limit

Upωq “ lim
tÑ8

Utpωq

exists for a.a. ω and ErU´s ă 8.

Theorem 1.14 (Doob’s martingale convergence theorem II). Let Ut be a right-continuous

supermartingale. Then the following are equivalent:

(i) tUtutě0 is uniformly integrable.

(ii) There exists U P L1pPq such that Ut Ñ U a.e. pPq and Ut Ñ U in L1pPq; that is,

ż

|Ut ´ U |dP Ñ 0 as t Ñ 8.

2.3 Brownian Motions

On pΩ,F ,Ft,Pq, a (one-dimensional) process W p¨q is called a (standard) Brownian

motion if it satisfies the following conditions

(i) Wt is almost surely continuous. That is, P
`

ω : Wtpωq is continuous in t
˘

“ 1.

(ii) Wt has stationary, independent increments.

(iii) Wt is a Gaussian process. That is, Wt ´ Ws „ N p0, t ´ sq for 0ď sď t.
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Note that Wt has independent increments means that for all 0 ď t1 ă . . . ă tk ă 8, the

random variables

Wt1 ,Wt2 ´ Wt1 , . . . ,Wtk ´ Wtk´1
are independent.

Equivalently, Ws ´Wt is independent of Ft for any s ą tě0. In addition, Wt has stationary

increments means that the process tWt`h ´ Wtuhě0 has the same distribution for all tě0.

Furthermore, the quadratic variations of a one-dimensional Brownian motion Wt is rW st “ t

a.s.

A d-dimensional processW p¨q “
`

W1p¨q,W2p¨q, . . . ,Wdp¨q
˘⊺

is a d-dimensional Brownian

motion if each Wip¨q, 1ďiďd, is a standard one-dimensional Brownian motion and all d

components tW1p¨q,W2p¨q, . . . ,Wdp¨qu are independent.

Due to the property of independent increments, every d-dimensional Brownian motion Wt is

a martingale with respect to the σ-algebras Ft generated by tWs | sďtu. More precisely, we

have

E
`

Wt

ˇ

ˇFs

˘

“ Ws, for all 0ďsďt.

2.4 Markov Chains

Let M “ t1, 2, . . . ,m0u be a finite set and µ a probability measure on M. A transition

matrix P ptq “ ppi0j0ptqqi0,j0PM is a m0 ˆm0 matrix that satisfies the following conditions for

every i0, j0 P M and s, tě0,

(i) pi0j0ptqě0,

(ii)
ÿ

j0PM
pi0j0ptq “ 1,

(iii)
ÿ

k0PM
pi0k0psqpk0j0ptq “ pi0j0ps ` tq.

A transition matrix P is called standard if limtÑ0`
pi0j0ptq “ δi0j0 . In addition, matrix P is

called measurable if pi0j0p¨q is a measurable function in p0,8q. Note that if P ptq satisfies the

first two conditions, it is called a stochastic matrix. The last condition is often referred to
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as the Chapman-Kolmogorov equation. We shall always assume that the transition matrix

P is standard and measurable.

Definition 1.15. A continuous-time process αp¨q defined on pΩ,F ,Pq with values in the

state space M is called a Markov chain with initial distribution µ and transition matrix P ptq

if

(i) Ppα0 “ i0q “ µpi0q, and

(ii) for any j0, i0, i1, . . . , in P M and s ą t ą t1 ą . . . ą tně0,

Ppαs “ j0|αt “ i0, αtk “ ik, 1ďkďnq “ Ppαs “ j0|αt “ i0q “ pi0j0ps ´ tq.

It can be shown that P ptq is differentiable at 0 (See the book by Kai Lai Chung [2], Sections

II.2-3.) In other words, for any i0 ‰ j0 P M, the limits

´p1
i0i0

p0q “ lim
tÑ0`

1 ´ pi0i0ptq

t
, p1

i0j0
p0q “ lim

tÑ0`

pi0j0ptq

t

exist and finite. Denote Q “ pqi0j0q “ P 1p0q then P satisfies the following initial value linear

ordinary differential equation

$

’

’

&

’

’

%

dP ptq

dt
“ P ptqQ, tě0,

P p0q “ Im0

which leads to the explicit presentation

P ptq “ etQ “

8
ÿ

n“0

tn

n!
Qn, tě0.

Since P ptq is a stochastic matrix, it is clear that the matrix Q “
`

qi0j0
˘

i0,j0PM satisfies the

following properties for any i0 ‰ j0 P M

(i) qi0j0ě0,

(ii)
ÿ

j0PM
qi0j0 “ 0.
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Note that beside the Definition 1.15, we can also define a Makov chain in two other ways

using a matrix Q satisfied above conditions (which is called the generator of the Markov

chain), or using the jump chain and holding times. It is obvious that for a Markov chain

with the generator matrix Q, we have

Ppαpt ` hq “ j0|αptq “ i0q “

$

’

’

&

’

’

%

qi0j0t ` ophq, if i0 ‰ j0,

1 ` qi0i0t ` ophq, if i0 “ j0.

Martingales Associated with a Markov Chain.

Definition 1.16. For a Markov chain αp¨q with state space M and generator matrix Q,

associated with each pair pi0, j0q P M ˆ M satisfying i0 ‰ j0, define the process

Mi0j0ptq “
“

Mi0j0

‰

ptq ´
@

Mi0j0

D

ptq (1.2.1)

where

“

Mi0j0

‰

ptq “
ÿ

0ďsďt

11
`

αps´q “ i0
˘

11
`

αpsq “ j0
˘

,
@

Mi0j0

D

ptq “

ż t

0

qi0j011
`

αps´q “ i0
˘

ds,

and 11 denotes the usual zero-one indicator function.

It follows from [22] that the process Mi0j0ptq, 0ďtďT is a discontinuous and square in-

tegrable martingale with respect to Fα
t , which is null at the origin. The processes rMi0j0sptq

and xMi0j0yptq are the optional and predictable quadratic variations, respectively. For con-

venience, we define

Mi0i0ptq “
“

Mi0i0

‰

ptq “
@

Mi0i0

D

ptq “ 0, i0 P M.

From the definition of optional quadratic covariations we have the following orthogonality

relation
“

Mi0j0 ,W
‰

“ 0,
“

Mi0j0 ,Mp0q0

‰

“ 0 when pi0, j0q ‰ pp0, q0q, (1.2.2)
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where
“

Mi0j0 ,W
‰

and
“

Mi0j0 ,Mp0q0

‰

are the optional quadratic covariations of the pairs

pMi0j0 ,W q and pMi0j0 ,Mp0q0q, respectively; see [22, 33]. Denote

M2
p0, T ;Rd

q “

"

λ “
`

λi0j0 : i0, j0 P M
˘

such that λi0j0 P L0
p0, T ;Rd

q, λi0i0 ” 0,

and
ÿ

i0,j0PM
E
ż T

0

ˇ

ˇλi0j0ptq
ˇ

ˇ

2
d
“

Mi0j0

‰

ptq ă 8

*

.

For a collection of F -progressively measurable functions λt “
`

λi0j0ptq
˘

i0,j0PM, tě0, we denote

ż t

0

λs ‚ dMs “
ÿ

i0,j0PM

ż t

0

λi0j0psqdMi0j0psq and λt ‚ dMt “
ÿ

i0,j0PM
λi0j0ptqdMi0j0ptq.

It can be shown that M2p0, T ;Rdq is a Hilbert space; see [21, Lemma A.2.5].

3 Stochastic Integrals with Martingales

In this section, we expand upon what we have discussed so far to define the stochastic

integrals needed to make sense of the SDEs we will see. We begin with the standard stochastic

integral, then the case with a continuous markov chain, and finally with jump. With these

martingale and stochastic integral connections established, we are able to work with such

stochastic differential equations. This section closely follows Watanabe [28], chapter II, which

can be consulted for a details on the concepts which follow.

3.1 Stochastic Integrals

We first begin with the original formulation of the stochastic integral courtesy of K. Itô

himself, as described by Watanabe [28]. Let pΩ,F ,P, tFtutě0q be a fixed probability space

satisfying the usual conditions. LetWt be a one dimensional Ft-Brownian motion. To begin,

we introduce the the following spaces

Definition 1.17. Let L2 be the space of all real-valued measurable processes tϕtutě0 on Ω

which are adapted to the filtration tFtutě0 such that for every T ą 0

||ϕ||
2
2,T “ E

„
ż T

0

ϕ2
ps, ωqds

ȷ

ă 8.
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We consider ϕ1 “ ϕ2 if ||ϕ1 ´ ϕ2||2,T “ 0 for every T ą 0. Further we define for every ϕ P L2

||ϕ||2 “

8
ÿ

n“1

1

2n
p||ϕ||2,n ^ 1q

Note that ||ϕ ´ ϕ2||2 defines a metric on L, which is complete. Additionally, note that we

can always take a ϕ P L2 such that ϕ is predictable without loss of generality. Further we

define another class of processes:

Definition 1.18. Let L0 be the space of processes ϕ P L2 that satisfies the following proper-

ties:

(i) There exists a sequence of real numbers 0 “ t0 ă t1 ă ... ă tn ă ... ă 8

(ii) There exists a sequence of random variables tfiu
8
i“0 such that fi is Fti-measurable, with

supi ||fi||8 ă 8 and

ϕpt, ωq “

$

’

’

&

’

’

%

f0pωq, t “ 0

fipωq, t P pti, ti`1s, i “ 0, 1, ...

(1.3.1)

It is known that L0 is dense in L2 with the metric || ¨ ||2. See Watanabe [28], lemma 1.1

from chapter II, for the proof. Next, we define the space of all square integrable martingales.

Definition 1.19. Let M2 be the space of all square integrable martingales tXtutě0 on pΩ,F ,Pq

with respect to filtration pFtqtě0 and X0 “ 0 almost surely. Let M2
c “ tX P M2 : t ÞÑ

Xt is continuous a.s.u.

Definition 1.20. For X P M2, we set

||X||
a
T “ ErX2

T s
1
2 , T ą 0

and

||X||
b

“

8
ÿ

n“1

1

2n
p||X||

a
t ^ 1q.

It is known thatM2 is a complete metric space with ||X´Y ||b, for X, Y P M2. Moreover,

M2
c is a closed subspace of M2. Finally, we can define the stochastic integral. Let W ptq be
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an Ft-Brownian motion on our probability space, and ϕ P L0. By, (1.3.1), we then set

Ipϕqpt, ωq “

n´1
ÿ

i“0

fipωqpW pti`1, ωq ´ W pti, ωqq ` fnpωqpW pt, ωq ´ W ptn, ωqq

for tn ď t ď tn`1, n “ 0, 1, . . .. Note we can then express Ipϕq as the infinite sum

Ipϕqptq “

8
ÿ

i“0

fipW pt ^ ti`1q ´ W ps ^ tiqq

For s ď t, we have

ErfipW pt ^ ti`1q ´ W ps ^ tiqq|Fss “ fipW pt ^ ti`1q ´ W ps ^ tiqq

Thus Ipϕqptq P M2
c . Additionally,

ErIpϕqptq2s “
ÿ

Erfipt ^ ti`1q ´ pt ^ tiqqs “ E
„
ż t

0

ϕ2
ps, ωqds

ȷ

Hence

||Ipϕq||
a
T “ ||ϕ||2,T (1.3.2)

||Ipϕq||
b

“ ||ϕ||2 (1.3.3)

Now, for ϕ P L2, we know through L0 being dense in L2 with respect to || ¨ ||2 that there

is a ϕn P L0 such that ||ϕ´ϕn||2 Ñ 0. We also know Ipϕnq is a Cauchy sequence in M2 since

by (3.3) we have ||Ipϕqn ´ Ipϕqm||b “ ||ϕn ´ ϕm||2 and hence through the completeness of

M2, it converges to a unique limit which we denote Ipϕq P M2
c .

Definition 1.21. Ipϕq P M2
c as defined above is called the stochastic integral of ϕ P L2 with

respect to the Brownian motion Wt, with representation Ipϕqptq “
şt

0
ϕsdWs.

Thus the stochastic integral is defined as a stochastic process itself, and one should now

note for a fixed t we also call the random variable Ipϕqptq a stochastic integral. Further, for

an m-dimensional Ft-Brownian motion Wt, and ϕ
1
t , ..., ϕ

m
t P L2, we can define the stochastic

integrals
şt

0
ϕi
sdW

m
s for i “ 1, 2, .., r. We refrain from listing the properties of the stochastic

integral until we have defined it for martingales.
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We now expand the stochastic integral to that of local martingales. The framework for

this formulation is quite similar to the construction of the previous stochastic integral, so

we instruct the reader to persue the construction in its entirety from Watanabe [28], page

51. However, due to the definition of semimartingales (to be seen) requiring that of local

martingales, we will list the required definitions. Similar to Definition 1.17 we have

Definition 1.22. Let L2
loc be the space of all real-valued measurable processes tϕutě0 on Ω

which are adapted to the filtration tFtu such that for each T ą 0
şT

0
ϕ2ps, ωqds ă 8 a.s.

Similarly, we write ϕ1 “ ϕ2 if
şT

0
|ϕ1pt, ωq ´ ϕ2pt, ωq|2dt “ 0 a.s. . Again, we take

ϕ P L2
loc as a predictable process without loss of generality. Recall the definition of a local

martingale per Definition 1.7.

Definition 1.23. Let M2
c be the space of locally square integrable tFtutě0 martingales tXtutě0

with X0 “ 0. Let M2
c,loc “ tX P M2

c : t ÞÑ Xt is continuous a.s.u

As stated, the stochastic integral Ipϕq P M2
loc is defined in a similar manner to the

previous.

Now we look to another formulation of the stochastic integral, which is constructed

using M P M2 martingales rather than solely Brownian motion.

3.2 Stochastic Integrals with Martingales

In this section, we wish to define the stochastic integral
şt

0
ϕpsqdMpsq where M P M2.

This is concurrent with our original formulation when M is an tFtutě0-Brownian motion.

Let pΩ,F ,P, tFtutě0q be a fixed probability space satisfying the usual conditions. Let

M P M2 with xMy as its corresponding quadratic variation. We proceed to begin to define

the stochastic integral with respect to martingales in the same manner as Section 3.1, first

introducing the following similar spaces
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Definition 1.24. L2pMq is the space of real-valued tFtutě0-predictable processes such that

for every T ą 0,

p||ϕ||
M
2,T q

2
“ E

„
ż T

0

ϕ2
ps, ωqdxMypsq

ȷ

ă 8 (1.3.4)

Similarly as the previous section we set

||ϕ||
M
2 “

8
ÿ

n“1

1

2n
p||ϕ||

M
2,n ^ 1q (1.3.5)

Similar to the previous section, it can be shown that L0 is dense in L2pMq in the metric

|| ¨ ||M2 . The stochastic integral with respect to a martingale is thus defined in the same

manner as Section 3.1, for a ϕ P L0 defined by a similar function as (1.3.1), and setting

IMpϕqpt, ωq “

n´1
ÿ

i“0

fipωqpMpti`1, ωq ´ Mpti, ωqq ` fnpωqpMpt, ωq ´ Mptn, ωqq

for tn ď t ď tn`1, n “ 0, 1, .... By the same isometry for ||IMpϕq||b “ ||ϕ||M2 we can take a

similar conclusion to Definition 1.21.

Definition 1.25. IMpϕq P M2 is called the stochastic integral of ϕ P L2pMq with respect to

M P M2. We denote IMpϕq “
şt

0
ϕpsqdMpsq

Note that if M P M2
c , then IMpϕq P M2

c . Additionally, the case when M is an Ft-

Brownian motion is the stochastic integral as defined by Definition 1.21. Next there are

some properties of the stochastic integrals.

Lemma 1.26. The stochastic integral Impϕq, ϕ P L2pMq, M P M2 has the following proper-

ties:

(a) IMpϕqp0q “ 0 a.s.

(b) For each t ą s ě 0,

ErIMpϕqptq ´ IMpϕqpsq|Fss “ 0

(c) If ϕ, ψ P L2pMq and c1, c2 P R, then

IMpc1ϕ ` c2ψqptq “ c1I
M

pϕqptq ` c2I
M

pψqptq for each t ě 0 a.s.
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(d) If ϕ, ψ P L2pMq

ErpIMpϕqptq´IMpϕqpsqqpIMpψqptq´IMpψqpsqq|Fss “ E
„
ż t

s

pϕ ¨ ψqprqdxMyprq
ˇ

ˇ

ˇ
Fs

ȷ

a.s.

(e) X “ IMpϕq is characterized as the unique X P M2 such that

xX,Nyptq “

ż t

0

ϕprqdxM,Nyprq

for each N P M2 and all t ě 0.

Proof. See Watanabe [28], pages 55-57. l

3.3 Itô’s Formula

This section gives all of the relevant forms of Itô’s formula for the conditional Mckean-

Vlasov diffusion we study in Chapter 4. Let pΩ,F ,P, tFtutě0q be a fixed probability space sat-

isfying the usual conditions, with a givenm-dimensional Brownian motionWt “ pW1, ...,WmqT , t ě

0 defined on the space.

Definition 1.27. An n-dimensional Rn-valued continuous and adapted process

xptq “ px1ptq, ..., xnptqqT on t ě 0 with form

xptq “ xp0q `

ż t

0

fpsqds `

ż t

0

σpsqdW psq,

where f “ pf1, . . . , fnqT P L1pR`,Rnq and σ “ pσijqnˆm P L2pR`,Rnˆmq

is called an n-dimensional Itô process.

Let C2,1pRn ˆ R`;Rq denote family of all real-valued functions V px, tq such that it is

twice continuously differentiable in x and once in t.

Theorem 1.28. Let xptq be an n-dimensional Itô process on t ě 0 that satisfies Defini-

tion 1.27. Let V P C2,1pRn ˆ R` : Rq. Then, V pxptq, tq is a real valued Itô process with its
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stochastic differential given by

dV pxptq, tq “

«

Vtpxptq, tq ` Vxpxptq, tqfptq `
1

2
TrpσT

ptqVxxpxptq, tqσptqq

ff

dt

` Vxpxptq, tqσptqdW ptq a.s.

Proof. See Oksendal [42], Thm 4.2.1. l

Now, we seek to formulate a version of the Itô formula in a similar respect when we

have added a Markov chain to our problem. Let pαsqsě0 be a right-continuous Markov chain

with finite state space M “ t1, 2, . . . ,m0u and generator matrix Q “ pqi0j0qi0,j0PM satisfying

qi0j0ą0 for i0 ‰ j0 and
ř

j0PM qi0j0 “ 0. We shall assume the αp¨q is adapted to the Brownian

motion W . Consider the process n-dimensional process Xt defined for each n “ 1, ..., N

dXn
t “ bnpt,Xt, αt´qdt `

N
ÿ

m“1

σnmpt,Xt, αt´qdWm
t (1.3.6)

Xn
0 “ xn0 , a.s., (1.3.7)

for some xn0 P R. The following is a formulation of Donnelly [3] for the Itô formula of such

a process

Theorem 1.29. If V P C1,3pr0, T s ˆ Rnq for each i “ 1, ..., D, then

V pt,Xt, αtq “ V p0, X0, α0q `

ż t

0

LV ps,Xs, αs´qds

`

N
ÿ

n“1

ż t

0

BV

Bxn
ps,Xs, αs´q

N
ÿ

m“1

σnmps,Xs, αs´qdWm
s

`
ÿ

j‰i

ż t

0

pV ps,Xs, jq ´ V ps,Xs, iqqdMijptq
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where

LV pt, x, iq “
BV

Bt
pt, x, iq `

N
ÿ

n“1

BV

Bxn
pt, x, iqbnpt, x, iq

`
1

2

N
ÿ

n“1

N
ÿ

m“1

B2V

BxnBxm
pt, x, iq

N
ÿ

l“1

σnlpt, x, iqσmlpt, x, iq

`

D
ÿ

j“1

qijpV pt, x, jq ´ V pt, x, iqq

for all pt, x, iq P r0, T s ˆ Rn ˆ M.

Proof. See Protter [48], Thm 18, page 278. l

Now, we consider Itô’s formula for a very general class of processes we call semimartin-

gales. Semimartingales are the largest class of processes for which the Itô integral can be

defined, and as such, they have a special place in the theory. Particularly in the conditional

Mckean-Vlasov diffusions we study further on, we use a form of Itô’s formula given for a

function on a space of pushforward probability measures for a specific class of semimartin-

gales.

Definition 1.30. A process xt such that xt “ x0 ` At ` Mt, where x0 P F0, tAtutě0 is a

continuous finite-variational process with A0 “ 0 that is adapted to Ft, and tMtu P M2
c,loc, is

called a a continuous semimartingale.

Theorem 1.31. If fpxq P C2pRq, then

fpxtq ´ fpx0q “

ż t

0

f 1
pxsqdAs `

ż t

0

f 1
pxsqdMs `

1

2

ż t

0

f2
pxsqdxMys

Proof. See Rong [49], Thm. 92. l

Proposition 1.32 (General Itô’s Formula). If X “ pX1, X2, . . . , Xdq is a d-dimensional

semimartingale and f is a twice continuously differentiable real valued function on Rd then
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fpXq is a semimartingale, and

fpXtq “fpX0q `

d
ÿ

i“1

ż t

0

fipXs´qdX i
s `

1

2

d
ÿ

i,j“1

ż t

0

fi,jpXs´qdrX i, Xj
ss

`
ÿ

sďt

˜

∆fpXsq ´

d
ÿ

i“1

fipXs´q∆X i
s ´

1

2

d
ÿ

i,j“1

fi,jpXs´q∆X i
s∆X

j
s

¸

where Xt´ is the left limit in t, ∆Xt “ Xt ´ Xt´ are the jumps, drXst is the quadratic

variation of Xt and drX, Y st is the quadratic covariation of Xt and Yt, fi is the first derivative

of the ith element, and fi,j is the second derivative of the jth element with first derivative of

the ith element. People often write drXst “ pdXtq
2 and drX, Y st “ pdXtqpdYtq. This differs

from the formula for continuous semimartingales by the use of the left limits Xt´, to ensure

predictability, and the additional term summing over the jumps of X, which ensures that the

jump of the right hand side at time t is ∆fpXtq.

4 Stochastic Differential Equations

This section gives a brief introduction into stochastic differential equations (SDEs) and

the results which give us the existence and uniqueness of their solutions. Of particular note,

we introduce the classical SDE, the case with an added jump process, and the case with

Markovian switching. This section follows the material provided from Mao and Yuan [38],

Ikeda and Watanabe [28], Yong and Zhou [62], Li and Zheng [33], Rong [49], Ma, Protter,

and Yong [34], and Platen [47].

4.1 Stochastic Differential Equations

Let pΩ,F ,Pq be a complete probability space with filtration tFtutě0, withWt “ pW1, ...,WmqT ,

t ě 0 an m-dimensional Brownian motion defined on the space. Let both functions

f : rt0, T sˆRd Ñ Rn and σ : rt0, tsˆRd Ñ Rdˆd be Borel measurable. Consider the following

classical stochastic differential equation

dXt “ fpt,Xtqdt ` σpt,XtqdWt, t0 ď t ď T (1.4.1)

with Xt0 ” X0 “ ξ.
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Definition 1.33. Let pΩ,F , tFut0ďtďT ,Pq be given, with Wt a given m-dimensional tFtutě0-

Brownian motion space with filtration tFtutě0, and ξ F0-measurable. An Rd-valued stochastic

process tXtut0ďtďT is called a solution of (1.4.1) if it has the following properties

a. tXtu is continuous and adapted to Ft with X0 “ ξ P-a.s.,

b. tfpt,Xtqu P L1pt0, T ;Rdq and tgpt,Xtqu P L2pt0, T ;Rdˆdq,

c. Xt “ X0 `
şt

t0
fps,Xsqds `

şt

t0
σps,XsqdWs holds with probability 1 for all t P rt0, T s.

A solution is considered unique if PpXt “ X̄t for all t0 ď t ď T q “ 1 where X̄t is any other

solution tX̄tu. Under the above conditions, we denote this as a strong solution.

We now turn to the conditions which guarantee the existence and uniqueness for such

a solution.

Theorem 1.34. Let there be two constants C1, C2 ą 0 such that

(a) for all x, y P Rd and t P rt0, T s

|fpt, xq ´ fpt, yq|
2

^ |σpt, xq ´ σpt, yq|
2

ď C|x ´ y|
2;

(b) for all pt, xq P rt0, T s ˆ Rd

|fpt, xq|
2

^ |σpt, xq|
2

ď C2p1 ` |x|q
2

Then there exists a unique solution Xt to equation (1.4.1) and the solution belongs to

L2prt0, T s;Rdq.

Condition (a) is commonly referred to as the Lipschitz condition while (b) is referred

to as the linear growth condition.

Proof. For a detailed proof of this result, see Mao and Yuan [38] page 82. l

4.2 Stochastic Differential Equations with Regime Switching

Now, we turn to a set of similar results for SDEs which include Markovian switch-

ing. Let pΩ,F , tFut0ďtďT ,Pq be given, with Wt a given m-dimensional and Ft-adapted

Brownian motion. Let pαsqsě0 be a right-continuous Markov chain with finite state space

M “ t1, 2, . . . ,m0u and generator matrix Q “ pqi0j0qi0,j0PM satisfying qi0j0ą0 for i0 ‰ j0
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and
ř

j0PM qi0j0 “ 0. We shall assume the αp¨q is independent to the Brownian motion W .

Consider the following SDE with Markovian switching

dXt “ fpt,Xt, αtqdt ` σpt,Xt, αtqdWt, t0 ď t ď T (1.4.2)

with Xt0 ” X0 “ ξ and αt0 “ i0, where i0 is an M-valued Ft0-measurable random variable,

and f : R` ˆ Rd ˆ M Ñ Rd and σ : R` ˆ Rd ˆ M Ñ Rdˆm.

Theorem 1.35. Let there be two constants C̄1, C̄2 ą 0 such that

(a) for all x, y P Rd and t P rt0, T s and i P M

|fpt, x, iq ´ fpt, y, iq|
2

^ |σpt, x, iq ´ σpt, y, iq|
2

ď C̄1|x ´ y|
2;

(b) for all pt, x, iq P rt0, T s ˆ Rd ˆ M

|fpt, x, iq|
2

^ |σpt, x, iq|
2

ď C̄2p1 ` |x|q
2

Then there exists a unique solution Xt to equation (1.4.2) and the solution belongs to

L2prt0, T s;Rdq.

Proof. See Mao and Yuan [38], Thm. 3.13. l

5 Backward Stochastic Differential Equations

This section is devoted to introducing a class of stochastic differential equations with

terminal conditions conditions called backward and forward-backward stochastic differen-

tial equations. We first consider such equations without switching process. For the cases

with regime switching, the martingales associated with the Markov chain will be needed to

formulate the backward equations.
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5.1 Backward Stochastic Differential Equations

Let g : r0, T s ˆ Rq ˆ Rqˆp ˆ Ω Ñ Rq and ξ P L2
FT

pRqq. A double of functions
`

Yt, Zt

˘

P

S2p0, T ;Rqq ˆ L2p0, T ;Rqˆpq is called a solution of the BSDE

$

’

’

&

’

’

%

dYt “ g
`

t, Yt, Zt

˘

dt ` ZtdWt, 0ďtďT,

YT “ ξ,

(1.5.1)

if they satisfy the following equation

Yt “ ξ ´

ż T

t

g
`

s, Ys, Zs

˘

ds ´

ż T

t

ZsdWs, 0ďtďT.

Theorem 1.36. Let for any py, zq, pȳ, z̄q P Rq ˆ Rqˆp, gpt, y, zq is tFtutě0-adapted with

gp¨, 0, 0q P L2
Fp0, T ;Rqq. Moreover, there exists an L ą 0 such that

|gpt, y, zq ´ gpt, ȳ, z̄q|ďLt|y ´ ȳ| ` |z ´ z̄|u, @t P r0, T s, P-a.s.

Then for any given ξ P L2
FT

pRqq, the BSDE (1.5.1) admits a unique adapted solution
`

Yt, Zt

˘

P S2p0, T ;Rqq ˆ L2p0, T ;Rqˆpq.

Proof. See Yong and Zhou [62], Chapter 7, Thm. 3.2. l

5.2 BSDEs with Regime Switching

Let g : r0, T s ˆ Rq ˆ Rqˆp ˆ M ˆ Ω Ñ Rq and ξ P L2
FT

pRqq. A triple of functions
`

Yt, Zt,Λt

˘

P S2p0, T ;Rqq ˆ L2p0, T ;Rqˆpq ˆ M2p0, T ;Rqq is called a solution of the BSDE

$

’

’

&

’

’

%

dYt “ g
`

t, Yt, Zt, αt

˘

dt ` ZtdWt ` Λt ‚ dMt, 0ďtďT,

YT “ ξ,

(1.5.2)

if they satisfy the following equation

Yt “ ξ ´

ż T

t

g
`

s, Ys, Zs, αs

˘

ds ´

ż T

t

ZsdWs ´

ż T

t

Λs ‚ dMs, 0ďtďT.

Theorem 1.37. Given a pair pξ, gq satisfying

(a) E|ξ|2 ă 8,
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(b) g : Ω ˆ r0, T s ˆ Rq ˆ Rqˆp ˆ M Ñ Rq such that

(i) gpt, y, z, iq is Ft-progressively measurable for all y, z,

(ii) gpt, 0, 0, iq P L2
FpRqq

(iii) g satisfies uniform Lipschitz condition in py, zq, i.e DC ą 0 such that

|gpt, y1, z1, iq ´ gpt, y2, z2, iq|
2

ď C p|y1 ´ y2| ` |z1 ´ z2|q ,

@y1, y2 P Rq, z1, z2 P Rqˆp P b Leb a.e..

Then there exists a unique solution
`

Yt, Zt,Λt

˘

P S2p0, T ;RqqˆL2p0, T ;RqˆpqˆM2p0, T ;Rqq

to the regime switching BSDE (1.5.2).

Proof. See Li and Zheng [33], Thm. 5.15. l

6 Forward-Backward Stochastic Differential Equations

This section continue to introducing another class of stochastic differential equations

with combined initial-terminal conditions called forward-backward stochastic differential

equations. Again, we first consider such equations without regime switching. As seen in the

previous section, for the cases with regime switching, the martingales associated with the

Markov chain will be needed to formulate the backward equations in the forward-backward

systems. Different from the backward stochastic differential equations, the coupled forward-

backward stochastic differential equations normally require complicated conditions for their

well-posedness.

FBSDEs have been studied extensively since 1990s because of their numerous applica-

tions in many areas such as control and game theory [45, 62], mathematical economics [23],

and mathematical finance [18, 29]. However, while in many situations the solvability of the

original (applied) problems is essentially equivalent to the solvability of certain type of FBS-

DEs, these FBSDEs are often beyond the scope of any existing frameworks, especially when

they are outside the Markovian paradigm, where the PDE tool becomes powerless. In fact,

the balance between the regularity of the coefficients and the time duration, as well as the
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nondegeneracy (of the forward diffusion), has been a longstanding problem in the FBSDE

literature, especially in a general non-Markovian framework.

6.1 Forward-Backward Stochastic Differential Equations

There are three main approaches for the wellposedess of the FBSDEs, each of which

has its own advantages and disadvantages. In [11] and then [43], the method of contraction

mapping was studied, which works well for small time durations. In [34], the four-step-scheme

was first introduced to establish the existence and uniqueness of solutions of FBSDEs under

non-degenerate condition of the forward equation and some regularity requirements of the

coefficients (see also [20, 64]). In [25], the existence and uniqueness of solutions of FBSDEs

are proved under monotonicity condition without non-degeneracy condition of the forward

equation and use the continuation method. The monotonicity condition is then remarkably

weakened and developed in subsequent works [24, 44, 60]. For the progress and related works

on FBSDEs, we refer the reader to [35, 37] and the references therein. It is worth noting

that these three methods do not cover each other.

Let the coefficient functions

f : r0, T s ˆ Ω ˆ Rp
ˆ Rq

ˆ Rqˆp
Ñ Rp,

g : r0, T s ˆ Ω ˆ Rp
ˆ Rq

ˆ Rqˆp
Ñ Rq,

σ : r0, T s ˆ Ω ˆ Rp
ˆ Rq

ˆ Rqˆp
Ñ Rqˆp,

h : Ω ˆ Rp
Ñ Rq

be measurable functions with respect to the Borel σ-fields. We consider a measurable process

pXt, Yt, Ztq P S2p0, T ;Rdq ˆ S2p0, T ;Rdq ˆ L2p0, T ;Rqˆpq which is a solution of the problem

$

’

’

&

’

’

%

Xt “ ξ `

ż t

0

fps,Xs, Ys, Zsqds `

ż t

0

σps,Xs, Ys, ZsqdWs,

Yt “ hpXT q ´

ż T

t

gps,Xs, Ys, Zsqds ´

ż T

t

ZsdWs, t P r0, T s.

(1.6.1)
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First, the Method of Contraction Mapping. This method, first used by Antonelli [11]

and later detailed by Pardoux and Tang [43], works well when the duration T is relatively

small.

Second, the Method of Continuation. This was a method that can treat non-Markovian

FBSDEs with arbitrary duration, initiated by Hu and Peng [25] and Peng and Wu [44],

and later developed by Yong [60]. The main assumption for this method is the so-called

“monotonicity conditions” on the coefficients, which is restrictive in a different way. This

method has been used widely in applications (see, e.g., Wu [54], Wu and Yu [55], Yu [63])

because of its pure probabilistic nature.

Third, the Four Step Scheme. This was the first solution method that removed restric-

tion on the time duration for Markovian FBSDEs, initiated by Ma, Protter and Yong [34];

the trade-off is the requirement on the regularity of the coefficients so that a “decoupling”

quasi-linear PDE has a classical solution.

Theorem 1.38. Let

(a) The functions f, g, σ, σ̂ and h are smooth functions taking values in Rp,Rq,Rpˆp,Rqˆp

and Rq, respectively, and with first order derivatives in x, y, z being bounded by some

constant L ą 0.

(b) The function σ satisfies

σpt, x, yqσpt, x, yq
J

ěνp|y|qI, @pt, x, yq P r0, T s ˆ Rp
ˆ Rq,

for some positive continuous function νp¨q.

(c) For each fixed pt, x, y, zq P r0, T s ˆRp ˆRq ˆRqˆp, the linear map σ̂zpt, x, y, zq P LpRqˆpq

(the space of all linear transforms on Rqˆp) is invertible with the inverse σ̂zpt, x, y, zq´1
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satisfying

}σ̂zpt, x, y, zq
´1

}LpRqˆpqďλp|y|q,

pt, x, y, zq P r0, T s ˆ Rp
ˆ Rq

ˆ Rqˆp,

for some continuous function λp¨q. Moreover, for any pt, x, yq P r0, T s ˆ Rp ˆ Rq,

tσ̂pt, x, y, zq|x P Rqˆp
u “ Rqˆp;

and there exists a positive continuous function κp¨q, such that

supt|z|
ˇ

ˇσ̂pt, x, y, zq “ Ouďκp|y|q, @pt, x, yq P r0, T s ˆ Rp
ˆ Rq.

(d) There exists a function µ and constants C ą 0 and α P p0, 1q, such that h is bounded in

C2`αpRqq and for all pt, x, y, zq P r0, T s ˆ Rp ˆ Rq ˆ Rnˆm,

|σpt, x, yq|ďC,

|fpt, x, y, 0q|ďµp|y|q,

|gpt, x, 0, zq|ďC.

Then the forward-backward SDE (1.6.1) admits a unique adapted solution pX, Y, Zq.

Proof. See Ma, Protter and Yong [34], Thm. 4.1. l

6.2 FBSDEs with Regime Switching

In contrast to the vast literature on FBSDEs, such equations with Markovian switching

have not received as needed attention. Although BSDEs with Markovian switching were

studied in [22, 33] and were used to formulate stochastic recursive control problems [65], to

the best of our knowledge, there is no available well-posedness result even for the FBSDEs

with Markovian switching.
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To proceed, let the coefficient functions

f : r0, T s ˆ Ω ˆ Rp
ˆ Rq

ˆ Rqˆp
ˆ M Ñ Rp,

g : r0, T s ˆ Ω ˆ Rp
ˆ Rq

ˆ Rqˆp
ˆ M Ñ Rq,

σ : r0, T s ˆ Ω ˆ Rp
ˆ Rq

ˆ Rqˆp
ˆ M Ñ Rqˆp,

h : Ω ˆ Rp
ˆ M Ñ Rq

be measurable functions with respect to the Borel σ-fields. We consider a measurable

process pXt, Yt, Zt,Λtq P S2p0, T ;Rpq ˆ S2p0, T ;Rqq ˆL2p0, T ;Rqˆpq ˆM2p0, T ;Rqq which is

a solution of the problem

$

’

’

&

’

’

%

Xt “ ξ `

ż t

0

fps,Xs, Ys, Zs, αsqds `

ż t

0

σps,Xs, Ys, Zs, αsqdWs,

Yt “ hpXT , αT q ´

ż T

t

gps,Xs, Ys, Zs, αsqds ´

ż T

t

ZsdWs ´

ż T

t

Λs ‚ dMs, t P r0, T s.

(1.6.2)

7 McKean-Vlasov Stochastic Differential Equations

The topic of weakly interacting systems has a long history beginning with the study of

systems of interacting particles by the Austrian physicist Ludwig Boltzamann.

The more mathematically rigorous construction was introduced by Kac and expanded

upon by Mckean.

We introduce the following construction for a linear Mckean-Vlasov process. Let tFtutě0

be a filtered probability space with Rd valued independent Brownian motion tWtutě0 Let

the function fp¨, ¨q : Rd ˆRd Ñ Rd be Lipschitz continuous and bounded. Allow X0 to be an

F0-measurable, Rd valued random variable with distribution u0. We introduce the equation

$

’

’

&

’

’

%

dXt “ dWt `
ş

fpXt, yqutpdyqdt

Xt“0 “ X0,

(1.7.1)
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where utpdyq is the law of Xt. This is the original specialized linear case as originally studies

by Mckean and Sznitman. The following result can be found in Sznitman [53], Thm 1.1.

Theorem 1.39. The SDE (1.7.1) has a unique strong solution.

The proof ends up being a fixed point argument. With this result established, we

introduce the interacting diffusion system,

$

’

’

&

’

’

%

dX i,N
t “ dW i

s ` 1
N

řN
j“1 fpX i,N

t , Xj,N
t qdt, i “ 1, 2, ..., N

X i,N
0 “ xi0.

The desired result is that each X i,N tends to a limit X̄ i,N as N goes to infinity. It turns out

this X̄ i,N is none other than the nonlinear process as described by (1.7.1). Let X̄ i, iě1 be

given as the solution of (using the previous theorem)

X̄ i
t “ xi0 ` W i

0 `

ż t

0

ż

fpX̄ i
s, yquspdyqds, (1.7.2)

where uspdyq is the law of X̄ i
s. Then we have the following result,

Theorem 1.40.

sup
N

?
NE

”

sup
tďT

|X i,N
t ´ X̄ i

t |

ı

ă 8

The particular case detailed above is a special linear version used to introduce the

concepts. The limit result of Theorem 1.40 is commonly found in the literature as propagation

of chaos. A more generalized version of (1.7.1) where the coefficients depend on the law

exists, commonly found in the literature as the nonlinear Mckean-Vlasov process. This is

the general case that we study in our research hereafter, with the added complexities of

Markov switching. To introduce the generalized version we first define the Wasserstein

metric. Let PpRdq denote the set of all probability measures on pRd,BpRdqq. tPtutě0 are

commonly denoted as flows of probability measures in the literature. For each pě1, let

PppRdq, be the subset of PpRdq containing all measures with bounded p-moments, that is

PppRdq “ tµ P PpRdq :
ş

Rd |x|pµpdxq ă 8u. We endow PpRdq with the p-Wasserstein metric
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Wpp¨, ¨q defined as follows:

Wppµ, ηq “ inf

#

ˆ
ż

RdˆRd

|x ´ y|
pπpdxdyq

˙1{p

: π P Πpµ, ηq

+

, µ, η P PppRd
q, (1.7.3)

where Πpµ, ηq “ tπ P PpR2dq : πpA ˆ Rdq “ µpAq, πpRd ˆ Bq “ ηpBq, @A,B P BpRdqu.

Consider the Mckean-Vlasov diffusion

dXt “ fpXt,Ptqdt ` σpXt,PtqdWt (1.7.4)

whereWt is a Brownian motion and Pt is the law ofXt. Naturally, one might see this equation

and think of the notion of differentiation along flows of probability measures. While there is

much relevant research which provides answers to this question, Pham [45] derived a form

of Itô’s formula for flows of measures on a class of semimartingales. Furthermore, regarding

the existence and uniqueness of (1.7.4),

Theorem 1.41. Let P0 P P2pRdq. Assume that for b and σ there exists C ą 0 such that all

x, y P Rd and for all µ, ν P P2pRdq it holds that

|fpx, µq ´ fpy, νq| ` |σpx, µq ´ σpy, νq| ď Cp|x ´ y| ` W2pµ, νqq,

where W2 denotes the Wasserstein metric with p “ 2. Then for any T ą 0 the SDE (1.7.4)

has a unique strong solution on r0, T s.

The proof for this result can be found in Carmona [15].

With these results established, we are ready to move on to a similar set of equations, this

time dependent upon the conditional law with added Markovian switching.
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Local Solutions to FBSDEs with Regime Switching

Let

f : r0, T s ˆ Rp
ˆ Rq

ˆ Rqˆp
ˆ M Ñ Rp,

g : r0, T s ˆ Rp
ˆ Rq

ˆ Rqˆp
ˆ M Ñ Rq,

σ : r0, T s ˆ Rp
ˆ Rq

ˆ M Ñ Rqˆp,

h : Rp
ˆ M Ñ Rq

be measurable functions with respect to the Borel σ-fields. We consider a measurable process

pXt, Yt, Zt,Λtq P S2p0, T ;Rpq ˆ S2p0, T ;Rqq ˆ L2p0, T ;Rqˆpq ˆ M2p0, T ;Rqq solution of the

problem

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Xt “ ξ `

ż t

0

fps,Xs, Ys, Zs, αsqds `

ż t

0

σps,Xs, Ys, αsqdWs,

Yt “ hpXT , αT q `

ż T

t

gps,Xs, Ys, Zs, αsqds ´

ż T

t

ZsdWs ´

ż T

t

Λs ‚ dMs,

t P r0, T s.

(2.0.1)

1 Existence and Uniqueness of Local Solutions

Assumption (A) We say that the functions f, g, h, and σ satisfy Assumption (A) if

there exist constants K and L such that

35
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(A1) For all t P r0, T s, i0 P M, and px, y, zq, px1, y1, z1q P Rp ˆ Rq ˆ Rqˆp,

ˇ

ˇfpt, x, y, z, i0q ´ fpt, x, y1, z1, i0q
ˇ

ˇďK
`

|y ´ y1
| ` }z ´ z1

}
˘

,

ˇ

ˇgpt, x, y, z, i0q ´ gpt, x1, y, z1, i0q
ˇ

ˇďK
`

|x ´ x1
| ` }z ´ z1

}
˘

,

ˇ

ˇhpx, i0q ´ hpx1, i0q
ˇ

ˇďK|x ´ x1
|,

›

›σpt, x, y, i0q ´ σpt, x1, y1, i0q
›

›

2
ďK2

`

|x ´ x1
|
2

` |y ´ y1
|
2
˘

.

(A2) For all t P r0, T s, px, y, z, i0q P Rp ˆ Rq ˆ Rqˆp ˆ M, and px1, y1q P Rp ˆ Rq,

@

x ´ x1, fpt, x, y, z, i0q ´ fpt, x1, y, z, i0q
D

ďK|x ´ x1
|
2,

@

y ´ y1, gpt, x, y, z, i0q ´ gpt, x, y1, z, i0q
D

ďK|y ´ y1
|
2.

(A3) For all t P r0, T s and px, y, z, i0q P Rp ˆ Rq ˆ Rqˆp ˆ M,

ˇ

ˇfpt, x, y, z, i0q
ˇ

ˇďL
`

1 ` |x| ` |y| ` }z}
˘

,

ˇ

ˇgpt, x, y, z, i0q
ˇ

ˇďL
`

1 ` |x| ` |y| ` }z}
˘

,

ˇ

ˇhpx, i0q
ˇ

ˇďL
`

1 ` |x|
˘

,

›

›σpt, x, y, i0q
›

›ďL
`

1 ` |x| ` |y|
˘

.

(A4) For all t P r0, T s, x P Rp, y P Rq, z P Rqˆp, and i0 P M, the functions

u ÞÑ fpt, u, y, z, i0q and v ÞÑ gpt, x, v, z, i0q are continuous.

Theorem 2.1. Assume that Assumption (A) holds. Then there exists a constant C1 “

C1pKq ą 0, only depending on K, such that for every TďC1, the equation (2.0.1) admits a

unique solution.

Proof. Consider the mapping

Γ : S2
p0, T ;Rp

q ˆ S2
p0, T ;Rq

q ˆ L2
p0, T ;Rqˆp

q ˆ M2
p0, T ;Rq

q

Ñ S2
p0, T ;Rp

q ˆ S2
p0, T ;Rq

q ˆ L2
p0, T ;Rqˆp

q ˆ M2
p0, T ;Rq

q,

pXt, Yt, Zt,Λtq ÞÑ pX̄t, Ȳt, Z̄t, Λ̄tq,
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where pX̄t, Ȳt, Z̄t, Λ̄tq is defined as follows

X̄t “ ξ `

ż t

0

fps, X̄s, Ys, Zs, αsqds `

ż t

0

σps, X̄s, Ys, αsqdWs, t P r0, T s, (2.1.1)

and

Ȳt “ hpX̄T , αT q `

ż T

t

gps, X̄s, Ȳs, Z̄s, αsqds ´

ż T

t

Z̄sdWs ´

ż T

t

Λ̄s ‚ dMs, t P r0, T s. (2.1.2)

Note that X̄t is defined as the solution of (2.1.1) which is a forward SDE, whereas pȲt, Z̄s, Λ̄sq

are defined as the solution of the BSDE (2.1.2). The solutions to BSDEs with regime switch-

ing are investigated in [33] with respect to the the σ-field generated by the Brownian and

Markov chain only. However, in our case with σtξu is included in F0, the martingale repre-

sentation theorem (see [21, Theorem B.4.6]) is still valid. That is, every square integrable

tFtu-martingale can be represented as a stochastic integral with respect to Wt and Mt. As a

consequence, the existence and uniqueness of solutions to BSDEs given in [33, Theorem 5.15]

can be extended to our case. Therefore, (2.1.2) has a unique solution and Γ is well-defined.

Next, we will show that there exists a constant C1 “ C1pKq ą 0, only depending on K,

such that for every TďC1, Γ is a contraction. Without any loss of generality we can assume

that Tď1. Let pSt, Ut, Vt,Υtq P S2p0, T ;RpqˆS2p0, T ;RqqˆL2p0, T ;RqˆpqˆM2p0, T ;Rqq and

denote pS̄t, Ūt, V̄t, Ῡtq “ ΓpSt, Ut, Vt,Υtq. In view of Assumption (A) and the Itô’s formula

for
ˇ

ˇX̄ ´ S̄
ˇ

ˇ

2
, there exists a constant γK , only depending on K, such that
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ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
“ 2

ż t

0

xX̄s ´ S̄s, fps, X̄s, Ys, Zs, αsq ´ fps, S̄s, Us, Vs, αsqyds

` 2

ż t

0

xX̄s ´ S̄s, pσps, X̄s, Ys, αsq ´ σps, S̄s, Us, αsqqdWsy

`

ż t

0

ˇ

ˇσps, X̄s, Ys, αsq ´ σps, S̄s, Us, αsq
ˇ

ˇ

2
ds

“ 2

ż t

0

xX̄s ´ S̄s, fps, X̄s, Ys, Zs, αsq ´ fps, X̄s, Us, Vs, αsqyds

` 2

ż t

0

xX̄s ´ S̄s, fps, X̄s, Us, Vs, αsq ´ fps, S̄s, Us, Vs, αsqyds

` 2

ż t

0

xX̄s ´ S̄s, pσps, X̄s, Ys, αsq ´ σps, S̄s, Us, αsqqdWsy

`

ż t

0

ˇ

ˇσps, X̄s, Ys, αsq ´ σps, S̄s, Us, αsq
ˇ

ˇ

2
ds

ď 2K

ż t

0

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

´

ˇ

ˇYs ´ Us

ˇ

ˇ `
›

›Zs ´ Vs
›

›

¯

ds

` 2K

ż t

0

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

2
ds

` 2

ż t

0

xX̄s ´ S̄s, pσps, X̄s, Ys, αsq ´ σps, S̄s, Us, αsqqdWsy

` K2

ż t

0

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

2
`
ˇ

ˇYs ´ Us

ˇ

ˇ

2
¯

ds

Hence, there exists a constant γK , only depending on K, such that

E sup
0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2

ďγK

„

E
ż T

0

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ `
ˇ

ˇYs ´ Us

ˇ

ˇ `
›

›Zs ´ Vs
›

›

¯

ds

` E
ż T

0

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

2
`
ˇ

ˇYs ´ Us

ˇ

ˇ

2
¯

ds

ȷ

` 2E
„

sup
r0,T s

ˇ

ˇ

ˇ

ˇ

ż t

0

A

X̄s ´ S̄s,
´

σ
`

s, X̄s, Ys, αs

˘

´ σ
`

s, S̄s, Us, αs

˘

¯

dWs

E

ˇ

ˇ

ˇ

ˇ

ȷ

.
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In what follows, we can modify γK if necessary, so this constant may vary from place to

place. By Burkholder-Davis-Gundy’s inequality and Young’s inequality,

E sup
0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2

ďγK

"

E
ż T

0

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ `
ˇ

ˇYs ´ Us

ˇ

ˇ `
›

›Zs ´ Vs
›

›

¯

ds

` E
ż T

0

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

2
`
ˇ

ˇYs ´ Us

ˇ

ˇ

2
¯

ds

` E
„
ˇ

ˇ

ˇ

ˇ

ż T

0

A

X̄s ´ S̄s,
´

σ
`

s, X̄s, Ys, αs

˘

´ σ
`

s, S̄s, Us, αs

˘

¯

dWs

E

ˇ

ˇ

ˇ

ˇ

2ȷ1{2*

ďγK

"

E
ż T

0

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ `
ˇ

ˇYs ´ Us

ˇ

ˇ `
›

›Zs ´ Vs
›

›

¯

ds

` E
ż T

0

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

2
`
ˇ

ˇYs ´ Us

ˇ

ˇ

2
¯

ds

` E
„
ż T

0

ˇ

ˇ

ˇ

ˇ

X̄s ´ S̄s

ˇ

ˇ

ˇ

ˇ

2›
›

›

›

σ
`

s, X̄s, Ys, αs

˘

´ σ
`

s, S̄s, Us, αs

˘

›

›

›

›

2

ds

ȷ1{2*

ďγK

"

E
ż T

0

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ `
ˇ

ˇYs ´ Us

ˇ

ˇ `
›

›Zs ´ Vs
›

›

¯

ds

` E
ż T

0

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

2
`
ˇ

ˇYs ´ Us

ˇ

ˇ

2
¯

ds

` E
„
ż T

0

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

2
´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

2
`
ˇ

ˇYs ´ Us

ˇ

ˇ

2
¯

ds

ȷ1{2*

.

By Cauchy-Schwarz’s inequality we arrive at

E sup
0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
ďγK

?
T

ˆ

E sup
0ďsďT

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ

2
` E sup

0ďsďT

ˇ

ˇYs ´ Us

ˇ

ˇ

2
` E

ż T

0

›

›Zs ´ Vs
›

›

2
ds

˙

.

As a consequence,

`

1 ´ γK
?
T
˘

E sup
0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
ďγK

?
T

ˆ

E sup
0ďsďT

ˇ

ˇYs ´ Us

ˇ

ˇ

2
` E

ż T

0

›

›Zs ´ Vs
›

›

2
ds

˙

. (2.1.3)

Next, by Itô’s formula for non-continuous semimartingales,
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ˇ

ˇȲt ´ Ūt

ˇ

ˇ

2
`

ż T

t

›

›Z̄s ´ V̄s
›

›

2
ds `

ż T

t

ˇ

ˇΛ̄s ´ Ῡs

ˇ

ˇ

2
‚ drM ss

“
ˇ

ˇhpX̄T , αT q ´ hpS̄T , αT q
ˇ

ˇ

2
` 2

ż T

t

A

Ȳs ´ Ūs, g
`

s, X̄s, Ȳs, Z̄s, αs

˘

´ g
`

s, S̄s, Ūs, V̄s, αs

˘

E

ds

´ 2

ż T

t

A

Ȳs ´ Ūs,
`

Z̄s ´ V̄s
˘

dWs

E

´ 2

ż T

t

A

Ȳs ´ Ūs, Λ̄s ´ Ῡs

E

‚ dMs. (2.1.4)

Note that

E
ż T

t

A

Ȳs ´ Ūs,
`

Z̄s ´ V̄s
˘

dWs

E

“

ż T

t

A

Ȳs ´ Ūs, Λ̄s ´ Ῡs

E

‚ dMs “ 0,

@ i0, j0 P M, by using Assumption (A) and Cauchy-Schwarz inequality we obtain

E
ż T

t

›

›Z̄s ´ V̄s
›

›

2
ds ` E

ż T

t

ˇ

ˇΛ̄s ´ Ῡs

ˇ

ˇ

2
‚ drM ss

“ E
ˇ

ˇhpX̄T , αT q ´ hpS̄T , αT q
ˇ

ˇ

2
` 2E

ż T

t

A

Ȳs ´ Ūs, g
`

s, X̄s, Ȳs, Z̄s, αs

˘

´ g
`

s, S̄s, Ȳs, Z̄s, αs

˘

E

ds

` 2E
ż T

t

A

Ȳs ´ Ūs, g
`

s, S̄s, Ȳs, Z̄s, αs

˘

´ g
`

s, S̄s, Ūs, V̄s, αs

˘

E

ds

ďγK

„

E
ˇ

ˇX̄T ´ S̄T

ˇ

ˇ

2
` E

ż T

t

ˇ

ˇȲs ´ Ūs

ˇ

ˇ

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ `
ˇ

ˇȲs ´ Ūs

ˇ

ˇ `
›

›Z̄s ´ V̄s
›

›

¯

ds

ȷ

ďγK

´

p1 ` T qE sup
0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
` TE sup

0ďtďT

ˇ

ˇȲt ´ Ūt

ˇ

ˇ

2
¯

`
1

2
E
ż T

t

›

›Z̄s ´ V̄s
›

›

2
ds.

Hence,

E
ż T

t

›

›Z̄s ´ V̄s
›

›

2
ds ` E

ż T

t

ˇ

ˇΛ̄s ´ Ῡs

ˇ

ˇ

2
‚ drM ss

ďγK

´

p1 ` T qE sup
0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
` TE sup

0ďtďT

ˇ

ˇȲt ´ Ūt

ˇ

ˇ

2
¯

. (2.1.5)
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By simple estimate, we can prove the following inequalities

E
„
ż T

0

ˇ

ˇȲs ´ Ūs

ˇ

ˇ

2›
›Z̄s ´ V̄s

›

›

2
ds

ȷ1{2

ďE
„

1

4γK
sup

0ďsďT

ˇ

ˇȲs ´ Ūs

ˇ

ˇ

2
` 4γK

ż T

0

›

›Z̄s ´ V̄s
›

›

2
ds

ȷ

,

E
„
ż T

0

ˇ

ˇȲs ´ Ūs

ˇ

ˇ

2ˇ
ˇΛ̄s ´ Ῡs

ˇ

ˇ

2
‚ d

“

M
‰

s

ȷ1{2

ďE
„

1

4γK
sup

0ďsďT

ˇ

ˇȲs ´ Ūs

ˇ

ˇ

2
` 4γK

ż T

0

ˇ

ˇΛ̄s ´ Ῡs

ˇ

ˇ

2
‚ d

“

M
‰

s

ȷ

.

Using these inequalities and Burkholder-Davis-Gundy’s inequality and (2.1.5) for (2.1.4)

we get

E sup
0ďtďT

ˇ

ˇȲt ´ Ūt

ˇ

ˇ

2

ďγK

#

E
ˇ

ˇX̄T ´ S̄T

ˇ

ˇ

2
` E

ż T

0

ˇ

ˇȲs ´ Ūs

ˇ

ˇ

´

ˇ

ˇX̄s ´ S̄s

ˇ

ˇ `
ˇ

ˇȲs ´ Ūs

ˇ

ˇ `
›

›Z̄s ´ V̄s
›

›

¯

ds

` E
„
ż T

0

ˇ

ˇȲs ´ Ūs

ˇ

ˇ

2›
›Z̄s ´ V̄s

›

›

2
ds

ȷ1{2

` E
„
ż T

0

ˇ

ˇȲs ´ Ūs

ˇ

ˇ

2ˇ
ˇΛ̄s ´ Ῡs

ˇ

ˇ

2
‚ d

“

M
‰

s

ȷ1{2
+

ďγK

´

p1 ` T qE sup
0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
` TE sup

0ďtďT

ˇ

ˇȲt ´ Ūt

ˇ

ˇ

2
¯

`
1

2
E
ż T

t

›

›Z̄s ´ V̄s
›

›

2
ds

` E
„

1

4γK
sup

0ďsďT

ˇ

ˇȲs ´ Ūs

ˇ

ˇ

2
` 4γK

ż T

0

›

›Z̄s ´ V̄s
›

›

2
ds

ȷ

` E
„

1

4γK
sup

0ďsďT

ˇ

ˇȲs ´ Ūs

ˇ

ˇ

2
` 4γK

ż T

0

ˇ

ˇΛ̄s ´ Ῡs

ˇ

ˇ

2
‚ d

“

M
‰

s

ȷ

.

ďγK

´

p1 ` T qE sup
0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
` TE sup

0ďtďT

ˇ

ˇȲt ´ Ūt

ˇ

ˇ

2
¯

This implies

p1 ´ γKT qE sup
0ďtďT

ˇ

ˇȲt ´ Ūt

ˇ

ˇ

2
ďγKp1 ` T qE sup

0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
. (2.1.6)
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Combining (2.1.3), (2.1.5) and (2.1.6) we obtain

E sup
0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
ď

γK
?
T

1 ´ γK
?
T

ˆ

E sup
0ďsďT

ˇ

ˇYs ´ Us

ˇ

ˇ

2
` E

ż T

0

›

›Zs ´ Vs
›

›

2
ds

˙

,

E
ż T

t

›

›Z̄s ´ V̄s
›

›

2
ds ` E

ż T

t

ˇ

ˇΛ̄s ´ Ῡs

ˇ

ˇ

2
‚ drM ss

ďγKp1 ` T q

´

E sup
0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
` E sup

0ďtďT

ˇ

ˇȲt ´ Ūt

ˇ

ˇ

2
¯

.

E sup
0ďtďT

ˇ

ˇȲt ´ Ūt

ˇ

ˇ

2
ď
γKp1 ` T q

1 ´ γKT
E sup

0ďtďT

ˇ

ˇX̄t ´ S̄t

ˇ

ˇ

2
.

It is easily seen that there exists a constant C1 “ C1pKq ą 0 only depending on K such that

for TďC1, the mapping Γ is contractive from S2p0, T ;Rpq ˆ S2p0, T ;Rqq ˆ L2p0, T ;Rqˆpq ˆ

M2p0, T ;Rqq to itself. By the contraction mapping theorem, there exists a unique tFtu-

progressively measurable solution to (2.0.1). l

Proposition 2.2. Under Assumption (A) there exists a constant C2 “ C2pKq P p0, C1s

only depending on K such that for every TďC2, for every quadruplet of functions pf̃ , g̃, h̃, σ̃q

satisfying Assumption (A) with the same constants K and L as pf, g, h, σq, for every A P F0,

and for all F0-measurable random vectors ξ and ξ̃ with finite second moment, we have the

following estimate

E
ˆ

11A sup
0ďsďT

ˇ

ˇXs ´ X̃s

ˇ

ˇ

2

˙

` E
ˆ

11A sup
0ďsďT

ˇ

ˇYs ´ Ỹs
ˇ

ˇ

2

˙

` E
ż T

0

11A
›

›Zs ´ Z̃s

›

›

2
ds

` E
ż T

0

11A
ˇ

ˇΛs ´ Λ̃s

ˇ

ˇ

2
‚ d

“

M
‰

s

ďγK

#

E
´

11A
ˇ

ˇξ ´ ξ̃
ˇ

ˇ

2
¯

` E
´

11A
ˇ

ˇh ´ h̃
ˇ

ˇ

2
pXT q

¯

` E
ż T

0

11A
›

›σ ´ σ̃
›

›

2
ps,Xs, Ys, αsqds

` E

«

ˆ
ż T

0

11A
ˇ

ˇf ´ f̃
ˇ

ˇps,Xs, Ys, Zs, αsqds

˙2

`

ˆ
ż T

0

11A
ˇ

ˇg ´ g̃
ˇ

ˇps,Xs, Ys, Zs, αsqds

˙2
ff+

(2.1.7)

where γK is a constant only depending on K, the processes
`

Xs, Ys, Zs,Λs

˘

and
`

X̃s, Ỹs, Z̃s, Λ̃s

˘

,

0ďsďT , are respectively the solutions to the problems associated to the coefficients pf, g, h, σq

and pf̃ , g̃, h̃, σ̃q and to the initial conditions p0, ξq and p0, ξ̃q.
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Proof. According to Itô’s formula and Burkholder-Davis-Gundy inequality, we have

E
ˆ

11A sup
0ďtďT

ˇ

ˇX̃t ´ Xt

ˇ

ˇ

2

˙

ďE
´

11A
ˇ

ˇξ̃ ´ ξ
ˇ

ˇ

2
¯

` E
ż T

0

11A
›

›σ̃ps, X̃s, Ỹs, αsq ´ σps,Xs, Ys, αsq
›

›

2
ds

` 2E sup
0ďtďT

ˆ
ż t

0

11A

A

X̃s ´ Xs, f̃ps, X̃s, Ỹs, Z̃s, αsq ´ fps,Xs, Ys, Zs, αsq

E

ds

˙

` 2E sup
0ďtďT

ˆ
ż t

0

11A

A

X̃s ´ Xs,
`

σ̃ps, X̃s, Ỹs, αsq ´ σps,Xs, Ys, αsq
˘

dWs

E

˙

ďE
´

11A
ˇ

ˇξ̃ ´ ξ
ˇ

ˇ

2
¯

` E
ż T

0

11A
›

›σ̃ps, X̃s, Ỹs, αsq ´ σps,Xs, Ys, αsq
›

›

2
ds

` 2E sup
0ďtďT

ˆ
ż t

0

11A

A

X̃s ´ Xs, f̃ps, X̃s, Ỹs, Z̃s, αsq ´ fps,Xs, Ys, Zs, αsq

E

ds

˙

` γE
ˆ
ż t

0

11A
ˇ

ˇX̃s ´ Xs

ˇ

ˇ

2›
›σ̃ps, X̃s, Ỹs, αsq ´ σps,Xs, Ys, αsq

›

›

2
ds

˙1{2

.

By using simple estimates for the last two terms in the above inequalities and modifying γ

we arrive at

E
ˆ

11A sup
0ďtďT

ˇ

ˇX̃t ´ Xt

ˇ

ˇ

2

˙

ďγ

«

E
´

11A
ˇ

ˇξ̃ ´ ξ
ˇ

ˇ

2
¯

` E
ż T

0

11A
›

›σ̃ps, X̃s, Ỹs, αsq ´ σps,Xs, Ys, αsq
›

›

2
ds

` E sup
0ďtďT

ˆ
ż t

0

11A

A

X̃s ´ Xs, f̃ps, X̃s, Ỹs, Z̃s, αsq ´ f̃ps,Xs, Ys, Zs, αsq

E

ds

˙

` E
ˆ
ż t

0

11A
ˇ

ˇf̃ps,Xs, Ys, Zs, αsq ´ fps,Xs, Ys, Zs, αsq
ˇ

ˇds

˙2
ff

.

Therefore, Assumption (A) implies that there exists a constant γK only depending on

K such that
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E
ˆ

11A sup
0ďtďT

ˇ

ˇX̃t ´ Xt

ˇ

ˇ

2

˙

ďγK

«

E
´

11A
ˇ

ˇξ̃ ´ ξ
ˇ

ˇ

2
¯

` E
ż T

0

11A

´

ˇ

ˇX̃s ´ Xs

ˇ

ˇ

2
`
ˇ

ˇỸs ´ Ys
ˇ

ˇ

2
¯

ds

` E
ż T

0

11A
ˇ

ˇX̃s ´ Xs

ˇ

ˇ

›

›Z̃s ´ Zs

›

›ds ` E
ż T

0

11A
›

›σ̃ps,Xs, Ys, αsq ´ σps,Xs, Ys, αsq
›

›

2
ds

` E
ˆ
ż T

0

11A
ˇ

ˇf̃ps,Xs, Ys, Zs, αsq ´ fps,Xs, Ys, Zs, αsq
ˇ

ˇds

˙2
ff

. (2.1.8)

ďγK

«

E
´

11A
ˇ

ˇξ̃ ´ ξ
ˇ

ˇ

2
¯

` E
ż T

0

11A

´

ˇ

ˇX̃s ´ Xs

ˇ

ˇ

2
`
ˇ

ˇỸs ´ Ys
ˇ

ˇ

2
`
›

›Z̃s ´ Zs

›

›

2
¯

ds

` E
ż T

0

11A
›

›σ̃ps,Xs, Ys, αsq ´ σps,Xs, Ys, αsq
›

›

2
ds

` E
ˆ
ż T

0

11A
ˇ

ˇf̃ps,Xs, Ys, Zs, αsq ´ fps,Xs, Ys, Zs, αsq
ˇ

ˇds

˙2
ff

.

Next, similar to (2.1.4), by Itô’s formula for non-continuous semimartingales, for 0ďtďT

ˇ

ˇYt ´ Ỹt
ˇ

ˇ

2
`

ż T

t

›

›Z̃s ´ Zs

›

›

2
ds `

ż T

t

ˇ

ˇΛ̃s ´ Λs

ˇ

ˇ

2
‚ d

“

M
‰

s

“
ˇ

ˇh̃pX̃T , αT q ´ hpXT , αT q
ˇ

ˇ

2
` 2

ż T

t

A

Ỹs ´ Ys, g̃ps, X̃s, Ỹs, Z̃s, αsq ´ gps,Xs, Ys, Zs, αsq

E

ds

´ 2

ż T

t

A

Ỹs ´ Ys,
`

Z̃s ´ Zs

˘

dWs

E

´ 2

ż T

t

A

Ỹs ´ Ys, Λ̃s ´ Λs

E

‚ dMs.

Hence, for any A P F0 and 0ďtďT ,

E
ˆ

11A
ˇ

ˇYt ´ Ỹt
ˇ

ˇ

2

˙

` E
ż T

t

11A
›

›Z̃s ´ Zs

›

›

2
ds ` E

ż T

t

11A
ˇ

ˇΛ̃s ´ Λs

ˇ

ˇ

2
‚ d

“

M
‰

s

“ E
´

11A
ˇ

ˇh̃pX̃T , αT q ´ hpXT , αT q
ˇ

ˇ

2
¯

` 2E
ż T

t

11A

A

Ỹs ´ Ys, g̃ps, X̃s, Ỹs, Z̃s, αsq ´ gps,Xs, Ys, Zs, αsq

E

ds.
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In addition, by using Burkholder-Davis-Gundy inequality we get

E
ˆ

11A sup
0ďtďT

ˇ

ˇYt ´ Ỹt
ˇ

ˇ

2

˙

ďE
´

11A
ˇ

ˇh̃pX̃T , αT q ´ hpXT , αT q
ˇ

ˇ

2
¯

` 2E sup
0ďtďT

ż T

t

11A

A

Ỹs ´ Ys, g̃ps, X̃s, Ỹs, Z̃s, αsq ´ gps,Xs, Ys, Zs, αsq

E

ds

` γE
ˆ
ż T

0

11A
ˇ

ˇỸs ´ Ys
ˇ

ˇ

2›
›Z̃s ´ Zs

›

›

2
ds

˙1{2

` γE
ˆ
ż T

0

11A
ˇ

ˇỸs ´ Ys
ˇ

ˇ

2ˇ
ˇΛ̃s ´ Λs

ˇ

ˇ

2
‚ d

“

M
‰

s

˙1{2

which, together with the above equation, yields

E
ˆ

11A sup
0ďtďT

ˇ

ˇYt ´ Ỹt
ˇ

ˇ

2

˙

` E
ż T

0

11A
›

›Z̃s ´ Zs

›

›

2
ds ` E

ż T

0

11A
ˇ

ˇΛ̃s ´ Λs

ˇ

ˇ

2
‚ d

“

M
‰

s

ďγ

«

E
´

11A
ˇ

ˇh̃pX̃T , αT q ´ hpXT , αT q
ˇ

ˇ

2
¯

` E sup
0ďtďT

ż T

t

11A

A

Ỹs ´ Ys, g̃ps, X̃s, Ỹs, Z̃s, αsq ´ g̃ps,Xs, Ys, Zs, αsq

E

ds

` E
ˆ
ż T

0

11A

ˇ

ˇ

ˇ
g̃ps,Xs, Ys, Zs, αsq ´ gps,Xs, Ys, Zs, αsq

ˇ

ˇ

ˇ
ds

˙2
ff

. (2.1.9)

Combining (2.1.8) and (2.1.9) and using Assumption (A) lead to

E
ˆ

11A sup
0ďtďT

ˇ

ˇXt ´ X̃t

ˇ

ˇ

2

˙

` E
ˆ

11A sup
0ďtďT

ˇ

ˇYt ´ Ỹt
ˇ

ˇ

2

˙

` E
ż T

0

11A
›

›Z̃s ´ Zs

›

›

2
ds

` E
ż T

0

11A
ˇ

ˇΛ̃s ´ Λs

ˇ

ˇ

2
‚ d

“

M
‰

s

ďγK

«

E
´

11A
ˇ

ˇξ̃ ´ ξ
ˇ

ˇ

2
¯

` E
´

11A
ˇ

ˇh̃pX̃T , αT q ´ hpXT , αT q
ˇ

ˇ

2
¯

(2.1.10)

` E
ż T

0

11A

›

›

›
σ̃ps,Xs, Ys, αsq ´ σps,Xs, Ys, αsq

›

›

›

2

ds

` E
ˆ
ż T

0

11A

ˇ

ˇ

ˇ
f̃ps,Xs, Ys, Zs, αsq ´ fps,Xs, Ys, Zs, αsq

ˇ

ˇ

ˇ
ds

˙2

` E
ˆ
ż T

0

11A

ˇ

ˇ

ˇ
g̃ps,Xs, Ys, Zs, αsq ´ gps,Xs, Ys, Zs, αsq

ˇ

ˇ

ˇ
ds

˙2

` E
ż T

0

11A
ˇ

ˇX̃s ´ Xs

ˇ

ˇ

2
ds ` E

ż T

0

11A
ˇ

ˇỸs ´ Ys
ˇ

ˇ

2
ds ` E

ż T

0

11A
›

›Z̃s ´ Zs

›

›

2
ds

ff
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for some constant γK only depending on K. This implies that there exists a constant

C2 “ C2pKq only depending on K such that for any TďC2,

E
ˆ

11A sup
0ďtďT

ˇ

ˇXt ´ X̃t

ˇ

ˇ

2

˙

` E
ˆ

11A sup
0ďtďT

ˇ

ˇYt ´ Ỹt
ˇ

ˇ

2

˙

` E
ż T

0

11A
›

›Z̃s ´ Zs

›

›

2
ds

` E
ż T

0

11A
ˇ

ˇΛ̃s ´ Λs

ˇ

ˇ

2
‚ d

“

M
‰

s

ďγK

«

E
´

11A
ˇ

ˇξ̃ ´ ξ
ˇ

ˇ

2
¯

` E
´

11A
ˇ

ˇh̃pX̃T , αT q ´ hpXT , αT q
ˇ

ˇ

2
¯

(2.1.11)

` E
ż T

0

11A

›

›

›
σ̃ps,Xs, Ys, αsq ´ σps,Xs, Ys, αsq

›

›

›

2

ds

` E
ˆ
ż T

0

11A

ˇ

ˇ

ˇ
f̃ps,Xs, Ys, Zs, αsq ´ fps,Xs, Ys, Zs, αsq

ˇ

ˇ

ˇ
ds

˙2

` E
ˆ
ż T

0

11A

ˇ

ˇ

ˇ
g̃ps,Xs, Ys, Zs, αsq ´ gps,Xs, Ys, Zs, αsq

ˇ

ˇ

ˇ
ds

˙2

. (2.1.12)

This completes the proof. l

Corollary 2.3. Assume that Assumption (A) holds then for any TďC2 and t P r0, T s and

for any Ft-measurable random vector ξ with finite second moment, we define the process
`

X t,ξ,αt
s , Y t,ξ,αt

s , Zt,ξ,αt
s ,Λt,ξ,αt

s

˘

, tďsďT as the unique solution of the problem

$

’

’

&

’

’

%

Xs “ ξ `

ż s

t

fpr,Xr, Yr, Zr, αrqdr `

ż s

t

σpr,Xr, Yr, αrqdWr,

Ys “ hpXT , αT q `

ż T

s

gpr,Xr, Yr, Zr, αrqdr ´

ż T

s

ZrdWr ´

ż T

s

Λr ‚ dMr, s P rt, T s.

(2.1.13)

extended to the whole interval r0, T s if ξ “ x a.s. x P Rp by putting

X t,x,αt
s “ x, Y t,x,αt

s “ Y t,x,αt
t , Zt,x,αt

s “ 0, Λi0,j0,t,x,αt
s “ 0, for 0ďsďt, i0, j0 P M.

Then the following assertions hold.
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(i) There exists a constant γK,L only depending on K and L such that for all pt, xq P

r0, T s ˆ Rp,

E sup
0ďtďT

ˇ

ˇX t,x,αt
s

ˇ

ˇ

2
` E sup

0ďtďT

ˇ

ˇY t,x,αt
s

ˇ

ˇ

2
` E

ż T

0

›

›Zt,x,αt
s

›

›

2
ds ` E

ż T

0

ˇ

ˇΛt,x,αt
s

ˇ

ˇ

2
‚ d

“

M
‰

s

ďγK,L

`

1 ` |x|
2
˘

. (2.1.14)

(ii) There exist a constant γK only depending on K and a constant γK,L only depending on

K,L such that for all t, t1 P r0, T s and x, x1 P Rp,

E sup
0ďtďT

ˇ

ˇX t1,x1,αt
s ´ X t,x,αt

s

ˇ

ˇ

2
` E sup

0ďtďT

ˇ

ˇY t1,x1,αt
s ´ Y t,x,αt

s

ˇ

ˇ

2
` E

ż T

0

›

›Zt1,x1,αt
s ´ Zt,x,αt

s

›

›

2
ds

` E
ż T

0

ˇ

ˇΛt1,x1,αt
s ´ Λt,x,αt

s

ˇ

ˇ

2
‚ d

“

M
‰

s

ďγK |x ´ x1
|
2

` γK,L

`

1 ` |x|
2
˘

|t ´ t1|. (2.1.15)

Proof. Let 0ďtďTďC2. We observe that the quadruplets of functions
`

11rt,T sf, 11rt,T sg, 11rt,T sσ, h
˘

and
`

0, 0, 0, 0
˘

satisfy Assumption (A). Moreover,
`

X t,x,αt
s , Y t,x,αt

s , Zt,x,αt
s ,Λt,x,αt

s

˘

, 0ďsďT is the unique solution of the FBSDE

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Xs “ x `

ż s

t

11rt,T sprqfpr,Xr, Yr, Zr, αrqdr `

ż s

t

11rt,T sprqσpr,Xr, Yr, αrqdWr,

Ys “ hpXT , αT q `

ż T

s

11rt,T sprqgpr,Xr, Yr, Zr, αrqdr ´

ż T

s

ZrdWr ´

ż T

s

Λr ‚ dMr,

s P r0, T s.
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Therefore, as a direct consequence of Proposition 2.2 we obtain

E sup
0ďtďT

ˇ

ˇX t,x,αt
s

ˇ

ˇ

2
` E sup

0ďtďT

ˇ

ˇY t,x,αt
s

ˇ

ˇ

2
` E

ż T

0

›

›Zt,x,αt
s

›

›

2
ds ` E

ż T

0

ˇ

ˇΛt,x,αt
s

ˇ

ˇ

2
‚ d

“

M
‰

s

ďγK

«

|x|
2

` |hp0q|
2

` E
ˆ
ż T

0

ˇ

ˇfps, 0, 0, 0, αsq
ˇ

ˇds

˙2

` E
ˆ
ż T

0

ˇ

ˇgps, 0, 0, 0, αsq
ˇ

ˇds

˙2

` E
ż T

0

›

›

›
σps, 0, 0, αsq

›

›

›

2

ds

ff

ďγK,L

`

1 ` |x|
2
˘

.

Note that we have used Assumption (A) in the last inequality.

Next, let t, t1 P r0, T s and x, x1 P Rp. Again, as
`

11rt,T sf, 11rt,T sg, 11rt,T sσ, h
˘

and
`

11rt1,T sf, 11rt1,T sg, 11rt1,T sσ, h
˘

both satisfy Assumption (A), a similar argument to that in the

above proves that

E sup
0ďtďT

ˇ

ˇX t1,x1,αt
s ´ X t,x,αt

s

ˇ

ˇ

2
` E sup

0ďtďT

ˇ

ˇY t1,x1,αt
s ´ Y t,x,αt

s

ˇ

ˇ

2
` E

ż T

0

›

›Zt1,x1,αt
s ´ Zt,x,αt

s

›

›

2
ds

` E
ż T

0

ˇ

ˇΛt1,x1,αt
s ´ Λt,x,αt

s

ˇ

ˇ

2
‚ d

“

M
‰

s

ďγK

«

|x1
´ x|

2
` E

ż t1_t

t1^t

›

›

›
σps,X t,x,αt

s , Y t,x,αt
s , αsq

›

›

›

2

ds

` E
ˆ
ż t1_t

t1^t

ˇ

ˇfps,X t,x,αt
s , Y t,x,αt

s , Zt,x,αt
s , αsq

ˇ

ˇds

˙2

` E
ˆ
ż t1_t

t1^t

ˇ

ˇgps,X t,x,αt
s , Y t,x,αt

s , Zt,x,αt
s , αsq

ˇ

ˇds

˙2

ďγK |x1
´ x|

2
` γK,L

`

1 ` |x|
2
˘

|t1 ´ t|.

We have used Assumption (A) (with the note that Zt,x,αt
s “ 0 if sďt and that we can

assume tďt1 as t and t1 play an equal role) and the estimates in part (i) in the last inequality.

This completes the proof. l

Proposition 2.4. Suppose that Assumption (A) is in force, then for any TďC2, the mapping

θ : r0, T s ˆ Rp
ˆ M Ñ Rq, pt, x, ιq ÞÑ Y t,x,ι

t ,



49

satisfies for any t, t1 P r0, T s, x, x1 P Rp, and ι P M,

ˇ

ˇθpt, x, ιq
ˇ

ˇ

2
ďγK,L

`

1 ` |x|
2
˘

, (2.1.16)

ˇ

ˇθpt1, x1, ιq ´ θpt, x, ιq
ˇ

ˇ

2
ďγK |x1

´ x|
2

` γK,L

`

1 ` |x|
2
˘

|t1 ´ t|, (2.1.17)

and for every 0ďtďT , for every Ft-measurable random vector ξ with finite second moment,

there exists a P-null set N t,ξ,αt
t P F0 such that

Y t,ξ,αt
s pωq “ θ

`

s,X t,ξ,αt
s pωq, αspωq

˘

, @s P rt, T s, ω R N t,ξ,αt
t . (2.1.18)

Proof. Note that for any 0ďtďT and x P Rp, Y t,x,αt
t is σtαtu-measurable, so it is a function

of αt. That is, Y t,x,αt
t “ ηt,xpαtq for some function ηt,x : M Ñ Rq. This implies that

θpt, x, ιq “ ηt,xpιq is well-defined and that θpt, x, αtq “ Y t,x,αt
t . It is easily seen that (2.1.16)

and (2.1.17) respectively follows from (2.1.14) and (2.1.15). It remains to prove (2.1.18).

To this end, let ξ be a Ft-measurable random vector such that E|ξ|2 ă 8. In view of

Proposition 2.2, for any ϵ ą 0 we have

E
´

11t|ξ´x|ăϵu

ˇ

ˇY t,ξ,αt
s ´ Y t,x,αt

s

ˇ

ˇ

2
¯

ďγKE
´

11t|ξ´x|ăϵu|ξ ´ x|
2
¯

.

Thus, the Lipschitz property (2.1.17) implies

E
´

11t|ξ´x|ăϵu

ˇ

ˇθpt, ξ, αtq ´ Y t,ξ,αt
t

ˇ

ˇ

2
¯

ď2
”

γKE
´

11t|ξ´x|ăϵu|ξ ´ x|
2
¯

` E
´

11t|ξ´x|ăϵu

ˇ

ˇθpt, ξ, αtq ´ θpt, x, αtq
ˇ

ˇ

2
¯ı

ď4γKE
´

11t|ξ´x|ăϵu|ξ ´ x|
2
¯

.

As a consequence, for any positive integer N ,

ÿ

kPZp

E
´

11t|ξ´k{N |8ă1{Nu

ˇ

ˇθpt, ξ, αtq ´ Y t,ξ,αt
t

ˇ

ˇ

2
¯

ď
4γK
N2

ÿ

kPZp

E11t|ξ´k{N |8ă1{Nu,

where | ¨ |8 denotes the sup norm on Rp. This gives

E
ˇ

ˇθpt, ξ, αtq ´ Y t,ξ,αt
t

ˇ

ˇ

2
ď
2p`2γK
N2

for all positive integer N



50

which means

θpt, ξ, αtq “ Y t,ξ,αt
t a.s. (2.1.19)

Moreover, for tďsďT ,
`

X t,ξ,αt
u , Y t,ξ,αt

u , Zt,ξ,αt
u ,Λt,ξ,αt

u

˘

sďuďT
is the solution to the FBSDE

$

’

’

&

’

’

%

Xu “ X t,ξ,αt
s `

ż u

s

fpr,Xr, Yr, Zr, αrqdr `

ż u

s

σpr,Xr, Yr, αrqdWr,

Yu “ hpXT , αT q `

ż T

u

gpr,Xr, Yr, Zr, αrqdr ´

ż T

u

ZrdWr ´

ż T

u

Λr ‚ dMr.

Hence, (2.1.19) shows that

Y t,ξ,αt
u “ θpu,X t,ξ,αt

u , αuq a.s.

Since θ and the trajectories of X t,ξ,αt
s and X t,ξ,αt

s are all continuous, we have almost surely

for all u P rt, T s,

Y t,ξ,αt
u “ θpu,X t,ξ,αt

u , αuq.

l

Keep using the notations of Corollary 2.3, we have the following consequence on the

dependence of the solutions of the FBSDE on the coefficients.

Corollary 2.5. Assume that the Assumption (A) hold and TďC2. Let pfn, gn, hn, σnqně1 be

a sequence of functions satisfying Assumption (A) with the same constants K,L as pf, g, h, σq

such that for almost all t P r0, T s and all px, y, z, i0q P Rp ˆ Rq ˆ Rqˆp ˆ M,

`

fn, gn, hn, σn
˘

px, y, z, i0q Ñ
`

f, g, h, σ
˘

px, y, z, i0q as n Ñ 8.

Let
`

Xn,0,ξ,α0
t , Y n,0,ξ,α0

t , Zn,0,ξ,α0
t ,Λn,0,ξ,α0

t

˘

, 0ďtďT , be the solution of the problem

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Xt “ ξ `

ż t

0

fnps,Xs, Ys, Zs, αsqds `

ż t

0

σnps,Xs, Ys, αsqdWs,

Yt “ hnpXT , αT q `

ż T

t

gnps,Xs, Ys, Zs, αsqds ´

ż T

t

ZsdWs ´

ż T

t

Λs ‚ dMs,

t P r0, T s.
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Then, as n Ñ 8,

E sup
0ďsďT

ˇ

ˇXn,0,ξ,α0
s ´ X0,ξ,α0

s

ˇ

ˇ

2
` E sup

0ďsďT

ˇ

ˇY n,0,ξ,α0
s ´ Y 0,ξ,α0

s

ˇ

ˇ

2

` E
ż T

0

›

›Zn,0,ξ,α0
s ´ Z0,ξ,α0

s

›

›

2
ds ` E

ż T

0

ˇ

ˇΛn,0,ξ,α0
s ´ Λ0,ξ,α0

s

ˇ

ˇ

2
‚ d

“

M
‰

s
Ñ 0. (2.1.20)

As a consequence, as n Ñ 8, θn Ñ θ uniformly on every compact set of r0, T s ˆ Rp ˆ M.

2 Existence and Uniqueness of Global Solution in Non-Degenerate Diffusion
Coefficient Case

Assumption (B) We say that the functions f, g, h, and σ satisfy Assumption (B) if

for some constants K and L and there exist constants k, λ such that

(B1) For all t P r0, T s, i0 P M, and px, yq, px1, y1q P Rp ˆ Rq,

ˇ

ˇhpx, i0q ´ hpx1, i0q
ˇ

ˇďk|x ´ x1
|,

›

›σpt, x, y, i0q ´ σpt, x1, y1, i0q
›

›

2
ďk2

`

|x ´ x1
|
2

` |y ´ y1
|
2
˘

.

(B2) For all t P r0, T s, px, y, z, i0q P Rp ˆ Rq ˆ Rqˆp ˆ M, and px1, y1q P Rp ˆ Rq,

ˇ

ˇfpt, x, y, z, i0q
ˇ

ˇďL
`

1 ` |y| ` }z}
˘

,

ˇ

ˇgpt, x, y, z, i0q
ˇ

ˇďL
`

1 ` |y| ` }z}
˘

,

ˇ

ˇhpx, i0q
ˇ

ˇďL,

›

›σpt, x, y, i0q
›

›ďL
`

1 ` |y|
˘

.

(B3) For all pt, x, y, i0q P r0, T s ˆ Rp ˆ Rq ˆ M, and ζ P Rp,

@

ζ, apt, x, y, i0qζ
D

ěλ|ζ|
2,

where the function a is defined on r0, T s ˆ Rp ˆ Rq ˆ M as follows

apt, x, y, i0q “ σpt, x, y, i0qσ
J

pt, x, y, i0q for all pt, x, y, i0q P r0, T s ˆ Rp
ˆ Rq

ˆ M.

(B4) For each i0 P M, the function σp¨, ¨, ¨, i0q is continuous on r0, T s ˆ Rp ˆ Rq.
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Lemma 2.6. Assume that for each i0 P M, the functions f̃p¨, ¨, ¨, ¨, i0q, g̃p¨, ¨, ¨, ¨, i0q, h̃p¨, i0q,

and σ̃p¨, ¨, ¨, i0q satisfy Assumption (B). In addition, assume that they are all bounded C8

functions with bounded derivatives of all orders. Then the following system of PDE

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bθ̃k
Bt

pt, x, i0q `
1

2

p
ÿ

i,j“1

ãij
`

t, x, θ̃pt, x, i0q, i0
˘ B2θ̃k

BxiBxj
pt, x, i0q

`

p
ÿ

i“1

f̃i

´

t, x, θ̃pt, x, i0q,∇xθ̃pt, x, i0qσ̃
`

t, x, θ̃pt, x, i0q, i0
˘

, i0

¯

Bθ̃k
Bxi

pt, x, i0q

`g̃k

´

t, x, θ̃pt, x, i0q,∇xθ̃pt, x, i0qσ̃
`

t, x, θ̃pt, x, i0q, i0
˘

, i0

¯

`
ÿ

j0PM
qi0j0 θ̃kpt, x, j0q “ 0,

θ̃pT, x, i0q “ h̃px, i0q, @ t P r0, T s, x P Rp, k “ 1, 2, . . . , q

(2.2.1)

admits a unique bounded solution θ̃p¨, ¨, i0q P C1,2
`

r0, T s ˆ Rp,Rq
˘

satisfying

Bθ̃

Bt
,

Bθ̃

Bxi
,

B2θ̃

BxiBxj
are bounded on Rp for any i, j “ 1, 2, . . . , p. (2.2.2)

Furthermore, there exists a constant K̃ only depending on the constants K,L, T, k, λ, p, q

such that

sup
pt,x,i0qPr0,T sˆRpˆM

ˇ

ˇθ̃pt, x, i0q
ˇ

ˇďK̃, (2.2.3)

sup
pt,x,i0qPr0,T sˆRpˆM

ˇ

ˇ∇xθ̃pt, x, i0q
ˇ

ˇďK̃, (2.2.4)

E
ˇ

ˇθ̃pt, x, αtq ´ θ̃pt1, x, αt1q
ˇ

ˇďK̃|t1 ´ t|1{2, @ t, t1 P r0, T s, x P Rp. (2.2.5)

In addition, for every t P r0, T s and Ft-measurable random vector ξ with finite second

moment, the SDE

X̃s “ ξ `

ż s

t

f̃
´

r, X̃r, θ̃pr, X̃r, αrq,∇xθ̃pr, X̃r, αrqσ̃
`

r, X̃r, θ̃pr, X̃r, αrq, αr

˘

, αr

¯

dr

`

ż s

t

σ̃
`

r, X̃r, θ̃pr, X̃r, αrq, αr

˘

dWr, s P rt, T s (2.2.6)
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admits a unique solution, denoted by X̃ t,ξ,αt
s , s P rt, T s, and the process

`

X̃ t,ξ,αt
s , Ỹ t,ξ,αt

s , Z̃t,ξ,αt
s , Λ̃i0,j0,t,ξ,αt

s

˘

given by

Ỹ t,ξ,αt
s “ θ̃

`

s, X̃ t,ξ,αt
s , αs

˘

, Z̃t,ξ,αt
s “ ∇xθ̃

`

s, X̃ t,ξ,αt
s , αs

˘

σ̃
`

s, X̃ t,ξ,αt
s , Ỹ t,ξ,αt

s , αs

˘

, (2.2.7)

and

Λ̃i0,j0,t,ξ,αt
s “ θ̃

`

s, X̃ t,ξ,αt
s , j0

˘

´ θ̃
`

s, X̃ t,ξ,αt
s , i0

˘

, i0, j0 P M, s P rt, T s

satisfies the FBSDE associate to
`

f̃ , g̃, σ̃, h̃
˘

and to the initial condition pt, ξq.

Proof. For each i0 P M and for any matrix ϑ that contains qm0 rows, we denote by ϑi0 the

submatrix of ϑ that contains rows pi0 ´ 1qq ` 1, . . . , pi0 ´ 1qq ` q; that is,

ϑ “
`

ϑJ
1 ,ϑ

J
2 , . . . ,ϑ

J
m0

˘J
.

Let Iq be the identity matrix of size q and b be the tensor product. For any θ P Rqm0ˆ1

and ϑ P Rqm0ˆp, put θ̃ “ pθ1, . . . ,θm0q P Rqˆm0 and

hpxq “ vec
`

hpx, 1q, . . . , hpx,m0q
˘

,

aijpt, x,θq “ diag
´

aijpt, x,θ1, 1q, . . . , aijpt, x,θm0 ,m0q

¯

b Iq,

fipt, x,θ,ϑq “ diag
´

fi
`

t, x,θ1,ϑ1σpt, x,θ1, 1q, 1
˘

, . . . , fi
`

t, x,θm0 ,ϑm0σpt, x,θm0 ,m0q,m0

˘

¯

b Iq,

ḡpt, x,θ,ϑq “

¨

˚

˚

˚

˚

˝

g1
`

t, x,θ1,ϑ1σpt, x,θ1, 1q, 1
˘

. . . g1
`

t, x,θm0 ,ϑm0σpt, x,θm0 ,m0q,m0

˘

...
. . .

...

gq
`

t, x,θ1,ϑ1σpt, x,θ1, 1q, 1
˘

. . . gq
`

t, x,θm0 ,ϑm0σpt, x,θm0 ,m0q,m0

˘

˛

‹

‹

‹

‹

‚

` θ̃QJ,

gpt, x,θ,ϑq “ vec
´

ḡpt, x,θ,ϑq

¯

.
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Moreover, we denote θpt, xq “ vec
`

θ̃pt, xq
˘

, where

θ̃pt, xq “

¨

˚

˚

˚

˚

˝

θ̃1pt, x, 1q ¨ ¨ ¨ θ̃1pt, x,m0q

...
. . .

...

θ̃qpt, x, 1q ¨ ¨ ¨ θ̃qpt, x,m0q

˛

‹

‹

‹

‹

‚

.

Then (2.2.1) becomes

$

’

’

’

&

’

’

’

%

Bθ

Bt
pt, xq `

1

2

p
ÿ

i,j“1

aijpt, x,θq
B2θ

BxiBxj
pt, xq `

p
ÿ

i“1

fipt, x,θ,∇xθq
Bθ

Bxi
pt, xq ` gpt, x,θ,∇xθq “ 0,

θpT, xq “ hpxq.

(2.2.8)

In view of [34, Proposition 3.3] and [31, Theorem VII.7.1], under Assumption (B) the system

(2.2.8) admits a unique bounded classical solution θ P C1,2pr0, T s ˆ Rp,Rqm0q. Moreover,

the solution θ has bounded partial derivatives Bθ
Bt

pt, xq, Bθ
Bxi

pt, xq, and B2θ
BxiBxj

pt, xq, 1ďi, jďp,

on r0, T s ˆ Rp. This implies (2.2.2).

Next, to prove the remaining part we first define for each pt, x, i0q P r0, T s ˆ Rp ˆ M

F̃ pt, x, i0q “ f̃
´

t, x, θ̃pt, x, i0q,∇xθ̃pt, x, i0qσ̃
`

t, x, θ̃pt, x, i0q, i0
˘

, i0

¯

,

Σ̃pt, x, i0q “ σ̃
`

t, x, θ̃pt, x, i0q, i0
˘

.

Then for each t P r0, T s and a Ft-measurable Rd-valued random vector ξ with bounded

second moment the equation

X̃ t,ξ,αt
s “ ξ `

ż s

t

F̃ pr, X̃ t,ξ,αt
r , αrqdr `

ż s

t

Σ̃pr, X̃ t,ξ,αt
r , αrqdWr

posses a unique solution. For s P rt, T s denote

Ỹ t,ξ,αt
s “ θ̃

`

s, X̃ t,ξ,αt
s , αs

˘

, Z̃t,ξ,αt
s “ ∇xθ̃

`

s, X̃ t,ξ,αt
s , αs

˘

Σ̃ps, X̃ t,ξ,αt
s , αsq,

and

Λ̃i0,j0,t,ξ,αt
s “ θ̃

`

s, X̃ t,ξ,αt
s , j0

˘

´ θ̃
`

s, X̃ t,ξ,αt
s , i0

˘

.
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Using Itô formula for θ̃
`

s, X̃ t,ξ,αt
s , αs

˘

and then applying (2.2.1) we obtain

Ỹ t,ξ,αt
s “ h̃pX̃ t,ξ,αt

T , αT q`

ż T

s

g̃
`

r, X̃ t,ξ,αt
r , Ỹ t,ξ,αt

r , Z̃t,ξ,αt
r , αr

˘

dr´

ż T

s

Z̃t,ξ,αt
r dWr´

ż T

s

Λ̃t,ξ,αt
r ‚dMr

for each s P rt, T s. This implies that
`

X̃ t,ξ,αt , Ỹ t,ξ,αt , Z̃t,ξ,αt , Λ̃t,ξ,αt
˘

is a solution of the FBSDE

associated to the coefficients f̃ , g̃, h̃, and σ̃ and to the initial conditions t, ξ, αt.

Let γ ą 0 be an arbitrary fixed number. Note that Mt is a purely discontinuous

and square integrable martingale. Using generalized Itô formula [48, Theorem V.18] for
␣

eγs
ˇ

ˇỸ t,x,αt
s

ˇ

ˇ

2(

tďsďT
we arrive at

eγT
ˇ

ˇỸ t,x,αt

T

ˇ

ˇ

2

“ eγs
ˇ

ˇỸ t,x,αt
s

ˇ

ˇ

2
` γ

ż T

s

eγr
ˇ

ˇỸ t,x,αt
r

ˇ

ˇ

2
dr ´ 2

ż T

s

eγr
A

Ỹ t,x,αt
r , g̃

`

r, X̃ t,x,αt
r , Ỹ t,x,αt

r , Z̃t,x,αt
r , αr

˘

E

dr

` 2

ż T

s

eγr
@

Ỹ t,x,αt
r , Z̃t,x,αt

r dWr

D

` 2

ż T

s

eγr
@

Ỹ t,x,αt
r , Λ̃t,x,αt

r

D

dMr `

ż T

s

eγr
›

›Z̃t,x,αt
r

›

›

2
dr

`

ż T

s

eγr|Λ̃t,x,αt
r |

2
‚ drM sr

for all 0ďtďsďT and x P Rp, which, together with Assumption (B), yields

eγs
ˇ

ˇỸ t,x,αt
s

ˇ

ˇ

2
`

ż T

s

eγr
›

›Z̃t,x,αt
r

›

›

2
dr `

ÿ

sărďT

eγr
ˇ

ˇỸ t,x,αt
r ´ Ỹ t,x,αt

r´

ˇ

ˇ

2

ďeγT
ˇ

ˇỸ t,x,αt

T

ˇ

ˇ

2
`

ż T

s

eγr
„

2L
´

1 `
ˇ

ˇỸ t,x,αt
r

ˇ

ˇ `
›

›Z̃t,x,αt
r

›

›

¯

ˇ

ˇỸ t,x,αt
r

ˇ

ˇ ´ γ
ˇ

ˇỸ t,x,αt
r

ˇ

ˇ

2

ȷ

dr

´ 2

ż T

s

eγr
@

Ỹ t,x,αt
r , Z̃t,x,αt

r dWr

D

´ 2

ż T

s

eγr
@

Ỹ t,x,αt
r , Λ̃t,x,αt

r

D

dMr

ďeγT
ˇ

ˇỸ t,x,αt

T

ˇ

ˇ

2
`

ż T

s

eγr
„

L `
`

3L ` 2L2
´ γ

˘
ˇ

ˇỸ t,x,αt
r

ˇ

ˇ

2
`

1

2

›

›Z̃t,x,αt
r

›

›

2

ȷ

dr

´ 2

ż T

s

eγr
@

Ỹ t,x,αt
r , Z̃t,x,αt

r dWr

D

´ 2

ż T

s

eγr
@

Ỹ t,x,αt
r , Λ̃t,x,αt

r

D

dMr.

By choosing γ “ 3L ` 2L2, taking the conditional expectations with Ft, and using

Assumption (B) we get

E
´

eγs
ˇ

ˇỸ t,x,αt
s

ˇ

ˇ

2
ˇ

ˇ

ˇ
Ft

¯

ďeγTL2
` L

ż T

s

E
´

eγr
ˇ

ˇ

ˇ
Ft

¯

dr “ C, tďsďT,
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where C “ CpL, T q is a constant depending on L and T . Therefore, there exists a constant C

such that
ˇ

ˇθ̃pt, x, αtq
ˇ

ˇďC for all pt, xq P r0, T sˆRp. Since the Markov chain pαtq is irreducible,

it follows that
ˇ

ˇθ̃pt, x, i0q
ˇ

ˇďC @pt, x, i0q P r0, T s ˆ Rp
ˆ M.

Next, to estimate
ˇ

ˇ∇xθ̃pt, x, i0q
ˇ

ˇ we apply [31, Theorem VII.6.8] for the solution θ of

(2.2.8) to the cylinders r0, T s ˆ tx P Rp, |x|ďnu and r0, T s ˆ tx P Rp, |x|ďn ` 1u. It fol-

lows that supttPr0,T s,|x|ďnu

ˇ

ˇ∇xθpt, xq
ˇ

ˇ

2
is bounded by a constant depending on the constants

CpL, T q, K, L, k, λ, p, q and the distance between tx P Rp, |x|ďnu and Btx P Rp, |x|ďn ` 1u

which is 1. As a consequence, there exists a constant CpK,L, T, k, λ, p, qq such that

sup
pt,x,i0qPr0,T sˆRpˆM

ˇ

ˇ∇xθ̃pt, x, i0q
ˇ

ˇďCpK,L, T, k, λ, p, qq.

Finally, in order to prove the remaining inequality (2.2.5) take t and t1 such that

0ďtďt1ďT . According to Corollary 2.3, Assumption (B), (2.2.3), and (2.2.4), there exists a

constant C̃ “ C̃pK,L, T, k, λ, p, qq such that

E
ˇ

ˇ

ˇ
Ỹ t,x,αt

t1 ´ Ỹ t,x,αt
t

ˇ

ˇ

ˇ

2

ďC̃pt1 ´ tq, E
ˇ

ˇ

ˇ
X̃ t,x,αt

t1 ´ X̃ t,x,αt
t

ˇ

ˇ

ˇ

2

ďC̃pt1 ´ tq.

Since Ỹ t,x,αt
t “ θ̃pt, x, αtq and Ỹ

t,x,αt

t1 “ θ̃pt1, X̃ t,x,αt

t1 , αt1q, by modifying C̃ if necessary and

Proposition 2.4, we obtain

E
ˇ

ˇθ̃pt, x, αtq ´ θ̃pt1, x, αt1q
ˇ

ˇ

2
ď2

´

E
ˇ

ˇθ̃pt, x, αtq ´ Ỹ t,x,αt

t1

ˇ

ˇ

2
` E

ˇ

ˇθ̃pt1, X̃ t,x,αt

t1 , αt1q ´ θ̃pt1, x, αt1q
ˇ

ˇ

2
¯

ďC̃
”

pt1 ´ tq ` E
ˇ

ˇX̃ t,x,αt

t1 ´ x
ˇ

ˇ

2
ı

“ C̃pt1 ´ tq.

This completes the proof. l

Remark 2.7. (i) In view of [20, Proposition 2.2], under Assumption (B) there exists a

sequence of C8 functions pfn, gn, hn, σnqně1 satisfying for every n Assumption (B) with

respect to the constants K ` 4L, k, 2L, and λ{2 such that for almost all t P r0, T s and all
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px, y, z, i0q P Rp ˆ Rq ˆ Rqˆp ˆ M,

pfn, gn, hn, σnqpt, x, y, z, i0q Ñ pf, g, h, σqpt, x, y, z, i0q as n Ñ 8.

Denote an “ σnσ
J
n then as a consequence of Lemma 2.6, the following system of PDE

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bpθnqk

Bt
pt, x, i0q `

1

2

p
ÿ

i,j“1

panqij
`

t, x, θnpt, x, i0q, i0
˘B2pθnqk

BxiBxj
pt, x, i0q

`

p
ÿ

i“1

pfnqi

´

t, x, θnpt, x, i0q,∇xθnpt, x, i0qσn
`

t, x, θnpt, x, i0q, i0
˘

, i0

¯

Bpθnqk

Bxi
pt, x, i0q

`pgnqk

´

t, x, θnpt, x, i0q,∇xθnpt, x, i0qσn
`

t, x, θnpt, x, i0q, i0
˘

, i0

¯

`
ÿ

j0PM
qi0j0pθnqkpt, x, j0q “ 0,

θnpT, x, i0q “ hnpx, i0q, @ t P r0, T s, x P Rp, k “ 1, 2, . . . , q

(2.2.9)

admits a unique bounded solution θnp¨, ¨, i0q P C1,2
`

r0, T s ˆ Rp,Rq
˘

satisfying

Bθn
Bt
,

Bθn
Bxi

,
B2θn

BxiBxj
are bounded on Rp for any i, j “ 1, 2, . . . , p.

Furthermore, there exists a constant K̃ only depending on the constants K,L, T, k, λ, p, q

such that

sup
pt,x,i0qPr0,T sˆRpˆM

ˇ

ˇθnpt, x, i0q
ˇ

ˇďK̃, (2.2.10)

sup
pt,x,i0qPr0,T sˆRpˆM

ˇ

ˇ∇xθnpt, x, i0q
ˇ

ˇďK̃, (2.2.11)

E
ˇ

ˇθnpt, x, αptqq ´ θnpt1, x, αpt1qq
ˇ

ˇďK̃|t1 ´ t|1{2, @ t, t1 P r0, T s, x P Rp. (2.2.12)

(ii) Next, for simplicity, we denote the following constants

K˚
“ maxtk,K ` 4L, K̃u and T ˚

“ C2pK
˚
q, (2.2.13)

where K̃ “ K̃pK,L, T, λ, p, qq is the constant given in Lemma 2.6 and C2pK˚q is the constant

given in Proposition 2.2. LetN be the integer satisfying pN´1qT ˚ďT ă NT ˚ and put t0 “ 0,

ti “ T ´ pN ´ iqT ˚ for each i “ 1, 2, . . . , N . Then according to Theorem 2.1, for each ně1,
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t P rti, ti`1q for some 0ďiďN´1, and a Ft-measurable random vector ξ with bounded second

moment, the following equation

$

’

’

&

’

’

%

Xs “ ξ `

ż s

t

fnpr,Xr, Yr, Zr, αrqdr `

ż s

t

σnpr,Xr, Yr, αrqdWr,

Ys “ θnpti`1, Xti`1
, αti`1

q `

ż ti`1

s

gnpr,Xr, Yr, Zr, αrqdr ´

ż ti`1

s

ZrdWr ´

ż ti`1

s

Λr ‚ dMr,

where s P rt, ti`1s, admits a unique solution denoted by
`

Xn,i,t,ξ,αt
s , Y n,i,t,ξ,αt

s , Zn,i,t,ξ,αt
s ,Λn,i,t,ξ,αt

s

˘

.

In view of Lemma 2.6, this solution also satisfies the following equations

Y n,i,t,ξ,αt
s “ θn

`

s,Xn,i,t,ξ,αt
s , αs

˘

,

Zn,i,t,ξ,αt
s “ ∇xθn

`

s,Xn,i,t,ξ,αt
s , αs

˘

σn
`

s,Xn,i,t,ξ,αt
s , Y n,i,t,ξ,αt

s , αs

˘

,

and

Λn,i,i0,j0,t,ξ,αt
s “ θn

`

s,Xn,i,t,ξ,αt
s , j0

˘

´ θn
`

s,Xn,i,t,ξ,αt
s , i0

˘

, i0, j0 P M, s P rt, ti`1s.

As a consequence, Assumption (B) together with the inequalities (2.2.10) and (2.2.11) imply

that
›

›Zn,i,t,ξ,αt
s

›

›,
ˇ

ˇΛn,i,i0,j0,t,ξ,αt
s

ˇ

ˇďK̃ 1, @ i0, j0 P M, s P rt, ti`1s

for some constants K̃ 1 only depending on the constants K,L, T, k, λ, p, q.

Proposition 2.8. Under Assumption (B) and the notations in Remark 2.7, there exists a

mapping θ : r0, T s ˆ Rp ˆ M Ñ Rp such that, as n Ñ 8, θnpt, x, αtq converges uniformly

in L2pRpq to θpt, x, αtq on every compact subset of r0, T s ˆ Rp. In addition, the mapping θ

satisfies the following properties:

θpT, x, i0q “ hpx, i0q, @ pt, x, i0q P r0, T s ˆ Rp
ˆ M,

ˇ

ˇθpt, x, i0q
ˇ

ˇďC, @ pt, x, i0q P r0, T s ˆ Rp
ˆ M,

E
ˇ

ˇθpt, x, αtq ´ θpt1, x1, αt1q
ˇ

ˇďK̃
`

|t ´ t1|1{2
` |x ´ x1

|
˘

, @ pt, xq, pt1, x1
q P r0, T s ˆ Rp.
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Furthermore, for each ně1, t P rti, ti`1q for some 0ďiďN ´ 1, and a Ft-measurable

random vector ξ with bounded second moment, the following equation

$

’

’

&

’

’

%

Xs “ ξ `

ż s

t

fpr,Xr, Yr, Zr, αrqdr `

ż s

t

σpr,Xr, Yr, αrqdWr,

Ys “ θpti`1, Xti`1
, αti`1

q `

ż ti`1

s

gpr,Xr, Yr, Zr, αrqdr ´

ż ti`1

s

ZrdWr ´

ż ti`1

s

Λr ‚ dMr,

where s P rt, ti`1s, admits a unique solution denoted by
`

X i,t,ξ,αt
s , Y i,t,ξ,αt

s , Zi,t,ξ,αt
s ,Λi,t,ξ,αt

s

˘

which satisfies

P
´

Y i,t,ξ,αt
s “ θ

`

s,X i,t,ξ,αt
s , αs

˘

for all s P rt, ti`1s

¯

“ 1,

P b µ
!

pω, sq P Ω ˆ rt, ti`1s,
ˇ

ˇX i,t,ξ,αt
s

ˇ

ˇ ą K̃ 1
)

“ 0.

Proof. Let T ˚, N , and tk, 0ďkďN , be defined as in previous Remark. We will define by

induction the mapping θ on the intervals rtk´1, tkq with k running downward from N to 1.

First, for k “ N , in virtue of Theorem 2.1, for any t P rtN´1, T q and Ft-measurable

random vector ξ with bounded second moment, the FBSDE

$

’

’

&

’

’

%

Xs “ ξ `

ż s

t

fpr,Xr, Yr, Zr, αrqdr `

ż s

t

σpr,Xr, Yr, αrqdWr,

Ys “ hpXT , αT q `

ż T

s

gpr,Xr, Yr, Zr, αrqdr ´

ż T

s

ZrdWr ´

ż T

s

Λr ‚ dMr, s P rt, T s.

has a unique solution. Let us denote this solution by
`

XN´1,t,ξ,αt
s , Y N´1,t,ξ,αt

s , ZN´1,t,ξ,αt
s ,ΛN´1,t,ξ,αt

s

˘

tďsďT
. Define

θ : rtN´1, T s ˆ Rp
ˆ M Ñ Rq, pt, x, αtq ÞÑ θpt, x, αtq “ Y N´1,t,x,αt

t .

According to Corollary 2.3, it follows that Y N´1,t,ξ,αt
t “ θpt, ξ, αtq for all tďsďT with prob-

ability 1. l
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3 Related PDEs: Weak sense

Put

Ũpt, x, i0q “ ∇xθ̃pt, x, i0qσ̃
`

t, x, θ̃pt, x, i0q, i0
˘

,

W̃ pt, x, i0, j0q “ θ̃pt, x, j0q ´ θ̃pt, x, i0q,

and

L̃θ̃kpt, x, i0q “
1

2

p
ÿ

i,j“1

ãij
`

t, x, θ̃pt, x, i0q, i0
˘ B2θ̃k

BxiBxj
pt, x, i0q

`

p
ÿ

i“1

f̃i

´

t, x, θ̃pt, x, i0q, Ũpt, x, i0q, i0

¯

Bθ̃k
xi

pt, x, i0q

Then (2.2.1) becomes

$

’

’

&

’

’

%

Bθ̃k
Bt

pt, x, i0q ` L̃θ̃kpt, x, i0q ` g̃k

´

t, x, θ̃pt, x, i0q, Ũpt, x, i0q, i0

¯

`
ř

j0PM qi0j0 θ̃kpt, x, j0q “ 0,

θ̃pT, x, i0q “ h̃px, i0q, @ t P r0, T s, x P Rp, k “ 1, 2, . . . , q.

(2.3.1)

Put

Upt, x, i0q “ ∇xθpt, x, i0qσ
`

t, x, θpt, x, i0q, i0
˘

,

and

W pt, x, i0, j0q “ θpt, x, j0q ´ θpt, x, i0q.

We defineH the set of functions θps, x, iq such that pθ, Uq P L2 pr0, T s ˆ Rp;Rqq b L2 pr0, T s ˆ Rp;Rqˆpq

for each i P M with the norm

||θ||H “

˜

ż T

0

ż

Rp

˜

|θps, x, iq|
2

` }Ups, x, iq}
2

`
ÿ

jPM
qij|W ps, x, i, jq|

2

¸

dxds

¸1{2

.
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Definition 2.9. We say that θ is a weak solution of the PDE (2.2.1) if θ satisfies

ż T

t

ż

Rp

θkps, x, i0qDsφkps, xqdxds `

ż

Rp

θkpt, x, i0qφkpt, xqdx ´

ż

Rp

hkpx, i0qφkpT, xqdx

`
1

2

ż T

t

ż

Rp

p
ÿ

i,j“1

aij
`

s, x, θps, x, i0q, i
˘

Diθkps, x, i0qDjφkps, xqdxds

`

ż T

t

ż

Rp

θkps, x, i0q
p
ÿ

i“1

Dippfi ´ Aiqφkps, xqqdxds

´

ż T

t

ż

Rp

gkpt, x, θps, x, i0q, Ups, x, i0q, i0qφkps, xqdxds

´

ż T

t

ż

Rp

ÿ

j0PM
qi0j0θkpt, x, j0qφkps, xqdxds “ 0,

(2.3.2)

where Aips, x, i0q “ 1
2

řp
j“1Djpaijps, x, θps, x, i0q, i0qq.

Definition 2.10. We say that θ is a weak solution of the PDE (2.2.1) if θ satisfies

ż T

t

ż

Rp

θps, xqDsφps, xqdxds `

ż

Rp

θpt, xqφpt, xqdx ´

ż

Rp

hpxqφpT, xqdx

`

ż T

t

ż

Rp

1

2

p
ÿ

i,j“1

aijps, x,θqDiθps, xqDjφps, xqdxds

`

ż T

t

ż

Rp

θps, xq

p
ÿ

i“1

Di

`

pfi ´ Aiqφps, xq
˘

dsdx

“

ż T

t

ż

Rp

gps, x,θ,∇xθqφps, xqdxds.

(2.3.3)

where Ai “ 1
2

řp
i“1Djpaijps, x,θqq.

To proceed further, we need to use the following lemma (see [36, Lemma 2.10]).

Lemma 2.11 (Generalized equivalence of norm principle). We take ρpxq :“ eF pxq as the

weight function, where F : Rd Ñ R is a continuous function. Moreover, we assume that there

exists a constant R ą 0 such that for |x| ą R,F P C2
l,b

`

Rd;R
˘

and supxPRd |F 1pxqx| ă `8.

For instance, we can take ρpxq “ p1`|x|qq, with q P R or ρpxq “ e
α

1`|x| with α P R. If φρ´1 P

L1
`

Rd
˘

. Then there exist two constants c ą 0 and C ą 0 such that

c

ż

Rd

|φpxq|ρ´1
pxqdx ď E

„
ż

Rd

ˇ

ˇφ
`

X t,x,i
s

˘ˇ

ˇ ρ´1
pxqdx

ȷ

ď C

ż

Rd

|φpxq|ρ´1
pxqdx
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Moreover if Ψ : Ω ˆ rt, T s ˆ Rd Ñ R,Ψps, ¨q is Fα
s measurable for s P rt, T s and Ψρ´1 P

L1
`

Ω ˆ r0, T s ˆ Rd
˘

, then there exist two constants c ą 0 and C ą 0 such that

cE
ż T

t

ż

Rd

|Ψps, xq|ρpxq
´1dx ď E

ż T

t

ż

Rd

ˇ

ˇΨ
`

s,X t,x,i
s

˘ˇ

ˇ ρpxq
´1dx

ď CE
ż T

t

ż

Rd

|Ψps, xq|ρpxq
´1dx

The constants c and C depend on T, ρ, the bounds of σ and the bounds of the first (resp.

first and second) derivatives of b (resp. of σ ).

Theorem 2.12. Let
`

X t,ξ,αt
s , Y t,ξ,αt

s , Zt,ξ,αt
s ,Λt,ξ,αt

s

˘

, tďsďT be the unique solution of the

problem (2.1.13). Then θpt, x, iq “ Y t,x,αt
t is a weak solution of (2.2.8) with θpT, x, iq “ hpxq.

Proof. Let f̃m (resp. g̃m, θm, σ̃m) be smooth functions which approximate f̃ (resp. g̃, θ, σ̃)

and satisfy Assumption (A) , and
`

X t,x,ı
s,m , Y

t,x,ı
s,m , Zt,x,ı

s,m ,Λ
t,x,ı
s,m

˘

, tďsďT be the unique solution

of the following equations

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Xs,m “ x `
şs

t
f̃mpr,Xr,m, Yr,m, Zr,m, αrqdr `

şs

t
σ̃mpr,Xr,m, Yr,m, Zr,m, αrqdWr,

Ys,m “ θmpXT , αT q `
şT

s
g̃mpr,Xr,m, Yr,m, Zr,m, αrqdr ´

şT

s
Zr,mdWr ´

şT

s
Λr,m ‚ dMr,

s P rt, T s.

Put θpt, ¨, i0q “ Y t,¨,i0
t and θmpt, ¨, i0q “ Y t,¨,i0

t,m . From Lemma 2.6, we know that θmpt, x, i0q is

the unique solution of the following partial differential equation

Bθmk
Bt

pt, x, i0q ` L̃mθmk pt, x, i0q ` g̃mk

´

t, x, θmpt, x, i0q, Ũ
m

pt, x, i0q, i0

¯

`
ÿ

j0PM
qi0j0θ

m
k pt, x, j0q “ 0,

θpT, x, i0q “ h̃px, i0q, @ t P r0, T s, x P Rp, k “ 1, 2, . . . , q,

(2.3.4)

where

Ũm
pt, x, i0q “ ∇xθ

m
pt, x, i0qσ̃

m
`

t, x, θmpt, x, i0q, i0
˘

,

W̃m
pt, x, i0, j0q “ θmpt, x, j0q ´ θmpt, x, i0q,



63

and

L̃mθmk pt, x, i0q “
1

2

p
ÿ

i,j“1

ãmij
`

t, x, θmpt, x, i0q, i0
˘ B2θmk

BxiBxj
pt, x, i0q

`

p
ÿ

i“1

f̃m
i

´

t, x, θmpt, x, i0q, Ũ
m

pt, x, i0q, i0
˘

, i0

¯

Bθmk
xi

pt, x, i0q

Thus

ż T

t

ż

Rp

θmk ps, x, i0qDsφkps, xqdxds `

ż

Rp

θmk pT, x, i0qφkpt, xqdx ´

ż

Rp

θmk px, i0qφkpT, xqdx

`
1

2

ż T

t

ż

Rp

p
ÿ

i,j“1

ãmij
`

s, x, θmps, x, i0q, i
˘

Diθ
m
k ps, x, i0qDjφkps, xqdxds

`

ż T

t

ż

Rp

θmk ps, x, i0q
p
ÿ

i“1

Dippf̃m
i ´ Ãm

i qφkps, xqqdxds

´

ż T

t

ż

Rp

g̃mk pt, x, θmps, x, i0q, Ũ
m

ps, x, i0q, i0q, i0qφkps, xqdxds

´

ż T

t

ż

Rp

ÿ

j0PM
qi0j0θ

m
k pt, x, j0qφkps, xqdxds “ 0,

(2.3.5)

where Ãm
i ps, x, i0q “ 1

2

řp
j“1Djpa

m
ij ps, x, θmps, x, i0q, i0qq.

On the other hand, let ρ be a weight function as mentioned in Lemma 2.11. Then

||θm1pt, x, iq ´ θm2pt, x, iq||H

“ E
„
ż T

t

ż

Rd

´

ˇ

ˇθm1
`

s,X t,x,i
s , i

˘

´ θm2
`

s,X t,x,i
s , i

˘
ˇ

ˇ

2
`

›

›

›
Ũm1ps,X t,x,i

s , iq ´ Ũm2ps,X t,x,i
s , iq

›

›

›

2

`
ÿ

jPI

ˇ

ˇ

ˇ
W̃m1ps,X t,x,i

s , i, jq ´ W̃m2ps,X t,x,i
s , i, jq

ˇ

ˇ

ˇ

2

qij

¯

ρ´1
pxqdxds

ȷ

“ E
„
ż T

t

ż

Rd

´
ˇ

ˇ

ˇ
Ỹ t,x,i
s,m1

´ Ỹ t,x,i
s,m2

ˇ

ˇ

ˇ

2

`

›

›

›
Z̃t,x,i

s,m1
´ Z̃t,x,i

s,m2

›

›

›

2

`
ÿ

jPM

ˇ

ˇ

ˇ
Λ̃i,j,t,x,i

s,m1
´ Λ̃i,j,t,x,i

s,m2

ˇ

ˇ

ˇ

2

qij

¯

ρ´1
pxqdxds

ȷ

.

In view of Assumption (B), standard calculations (see Corollary 2.5) show that

E
„
ż T

t

ż

Rd

´
ˇ

ˇ

ˇ
Ỹ t,x,i
s,m ´ Ỹ t,x,i

s

ˇ

ˇ

ˇ

2

`

›

›

›
Z̃t,x,i

s,m ´ Z̃t,x,i
s

›

›

›

2

`
ÿ

jPM

ˇ

ˇ

ˇ
Λ̃i,j,t,x,i

s,m ´ Λ̃i,j,t,x,i
s

ˇ

ˇ

ˇ

2

qij

¯

ρ´1
pxqdxds

ȷ

Ñ 0

as m Ñ 8. So ||θm1pt, x, iq ´θm2pt, x, iq||H Ñ 0 as m1,m2 Ñ 8, which means that θmpt, x, iq

is a Cauchy sequence in H. Therefore, there exists θ P H such that θm Ñ θ in H, which
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implies that pθm,∇xθ
mσ̃mq Ñ pθ,∇xθσq. This result together with passing the limit as

m Ñ 8 in (2.3.5) can verify that θ is a weak solution of (2.2.8). l



CHAPTER 3

FBSDEs with Regime Switching Under Monotoncity

Conditions

In this chapter, we first work on backward stochastic differential equations with Marko-

vian switching and derive useful estimates for the solutions. Then, we focus on forward-

backward stochastic differential equations and provide sufficient conditions for the existence

and uniqueness of the solutions.

1 Estimate of BSDEs with Markovian Switching

Lemma 3.1. Let Fi : r0, T s ˆ Rd ˆ Rdˆd ˆ M ˆ Ω Ñ Rd, i “ 1, 2, satisfy

ˇ

ˇFipt, y1, z1, i0q ´ Fipt, y2, z2, i0q
ˇ

ˇďC
`

|y1 ´ y2| ` }z1 ´ z2}
˘

, P-a.s.

for any t P r0, T s, y1, y2 P Rd, z1, z2 P Rdˆd, and i0 P M (with the constant C being

deterministic). In addition, Fip¨, 0, 0, i0q P L2p0, T ;Rdq and Fipt, y, z, i0q is F-adapted for

any i “ 1, 2, y P Rd, z P Rdˆd, and i0 P M. Let ξi P L2
FT

pRdq and pYi, Zi,Λiq, i “ 1, 2, be

the solutions of the BSDEs

Yiptq “ ξi ´

ż T

t

Fi

`

s, Yipsq, Zipsq, αpsq
˘

ds ´

ż T

t

ZipsqdWs ´

ż T

t

Λipsq ‚ dMs, t P r0, T s.

Then

E
ˆ

sup
0ďtďT

ˇ

ˇY1ptq ´ Y2ptq
ˇ

ˇ

2
`

ż T

0

›

›Z1ptq ´ Z2ptq
›

›

2
dt `

ż T

0

ˇ

ˇΛ1ptq ´ Λ2ptq
ˇ

ˇ

2
‚ drM st

˙

ďC
´

E|ξ1 ´ ξ2|
2

` E
ż T

0

ˇ

ˇF1

`

t, Y1psq, Z1psq, αpsq
˘

´ F2

`

t, Y1psq, Z1psq, αpsq
˘ˇ

ˇ

2
ds
¯

.

65
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Proof. Denote pY p¨q “ Y1p¨q ´ Y2p¨q, pZp¨q “ Z1p¨q ´ Z2p¨q, pξ “ ξ1 ´ ξ2, and

pF p¨q “ F1

`

¨, Y1p¨q, Z1p¨q, αp¨q
˘

´ F2

`

¨, Y1p¨q, Z1p¨q, αp¨q
˘

.

Using Itô formula for |pY p¨q|2 we have

|pY ptq|
2

`

ż T

t

} pZpsq}
2ds `

ż T

t

|pΛpsq|
2

‚ drM ss

“ |pξ|
2

´ 2

ż T

t

@

pY psq, F1

`

s, Y1psq, Z1psq, αpsq
˘

´ F2

`

s, Y2psq, Z2psq, αpsq
˘D

ds

´ 2

ż T

t

@

pY psq, pZpsqdWs

D

´ 2

ż T

t

@

pY psq, pΛpsq ‚ dMs

D

ď|pξ|
2

` 2

ż T

t

„

|pY psq|| pF psq| ` C|pY psq|

´

|pY psq| ` } pZpsq}

¯

ȷ

ds

´ 2

ż T

t

@

pY psq, pZpsqdWs

D

´ 2

ż T

t

@

pY psq, pΛpsq ‚ dMs

D

,

which together with the Cauchy-Schwarz inequality implies

|pY ptq|
2

`
1

2

ż T

t

} pZpsq}
2ds `

ż T

t

|pΛpsq|
2

‚ drM ss

ď|pξ|
2

`

ż T

t

”

`

1 ` 2C ` 2C2
˘

|pY psq|
2

` | pF psq|
2
ı

ds

´ 2

ż T

t

@

pY psq, pZpsqdWs

D

´ 2

ż T

t

@

pY psq, pΛpsq ‚ dMs

D

.

(3.1.1)

Taking the expectations in above inequality, we obtain

E|pY ptq|
2
ďE

ˆ

|pY ptq|
2

`
1

2

ż T

t

} pZpsq}
2ds `

ż T

t

|pΛpsq|
2

‚ drM ss

˙

ďE
´

|pξ|
2

`

ż T

0

| pF psq|
2ds

¯

`
`

1 ` 2C ` 2C2
˘

ż T

t

E|pY psq|
2ds. (3.1.2)

By the Gronwall inequality,

E|pY ptq|
2
ďK1E

´

|pξ|
2

`

ż T

0

| pF psq|
2ds

¯

, @t P r0, T s. (3.1.3)

Using this inequality and (3.1.2) (with t “ 0) yields

E
ˆ
ż T

0

} pZpsq}
2ds `

ż T

0

|pΛpsq|
2

‚ drM ss

˙

ďK2E
´

|pξ|
2

`

ż T

0

| pF psq|
2ds

¯

. (3.1.4)



67

Next, using
şT

t
“
şT

0
´
şt

0
for stochastic integrals in (3.1.1), we obtain

|pY ptq|
2

`
1

2

ż T

t

} pZpsq}
2ds `

ż T

t

|pΛpsq|
2

‚ drM ss

ď|pξ|
2

`

ż T

t

„

`

1 ` 2C ` 2C2
˘

|pY psq|
2

` | pF psq|
2
¯

ȷ

ds

´ 2

ż T

0

xpY psq, pZpsqdWsy ´ 2

ż T

0

xpY psq, pΛpsq ‚ dMsy

` 2

ż t

0

xpY psq, pZpsqdWsy ` 2

ż t

0

xpY psq, pΛpsq ‚ dMsy.

Subsequently, according to the Burkholder-Davis-Gundy inequality, the Hölder inequality,

and the Cauchy-Schwartz inequality,

E
„

sup
tPr0,T s

|pY ptq|
2

ȷ

ďE
„

|pξ|
2

`
`

1 ` 2C ` 2C2
˘

ż T

0

|pY psq|
2ds `

ż T

0

| pF psq|
2ds

ȷ

` 4E
„

sup
tPr0,T s

ˇ

ˇ

ˇ

ˇ

ż t

0

xpY psq, pZpsqdWsy

ˇ

ˇ

ˇ

ˇ

ȷ

` 4E
„

sup
tPr0,T s

ˇ

ˇ

ˇ

ˇ

ż t

0

xpY psq, pΛpsq ‚ dMsy

ˇ

ˇ

ˇ

ˇ

ȷ

ďKE
ˆ

|pξ|
2

`

ż T

0

| pF psq|
2ds

˙

`
1

4
E
„

sup
tPr0,T s

|pY ptq|
2

ȷ

` K2E
ż T

0

} pZpsq}
2ds

`
1

4
E
„

sup
tPr0,T s

|pY ptq|
2

ȷ

` K2E
ż T

0

|pΛpsq|
2

‚ drM ss.

Thus,

E
„

sup
tPr0,T s

|pY ptq|
2

ȷ

ďCE
ˆ

|pξ|
2

`

ż T

0

| pF psq|
2ds `

ż T

0

} pZpsq}
2ds `

ż T

0

|pΛpsq|
2

‚ drM ss

˙

ďCE
ˆ

|pξ|
2

`

ż T

0

| pF psq|
2ds

˙

.

(3.1.5)

Note that we have used (3.1.4) in the last inequality. Again, combining (3.1.4) with (3.1.5)

lead to

E
ˆ

sup
tPr0,T s

|pY ptq|
2

`

ż T

0

} pZpsq}
2ds `

ż T

0

|pΛpsq|
2

‚ drM ss

˙

ďCE
ˆ

|pξ|
2

`

ż T

0

| pF psq|
2ds

˙

.

This completes the proof. l
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2 FBSDEs with Markovian Switching

In this section we will develop the theory of FBSDEs with Markovian switching using

a different approach. More precisely, we focus on the forward backward equations without

the presence of mean-field terms and will use the continuation method and monotonicity

condition to examine the well-posedness of the underlying FBSDEs. We will provide several

different conditions that guarantee the existence and uniqueness of solutions of such FBSDEs

with Markovian switching. The obtained results here are vital to further study these systems

in a much more general settings, where the conditional mean-fields are coupled in the systems.

For this section we will be working with equation

$

’

’

&

’

’

%

Xt “ ξ `

ż t

0

f0ps,Xs, Ys, Zs, αsqds `

ż t

0

σ0ps,Xs, Ys, Zs, αsqdWs,

Yt “ h0pXT , αT q ´

ż T

t

g0ps,Xs, Ys, Zs, αsqds ´

ż T

t

ZsdWs ´

ż T

t

Λs ‚ dMs, t P r0, T s.

(3.2.1)

Throughout this section, we assume the following assumption.

Assumption (C0).

(C01) For each fixed i0 P M, the functions f0p¨, ¨, ¨, ¨, ¨, i0q, g0p¨, ¨, ¨, ¨, ¨, i0q, and σ0p¨, ¨, ¨, ¨, ¨, i0q

are F -progressively measurable and Lipschitz in px, y, zq uniformly in pt, ωq. That is, for

φ0 “ f0, g0, or σ0, there exists a (deterministic) constant Cθ such that for any t P r0, T s,

i0 P M, and θ1 “ px1, y1, z1q, θ2 “ px2, y2, z2q P Rd ˆ Rd ˆ Rdˆd we have

ˇ

ˇφ0

`

t, θ1, i0
˘

´ φ0

`

t, θ2, i0
˘
ˇ

ˇďCθ

›

›θ1 ´ θ2
›

›, P-a.s.

where
›

›θ1 ´ θ2
›

› “
ˇ

ˇx1 ´ x2
ˇ

ˇ `
ˇ

ˇy1 ´ y2
ˇ

ˇ `
›

›z1 ´ z2
›

›.

(C02) For each fixed px, i0q P Rd ˆ M, the function h0p¨, x, i0q belongs to L2pRdq. In addition,

h0pω, ¨, i0q is Lipschitz uniformly in pω, i0q. That is, for any i0 P M, and x1, x2 P Rd,

there exist a (deterministic) constant c such that

ˇ

ˇh0
`

x1, i0
˘

´ h0
`

x2, i0
˘ˇ

ˇďc
ˇ

ˇx1 ´ x2
ˇ

ˇ, P-a.s.



69

For t P r0, T s, i0 P M, and θ1 “ px1, y1, z1q, θ2 “ px2, y2, z2q P Rd ˆ Rd ˆ Rdˆd, denote

Ψ0

`

t, θ1, θ2, i0
˘

“
@

f0
`

t, θ1, i0
˘

´ f0
`

t, θ2, i0
˘

, y1 ´ y2
D

`
@

g0
`

t, θ1, i0
˘

´ g0
`

t, θ2, i0
˘

, x1 ´ x2
D

`
“

σ0
`

t, θ1, i0
˘

´ σ0
`

t, θ2, i0
˘

, z1 ´ z2
‰

. (3.2.2)

Recall that xx, yy is the dot product of x and y and rA,Bs “
řd

i“1xAi, Biy, where Ai and Bi,

i “ 1, 2, . . . , d, are the i-th column of d ˆ d matrices A and B. To obtain the existence and

uniqueness of solution of the forward backward system (3.2.1), we first make the following

assumption.

Assumption (H0).

(H01) There exists a positive constant Kh such that for any x1, x2 P Rd and i0 P M,

@

h0
`

x1, i0
˘

´ h0
`

x2, i0
˘

, x1 ´ x2
D

ěKh

ˇ

ˇx1 ´ x2
ˇ

ˇ

2
, P-a.s.

(H02) There exists a positive constant KΨ such that for any t P r0, T s, θ1 “ px1, y1, z1q, θ2 “

px2, y2, z2q P Rd ˆ Rd ˆ Rdˆd, and i0 P M,

Ψ0

`

t, θ1, θ2, i0
˘

ď ´ KΨ

´

ˇ

ˇx1 ´ x2
ˇ

ˇ

2
`
ˇ

ˇy1 ´ y2
ˇ

ˇ

2
`
›

›z1 ´ z2
›

›

2
¯

, P-a.s.

We are now in a position to state the following theorem.

Theorem 3.2. Under assumptions (C0) and (H0), there exists a unique quadruple of pro-

cesses pX, Y, Z,Λq which solves the system of FBSDEs with Markovian switching (3.2.1).

In order to prove Theorem 3.2, we present some preliminary results on FBSDEs with

Markov switching. First, we consider linear FBSDEs in the following lemma.

Lemma 3.3. Suppose that
`

f̄0p¨q, σ̄0p¨q, ḡ0p¨q
˘

P L2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ L2p0, T ;Rdq

and h̄0 P L2pRdq, then the following linear FBSDE

$

’

’

&

’

’

%

Xt “ x `

ż t

0

`

´ Ys ` f̄0psq
˘

ds `

ż t

0

`

´ Zs ` σ̄0psq
˘

dWs,

Yt “
`

XT ` h̄0
˘

´

ż T

t

`

´ Xs ` ḡ0psq
˘

ds ´

ż T

t

ZsdWs ´

ż T

t

Λs ‚ dMs

(3.2.3)
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has a unique adapted solution pX, Y, Z,Λq.

Proof. We consider the following BSDE:

Ȳt “ h̄0 ´

ż T

t

`

Ȳs ` ḡ0psq ´ f̄0psq
˘

ds ´

ż T

t

`

2Z̄s ´ σ̄0psq
˘

dWs ´

ż T

t

Λ̄s ‚ dMs.

According to [8, Theorem 3.4], the above equation has a unique adapted solution pȲ , Z̄, Λ̄q.

Then we solve the following forward equation:

Xt “ x `

ż t

0

`

´ Xs ´ Ȳs ` f̄0psq
˘

ds `

ż t

0

`

´ Z̄s ` σ̄0psq
˘

dWs

and set Y “ X ` Ȳ , Z “ Z̄, and Λ “ Λ̄. It is easily seen that pX, Y, Z,Λq is a solution of

equation (3.2.3). Hence, the existence is proved. Finally, the proof of uniqueness is similar

to that of Theorem 3.2. l

Next, for γ P R define

fγ
0 pt, x, y, z, i0q “ γf0pt, x, y, z, i0q ` p1 ´ γqp´yq,

σγ
0 pt, x, y, z, i0q “ γσ0pt, x, y, z, i0q ` p1 ´ γqp´zq,

gγ0 pt, x, y, z, i0q “ γg0pt, x, y, z, i0q ` p1 ´ γqp´xq,

hγ0px, i0q “ γh0px, i0q ` p1 ´ γqx,

(3.2.4)

and consider the following system of equations

$

’

’

&

’

’

%

Xt “ x `

ż t

0

´

fγ
0 ps,Θs, αsq ` f̄0psq

¯

ds `

ż t

0

´

σγ
0 ps,Θs, αsq ` σ̄0psq

¯

dWs,

Yt “
`

hγ0pXT , αT q ` h̄0
˘

´

ż T

t

´

gγ0 ps,Θs, αsq ` ḡ0psq
¯

ds ´

ż T

t

ZsdWs ´

ż T

t

Λs ‚ dMs,

(3.2.5)

where Θ “ pX, Y, Zq. To proceed, we present the following lemma.

Lemma 3.4. Assume that Assumptions (C0) and (H0) are in force. In addition, assume

that for a given γ0 P r0, 1q and for any
`

f̄0p¨q, σ̄0p¨q, ḡ0p¨q, h̄0
˘

P L2p0, T ;RdqˆL2p0, T ;Rdˆdqˆ

L2p0, T ;Rdq ˆ L2pRdq, the system (3.2.5) has an adapted solution. Then there exists a con-

stant δ0 P p0, 1q depending only on Cθ, c,Kh, KΨ and T , such that for any γ P rγ0, γ0 ` δ0s
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and for any
`

f̄0p¨q, σ̄0p¨q, ḡ0p¨q, h̄0
˘

P L2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ L2p0, T ;Rdq ˆ L2pRdq,

system (3.2.5) has a solution pX, Y, Z,Λq P S2p0, T ;Rdq ˆ S2p0, T ;Rdˆdq ˆ L2p0, T ;Rdˆdq ˆ

M2p0, T ;Rdq.

Proof. In view of (3.2.4),

fγ0`δ
0 pt, x, y, z, i0q “ fγ0

0 pt, x, y, z, i0q ` δ
`

y ` f0pt, x, y, z, i0q
˘

,

σγ0`δ
0 pt, x, y, z, i0q “ σγ0

0 pt, x, y, z, i0q ` δ
`

z ` σ0pt, x, y, z, i0q
˘

,

gγ0`δ
0 pt, x, y, z, i0q “ gγ00 pt, x, y, z, i0q ` δ

`

x ` g0pt, x, y, z, i0q
˘

,

hγ0`δ
0 px, i0q “ hγ00 px, i0q ` δ

`

´ x ` h0px, i0q
˘

.

Put pX0, Y 0, Z0,Λ0q “ p0, 0, 0, 0q and Θn “ pXn, Y n, Znq for n “ 0, 1, 2, . . .. According to

the assumption, the following recursive systems always have unique solutions.

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Xn`1
t “ x `

ż t

0

”

fγ0
0 ps,Θn`1

s , αsq ` δ
`

Y n
s ` f0ps,Θ

n
s , αsq

˘

` f̄0psq
ı

ds

`

ż t

0

”

σγ0
0 ps,Θn`1

s , αsq ` δ
`

Zn
s ` σ0ps,Θ

n
s , αq

˘

` σ̄0psq
ı

dWs,

Y n`1
t “

”

hγ00 pXn`1
T , αT q ` δ

`

´ Xn
T ` h0pX

n
T , αT q

˘

` h̄0

ı

´

ż T

t

”

gγ00 ps,Θn`1
s , αsq ` δ

`

Xn
s ` g0ps,Θ

n
s , αsq

˘

` ḡ0psq
ı

ds

´

ż T

t

Zn`1
s dWs ´

ż T

t

Λn`1
s ‚ dMs.

(3.2.6)

Denote Θ̂n`1
t “ Θn`1

t ´ Θn
t . In addition, put

X̂n`1
t “ Xn`1

t ´ Xn
t , Ŷ

n`1
t “ Y n`1

t ´ Y n
t , Ẑ

n`1
t “ Zn`1

t ´ Zn
t , Λ̂

n`1
t “ Λn`1

t ´ Λn
t .

ĥn0 ptq :“ h0pX
n
t , αtq ´ h0pX

n´1
t , αtq, ĥn,γ0 ptq :“ hγ0pXn

t , αtq ´ hγ0pXn´1
t , αtq,

and, for φ “ f0, g0, σ0,

φ̂n`1
ptq “ φpt,Θn`1

t , αtq ´ φpt,Θn
t , αtq, φ̂n`1,γ

ptq “ φγ
pt,Θn`1

t , αtq ´ φγ
pt,Θn

t , αtq.
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Applying Itô’s formula to xX̂n`1
t , Ŷ n`1

t y and taking the expectation we obtain

E
@

X̂n`1
T , ĥn`1,γ0

0 pT q
D

“ δE
@

X̂n`1
T , X̂n

T ´ ĥn0 pT q
D

` E
ż T

0

´

@

X̂n`1
s , ĝn`1,γ0

0 psq
D

`
@

Ŷ n`1
s , f̂n`1,γ0

0 psq
D

`
“

Ẑn`1
s , σ̂n`1,γ0

0 psq
‰

¯

ds

` δE
ż T

0

´

@

X̂n`1
s , X̂n

s ` ĝn0 psq
D

`
@

Ŷ n`1
s , Ŷ n

s ` f̂n
0 psq

D

`
“

Ẑn`1
s , Ẑn

s ` σ̂n
0 psq

‰

¯

ds.

From Assumptions (C0) and (H0), it follows that

E
ˆ

|X̂n`1
T |

2
`

ż T

0

}Θ̂n`1
s }

2ds

˙

ď
δp1 ` Cq

K
E
ˆ

|X̂n`1
T ||X̂n

T | `

ż T

0

}Θ̂n`1
s }}Θ̂n

s }ds

˙

,

where K “ minp1, Kh, KΨq and C “ maxpc, Cθq. Young’s inequality implies

E
ˆ

|X̂n`1
T |

2
`

ż T

0

}Θ̂n`1
s }

2ds

˙

ď

ˆ

δp1 ` Cq

K

˙2

E
ˆ

|X̂n
T |

2
`

ż T

0

}Θ̂n
s }

2ds

˙

.

Recall that @n ě 1,

X̂n
T “

ż T

0

”

f̂n,γ0
0 psq ` δ

`

Ŷ n´1
s ` f̂n´1

0 psq
˘

ı

ds `

ż T

0

”

σ̂n,γ0
0 psq ` δ

`

Ẑn´1
s ` σ̂n´1

0 psq
˘

ı

dWs.

We can derive that there exists a constant c1 ą 0 that depends only on C and T such

that

E|X̂n
T |

2
ď c1E

ˆ
ż T

0

}Θ̂n
s }

2ds `

ż T

0

}Θ̂n´1
s }

2ds

˙

, @n ě 1.

Hence, there exists a constant c2 ą 0 that depends only on C, K, and T such that

E
ż T

0

}Θ̂n`1
s }

2ds ď c2δ
2E

ˆ
ż T

0

}Θ̂n
s }

2ds `

ż T

0

}Θ̂n´1
s }

2ds

˙

, @n ě 1.

So, there exists a δ0 P p0, 1q that depends only on C, K, and T such that when 0 ă δ ď δ0,

E
ż T

0

}Θ̂n`1
s }

2ds ď
1

4
E
ż T

0

}Θ̂n
s }

2ds `
1

8
E
ż T

0

}Θ̂n´1
s }

2ds, @n ě 1.

In view of [25, Lemma 4.1], there exists a constant ĉ ą 0 such that

E
ż T

0

}Θ̂n
s }

2ds ď ĉ

ˆ

1

2

˙n

, @n ě 0.
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This implies that pXn
T qně0 is a Cauchy sequence in L2pRdq and pXnqně0, pY

nqně0 and pZnqně0

are Cauchy sequences in L2p0, T ;Rdq, L2p0, T ;Rdq, L2p0, T ;Rdˆdq, respectively. Moreover,

similar to (4.2.13) in the proof of Theorem 4.1, we have that pΛnqně0 is a Cauchy sequence

in M2p0, T ;Rdq. We denote their limits by pX, Y, Z,Λq, respectively. Passing to the limit in

equations (3.2.6), when 0 ă δ ď δ0, pX, Y, Z,Λq solves equations (3.2.5) for γ “ γ0 ` δ. By

standard estimates we can show that X, Y P S2p0, T ;Rdq. l

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2.

First, we prove the uniqueness of the solution. Suppose that pX, Y, Z,Λq and pX 1, Y 1, Z 1,Λ1q

are two solutions of (3.2.1). Taking Itô’s formula and the expectations we get

E
@

X 1
T ´ XT , h0pX 1

T , αT q ´ h0pXT , αT q
D

“ E
ż T

0

´

@

X 1
s ´ Xs, g0ps,X 1

s, Y
1
s , Z

1
s, αsq ´ g0ps,Xs, Ys, Zs, αsq

D

`
@

Y 1
s ´ Ys, f0ps,X 1

s, Y
1
s , Z

1
s, αsq ´ f0ps,Xs, Ys, Zs, αsq

D

`
“

Z 1
s ´ Zs, σ0ps,X

1
s, Y

1
s , Z

1
s, αsq ´ σ0ps,Xs, Ys, Zs, αsq

‰

¯

ds.

By virtue of Assumption (H0), we obtain

KhE
”

|X 1
T ´ XT |

2
ı

` KΨE
ż T

0

´

|X 1
s ´ Xs|

2
` |Y 1

s ´ Ys|
2

` }Z 1
s ´ Zs}

2
¯

dsď0,

which implies X 1
T “ XT , X

1 “ X, Y 1 “ Y , and Z 1 “ Z. Moreover, according to Lemma 3.1,

assumption (C02), and the fact that X 1
T “ XT , we get

E
ż T

0

ˇ

ˇΛ1
s ´ Λs

ˇ

ˇ

2
‚ drM ssďCE

ˇ

ˇh0pX
1
T , αT q ´ h0pXT , αT q

ˇ

ˇ

2
ďCE

ˇ

ˇX 1
T ´ XT

ˇ

ˇ

2
“ 0.

This yields Λ1 “ Λ in M2p0, T ;Rdq.

Next, we prove the existence of solution. From Lemma 3.3, when γ “ 0, for any
`

f̄0p¨q, σ̄0p¨q, ḡ0p¨q
˘

P L2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ L2p0, T ;Rdq and h̄0 P L2pRdq the for-

ward backward system (3.2.5) has an adapted solution. According to Lemma 3.4, for any
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`

f̄0p¨q, σ̄0p¨q, ḡ0p¨q
˘

P L2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ L2p0, T ;Rdq and h̄0 P L2pRdq, we can

solve the system (3.2.5) successively for the case γ P r0, δ0s, rδ0, 2δ0s, . . .. It turns out that,

when γ “ 1, for any
`

f̄0p¨q, σ̄0p¨q, ḡ0p¨q
˘

P L2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ L2p0, T ;Rdq and

h̄0 P L2pRdq, the adapted solution of (3.2.5) exists, then we deduce immediately that the

adapted solution of (3.2.1) exists. l

In what follows, we study how to weaken assumption (H0) to get a solution of the FBSDE

with Markovian switching (3.2.1). In fact, we can establish the existence and uniqueness

of a solution to equation (3.2.1) if one of the following assumptions (I0) and (J0) below is

satisfied.

Assumption I0.

(I01) There exists a positive constant Kh such that for any x1, x2 P Rd and i0 P M ,

@

h0
`

x1, i0
˘

´ h0
`

x2, i0
˘

, x1 ´ x2
D

ěKh

ˇ

ˇx1 ´ x2
ˇ

ˇ

2
, P-a.s.

(I02) There exists a positive constant KΨ such that for any t P r0, T s, θ1 “ px1, y1, z1q, θ2 “

px2, y2, z2q P Rd ˆ Rd ˆ Rdˆd and i0 P M,

Ψ0

`

t, θ1, θ2, i0
˘

ď ´ KΨ

ˇ

ˇx1 ´ x2
ˇ

ˇ

2
, P-a.s.

Assumption J0.

(J01) For any x1, x2 P Rd and i0 P M, we have

@

h0
`

x1, i0
˘

´ h0
`

x2, i0
˘

, x1 ´ x2
D

ě0, P-a.s.

(J02) There exists a positive constant KΨ such that for any t P r0, T s, θ1 “ px1, y1, z1q, θ2 “

px2, y2, z2q P Rd ˆ Rd ˆ Rdˆd and i0 P M, we have

Ψ0

`

t, θ1, θ2, i0
˘

ď ´ KΨ

´

ˇ

ˇy1 ´ y2
ˇ

ˇ

2
`
›

›z1 ´ z2
›

›

2
¯

, P-a.s.
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It is easily seen that both assumptions (I02) and (J02) are weaker than assumption (H02).

Hence, the following result is an improvement of Theorem 3.2.

Theorem 3.5. Let Assumption (C0) and either Assumption (I0) or Assumption (J0) hold.

Then there exists a unique process pX, Y, Z,Λq P S2p0, T ;RdqˆS2p0, T ;RdqˆL2p0, T ;Rdˆdqˆ

M2p0, T ;Rdq which is the solution of the FBSDEs with Markovian switching (3.2.1).

The proof of Theorem 3.5 is divided into two parts. First, Theorem 3.5 is proved under

Assumptions (C0) and (I0). Then, it is proved under Assumptions (C0) and (J0).

Proof of Theorem 3.5 under Assumptions (C0) and (I0).

(1) Existence of a solution: Let δ ą 0 and consider the sequence pXn, Y n, Zn,Λnqně0 of pro-

cesses defined recursively as follows: pX0, Y 0, Z0,Λ0q “ p0, 0, 0, 0q and

pXn`1, Y n`1, Zn`1,Λn`1q P S2p0, T ;Rdq ˆ S2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ M2p0, T ;Rdq sat-

isfies
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Xn`1
t “ ξ `

ż t

0

´

f0
`

s,Xn`1
s , Y n`1

s , Zn`1
s , αs

˘

´ δY n`1
s ` δY n

s

¯

ds

`

ż t

0

´

σ0
`

s,Xn`1
s , Y n`1

s , Zn`1
s , αs

˘

´ δZn`1
s ` δZn

s

¯

dWs,

Y n`1
t “ h0pXn`1

T , αT q ´

ż T

t

g0
`

s,Xn`1
s , Y n`1

s , Zn`1
s , αs

˘

ds

´
şT

t
Zn`1

s dWs ´
şT

t
Λn`1

s ‚ dMs.

(3.2.7)

In view of Theorem 3.2, these recursive FBSDEs have unique solutions. For n ě 0 and

t P r0, T s, denote

X̂n`1
t :“ Xn`1

t ´ Xn
t , Ŷ

n`1
t :“ Y n`1

t ´ Y n
t , Ẑ

n`1
t :“ Zn`1

t ´ Zn
t , Λ̂

n`1
t :“ Λn`1

t ´ Λn
t ,

ĥn0 ptq :“ h0pX
n
t , αtq ´ h0pXn´1

t , αtq.

In addition, put Θn`1
s “ pXn`1

s , Y n`1
s , Zn`1

s q, Θ̂n`1
s “ pX̂n`1

s , Ŷ n`1
s , Ẑn`1

s q, and for φ “

f0, g0, σ0,

φ̂n`1
ptq :“ φpt,Θn`1

t , αtq ´ φpt,Θn
t , αtq.
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By taking the expectations after using Itô’s formula for xX̂n`1
t , Ŷ n`1

t y, it is clear that

E
@

X̂n`1
T , ĥn`1

0 pT q
D

` δE
ż T

0

´

|Ŷ n`1
s |

2
` }Ẑn`1

s }
2
¯

ds

“ δE
ż T

0

´

@

Ŷ n`1
s , Ŷ n

s

D

`
“

Ẑn`1
s , Ẑn

s

‰

¯

ds

` E
ż T

0

´

@

Ŷ n`1
s , f̂n`1

0 psq
D

`
@

X̂n`1
s , ĝn`1

0 psq
D

`
“

Ẑn`1
s , σ̂n`1

0 psq
‰

¯

ds.

According to Assumption (I0) and Young’s inequality, we obtain

KhE|X̂n`1
T |

2
`KΨE

ż T

0

|X̂n`1
s |

2ds`
δ

2
E
ż T

0

´

|Ŷ n`1
s |

2
`}Ẑn`1

s }
2
¯

dsď
δ

2
E
ż T

0

´

|Ŷ n
s |

2
`}Ẑn

s }
2
¯

ds.

(3.2.8)

Again, using Itô’s formula for |Ŷ n|2 and then taking the expectation yield

E|Ŷ n
t |

2
` E

ż T

t

}Ẑn
s }

2ds ` E
ż T

t

|Λ̂n
s |

2
‚ drM ss “ E|ĥn0 pT q|

2
´ 2E

ż T

t

@

Ŷ n
s , ĝ

n
0 psq

D

ds.

In view of Assumption (C01) and Young’s inequality, for t ď T , we have

E|Ŷ n
t |

2
`

1

2
E
ż T

t

}Ẑn
s }

2ds ` E
ż T

t

|Λ̂n
s |

2
‚ drM ss

ď E|ĥn0 pT q|
2

` CE
ż T

0

|X̂n
s |

2ds ` CE
ż T

t

|Ŷ n
s |

2ds.

Then, applying Gronwall’s inequality and using (C02), we arrive at

E|Ŷ n
t |

2
ď CE

´

|ĥn0 pT q|
2

`

ż T

0

|X̂n
s |

2ds
¯

ď CE
´

|X̂n
T |

2
`

ż T

0

|X̂n
s |

2ds
¯

.

Similarly to (3.1.3)-(3.1.4), we obtain

E
´

ż T

0

ˇ

ˇŶ n
s

ˇ

ˇ

2
ds `

ż T

0

›

›Ẑn
s

›

›

2
ds `

ż T

0

ˇ

ˇΛ̂n
s

ˇ

ˇ

2
‚ drM ss

¯

ďCE
´

ˇ

ˇX̂n
T

ˇ

ˇ

2
`

ż T

0

|X̂n
s

ˇ

ˇ

2
ds
¯

. (3.2.9)

Combining (3.2.9) and (3.2.8) lead to

E
´

ˇ

ˇX̂n`1
T

ˇ

ˇ

2
`

ż T

0

|X̂n`1
s

ˇ

ˇ

2
ds
¯

ď
δC

2minpKh, KΨq
E
´

ˇ

ˇX̂n
T

ˇ

ˇ

2
`

ż T

0

|X̂n
s

ˇ

ˇ

2
ds
¯

.
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If we take δ “
minpKh,KΨq

C
, then for any n ě 1,

E
´

ˇ

ˇX̂n`1
T

ˇ

ˇ

2
`

ż T

0

|X̂n`1
s

ˇ

ˇ

2
ds
¯

ď
1

2n
E
´

ˇ

ˇX̂1
T

ˇ

ˇ

2
`

ż T

0

|X̂1
s

ˇ

ˇ

2
ds
¯

and from (3.2.9), we also get

E
´

ż T

0

ˇ

ˇŶ n
s

ˇ

ˇ

2
ds `

ż T

0

›

›Ẑn
s

›

›

2
ds `

ż T

0

ˇ

ˇΛ̂n
s

ˇ

ˇ

2
‚ drM ss

¯

ď
C

2n´1
E
´

ˇ

ˇX̂1
T

ˇ

ˇ

2
`

ż T

0

|X̂1
s

ˇ

ˇ

2
ds
¯

.

It follows that pXn
T qně0 is a Cauchy sequence in L2pRdq, pXnqně0, pY nqně0 and pZnqně0

are Cauchy sequences in L2p0, T ;Rdq, L2p0, T ;Rdq, and L2p0, T ;Rdˆdq, respectively, and

pΛnqně0 is a Cauchy sequence in M2p0, T ;Rdq. Let X, Y , Z and Λ respectively be the limits

of pXnqně0, pY nqně0, pZnqně0 and pΛnqně0 in the corresponding spaces. Then, passing the

limit in equations (3.2.7) yields that pX, Y, Z,Λq is a solution of the FBSDEs with Markovian

switching (3.2.1).

(2) Uniqueness of the solution: Let pX, Y, Z,Λq and pX 1, Y 1, Z 1,Λ1q be two solutions of equa-

tions (3.2.1). Taking the expectations together with using Itô’s formula for xX 1 ´X, Y 1 ´Y y

yields

E
@

X 1
T ´ XT , h0pX 1

T , αT q ´ h0pXT , αT q
D

“ E
ż T

0

"

@

X 1
s ´ Xs, g0ps,X 1

s, Y
1
s , Z

1
s, αsq ´ g0ps,Xs, Ys, Zs, αsq

D

`
@

Y 1
s ´ Ys, f0ps,X 1

s, Y
1
s , Z

1
s, αsq ´ f0ps,Xs, Ys, Zs, αsq

D

`
“

Z 1
s ´ Zs, σ0ps,X

1
s, Y

1
s , Z

1
s, αsq ´ σ0ps,Xs, Ys, Zs, αsq

‰

*

ds.

It follows from both assumptions of (I0) that

KhE |X 1
T ´ XT |

2
` KΨE

ż T

0

|X 1
s ´ Xs|

2dsď0
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which implies X 1
T “ XT and X 1 “ X. Now we take the expectations in Itô’s formula for

|Y 1 ´ Y |2,

E|Y 1
t ´ Yt|

2
` E

ż T

t

}Z 1
s ´ Zs}

2ds ` E
ż T

t

|Λ1
s ´ Λs|

2
‚ drM ss

“ E|h0pX
1
T , αT q ´ h0pXT , αT q|

2
´ 2E

ż T

t

@

Y 1
s ´ Ys, g0ps,X 1

s, Y
1
s , Z

1
s, αsq ´ g0ps,Xs, Ys, Zs, αsq

D

ds.

(3.2.10)

Note that by both assumptions of (C0), Young’s inequality and X 1
T “ XT and X 1 “ X imply

E|Y 1
t ´ Yt|

2
`

1

2
E
ż T

t

}Z 1
s ´ Zs}

2ds ` E
ż T

t

|Λ1
s ´ Λs|

2
‚ drM ss

ď E|h0pX
1
T , αT q ´ h0pXT , αT q|

2
` E

ż T

t

|X 1
s ´ Xs|

2ds ` E
ż T

t

|Y 1
s ´ Ys|

2ds

ď cE|X 1
T ´ XT |

2
` E

ż T

t

|X 1
s ´ Xs|

2ds ` E
ż T

t

|Y 1
s ´ Ys|

2ds “ E
ż T

t

|Y 1
s ´ Ys|

2ds.

(3.2.11)

By Gronwall’s inequality, we get

E|Y 1
t ´ Yt|

2
ď 0,

yielding Y 1 “ Y and, by (3.2.11), Z 1 “ Z in L2p0, T ;Rdˆdq and Λ1 “ Λ in M2p0, T ;Rdq.

l

Proof of Theorem 3.5 under Assumptions (C0) and (J0).

(1) Existence of a solution: Let δ ą 0 and consider the sequence pXn, Y n, Zn,Λnqně0 of pro-

cesses defined recursively as follows: pX0, Y 0, Z0,Λ0q “ p0, 0, 0, 0q and

pXn`1, Y n`1, Zn`1,Λn`1q P S2p0, T ;Rdq ˆ S2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ M2p0, T ;Rdq sat-

isfies
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Xn`1
t “ ξ `

ż t

0

f0ps,X
n`1
s , Y n`1

s , Zn`1
s , αsqds `

ż t

0

σ0ps,X
n`1
s , Y n`1

s , Zn`1
s , αsqdWs,

Y n`1
t “

´

h0pX
n`1
T , αT q ` δXn`1

T ´ δXn
T

¯

´

ż T

t

´

g0ps,X
n`1
s , Y n`1

s , Zn`1
s , αsq ´ δXn`1

s ` δXn
s

¯

ds

´

ż T

t

Zn`1
s dWs ´

ż T

t

Λn`1
s ‚ dMs, 0 ď t ď T.

(3.2.12)
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By Theorem 3.2, the recursive FBSDEs have unique solutions. Define for ně1, X̂n, Ŷ n, Ẑn,

Λ̂n, ĥn0 , f̂
n
0 , ĝ

n
0 , and σ̂

n
0 as in the proof of Theorem 3.5. Now, for n ě 0 and t ď T , taking

the expectations in Itô’s formula, we have

E
´

@

X̂n`1
T , ĥn`1

0 pT q
D

` δ|X̂n`1
T |

2
´
@

δX̂n`1
T , X̂n

T

D

¯

` δE
ż T

0

|X̂n`1
s |

2ds

´ E
ż T

0

´

@

Ŷ n`1
s , f̂n`1

0 psq
D

`
@

X̂n`1
s , ĝn`1

0 psq
D

`
“

Ẑn`1
s , σ̂n`1

0 psq
‰

¯

ds “ δE
ż T

0

@

X̂n`1
s , X̂n

s

D

ds.

By both assumptions of (J0) and Young’s inequality, we arrive at

δ

2
E|X̂n`1

T |
2
`
δ

2
E
ż T

0

|X̂n`1
s |

2ds`KΨE
ż T

0

`

|Ŷ n`1
s |

2
`}Ẑn`1

s }
2
˘

dsď
δ

2
E
ˆ

ˇ

ˇX̂n
T

ˇ

ˇ

2
`

ż T

0

|X̂n
s

ˇ

ˇ

2
ds

˙

.

(3.2.13)

Now, we show that E
“

supsďT |X̂n
s |2

‰

ď CE
şT

0

`

|Ŷ n
s |2 ` }Ẑn

s }2
˘

ds. Since X̂n is a continuous

semimartingale and f0 and σ0 are Lipschitz functions in px, y, zq uniformly in pt, ωq then for

t ď T ,

E
”

sup
sďt

|X̂n
s |

2
ı

ď CE

«

ˆ
ż t

0

|f̂n
0 psq|ds

˙2

`

ż t

0

}σ̂n
0 psq}

2ds

ff

ď CE
„
ż t

0

|f̂n
0 psq|

2ds `

ż t

0

}σ̂n
0 psq}

2ds

ȷ

ď CE
ż t

0

`

|X̂n
s |

2
` |Ŷ n

s |
2

` }Ẑn
s }

2
˘

ds.

Thus, for all t ď T ,

E
”

sup
sďt

|X̂n
s |

2
ı

ď C

"
ż t

0

E
”

sup
uďs

|X̂n
u |

2
ı

ds ` E
ż T

0

`

|Ŷ n
s |

2
` }Ẑn

s }
2
˘

ds

*

.

Using Gronwall’s inequality, we obtain the desired inequality

E
”

sup
sďT

|X̂n
s |

2
ı

ď CE
ż T

0

`

|Ŷ n
s |

2
` }Ẑn

s }
2
˘

ds. (3.2.14)

Combining (3.2.14) and (3.2.13), it follows that

KΨE
ż T

0

`

|Ŷ n`1
s |

2
` }Ẑn`1

s }
2
˘

dsďδCE
ż T

0

`

|Ŷ n
s |

2
` }Ẑn

s }
2
˘

ds.



80

Taking δ small enough then the sequences pY nqně0 and pZnqně0 are Cauchy sequences

in L2p0, T ;Rdq and L2p0, T ;Rdˆdq, respectively. As in the proof of previous part, pXn
T qně0

is a Cauchy sequence in L2pRdq and pXnqně0, is a Cauchy sequence in L2p0, T ;Rdq; which

implies pΛnqně0 is a Cauchy sequence in M2p0, T ;Rdq. Let X, Y , Z and Λ respectively be

the limit of pXnqně0, pY nqně0, pZnqně0 and pΛnqně0 in the corresponding space and then

pass the limits in equations (3.2.12) we can show that pX, Y, Z,Λq is a solution of the system

(3.2.1) of FBSDEs with Markovian switching.

(2) Uniqueness of the solution: Let pX, Y, Z,Λq and pX 1, Y 1, Z 1,Λ1q be two solutions of equa-

tions (3.2.1). Taking the expectations in Itô’s formula for xX 1 ´ X, Y 1 ´ Y y we get

E
@

X 1
T ´ XT , h0pX 1

T , αT q ´ h0pXT , αT q
D

“ E
ż T

0

´

@

X 1
s ´ Xs, g0ps,X 1

s, Y
1
s , Z

1
s, αsq ´ g0ps,Xs, Ys, Zs, αsq

D

`
@

Y 1
s ´ Ys, f0ps,X 1

s, Y
1
s , Z

1
s, αsq ´ f0ps,Xs, Ys, Zs, αsq

D

`
“

Z 1
s ´ Zs, σ0ps,X

1
s, Y

1
s , Z

1
s, αsq ´ σ0ps,Xs, Ys, Zs, αsq

‰

¯

ds.

By both assumptions of (J0), we obtain

KΨE
ż T

0

`

|Y 1
s ´ Ys|

2
` }Z 1

s ´ Zs}
2
˘

dsď0

which implies Y 1 “ Y and Z 1 “ Z.

Next, using Itô’s formula for |X 1 ´ X|2 and then taking expectations lead to

E|X 1
t ´ Xt|

2
“ 2E

ż t

0

@

X 1
s ´ Xs, f0ps,X 1

s, Y
1
s , Z

1
s, αsq ´ f0ps,Xs, Ys, Zs, αsq

D

ds

` E
ż t

0

}σ0ps,X 1
s, Y

1
s , Z

1
s, αsq ´ σ0ps,Xs, Ys, Zs, αsq}

2ds.

Since f0 and σ0 are Lipschitz functions in px, y, zq, Y 1 “ Y and Z 1 “ Z give

E|X 1
t ´ Xt|

2
ď 3E

ż t

0

|X 1
s ´ Xs|

2ds.

Then, by Gronwall’s inequality,

E|X 1
t ´ Xt|

2
ď 0,
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yielding X 1 “ X and X 1
T “ XT . Moreover, taking the expectations in Itô’s formula for

|Y 1 ´ Y |2 we get (3.2.10). Since X 1
T “ XT , Y

1 “ Y , Z 1 “ Z, it follows from assumption

(C02) that

E
ż T

t

|Λ1
s ´ Λs|

2
‚ drM ss “ E|h0pX

1
T , αT q ´ h0pXT , αT q|

2
ď cE|X 1

T ´ XT |
2

“ 0.

Thus, Λ1 “ Λ in M2p0, T ;Rdq. l



CHAPTER 4

Conditional McKean-Vlasov Forward Backward

Stochastic Differential Equations with Regime

Switching

1 Conditional McKean-Vlasov FBSDEs with Regime Switching

Motivated by control and game problems for large-scale systems under random environ-

ments, in this section we will consider forward-backward stochastic systems with mean-field

and regime-switching where the mean-field terms are represented by random measures con-

ditioned on the history of the Markov chain. Conditions for existence and uniqueness of

solutions are obtained, which can be considered as generalizations of the results in the pre-

vious section.

Let W2p¨, ¨q be the 2-Wasserstein distance, defined in (1.7.3), on P2pRdq defined by Note

that

W2pµ, νq “ inf
!

`

E
ˇ

ˇξ ´ ζ
ˇ

ˇ

2˘1{2
: ξ, ζ P L2

pRd
q,Pξ “ µ,Pζ “ ν

)

,

which implies that

W2pPξ,Pζqď
`

E
ˇ

ˇξ ´ ζ
ˇ

ˇ

2˘1{2
.

In addition, it follows from [17, Lemma 7.2] that for any sub-σ-field G of F and rě2, we

have

W2

`

Ppξ|Gq,Ppζ|Gq

˘

ď
“

E
`ˇ

ˇξ ´ ζ
ˇ

ˇ

rˇ
ˇG
˘‰1{r

, P-a.s. (4.1.1)

82
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Let

f : r0, T s ˆ Ω ˆ Rd
ˆ Rd

ˆ Rdˆd
ˆ PpR2d

q ˆ M Ñ Rd,

g : r0, T s ˆ Ω ˆ Rd
ˆ Rd

ˆ Rdˆd
ˆ PpR2d

q ˆ M Ñ Rd,

σ : r0, T s ˆ Ω ˆ Rd
ˆ Rd

ˆ Rdˆd
ˆ PpR2d

q ˆ M Ñ Rdˆd,

h : Ω ˆ Rd
ˆ PpRd

q ˆ M Ñ Rd

be measurable functions with respect to the Borel σ-fields.

For this section we will be working with the following conditional McKean-Vlasov FB-

SDE

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Xt “ ξ `

ż t

0

fps,Xs, Ys, Zs,PpXs,Ys|Fα
s´q, αsqds `

ż t

0

σps,Xs, Ys, Zs,PpXs,Ys|Fα
s´q, αsqdWs,

Yt “ hpXT ,PpXT |Fα
T q, αT q ´

ż T

t

gps,Xs, Ys, Zs,PpXs,Ys|Fα
s´q, αsqds ´

ż T

t

ZsdWs ´

ż T

t

Λs ‚ dMs,

t P r0, T s.

(4.1.2)

A quadruplet of measurable process pXt, Yt, Zt,Λtq is called a solution of above equation if

pXt, Yt, Zt, Λtq P S2p0, T ;Rdq ˆ S2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ M2p0, T ;Rdq and satisfies

(4.1.2).

Assumption (C).

(C1) For each fixed i0 P M, the functions fp¨, ¨, ¨, ¨, ¨, ¨, i0q, gp¨, ¨, ¨, ¨, ¨, ¨, i0q, and σp¨, ¨, ¨, ¨, ¨, ¨, i0q

are F -progressively measurable and Lipschitz in px, y, z, µq uniformly in pt, ωq. That is

for φ “ f , g, or σ, there exists (deterministic) constants Cθ and Cν such that for any

t P r0, T s, i0 P M, θ1 “ px1, y1, z1q, θ2 “ px2, y2, z2q P RdˆRdˆRdˆd, and ν1, ν2 P PpR2dq,

we have

ˇ

ˇφ
`

t, θ1, ν1, i0
˘

´ φ
`

t, θ2, ν2, i0
˘ˇ

ˇďCθ

›

›θ1 ´ θ2
›

› ` CνW2

`

ν1, ν2
˘

, P-a.s.

(C2) For each fixed px, µ, i0q P Rd ˆ PpRdq ˆ M, the function hp¨, x, µ, i0q belongs to L2pRdq.

In addition, hpω, ¨, ¨, i0q is Lipschitz uniformly in pω, i0q. That is, for any i0 P M,
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x1, x2 P Rd, and µ1, µ2 P PpRdq there exist (deterministic) constants c and Cµ such that

ˇ

ˇh
`

x1, µ1, i0
˘

´ h
`

x2, µ2, i0
˘
ˇ

ˇďc
ˇ

ˇx1 ´ x2
ˇ

ˇ ` CµW2

`

µ1, µ2

˘

, P-a.s.

For t P r0, T s, i0 P M, θ1 “ px1, y1, z1q, θ2 “ px2, y2, z2q P RdˆRdˆRdˆd, and ν P PpR2dq

we denote

Ψ
`

t, θ1, θ2, ν, i0
˘

“
@

f
`

t, θ1, ν, i0
˘

´ f
`

t, θ2, ν, i0
˘

, y1 ´ y2
D

`
@

g
`

t, θ1, ν, i0
˘

´ g
`

t, θ2, ν, i0
˘

, x1 ´ x2
D

`
“

σ
`

t, θ1, ν, i0
˘

´ σ
`

t, θ2, ν, i0
˘

, z1 ´ z2
‰

. (4.1.3)

Similar to Assumption (H0), we consider the following assumption:

Assumption (H).

(H1) There exists a positive constant Kh such that for any x1, x2 P Rd, µ P PpRdq, and

i0 P M, we have

@

h
`

x1, µ, i0
˘

´ h
`

x2, µ, i0
˘

, x1 ´ x2
D

ěKh

ˇ

ˇx1 ´ x2
ˇ

ˇ

2
, P-a.s.

(H2) There exists a positive constant KΨ such that for any t P r0, T s, θ1 “ px1, y1, z1q, θ2 “

px2, y2, z2q P Rd ˆ Rd ˆ Rdˆd, ν P PpR2dq, and i0 P M, we have

Ψ
`

t, θ1, θ2, ν, i0
˘

ď ´ KΨ

´

ˇ

ˇx1 ´ x2
ˇ

ˇ

2
`
ˇ

ˇy1 ´ y2
ˇ

ˇ

2
`
›

›z1 ´ z2
›

›

2
¯

, P-a.s.

The following theorem can be viewed as and extension of Theorem 3.2. To make the

presentation more transparent, its proof is aggregated in the next subsection.

Theorem 4.1. Let assumptions (C) and (H) hold. If the constant

Cν , Cµ ă min
!

`
?
3 ´ 1

˘

Kh, KΨ{
?
3
)

(4.1.4)

then there exists a unique process pX, Y, Z,Λq that solves the system (4.1.2) of the conditional

mean-field FBSDE with Markovian switching.
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Next, similar to Theorem 3.5, we shall study how to weaken Assumption (H) in Theo-

rem 4.1. Different from the setting in Theorem 3.5, the appearance of the mean-field terms

in (4.1.2) makes the problem more complicated. To simplify the calculations, we assume

that σ does not depend on PpXs,Ys|Fα
s´q. Subsequently, the conditional mean-field FBSDE

with Markovian switching (4.1.2) becomes:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Xt “ ξ `

ż t

0

fps,Xs, Ys, Zs,PpXs,Ys|Fα
s´q, αsqds `

ż t

0

σps,Xs, Ys, Zs, αsqdWs,

Yt “ hpXT ,PpXT |Fα
T q, αT q ´

ż T

t

gps,Xs, Ys, Zs,PpXs,Ys|Fα
s´q, αsqds

´
şT

t
ZsdWs ´

şT

t
Λs ‚ dMs,

t P r0, T s.

(4.1.5)

We make the following assumption.

Assumption L.

(L1) For any x1, x2 P Rd, µ P PpRdq, and i0 P M we have

@

h
`

x1, µ, i0
˘

´ h
`

x2, µ, i0
˘

, x1 ´ x2
D

ěKh

ˇ

ˇx1 ´ x2
ˇ

ˇ

2
, P-a.s.

(L2) There exists a positive constant KΨ such that for any t P r0, T s, θ1 “ px1, y1, z1q, θ2 “

px2, y2, z2q P Rd ˆ Rd ˆ Rdˆd, ν P PpR2dq, and i0 P M, we have

Ψ
`

t, θ1, θ2, ν, i0
˘

ď ´ KΨ

´

ˇ

ˇx1 ´ x2
ˇ

ˇ

2
`
ˇ

ˇy1 ´ y2
ˇ

ˇ

2
¯

, P-a.s.

Notice that although Assumption (L) is weaker than Assumption (H), it is slightly different

from Assumption (I0) and Assumption (J0) in the previous section. Following similar steps

as in the proof of Theorem 4.1, we have the following result. Its proof is provided in the

next subsection.

Theorem 4.2. Let Assumptions (C) and (L) hold. If the constant

Cν , Cµ ă min
!

2
`
?
2 ´ 1

˘

Kh, KΨ{
?
2
)

(4.1.6)
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then there exists a unique process pX, Y, Z,Λq, which solves the system (4.1.5) of the condi-

tional mean-field FBSDE with Markovian switching.

2 Proofs of Main Theorems

2.1 Proof of Theorem 4.1

In this section we will prove the existence and uniqueness of solutions to conditional

mean-field FBSDEs with Markovian switching (4.1.2) under Assumption (C) and (H). The

proof is divided into two parts. First, we prove the existence of solutions.

(1) Existence of a solution: Let δ be a fixed positive number. We recursively define the

sequence of processes pXn, Y n, Zn,Λnqně0 in S2p0, T ;Rdq ˆ S2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ

M2p0, T ;Rdq as follows: pX0, Y 0, Z0,Λ0q ” p0, 0, 0, 0q and, for n ě 0, pXn`1, Y n`1, Zn`1,Λn`1q P

S2p0, T ;Rdq ˆ S2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ M2p0, T ;Rdq satisfies the FBSDE

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Xn`1
t “ ξ `

ż t

0

´

fps,Xn`1
s , Y n`1

s , Zn`1
s , νns , αsq ´ δY n`1

s ` δY n
s

¯

ds

`

ż t

0

´

σps,Xn`1
s , Y n`1

s , Zn`1
s , νns , αsq ´ δZn`1

s ` δZn
s

¯

dWs,

Y n`1
t “ hpXn`1

T , µn
T , αT q ´

ż T

t

gps,Xn`1
s , Y n`1

s , Zn`1
s , νns , αsqds

´

ż T

t

Zn`1
s dWs ´

ż T

t

Λn`1
s ‚ dMs, 0 ď t ď T,

(4.2.1)

where νns :“ PpXn
s ,Y

n
s |Fα

s´q and µn
T :“ PpXn

T |Fα
T q. In view of Theorem 3.2, this FBSDE has a

unique solution. For n ě 0 and t P r0, T s, denote

X̂n`1
t :“ Xn`1

t ´Xn
t , Ŷ

n`1
t :“ Y n`1

t ´Y n
t , Ẑ

n`1
t :“ Zn`1

t ´Zn
t , Λ̂

n`1
t :“ Λn`1

t ´Λn
t , (4.2.2)

ĥnptq :“ hpXn
t , µ

n´1
t , αtq ´ hpXn´1

t , µn´2
t , αtq

and for Θn “ pXn, Y n, Znq and φ “ f, g, σ,

φ̂n`1
ptq :“ φpt,Θn`1

t , νnt , αtq ´ φpt,Θn
t , ν

n´1
t , αtq,

φ̄n
ptq :“ φpt,Θn

t , ν
n
t , αtq ´ φpt,Θn

t , ν
n´1
t , αtq.

(4.2.3)
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It follows from (4.1.1) that

W 2
2 pνnt , ν

n´1
t q ď E

`

|X̂n
t |

2
` |Ŷ n

t |
2
ˇ

ˇFα
t´

˘

. (4.2.4)

According to Itô’s formula, we obtain

@

X̂n`1
T , Ŷ n`1

T

D

´
@

X̂n`1
0 , Ŷ n`1

0

D

“

ż T

0

@

Ŷ n`1
s , f̂n`1

psq ´ δŶ n`1
s ` δŶ n

s

D

ds `

ż T

0

@

Ŷ n`1
s ,

`

σ̂n`1
psq ´ δẐn`1

s ` δẐn
s

˘

dWs

D

`

ż T

0

@

X̂n`1
s , ĝn`1

psq
D

ds `

ż T

0

@

X̂n`1
s , Ẑn`1

s dWs

D

`

ż T

0

@

X̂n`1
s , Λ̂n`1

s ‚ dMs

D

`

ż T

0

“

Ẑn`1
s , σ̂n`1

psq ´ δẐn`1
s ` δẐn

s

‰

ds.

(4.2.5)

Applying standard estimates of BSDEs and the Burkholder-Davis-Gundy inequality, it is easy

to see that the stochastic integrals in (4.2.5) are true martingales. After taking expectations,

we obtain

E
@

X̂n`1
T , hpXn`1

T , µn
T , αT q ´ hpXn

T , µ
n´1
T , αT q

D

` δE
ż T

0

`

|Ŷ n`1
s |

2
` }Ẑn`1

s }
2
˘

ds

“ δE
ż T

0

´

@

Ŷ n`1
s , Ŷ n

s

D

`
“

Ẑn`1
s , Ẑn

s

‰

¯

ds

` E
ż T

0

´

@

Ŷ n`1
s , f̂n`1

psq
D

`
@

X̂n`1
s , ĝn`1

psq
D

`
“

Ẑn`1
s , σ̂n`1

psq
‰

¯

ds.

(4.2.6)
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Using the Lipschitz continuity of h (assumption (C2)), Young’s inequality, (4.1.1) and (H1),

we have

E
@

X̂n`1
T , hpXn`1

T , µn
T , αT q ´ hpXn

T , µ
n´1
T , αT q

D

“ E
@

X̂n`1
T , hpXn`1

T , µn
T , αT q ´ hpXn

T , µ
n
T , αT q

D

` E
@

X̂n`1
T , hpXn

T , µ
n
T , αT q ´ hpXn

T , µ
n´1
T , αT q

D

ě KhE|X̂n`1
T |

2
´ CµE

”

ˇ

ˇX̂n`1
T

ˇ

ˇ W2pµn
T , µ

n´1
T q

ı

ě KhE|X̂n`1
T |

2
´
Cµϵ

2
E|X̂n`1

T |
2

´
Cµ

2ϵ
EW 2

2 pµn
T , µ

n´1
T q

ě

ˆ

Kh ´
Cµϵ

2

˙

E|X̂n`1
T |

2
´
Cµ

2ϵ
E
”

E
`

|X̂n
T |

2
ˇ

ˇFα
T

˘

ı

“

ˆ

Kh ´
Cµϵ

2

˙

E|X̂n`1
T |

2
´
Cµ

2ϵ
E|X̂n

T |
2, @ ϵ ą 0. (4.2.7)

Again, by the Lipschitz continuity of f, h, σ, Young’s inequality, (4.1.1) and (H2), we also

have

@

X̂n`1
t , ĝn`1

ptq
D

`
@

Ŷ n`1
t , f̂n`1

ptq
D

`
“

Ẑn`1
t , σ̂n`1

ptq
‰

“ Ψ
`

t,Θn`1
t ,Θn

t , ν
n
t , αt

˘

`
@

X̂n`1
t , ḡnptq

D

`
@

Ŷ n`1
t , f̄n

ptq
D

`
“

Ẑn`1
t , σ̄n

ptq
‰

ď ´KΨ

´

|X̂n`1
t |

2
` |Ŷ n`1

t |
2

` }Ẑn`1
t }

2
¯

` |X̂n`1
t ||ḡnptq| ` |Ŷ n`1

t ||f̄n
ptq| ` }Ẑn`1

t }}σ̄n
ptq}

ď ´KΨ

´

|X̂n`1
t |

2
` |Ŷ n`1

t |
2

` }Ẑn`1
t }

2
¯

` CνW2

`

νnt , ν
n´1
t

˘

´

|X̂n`1
t | ` |Ŷ n`1

t | ` }Ẑn`1
t }

¯

ď

´Cν

2γ
´ KΨ

¯´

|X̂n`1
t |

2
` |Ŷ n`1

t |
2

` }Ẑn`1
t }

2
¯

`
3γCν

2
W 2

2

`

νnt , ν
n´1
t

˘

, @ t P r0, T s, γ ą 0.

Now, it follows from (4.2.4) that

E
ż T

0

´

@

X̂n`1
s , ĝn`1

psq
D

`
@

Ŷ n`1
s , f̂n`1

psq
D

`
“

Ẑn`1
s , σ̂n`1

psq
‰

¯

ds

ď E
ż T

0

´Cν

2γ
´ KΨ

¯´

ˇ

ˇX̂n`1
s

ˇ

ˇ

2
`
ˇ

ˇŶ n`1
s

ˇ

ˇ

2
` }Ẑn`1

s }
2
¯

ds `
3γCν

2

ż T

0

E
`

|X̂n
s

ˇ

ˇ

2
`
ˇ

ˇŶ n
s

ˇ

ˇ

2˘
ds.

(4.2.8)

On the other hand, in view of Young’s inequality, we also have for any ρ ą 0,

E
ż T

0

´

@

Ŷ n`1
s , Ŷ n

s

D

`
“

Ẑn`1
s , Ẑn

s

‰

¯

ds ď
1

2
E
ż T

0

´

ρ|Ŷ n`1
s |

2
` ρ}Ẑn`1

s }
2

`
1

ρ
|Ŷ n

s |
2

`
1

ρ
}Ẑn

s }
2
¯

ds.

(4.2.9)
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Combining (4.2.7), (4.2.8), and (4.2.9), to (4.2.6), yields

´

Kh ´
Cµϵ

2

¯

E
ˇ

ˇX̂n`1
T

ˇ

ˇ

2
´
Cµ

2ϵ
E|X̂n

T |
2

` δE
ż T

0

´

|Ŷ n`1
s |

2
` }Ẑn`1

s }
2
¯

ds

´ E
ż T

0

´Cν

2γ
´ KΨ

¯´

|X̂n`1
s |

2
` |Ŷ n`1

s |
2

` }Ẑn`1
s }

2
¯

ds

ď
3γCν

2

ż T

0

E
´

|X̂n
s

ˇ

ˇ

2
`
ˇ

ˇŶ n
s

ˇ

ˇ

2
¯

ds ` δE
ż T

0

´ρ

2
|Ŷ n`1

s |
2

`
ρ

2
}Ẑn`1

s }
2

`
1

2ρ
|Ŷ n

s |
2

`
1

2ρ
}Ẑn

s }
2
¯

ds.

Rearranging the terms, we obtain

´

Kh ´
Cµϵ

2

¯

E|X̂n`1
T |

2
`

´

KΨ ´
Cν

2γ

¯

E
ż T

0

|X̂n`1
s |

2ds

`

´

δ
`

1 ´
ρ

2

˘

` KΨ ´
Cν

2γ

¯

E
ż T

0

´

|Ŷ n`1
s |

2
` }Ẑn`1

s }
2
¯

ds

ď
Cµ

2ϵ
E|X̂n

T |
2

` E
ż T

0

„

3γCν

2
|X̂n

s |
2

`

´3γCν

2
`

δ

2ρ

¯

|Ŷ n
s |

2
`

δ

2ρ
}Ẑn

s }
2

ȷ

ds.

(4.2.10)

Denote }Θ}
2

“ |X|2 ` |Y |2 ` }Z}
2 and

λpϵ, δ, γ, ρq fi min

"

Kh ´
Cµϵ

2
, KΨ ´

Cν

2γ
, δ

´

1 ´
ρ

2

¯

` KΨ ´
Cν

2γ

*

,

θpϵ, δ, γ, ρq fi max

"

Cµ

2ϵ
,
3γCν

2
`

δ

2ρ

*

,

we obtain

E
ˆ

|X̂n`1
T |

2
`

ż T

0

}Θ̂n`1
s }

2ds

˙

ď
θpϵ, δ, γ, ρq

λpϵ, δ, γ, ρq
E
ˆ

|X̂n
T |

2
`

ż T

0

}Θ̂n
s }

2ds

˙

. (4.2.11)

To proceed, we temporarily assume there exist constants ϵ, δ, γ, and ρ such that

λpϵ, δ, γ, ρq ą θpϵ, δ, γ, ρq. (4.2.12)

Then the inequality (4.2.11) becomes a contraction, which subsequently implies that pXn
T qně0

is a Cauchy sequence in L2pΩ,Pq and pXnqně0, pY
nqně0 and pZnqně0 are Cauchy sequences

in L2pr0, T s ˆ Ω, dt b dPq. Taking the expectation of Itô’s formula, we have

E|Ŷ n
t |

2
` E

ż T

t

}Ẑn
s }

2ds ` E
ż T

t

|Λ̂n
s |

2
‚ drM ss “ E|ĥnpT q|

2
´ 2E

ż T

t

@

Ŷ n
s , ĝ

n
psq

D

ds Ñ 0

(4.2.13)
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since pXn
T qně0, pXnqně0, pY nqně0 and pZnqně0 are Cauchy. Thus, pΛnqně0 is also a Cauchy

sequence. This yields

E
„

sup
sďT

´

|Xn
s ´ Xm

s |
2

` |Y n
s ´ Y m

s |
2
¯

ȷ

Ñ 0 as n, m Ñ 8.

By Banach fixed point theorem, there exist F-adapted càdlàg processes X and Y , an F -

progressively measurable process Z, and a collection of F -progressively measurable functions

Λ such that

E
„

sup
sďT

´

|Xn
s ´ Xs|

2
` |Y n

s ´ Ys|
2
¯

`

ż T

0

}Zn
s ´ Zs}

2ds `

ż T

0

ˇ

ˇΛn
s ´ Λs

ˇ

ˇ

2
‚ drM ss

ȷ

Ñ 0 as n Ñ 8

and

E
„

sup
sďT

`

|Xs|
2

` |Ys|
2
˘

`

ż T

0

}Zs}
2ds `

ż T

0

ˇ

ˇΛs

ˇ

ˇ

2
‚ drM ss

ȷ

ă 8.

Moreover, taking the limits in equation (4.2.1) we obtain that pX, Y, Z,Λq is a solution of

(4.1.2).

To complete the proof, we are to show that such γ, ϵ, δ and ρ exist when the condition

(4.1.4) is satisfied. In fact, to make the contraction meaningful, we assumeKh´
Cµϵ

2
, KΨ´Cν

2γ
,

and 1 ´
ρ
2
are positive. Since p1 ´

ρ
2
q ď 1

2ρ
with equality obtained if and only if ρ “ 1, we

will take ρ “ 1 and set

θ˚
pϵ, γq “ lim

δÑ0
θpϵ, δ, γ, 1q “ max

"

Cµ

2ϵ
,
3γCν

2

*

and

λ˚
pϵ, γq “ lim

δÑ0
λpϵ, δ, γ, 1q “ min

"

Kh ´
Cµϵ

2
, KΨ ´

Cν

2γ

*

.

If we have λ˚pϵ, γq ą θ˚pϵ, γq for some ϵ and γ, then there exists δ small enough such (4.2.12)

is satisfied. Note that λ˚pϵ, γq ą θ˚pϵ, γq, equivalent to having the following inequalities:

Kh ą max
!Cµ

2ϵ
`
Cµϵ

2
,
3γCν

2
`
Cµϵ

2

)

, KΨ ą max
!Cµ

2ϵ
`
Cν

2γ
,
3γCν

2
`
Cν

2γ

)

. (4.2.14)

To minimize Cµϵ

2
`

Cµ

2ϵ
and Cν

2γ
`

3γCν

2
we take ϵ “ 1 and γ “ 1?

3
. Let η1, η2 ą 0 such that

Cν , Cµ ă min tη1Kh, η2KΨu. Without loss of the generality, we can assume η1Kh ď η2KΨ.
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Then (4.2.14) holds if following inequalities hold

Kh ą Cµ, Kh ą
η1Kh

2
p
?
3 ` 1q, KΨ ą

η1Kh

2
p
?
3 ` 1q, KΨ ą

?
3Cν . (4.2.15)

From the second inequality, we obtain η1 ă
?
3 ´ 1. The third inequality in (4.2.15) holds if

the next inequality

η1Kh

2
p
?
3 ` 1q ă

η1Kh

η2

holds. This implies η2 ă
?
3´1. From the fourth inequality in (4.2.15) we have Cν ă

?
3
3
KΨ.

Note that
?
3
3

ă
?
3 ´ 1. Combining these we obtain the sufficient condition Cν , Cµ ă

min
!

p
?
3 ´ 1qKh,

?
3
3
KΨ

)

for which λpϵ, δ, α, ρq ą θpϵ, δ, α, ρq when ϵ “ ρ “ 1, γ “
?
3
3

and

δ ą 0 small enough.

(2) Uniqueness of the solution: Let pX 1, Y 1, Z 1,Λ1q be another solution to (4.1.2). Let Θ “

pX, Y, Zq and Θ1 “ pX 1, Y 1, Z 1q. Applying Itô’s formula to the product xX 1 ´X, Y 1 ´Y y and

taking expectation, we obtain

E
@

X 1
T ´ XT , Y

1
T ´ YT

D

“ ΓT , (4.2.16)

where

ΓT fi E
ż T

0

ˆ

@

X 1
s ´ Xs, g

`

s,Θ1
s,PpX 1

s,Y
1
s |Fα

s´q, αs

˘

´ g
`

s,Θs,PpXs,Ys|Fα
s´q, αs

˘D

`
@

Y 1
s ´ Ys, f

`

s,Θ1
s,PpX 1

s,Y
1
s |Fα

s´q, αs

˘

´ f
`

s,Θs,PpXs,Ys|Fα
s´q, αs

˘D

`
“

σ
`

s,Θ1
s,PpX 1

s,Y
1
s |Fα

s´q, αs

˘

´ σ
`

s,Θs,PpXs,Ys|Fα
s´q, αs

˘

, Z 1
s ´ Zs

‰

˙

ds.
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Using Assumption (C), Assumption (H1), (4.1.1), and Hölder’s inequality, we can obtain the

following lower bound for ΓT .

ΓT “ E
A

X 1
T ´ XT , h

`

X 1
T ,PpX 1

T |Fα
T q, αT

˘

´ h
`

XT ,PpXT |Fα
T q, αT

˘

E

ě KhE|X 1
T ´ XT |

2
´ CµE

´

|X 1
T ´ XT | W2

`

PpX 1
T |Fα

T q,PpXT |Fα
T q

˘

¯

ě KhE|X 1
T ´ XT |

2
´ CµE

"

|X 1
T ´ XT |

”

E
`

|X 1
T ´ XT |

2
ˇ

ˇFα
T

˘

ı
1
2

*

“ KhE|X 1
T ´ XT |

2
´ CµE

"

E
`

|X 1
T ´ XT |

ˇ

ˇFα
T

˘

”

E
`

|X 1
T ´ XT |

2
ˇ

ˇFα
T

˘

ı
1
2

*

ěpKh ´ CµqE|X 1
T ´ XT |

2.

(4.2.17)

On the other hand, we can also have an upper bound for ΓT as follow. First, by the triangle

inequality,

ΓT ď E
ż T

0

„

Ψ
`

s,Θs,Θ
1
s,PpXs,Ys|Fα

s´q, αs

˘

` CνW2

`

PpX 1
s,Y

1
s |Fα

s´q,PpXs,Ys|Fα
s´q

˘

´

|X 1
s ´ Xs| ` |Y 1

s ´ Ys| ` }Z 1
s ´ Zs}

¯

ȷ

ds.

Then, using the estimate (4.1.1),

W2

`

PpX 1
s,Y

1
s |Fα

s´q,PpXs,Ys|Fα
s´q

˘

ď

b

E
`

|X 1
s ´ Xs|

2 ` |Y 1
s ´ Ys|2

ˇ

ˇFα
s´

˘

(4.2.18)

together with (H2) and the Cauchy-Schwarz inequality three times yields

ΓT ď E
ż T

0

„

´ KΨ

´

|X 1
s ´ Xs|

2
` |Y 1

s ´ Ys|
2

` }Z 1
s ´ Zs}

2
¯

` Cν

c

E
`

|X 1
s ´ Xs|

2 ` |Y 1
s ´ Ys|2

ˇ

ˇ

ˇ
Fα

s´

˘

´

|X 1
s ´ Xs| ` |Y 1

s ´ Ys| ` }Z 1
s ´ Zs}

¯

ȷ

ds

ď E
ż T

0

„

´ KΨ

´

|X 1
s ´ Xs|

2
` |Y 1

s ´ Ys|
2

` }Z 1
s ´ Zs}

2
¯

`
Cν

2

´1

γ
` 3γ

¯

|X 1
s ´ Xs|

2
`
Cν

2

´1

γ
` 3γ

¯

|Y 1
s ´ Ys|

2
`
Cν

2γ
}Z 1

s ´ Zs}
2

ȷ

ds.

(4.2.19)
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Combining (4.2.17) and (4.2.19), we obtain

0 ď pCµ ´ KhqE|X 1
T ´ XT |

2
` E

ż T

0

"

”Cν

2

´1

γ
` 3γ

¯

´ KΨ

ı

|X 1
s ´ Xs|

2

`

”Cν

2

´1

γ
` 3γ

¯

´ KΨ

ı

|Y 1
s ´ Ys|

2
`

´Cν

2γ
´ KΨ

¯

}Z 1
s ´ Zs}

2

*

ds.

Noting that if Cµ, Cν ă min
!

`?
3´ 1

˘

Kh, KΨ{
?
3
)

, with γ “ 1?
3
, then all the coefficients of

the right-hand side of the above inequality are negative. This implies that X 1
T “ XT P-a.s.

and for all 0ďsďT , X 1
s “ Xs, Y

1
s “ Ys, and Z

1
s “ Zs P-a.s. Next, we take the expectation of

Itô’s formula for |Y 1 ´ Y |2,

E|Y 1
0 ´ Y0|

2
` E

ż T

0

}Z 1
s ´ Zs}

2ds ` E
ż T

0

|Λ1
s ´ Λs|

2
‚ drM ss

“ E|hpX 1
T , αT q ´ hpXT , αT q|

2
´ 2E

ż T

0

@

Y 1
s ´ Ys, gps,X 1

s, Y
1
s , Z

1
s, αsq ´ gps,Xs, Ys, Zs, αsq

D

ds.

Since X 1
T “ XT P-a.s. and, for all 0ďsďT , X 1

s “ Xs, Y
1
s “ Ys, and Z

1
s “ Zs P-a.s., we get

E
ż T

0

|Λ1
s ´ Λs|

2
‚ drM ss “ 0.

Thus, Λ1
s “ Λs in M2p0, T ;Rdq, yielding that the solution of (4.1.2) is unique. l

2.2 Proof of Theorem 4.2.

(1) Existence of a solution: We will follow the same approach as in Theorem 4.1. Let δ ą 0

and consider the sequence pXn, Y n, Zn,Λnqně0 defined recursively as follows: For n “ 0,

put pX0, Y 0, Z0,Λ0q “ p0, 0, 0, 0q. For n ě 0, let pXn`1, Y n`1, Zn`1,Λn`1q be the stochastic

process in S2p0, T ;Rdq ˆ S2p0, T ;Rdq ˆ L2p0, T ;Rdˆdq ˆ M2p0, T ;Rdq which is the unique

solution of the following FBSDE

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Xn`1
t “ ξ `

ż t

0

´

fps,Xn`1
s , Y n`1

s , Zn`1
s , νns , αsq ´ δY n`1

s ` δY n
s

¯

ds

`

ż t

0

σps,Xn`1
s , Y n`1

s , Zn`1
s , αsqdWs,

Y n`1
t “ hpXn`1

T , µn
T , αT q ´

ż T

t

gps,Xn`1
s , Y n`1

s , Zn`1
s , νns , αsqds

´

ż T

t

Zn`1
s dWs ´

ż T

t

Λn`1
s ‚ dMs, 0ďtďT,

(4.2.20)
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where νns :“ PpXn
s ,Y

n
s |Fα

s´q and µ
n
T :“ PpXn

T |Fα
T q. By virtue of Theorem 3.2 (under Assumptions

(C0) and (H0)), we know that this recursive FBSDE has a unique solution. For n ě 1,

t P r0, T s, we define X̂n`1
t , Ŷ n`1

t , Ẑn`1
t , Λ̂n`1

t , ĥnptq, φ̂n`1ptq, φ̄nptq as in (4.2.2) and (4.2.3).

As the diffusion coefficient σ is assumed to be independent of the conditional measure, (4.2.3)

implies σ̄nptq ” 0.

Using Itô’s formula and then taking the expectations, we obtain

E
@

X̂n`1
T , hpXn`1

T , µn
T , αT q ´ hpXn

T , µ
n´1
T , αT q

D

` δE
ż T

0

|Ŷ n`1
s |

2ds

“ δE
ż T

0

@

Ŷ n`1
s , Ŷ n

s

D

ds ` E
ż T

0

´

@

Ŷ n`1
s , f̂n`1

psq
D

`
@

X̂n`1
s , ĝn`1

psq
D

`
“

Ẑn`1
s , σ̂n`1

psq
‰

¯

ds.

(4.2.21)

Similar to (4.2.7), for any ϵ ą 0, we have

E
A

X̂n`1
T , hpXn`1

T , µn
T , αT q ´ hpXn

T , µ
n´1
T , αT q

E

ě

´

Kh ´
Cµϵ

2

¯

E|X̂n`1
T |

2
´
Cµ

2ϵ
E|X̂n

T |
2.

(4.2.22)

By the Lipschitz continuity of f, h, σ (assumption (C1)), Young’s inequality, and using

σ̄nptq ” 0 and applying assumption (L2) instead of (H2), for every 0 ď t ď T and any γ ą 0,

we have
@

X̂n`1
t , ĝn`1

ptq
D

`
@

Ŷ n`1
t , f̂n`1

ptq
D

`
“

Ẑn`1
t , σ̂n`1

ptq
‰

“ Ψ
`

t,Θn`1
t ,Θn

t , ν
n
t , αt

˘

`
@

X̂n`1
t , ḡnptq

D

`
@

Ŷ n`1
t , f̄n

ptq
D

ď ´KΨ

´

ˇ

ˇX̂n`1
t

ˇ

ˇ

2
`
ˇ

ˇŶ n`1
t

ˇ

ˇ

2
¯

`
ˇ

ˇX̂n`1
t

ˇ

ˇ

ˇ

ˇḡnptq
ˇ

ˇ `
ˇ

ˇŶ n`1
t

ˇ

ˇ

ˇ

ˇf̄n
ptq

ˇ

ˇ

ď ´KΨ

´

ˇ

ˇX̂n`1
t

ˇ

ˇ

2
`
ˇ

ˇŶ n`1
t

ˇ

ˇ

2
¯

` CνW2

`

νnt , ν
n´1
t

˘

´

ˇ

ˇX̂n`1
t

ˇ

ˇ `
ˇ

ˇŶ n`1
t

ˇ

ˇ

¯

ď

´Cν

2γ
´ KΨ

¯´

ˇ

ˇX̂n`1
t

ˇ

ˇ

2
`
ˇ

ˇŶ n`1
t

ˇ

ˇ

2
¯

` γCνW
2
2

`

νnt , ν
n´1
t

˘

.

Using (4.2.4) leads to the following inequality which is similar to (4.2.8)

E
ż T

0

´

@

X̂n`1
s , ĝn`1

psq
D

`
@

Ŷ n`1
s , f̂n`1

psq
D

`
“

Ẑn`1
s , σ̂n`1

psq
‰

¯

ds

ďE
ż T

0

´Cν

2γ
´ KΨ

¯´

ˇ

ˇX̂n`1
s

ˇ

ˇ

2
`
ˇ

ˇŶ n`1
s

ˇ

ˇ

2
¯

ds ` γCνE
ż T

0

´

|X̂n
s

ˇ

ˇ

2
`
ˇ

ˇŶ n
s

ˇ

ˇ

2
¯

ds.

(4.2.23)
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On the other hand, in view of Young’s inequality, we also have

δE
ż T

0

@

Ŷ n`1
s , Ŷ n

s

D

ds ď
δ

2
E
ż T

0

´

ˇ

ˇŶ n`1
s

ˇ

ˇ

2
`
ˇ

ˇŶ n
s

ˇ

ˇ

2
¯

ds. (4.2.24)

Applying now (4.2.22), (4.2.23), and (4.2.24), to (4.2.21), yields

´

Kh ´
Cµϵ

2

¯

E
ˇ

ˇX̂n`1
T

ˇ

ˇ

2
´
Cµ

2ϵ
E|X̂n

T |
2

` δE
ż T

0

ˇ

ˇŶ n`1
s

ˇ

ˇ

2
ds

ď

´Cν

2γ
´ KΨ

¯

E
ż T

0

´

ˇ

ˇX̂n`1
s

ˇ

ˇ

2
`
ˇ

ˇŶ n`1
s

ˇ

ˇ

2
¯

ds

` γCνE
ż T

0

´

|X̂n
s

ˇ

ˇ

2
`
ˇ

ˇŶ n
s

ˇ

ˇ

2
¯

ds `
δ

2
E
ż T

0

´

ˇ

ˇŶ n`1
s

ˇ

ˇ

2
`
ˇ

ˇŶ n
s

ˇ

ˇ

2
¯

ds

Rearranging terms, we obtain

´

Kh ´
Cµϵ

2

¯

E
ˇ

ˇX̂n`1
T

ˇ

ˇ

2
`

´

KΨ ´
Cν

2γ

¯

E
ż T

0

ˇ

ˇX̂n`1
s

ˇ

ˇ

2
ds `

´δ

2
` KΨ ´

Cν

2γ

¯

E
ż T

0

ˇ

ˇŶ n`1
s

ˇ

ˇ

2
ds

ď
Cµ

2ϵ
E
ˇ

ˇX̂n
T

ˇ

ˇ

2
` γCνE

ż T

0

ˇ

ˇX̂n
s

ˇ

ˇ

2
ds `

´

γCν `
δ

2

¯

E
ż T

0

ˇ

ˇŶ n
s

ˇ

ˇ

2
ds.

(4.2.25)

Define

λpϵ, δ, γq fi min

"

Kh ´
Cµϵ

2
, KΨ ´

Cν

2γ

*

, θpϵ, δ, γq fi max

"

Cµ

2ϵ
, γCν `

δ

2

*

.

Then (4.2.25) implies

E
„

|X̂n`1
T |

2
`

ż T

0

´

|X̂n`1
s |

2
` |Ŷ n`1

s |
2
¯

ds

ȷ

ď
θpϵ, δ, γq

λpϵ, δ, γq
E
„

|X̂n
T |

2
`

ż T

0

´

|X̂n`1
s |

2
` |Ŷ n`1

s |
2
¯

ds

ȷ

.

(4.2.26)

Now, we assume temporarily that if there exist ϵ, δ, and γ such that

λpϵ, δ, γq ą θpϵ, δ, γq. (4.2.27)

Then the inequality (4.2.26) becomes a contraction, which implies that pXn
T qně0 is a Cauchy

sequence in L2pΩ,Pq and pXnqně0 and pY nqně0 are Cauchy sequences in L2pr0, T sˆΩ, dtbdPq.

As a consequence, we can show that (4.1.5) has a solution. Indeed, taking the expectation
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of Itô’s formula, using (C1) and (4.2.4), we have

E|Ŷ n
t |

2
` E

ż T

t

}Ẑn
s }

2ds ` E
ż T

t

|Λ̂n
s |

2
‚ drM ss

“ E|ĥnpT q|
2

´ 2E
ż T

t

@

Ŷ n
s , ĝ

n
psq

D

ds

ďE|ĥnpT q|
2

` 2E
ż T

t

|Ŷ n
s |

”

Cθ

`

|X̂n
s | ` |Ŷ n

s | ` }Ẑn
s }
˘

` Cν

b

E
`

|X̂n´1
s |2 ` |Ŷ n´1

s |2
ˇ

ˇFα
s´

˘

ı

ds

ďE|ĥnpT q|
2

` E
ż T

t

„

´

2C2
θ ` 3Cθ ` Cν

¯

|Ŷ n
s |

2
` Cθ|X̂

n
s |

2
` Cν |X̂n´1

s |
2

` Cν |Ŷ n´1
s |

2
`

1

2
}Ẑn

s }
2

ȷ

ds.

Subsequently,

E|Ŷ n
0 |

2
`

1

2
E
ż T

0

}Ẑn
s }

2ds ` E
ż T

0

|Λ̂n
s |

2
‚ drM ss

ďE|ĥnpT q|
2

` E
ż T

0

„

´

2C2
θ ` 3Cθ ` Cν

¯

|Ŷ n
s |

2
` Cθ|X̂

n
s |

2
` Cν |X̂n´1

s |
2

` Cν |Ŷ n´1
s |

2

ȷ

ds ÝÑ 0

since pXn
T qně0, pXnqně0, and pY nqně0 are Cauchy sequences. Thus, pZnqně0 and pΛnqně0 are

also Cauchy sequences. As a result,

E
„

sup
sďT

`

|Xn
s ´ Xm

s |
2

` |Y n
s ´ Y m

s |
2
˘

ȷ

Ñ 0 as n, m Ñ 8.

By the Banach fixed point theorem, there exist F-adapted càdlàg processes X and Y , an F -

progressively measurable process Z and a collection of F -progressively measurable functions

Λ such that

E
„

sup
sďT

`

|Xn
s ´ Xs|

2
` |Y n

s ´ Ys|
2
˘

`

ż T

0

}Zn
s ´ Zs}

2ds `

ż T

0

ˇ

ˇΛn
s ´ Λs

ˇ

ˇ

2
‚ drM ss

ȷ

Ñ 0 as n Ñ 8

and

E
„

sup
sďT

`

|Xs|
2

` |Ys|
2
˘

`

ż T

0

}Zs}
2ds `

ż T

0

ˇ

ˇΛs

ˇ

ˇ

2
‚ drM ss

ȷ

ă 8.

Taking the limits in equation (4.2.20), we obtain that pX, Y, Z,Λq is a solution of (4.1.5).

Next, we are to show that such γ, ϵ, and δ exist when the condition (4.1.6) is satisfied.

In fact, to make the contraction meaningful, we assume Kh ´
Cµϵ

2
and KΨ ´ Cν

2γ
are positive.
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Since δ ą 0 can be chosen small enough, denote

θ˚
pϵ, γq “ lim

δÑ0
θpϵ, δ, γq “ max

"

Cµ

2ϵ
, γCν

*

,

λ˚
pϵ, γq “ lim

δÑ0
λpϵ, δ, γq “ min

"

Kh ´
Cµϵ

2
, KΨ ´

Cν

2γ

*

.

If we have λ˚pϵ, γq ą θ˚pϵ, γq for some ϵ and γ, then there exists δ small enough such (4.2.27)

is satisfied. Note that λ˚pϵ, γq ą θ˚pϵ, γq, equivalent to having the following inequalities:

Kh ą
Cµ

2

´

ϵ `
1

ϵ

¯

, Kh ą
Cµϵ

2
` γCν , KΨ ą

Cν

2γ
`
Cµ

2ϵ
, KΨ ą Cν

´

γ `
1

2γ

¯

. (4.2.28)

Similar to the proof in Theorem 4.1, we choose ϵ “ 1 and γ “
?
2
2
. Let η1, η2 ą 0 such that

Cν , Cµ ă min
␣

η1Kh, η2KΨ

(

. Without loss of the generality, we assume that η1Kh ď η2KΨ

(the result in the other direction turns out to be the same). Then (4.2.28) holds if the

following system of inequalities hold

Kh ą Cµ, Kh ą
η1Kh

2
p
?
2 ` 1q, KΨ ą

η1Kh

2
p
?
2 ` 1q, KΨ ą

?
2Cν . (4.2.29)

From the second inequality, we obtain η1 ă 2p
?
2´1q. The third inequality in (4.2.29) holds

if the next inequality

η1Kh

2
p
?
2 ` 1q ă

η1Kh

η2

holds. This implies η2 ă 2p
?
2 ´ 1q. From the fourth inequality in (4.2.29) we have Cν ă

?
2
2
KΨ. Note that

?
2
2

ă 2p
?
2 ´ 1q. Combining these we obtain the sufficient condition

Cν , Cµ ă mint2p
?
2 ´ 1qKh,

?
2
2
KΨu for which λpϵ, δ, αq ą θpϵ, δ, αq when ϵ “ 1, γ “

?
2
2

and

δ ą 0 small enough.

(2) Uniqueness of the solution: Let pX 1, Y 1, Z 1,Λ1q be another solution to (4.1.5). Let Θ “

pX, Y, Zq and Θ1 “ pX 1, Y 1, Z 1q. Similar to the proof of Theorem 4.1, we take the expectation

of Itô’s formula to the product xX 1 ´ X, Y 1 ´ Y y and obtain

E
@

X 1
T ´ XT , Y

1
T ´ YT

D

“ ΓT (4.2.30)
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where

ΓT fi E
ż T

0

ˆ

@

X 1
s ´ Xs, gps,Θ1

s,PpX 1
s,Y

1
s |Fα

s´q, αsq ´ gps,Θs,PpXs,Ys|Fα
s´q, αsq

D

`
@

Y 1
s ´ Ys, fps,Θ1

s,PpX 1
s,Y

1
s |Fα

s´q, αsq ´ fps,Θs,PpXs,Ys|Fα
s´q, αsq

D

`
“

σps,Θ1
s, αsq ´ σps,Θs, αsq, Z

1
s ´ Zs

‰

˙

ds.

(4.2.31)

Note that Assumption (L1) is the same as Assumption (H1), so (4.2.17) still holds true.

That is,

ΓTěpKh ´ CµqE|X 1
T ´ XT |

2. (4.2.32)

On the other hand, in view of Assumption (L2) and (4.2.18), we have

ΓT ď E
ż T

0

„

Ψ
`

s,Θs,Θ
1
s,PpXs,Ys|Fα

s´q, αs

˘

` CνW2

`

PpX 1
s,Y

1
s |Fα

s´q,PpXs,Ys|Fα
s´q

˘

´

|X 1
s ´ Xs| ` |Y 1

s ´ Ys|
¯

ȷ

ds

ď E
ż T

0

„

´ KΨ

`

|X 1
s ´ Xs|

2
` |Y 1

s ´ Ys|
2
˘

` Cν

b

E
`

|X 1
s ´ Xs|

2 ` |Y 1
s ´ Ys|2

ˇ

ˇFα
s´

˘

´

|X 1
s ´ Xs| ` |Y 1

s ´ Ys|
¯

ȷ

ds

ď

„

Cν

2

´

2γ `
1

γ

¯

´ KΨ

ȷ

E
ż T

0

´

|X 1
s ´ Xs|

2
` |Y 1

s ´ Ys|
2
¯

ds.

(4.2.33)

Combining (4.2.32) and (4.2.33), we obtain

0 ď pCµ ´ KhqE|X 1
T ´ XT |

2
`

„

Cν

2

´

2γ `
1

γ

¯

´ KΨ

ȷ

E
ż T

0

´

|X 1
s ´ Xs|

2
` |Y 1

s ´ Ys|
2
¯

ds.

Noting now that Cµ, Cν ă min
!

2
`?

2 ´ 1
˘

Kh, KΨ{
?
2
)

, with γ “ 1?
2
, all the coefficients of

the right hand side of the above inequality are negative, which implies that, X 1
T “ XT P-a.s.

and for all 0ďsďT , X 1
s “ Xs and Y

1
s “ Ys, P-a.s.
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Now we take the expectation of Itô’s formula for |Y 1 ´ Y |2,

E|Y 1
0 ´ Y0|

2
` E

ż T

0

}Z 1
s ´ Zs}

2ds ` E
ż T

0

|Λ1
s ´ Λs|

2
‚ drM ss

“ E|hpX 1
T , αT q ´ hpXT , αT q|

2

´ 2E
ż T

0

@

Y 1
s ´ Ys, gps,Θ1

s,PpX 1
s,Y

1
s |Fα

s´q, αsq ´ gps,Θs,PpXs,Ys|Fα
s´q, αsq

D

ds.

Since X 1
T “ XT P-a.s. and for all 0ďsďT , X 1

s “ Xs and Y
1
s “ Ys P-a.s., we get

E
ż T

0

}Z 1
s ´ Zs}

2ds ` E
ż T

0

|Λ1
s ´ Λs|

2
‚ drM ss “ 0.

Thus, Z 1 “ Z (in L2p0, T ;Rdˆdq) and Λ1 “ Λ (in M2p0, T ;Rdq), yielding that the solution of

(4.1.2) is unique. l

Note that with a little effort, we can show that Theorem 4.1 still hold true if PpXs,Ys|Fα
s´q

is replaced by PpXs,Ys,Zs|Fα
s´q in (4.1.2). Nevertheless, with the present approach, we cannot

include Λs to these probability measures. If Λs is included, νns “ PpXn
s ,Y

n
s ,Zn

s ,Λ
n
s |Fα

s q and by

virtue of (4.1.1), to estimate the term involving W 2
2 pνns , ν

n´1
s q, one needs some estimate of

the expected value E
şT

0
|Λ̂n

s |2ds which is not possible because the quadratic variations of the

martingale associate with the Markov chain are random.



CHAPTER 5

Application in Conditional Mean-Field Nonzero-sum

Game

In this chapter, we consider a nonzero-sum game problem with N players in which the

dynamics and cost functionals of each player depend on conditional mean-field terms and

a regime-switching process. Let N , di, 1ďiďN , be positive integers. For each i, 1ďiďN ,

let U i “ Lp0, T ;Rdiq be the set of admissible controls of the player i and denote U “

U1 ˆ U2 ˆ . . . ˆ UN . The dynamics of the system is given by the following conditional

mean-field SDE

Xt “ x0 `

ż t

0

„

Aps, αsqXs ` sAps, αsqE
`

Xs

ˇ

ˇFα
s´

˘

`

N
ÿ

i“1

Bi
ps, αsqu

i
s ` fps, αsq

ȷ

ds

`

ż t

0

”

σps, αsqXs ` gps, αsq

ı

dWs (5.0.1)

where for each i0 P M and 1ďiďN , ui P U i, Ap¨, i0q, Āp¨, i0q, Bip¨, i0q, fp¨, i0q, and

gp¨, i0q are bounded continuous functions taking values in Rdˆd, Rdˆd, Rdˆdi , Rd, and Rd,

respectively. In addition, σp¨, i0q is a continuous function taking values in Rdˆd.

Note that the mean-field SDE (5.0.1) is obtained as the mean-square limit as n Ñ 8 of

a system of interacting players of the form

Xk,n
t “ x0 `

ż t

0

„

Aps, αsqX
k,n
s `

1

n
sAps, αsqE

n
ÿ

j“1

Xj,n
s `

N
ÿ

i“1

Bi
ps, αsqu

i,k,n
s ` fps, αsq

ȷ

ds

`

ż t

0

”

σps, αsqX
k,n
s ` gps, αsq

ı

dW k
s , 1ďkďn,

where pW k, kě1q is a collection of independent standard Brownian motions. Due to the

symmetry of the dynamics, we assume that the social planners apply the same control

100
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policies for all players in the feedback forms

ui,k,nt “ ϕi

˜

t,Xk,n
t ,

1

n

n
ÿ

j“1

Xj,n
t , αt

¸

.

In (5.0.1), the conditional expectation EpXs|Fα
s q appears instead of the expectation EpXsq

because of the effect of the common switching process αt to all the players.

For simplicity, through out this section we assume that Ws is a scalar Brownian motion.

The case with multidimensional Brownian motion Ws can be treated in a similar way. Given

a control u “ pu1, u2, . . . , uNq P U , the cost functional of the player i is given by

Jipuq “
1

2
E

#

ż T

0

„

X⊺
sM

i
ps, αsqXs ` E

`

X⊺
s

ˇ

ˇFα
s´

˘

ĎM i
ps, αsqE

`

Xs

ˇ

ˇFα
s´

˘

` puisq
⊺N i

ps, αsqu
i
s

ȷ

ds

` X⊺
TR

i
pαT qXT ` E

`

X⊺
T

ˇ

ˇFα
T

˘

sRi
pαT qE

`

XT

ˇ

ˇFα
T

˘

+

, (5.0.2)

where for each i0 P M and 1ďiďN ,M ip¨, i0q and ĎM ip¨, i0q are bounded continuous symmetric

non-negative matrices with values in Rdˆd, N ip¨, i0q and its inverse
`

N ip¨, i0q
˘´1

are bounded

continuous symmetric positive matrices with values in Rdiˆdi , and Ripi0q and sRipi0q are

symmetric non-negative matrices with values in Rdˆd.

An admissible control u˚ “ pu˚,1, u˚,2, . . . , u˚,Nq P U is called a Nash equilibrium point

if for any 1ďiďN ,

Jipu
˚
qďJipu

˚,´i, uiq, @ui P U i

where pu˚,´i, uiq “ pu˚,1, u˚,2, . . . , u˚,i´1, ui, u˚,i`1, . . . , u˚,Nq. We are interested in finding a

Nash equilibrium point for the aforementioned game problem.
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For each pt, x, x̄, u1, u2, . . . , uN , pi, qi, i0q P r0, T sˆRdˆRdˆRd1ˆRd2ˆ. . .ˆRdN ˆRdˆRdˆM,

1ďiďN , denote the Hamiltonian associated with the player i as follow

Hi

´

t, x, x̄, u1, u2, . . . , uN , pi, qi, i0

¯

“ ppiq⊺
„

Apt, i0qx ` sApt, i0qx̄ `

N
ÿ

j“1

Bj
pt, i0qu

j
` fpt, i0q

ȷ

`
1

2

„

x⊺M i
pt, i0qx ` x̄⊺ĎM i

pt, i0qx̄ ` puiq⊺N i
pt, i0qu

i

ȷ

`

´

σ⊺
pt, i0qx ` gpt, i0q

¯⊺
qi.

In addition, define the function ûi by

ûipt, piq “ ´
`

N i
pt, αtq

˘´1`
Bi

pt, αtq
˘⊺
pi, 0ďtďT.

It is easy to check that the functions ûi, 1ďiďN , satisfy

Hi

´

t, x, x̄, û1pt, p1q, û2pt, p2q, . . . , ûNpt, pNq, pi, qi, i0

¯

ďHi

´

t, x, x̄, û1pt, p1q, û2pt, p2q, . . . , ûi´1
pt, pi´1

q, ui, ûi`1
pt, pi`1

q, . . . , ûNpt, pNq, pi, qi, i0

¯

for any ui P Rdi , pi, qi P Rd, 1ďiďN . We have the following proposition.

Proposition 5.1. The process
`

Xt, pp
1
t , q

1
t q, . . . , ppNt , q

N
t q, λ1t , . . . , λ

N
t

˘

solves the following

conditional mean-field FBSDE with regime switching

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Xt “ x0 `

ż t

0

„

Aps, αsqXs ` sAps, αsqE
`

Xs

ˇ

ˇFα
s´

˘

`

N
ÿ

i“1

Bi
ps, αsqû

i
ps, pisq ` fps, αsq

ȷ

ds

`

ż t

0

”

σps, αsqXs ` gps, αsq

ı

dWs,

pit “

”

RipαT qXT ` sRipαT qE
`

XT

ˇ

ˇFα
T

˘

ı

`

ż T

t

„

Aps, αsq
⊺pis ` E

`

sAps, αsq
⊺
pis
ˇ

ˇFα
s´

˘

`M ips, αsqXs ` ĎM ips, αsqE
`

Xs

ˇ

ˇFα
s´

˘

` σps, αsq
⊺qis

ȷ

ds ´

ż T

t

qisdWs ´

ż T

t

λis ‚ dMs,

i “ 1, . . . , N

(5.0.3)
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if and only if the admissible control û “ pû1, û2, . . . , ûNq “
`

û1pt, p1t q, û
2pt, p2t q, . . . , û

Npt, pNt q
˘

is a Nash equilibrium point of the conditional mean-field nonzero-sum quadratic stochastic

differential game.

Proof. First, we shall show that the condition is sufficient. Suppose that
`

Xt, pp
1
t , q

1
t q, . . . , ppNt , q

N
t q,

λ1t , . . . , λ
N
t

˘

is a solution of (5.0.3). Fix i, 1ďiďN . Let ui P U i and denote ui “ pû´i, uiq “

`

û1, . . . , ûi´1, ui, ûi`1, . . . , ûN
˘

. Let X i
t be the state dynamics corresponding to the con-

trol ui. For simplicity, denote ûipsq “ ûips, pisq, sXs “ E
`

Xs

ˇ

ˇFα
s´

˘

, sX i
s “ E

`

X i
s

ˇ

ˇFα
s´

˘

, and

spis “ E
`

pis
ˇ

ˇFα
s´

˘

for 0ďsďT . As a consequence, sX⊺
s “ E

`

X⊺
s

ˇ

ˇFα
s´

˘

and p sX i
sq

⊺ “ E
“

pX i
sq

⊺
ˇ

ˇFα
s´

‰

.

It suffices to prove that Jipu
iqěJipûq.

To proceed, we observe that for any symmetric non-negative nˆn matrix S and v1, v2 P

Rn we have

pv1q
⊺Sv1 ´ pv2q⊺Sv2 “ pv1 ´ v2q

⊺Spv1 ´ v2q ` 2pv1 ´ v2q
⊺Sv2ě2pv1 ´ v2q⊺Sv2.

Note that M ips, αsq,ĎM
ips, αsq, N

ips, αsq, R
ipαT q and sRipαT q are all symmetric non-negative

matrices. Hence, using the definition of Jip¨q and then above inequality yields

Jipu
i
q ´ Jipûq “ Ji

`

û1, . . . , ûi´1, u
i, ûi`1, . . . , ûN

˘

´ Jipûq

“
1

2
E

#

ż T

0

„

pX i
sq

⊺M i
ps, αsqX

i
s ´ X⊺

sM
i
ps, αsqXs ` p sX i

sq
⊺
ĎM i

ps, αsq sX
i
s ´ sX⊺

s
ĎM i

ps, αsq sXs

` puisq
⊺N i

ps, αsqu
i
s ´ pûisq

⊺N i
ps, αsqû

i
s

ȷ

ds

` pX i
T q

⊺Ri
pαT qX i

T ´ X⊺
TR

i
pαT qXT ` p sX i

T q
⊺
sRi

pαT q sX i
T ´ sX⊺

T
sRi

pαT q sXT

+

ěE

#

ż T

0

„

pX i
s ´ Xsq

⊺M i
ps, αsqXs ` p sX i

s ´ sXsq
⊺
ĎM i

ps, αsq sXs ` puis ´ ûisq
⊺N i

ps, αsqû
i
s

ȷ

ds

` pX i
T ´ XT q

⊺Ri
pαT qXT ` p sX i

T ´ sXT q
⊺
sRi

pαT q sXT

+

. (5.0.4)
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Next, we show that the rightmost of (5.0.4) is equal to 0. Note that

X i
t ´ Xt “

ż t

0

„

Aps, αsq
`

X i
s ´ Xs

˘

` sAps, αsqp sX i
s ´ sXs

˘

` Bi
ps, αsq

`

uis ´ ûips, pisq
˘

ȷ

ds

`

ż t

0

σps, αsq
`

X i
s ´ Xs

˘

dWs

and piT “

”

RipαT qXT ` sRipαT qE
`

XT

ˇ

ˇFα
T

˘

ı

. Hence, by Itô formula and backward equation

in (5.0.3) we have

`

X i
T ´ XT

˘⊺
piT

“ ´

ż T

0

`

X i
s ´ Xs

˘⊺
„

Aps, αsq
⊺pis ` sAps, αsq

⊺
p̄is ` M i

ps, αsqXs ` ĎM i
ps, αsq sXs ` σps, αsq

⊺qis

ȷ

ds

`

ż T

0

„

`

X i
s ´ Xs

˘⊺
Aps, αsq

⊺
` p sX i

s ´ sXs

˘⊺
sAps, αsq

⊺
`
`

uis ´ ûips, pisq
˘⊺
Bi

ps, αsq
⊺
ȷ

pisds

`

ż T

0

`

X i
s ´ Xs

˘⊺
σps, αsq

⊺qisds

`

ż t

0

`

X i
s ´ Xs

˘⊺
qisdWs `

ż t

0

`

X i
s ´ Xs

˘⊺
σps, αsq

⊺pisdWs `

ż t

0

`

X i
s ´ Xs

˘⊺
λis ‚ dMs.

(5.0.5)

Since

E
”

p sX i
s ´ sXs

˘⊺
sAps, αsq

⊺
pis

ı

“ E
"

E
”

p sX i
s ´ sXs

˘⊺
sAps, αsq

⊺
pis

ˇ

ˇ

ˇ
Fα

s´

ı

*

“ E
”

p sX i
s ´ sXs

˘⊺
sAps, αsq

⊺
p̄is

ı

“ E
”

pX i
s ´ Xs

˘⊺
sAps, αsq

⊺
p̄is

ı

,

simplifying the right hand side of (5.0.5) and taking the expectations its both sides we obtain

E
”

`

X i
T ´ XT

˘⊺
piT

ı

“ E
"

`

X i
T ´ XT

˘⊺
”

Ri
pαT qXT ` sRi

pαT qX̄T

ı

*

“ E
ż T

0

#

´
`

X i
s ´ Xs

˘⊺
”

M i
ps, αsqXs ` ĎM i

ps, αsq sXs

ı

`
`

uis ´ ûis
˘⊺
Bi

ps, αsq
⊺
pis

+

ds.
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The equation ûis “ ´
`

N ips, αsq
˘´1

Bips, αsq
⊺
pis then implies

E
"

`

X i
T ´ XT

˘⊺
”

Ri
pαT qXT ` sRi

pαT qX̄T

ı

*

“ ´E
ż T

0

#

`

X i
s ´ Xs

˘⊺
”

M i
ps, αsqXs ` ĎM i

ps, αsq sXs

ı

`
`

uis ´ ûis
˘⊺
N i

ps, αsqû
i
s

+

ds,

which subsequently proves that the rightmost hand side of (5.0.4) equals 0. Therefore, it

follows from (5.0.4) that Jipu
iq ´ Jipûqě0.

To complete the proof, we show that the condition is necessary. Suppose that û “

pû1, û2, . . . , ûNq is a Nash equilibrium point of the game. Denote the corresponding state

trajectory by X̂. Clearly, if we fix the control ûj for j ‰ i, 1ďi, jďN , then ûi is the optimal

control for the player i and the corresponding optimal trajectory is X̂. Since the control

problem for the player i is of conditional mean-field type with Markovian switching, we can

apply the maximum principle in [8] to get the necessary condition for optimality. The adjoint

equation associate to the control problem of player i is

pit “

”

Ri
pαT qXT ` sRi

pαT qX̄T

ı

`

ż T

t

„

Aps, αsq
⊺pis ` sAps, αsq

⊺E
`

pis
ˇ

ˇFα
s´

˘

` M i
ps, αsqXs ` ĎM i

ps, αsqX̄s ` σps, αsq
⊺qis

ȷ

ds ´

ż T

t

qisdWs ´

ż T

t

λis ‚ dMs,

which always admits a unique solution (see [8, Theorem 3.4]). According the [8, Theorem

3.7], for any vector vi P Rdi and t P r0, T s,

d

dui
Hi

´

t,Xt, sXt, û
1
t , . . . , û

i´1
t , ûit, û

i`1
t , . . . , ûNptq, pit, q

i
t, αt´

¯

`

vi ´ ûit
˘

ě0, P ´ a.s.

or, equivalently,

”

Bi
pt, αtq

⊺
pit ` N i

pt, αtqû
i
t

ı

`

vi ´ ûit
˘

ě0, P ´ a.s.

Since the inequality holds for any vi P Rdi , we must have Bipt, αtq
⊺
pit ` N ipt, αtqû

i
t “ 0. As

a consequence, ûit “ ´
`

N ipt, αtq
˘´1

Bipt, αtq
⊺
pit. Plug this value of ûit in the above adjoint
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equation we derive that
`

Xt, pp
1
t , q

1
t q, . . . , ppNt , q

N
t q, λ1t , . . . , λ

N
t

˘

is a solution of the FBSDEs

(5.0.3). This completes the proof. l

Next, we present conditions on the coefficients such that a Nash equilibrium point of

the differential game exists. To this end, we first need the following assumptions.

Assumption (K)

(K1) For 1ďiďN , the matrices Bipt, i0q ” Bi and N ipt, i0q ” N i are independent of t and i0.

Denote

Ki
“ Bi

pN i
q

´1
pBi

q
⊺.

(K2) There exist constants β1, β2 ą 0 such that for any x P Rd and 0 ď t ď T ,

x⊺
„ N
ÿ

i“1

KiRi
pi0q

ȷ

x ě β1|x|
2, x⊺

„ N
ÿ

i“1

KiM i
pt, i0q

ȷ

x ě β2|x|
2.

(K3) For 1ďiďN and 0 ď t ď T, P-a.s.

KiA⊺
pt, i0q “ A⊺

pt, i0qKi, KiĀ⊺
pt, i0q “ Ā⊺

pt, i0qKi, Kiσ⊺
pt, i0q “ σ⊺

pt, i0qK
i.

For pt, i0q P r0, T s ˆ M, denote

Mpt, i0q “

N
ÿ

i“1

KiM i
pt, i0q, Rpi0q “

N
ÿ

i“1

KiRi
pi0q,

and, similarly, M̄pt, i0q “
řN

i“1K
iM̄ ipt, i0q, R̄pi0q “

řN
i“1K

iR̄ipi0q.

Let us consider the following conditional mean-field FBSDEs with regime switching:

Xt “ x0 `

ż t

0

”

Aps, αsqXs ` sAps, αsqX̄s ´ Ys ` fps, αsq

ı

ds `

ż t

0

”

σps, αsqXs ` gps, αsq

ı

dWs,

Yt “
`

RpαT qXT ` R̄pαT qX̄T

˘

´

ż T

t

ZsdWs ´

ż T

t

Λs ‚ dMs (5.0.6)

`

ż T

t

”

Aps, αsq
⊺Ys ` sAps, αsq

⊺
Ȳs ` Mps, αs´qXs ` M̄ps, αs´qX̄s ` σps, αsq

⊺Zs

ı

ds,

where X, Y P S2p0, T ;Rdq, Z P L2p0, T ;Rdˆdq, Λ P M2p0, T ;Rdq.
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Note that if
`

Xt, pp1t , q
1
t q, . . . , ppNt , q

N
t q, λ1t , . . . , λ

N
t

˘

is a solution of (5.0.3) and Assumption

(K) holds, then applying Itô’s formula we obtain

Kipit “

”

KiRi
pαT qXT ` Ki

sRi
pαT qE

`

XT

ˇ

ˇFα
T´

˘

ı

`

ż T

t

”

Aps, αsq
⊺Kipis ` Ep sAps, αsq

⊺
Kipis|Fα

s´q

` KiM i
ps, αsqXs ` KiM̄ i

ps, αsqX̄s ` σps, αsq
⊺Kiqis

ı

ds ´

ż T

t

KiqisdWs ´

ż T

t

Kiλis ‚ dMs.

(5.0.7)

By taking the sum of (5.0.7) where i “ 1, 2, . . . , N , we easily see that the process
`

Xt, Yt “

řN
i“1K

ipit, Zt “
řN

i“1K
iqit, Λt “

řN
i“1K

iλit
˘

is a solution of FBSDEs (5.0.6).

Now we are in a position to show that the coefficients in (5.0.6) satisfy all conditions in

Section 3. For any t, x, y, z, i0, and ν P PpR2dq, µ P PpRdq,

fpt, x, y, z, ν, i0q “ Apt, i0qx ` Āpt, i0q

ż

Rd`d

ζ1νpdζ1, dζ2q ´ y ` fpt, i0q,

gpt, x, y, z, ν, i0q “ ´Apt, i0q
⊺y ´ Āpt, i0q

⊺

ż

Rd`d

ζ2νpdζ1, dζ2q

´ Mpt, i0qx ´ M̄pt, i0q

ż

Rd`d

ζ1νpdζ1, dζ2q ´ σpt, i0q
⊺z,

σpt, x, y, z, ν, i0q “ σpt, i0qx ` gpt, i0q,

hpx, µ, i0q “ Rpi0qx ` R̄pi0q

ż

Rd

ζµpdζq.

Because of the boundedness of Āps, i0q, f is uniformly Lipschitz with respect to ν. The

linearity implies that f satisfies assumption (C1). Similarly, we obtain that g and σ satisfy

assumption (C1) and h satisfy assumption (C2). More precisely, it can be shown that in

the present setting, we can take Cθ “ maxt,i0t1, }Apt, i0q}, }Mpt, i0q}, }σpt, i0q}u and Cν “

?
2maxt,i0t}Āpt, i0q}, }M̄pt, i0q}u in (C1) and c “ maxi0 }Rpi0q} and Cµ “ maxi0 }R̄pi0q} in

(C2). Due to the linearity, it is trivial to verify the constants Cθ and c. For Cν , it suffices to
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verify for φ “ g in assumption (C1). If ν1 “ PpΥ1,1,Υ1,2q and ν2 “ PpΥ2,1,Υ2,2q, then

ˇ

ˇgpt, x, y, z, ν1, i0q ´ gpt, x, y, z, ν2, i0q
ˇ

ˇ

“

ˇ

ˇ

ˇ
Āpt, i0q

⊺
pEΥ1,2 ´ EΥ2,2q ´ M̄pt, i0q

⊺
pEΥ1,1 ´ EΥ2,1q

ˇ

ˇ

ˇ

ď
?
2max

!

}Āpt, i0q}, }M̄pt, i0q}

)´

E
ˇ

ˇΥ1,2 ´ Υ2,2

ˇ

ˇ

2
` E

ˇ

ˇΥ1,1 ´ Υ2,1

ˇ

ˇ

2
¯1{2

“
?
2max

!

}Āpt, i0q}, }M̄pt, i0q}

)´

E
ˇ

ˇΥ1 ´ Υ2

ˇ

ˇ

2
¯1{2

.

Hence,

ˇ

ˇgpt, x, y, z, ν1, i0q ´ gpt, x, y, z, ν2, i0q
ˇ

ˇď
?
2max

!

}Āpt, i0q}, }M̄pt, i0q}

)

W2pν1, ν2q.

By a similar way, we can verify Cµďmaxi0 }R̄pi0q} in (C2).

In addition, in the present setting, the operator Ψ defined in (4.1.3), related to (5.0.6),

becomes

Ψ
`

t, θ, θ1, ν, i0
˘

“ ´|y ´ y1
|
2

´ Mpt, i0q|x ´ x1
|
2.

In Proposition 5.2 below, we show that if Assumption (K) holds then Ψ and h satisfy

Assumption (L) with the constants KΨ “ mint1, β2u and Kh “ β1.

Proposition 5.2. Assume that Assumption (K) holds and

p1q }Āpt, i0q}, }M̄pt, i0q} ă min
!

p2 ´
?
2qβ1,

1

2
β2

)

p2q

›

›

›
R̄pi0q

›

›

›
ă min

!

2p
?
2 ´ 1qβ1,

?
2

2
β2

)

.

(5.0.8)

Then the conditional mean-field FBSDEs (5.0.3) has a unique solution
`

Xt, pp
1
t , q

1
t q, . . . , ppNt , q

N
t q,

λ1t , . . . , λ
N
t

˘

, where X, pi P S2p0, T ;Rdq, qi P L2p0, T ;Rdq, and λi P M2p0, T ;Rdq for all

i “ 1, . . . , N .

Proof. Because Assumption (K) holds,

Ψ
`

t, θ, θ1, ν, i0
˘

“ ´|y ´ y1
|
2

´ Mpt, i0q|x ´ x1
|
2

ď ´|y ´ y1
|
2

´ β2|x ´ x1
|
2. (5.0.9)
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This implies that KΨ “ mint1, β2u. In addition, for any x, x1 P Rd and µ P PpR2dq,

@

hpx, µ, i0q ´ hpx1, µ, i0q, x ´ x1
D

“ px ´ x1
q
⊺Rpi0qpx ´ x1

q ě β1|x ´ x1
|
2, (5.0.10)

which implies that Kh “ β1. As a consequence, (5.0.8) and the inequalities

Cνď
?
2 max
tPr0,T s,i0PM

t}Āpt, i0q}, }M̄pt, i0q}u, Cµďmax
i0PM

}R̄pi0q}

imply that Assumptions (C) and (L) are satisfied. Hence, we can apply Theorem 4.2 to

derive the existence of a unique process pX, Y, Z,Λq that solves the conditional mean-field

FBSDE with regime switching (5.0.6).

Next, according to [8, Theorem 3.4], for i “ 1, . . . , N , there exists ppi, qi, λiq P S2p0, T ;Rdqˆ

L2p0, T ;Rdq ˆ M2p0, T ;Rdq unique solution of the following BSDE:

pit “

´

Ri
pαT qXT ` sRi

pαT qX̄T

¯

`

ż T

t

”

Aps, αsq
⊺pis ` sAps, αsq

⊺E
`

pis
ˇ

ˇFα
s´

˘

` M i
ps, αsqXs ` σps, αsq

⊺qis

ı

ds ´

ż T

t

qisdWs ´

ż T

t

λis ‚ dMs, t P r0, T s.

(5.0.11)

Hence, the processes
´

X, Y “
řN

i“1K
ipi, Z “

řN
i“1K

iqi,Λ “
řN

i“1K
iλi

¯

is a solution of

(5.0.6). Because the solution of (5.0.11) is unique, then Y “
řN

i“1K
ipi, Z “

řN
i“1K

iqi and

Λ “
řN

i“1K
iλi. Substitute Y , Z and Λ to (5.0.6) we obtain that

`

Xt, pp
1
t , q

1
t q, . . . , ppNt , q

N
t q, λ1t , . . . , λ

N
t

˘

is a solution of (5.0.3). This completes the proof. l

Combining Proposition 5.1 and Proposition 5.2, the next result follows.

Theorem 5.3. Assume Assumption (K) holds and

p1q }Āpt, i0q}, }M̄pt, i0q} ă min
!

p2 ´
?
2qβ1,

1

2
β2

)

p2q

›

›

›
R̄pi0q

›

›

›
ă min

!

2p
?
2 ´ 1qβ1,

?
2

2
β2

)

.

Then the admissible control û “ pû1, û2, . . . , ûNq, where ûit “ ´
`

N i
˘´1

Bipαt´q⊺pit, 0ďtďT ,

1ďiďN , and
`

Xt, pp
1
t , q

1
t q, . . . , ppNt , q

N
t q, λ1t , . . . , λ

N
t

˘

is the solution of FBSDE (5.1), is a
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Nash equilibrium point of the conditional mean-field nonzero-sum quadratic stochastic differ-

ential game.



CHAPTER 6

Conclusion and Future Work

In this work we derive useful estimates for the solutions of the backward stochastic

differential equations with Markovian switching and forward-backward stochastic differential

equations with Markovian switching.

We also provide sufficient conditions for the existence and uniqueness of the solutions

of the FBSDEs with regime-switching and FBSDEs with mean-field and regime-switching.

For the FBSDEs with regime-switching we use two different approaches. The first approach

is obtained in two steps. The first step, find existence and uniqueness of a solution over

a small enough time duration. The second step, by using the connection with a system

of PDEs and the local result, we can deduce the existence and uniqueness of a solution

(under a non-degeneracy assumption) over an arbitrarily prescribed time duration. The

second approach is used for FBSDEs with regime-switching and FBSDEs with mean-field and

regime-switching, it concentrates on developing the continuation method and monotonicity

conditions to examine the well-posedness of the systems.

Then we consider a nonzero-sum game problem with N players in which the dynamics

and cost functionals of each player depend on conditional mean-field terms and a regime-

switching process, presenting conditions on the coefficients such that a Nash equilibrium

point of the differential game exists and the relationship of the existence of the Nash equi-

librium point and the solution of the conditional mean-field FBSDE with regime switching.

Achievements:

111
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We have extended and developed the theory of FBSDE for a very general class of

equations that can capture the sudden jumps in dynamics as well as describe the limit of

weakly interaction systems with both initial and terminal conditions. Several conditions

for the well-posedness of these systems were given using different approaches. Finally, the

results are used to solve a nonzero-sum game problem.

Future Works:

This work has opened new venues for the studies of conditional mean-field systems with

regime switching and both initial and terminal conditions and their applications in modelling,

control, and game problems. To further these researches there are several interesting and

important problems for our on-going projects. For instance, while this thesis managed to

generalize the conditions required to guarantee the existence and uniqueness of solutions to

FBSDEs that admit conditional mean-field and Markovian-switching dynamics, there are

practical needs consider some more general models which can also admit jumps or common

noise. Also, while L2 solutions are widely studied and have had a lot of applications, there

are also needs to generalize the results to Lp solutions. From application point of view, delay

systems are very important in the real life. Hence, we also would like to address the issue of

modeling delays in the system together with the impact of a Markovian switching or jump.

Finally, we have a long plan to study numerical approximation for systems of FBSDEs.

These directions will have immediate applications to solve control problems numerically in

very general settings.
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