# University of Puerto Rico <br> Rio Piedras and Medical Science Campus Department of Biology Natural Science Dean and Biomedical Science Dean 

# Unraveling the role of RNA Binding Protein with Multiple Splicing (RBPMS) in ovarian cancer cells 

## Author: Robert J. Rabelo Fernández

[^0]This Dissertation has been accepted by faculty of the Biology Intercampus Doctoral Program University of Puerto Rico Rio Piedras Campus and Medical Science Campus

## DOCTOR IN PHYLOSOPHY

In the Subject of Biology

## Thesis Committee:

## Pablo E. Vivas-Mejía, Ph.D., Advisor

Associate Professor, Department of Biochemistry,
School of Medicine, University of Puerto Rico,
Medical Science Campus, San Juan, Puerto Rico
Esther Peterson Peguero, Ph.D., co-Advisor
Associate Professor, Department of Biology, College of Natural Science, University of Puerto Rico, San Juan, Puerto Rico

José A. Rodríguez Martínez, Ph.D.,
Associate Professor, Department of Biology,
College of Natural Science, University of Puerto Rico, San Juan, Puerto Rico

José A. García Arrarás, Ph.D.,
Professor, Department of Biology,
College of Natural Science, University of Puerto Rico, San Juan, Puerto Rico

## Bryan Ballif Ph.D.,

Professor and Chair, Department of Biology,
College of Arts and Science, University of Vermont, Vermont, USA.
"History will be kind to me; because I have the intend to write it." Winston Churchill
"Science is fun. Science is curiosity. We all have natural curiosity. Science is the process of investigating. Its posing questions and coming up with a method. Its delving in." Sally Ride
"Those who look for the laws of Nature as a support for their new works collaborate with the creator" Antoni Gaudi

## Dedication

I want to dedicate this dissertation, and all the hard work, effort, and sacrifice that made possible this research project, to who has always been there for me: My God and my family. My whole life is not enough to thank them for everything they do for me. God is my guide each day of my life. He blesses and supports me. He knows me better than anyone else. Thanks to God, all my achievements, challenges, and goals have become true. He allowed me to finish this stage of my professional carrier, to be part of this laboratory, and to be here. My Lord, thanks for giving me hope in the darkest moments. Thanks for putting angels on my path that have given me strength to continue; and for all the people around me who have made life so meaningful. Thank you for blessing me much more than I deserve. I give you all the honor and glory because I am just a simple human. You are my Lord, the one who helps me on every step of my life.

My family, the most wonderful blessing that God has given me, you are the columns of my life and all of who I am. My lovely Mami, my second mother and the best grandmother in the world; I thank you for all the prayers you have raised for me so I can achieve my goals. After you passed away, my life changed completely, as I went through my darkest moments. I miss you every single day. I hope I will meet with you at the end of my life and together praise our God with your "Virgencita". To Dr. Cristal Hernández Hernández, my love, I just want you to know how grateful I am for everything you do. You put so much thought and care into everything we do together. It makes me grateful that you're my fiancé. You're always ready to support me, and I can't thank you enough. "Coso" thanks for being a great support as my "official" manuscript reviewer. Thanks for all the time invested, for trusting me always, for your patience, love, motivation and for being my confidant.

Mamamía, you are my mother and my best friend. You always told me to persue my dreams no matter what. You have sacrificed a lot, and I hope that one day I would be able to pay you back. Thank you for being my counselor, my teacher, and my psychologist. You are the inspiration I need to move forward in my life. Thank you Papabelo! I feel honored to have such an amazing and supportive father like you. Thanks for both for your unconditional love and support. Titi and Papapiche, my aunt and uncle, thanks for all your support. Thanks for giving me all the love that a nephew can receive. Thank you for sharing what you have with me and for always being present in the most important moments of my life. Tio Tito, thank you for your unconditional love and support. My life without you would be incomplete.

Johanie, thanks for being my academic role model, the person who I admire and follow. You taught me that the hard work pays off. Javier, the best big brother that life could give me. Thanks for "alcaguetearme" all the crazy things that I wanted. Yomarie, my dear "Martirio", thanks for helping me persuade my dreams. I love you so much! Roberto, thank you for your support and for giving me the best energies and counseling possible.

Also, I need to mention the people who have given me the purest love: Joshvan, Joshua, Etienne, Aland and Alani. Thank you for making me smile in my saddest moments. Your hugs are the most comfort I have received in moments of frustration. They make me work hard and stronger every day to inherit a better future, a better country, and a better world. To my dear Godmothers, Dr. Carmen López y Dr. Rosaura Torres, thank you for being my angels. Thanks for being the best gift that God could put in my way. Thank you for all your support, your love and counseling. Also, thank you for teaching me the different cultures of the world and for being the best anti-stress therapy.

My whole life will not be enough to say thanks. I love you all!

## Acknowledgements

I would like to acknowledge Dr. Pablo E. Vivas Mejia for allowing me to be part of his laboratory and the opportunity of working under his mentorship. I would always be grateful of having you as my mentor, not only in the lab, but also in many moments in my life. Thank you for your understanding, guidance, comprehension and mentoring in research during this journey. Thanks for being there and hearing me when I needed it. Thanks for everything; you always will be my research father. Thanks to my graduate committee. Dr. Esther Peterson Peguero, thank you for always having the doors of your office open for me. Thank you for your support, guidance, for gifting me a second research laboratory and the best cancer research partners: Xavier Bittman and Keyshla Rodríguez Martir. To Dr. José Rodríguez Martínez, Dr. José García Arrarás and Dr. Bryan Ballif, thanks for your inspiration, counseling, and guidance during this process. All of you have my respect and admiration. Thank you for giving me all the tools necessary and advice required to accomplish my goals. Thanks to Dr. Ricardo Papa, Dr. Alfredo Ghezzi, Dr. Carla Restrepo, Alonzo Ramírez, and Dr. José Agosto. I am very grateful to all of you since you marked my student life in many ways. Thanks for being such great role models.

To my laboratory mates: Dr. Jeyshka M. Reyes González, Dr. Eunice Lozada Delgado, Dr. Blanca I. Quiñonez Diaz, Dr. Nilmary Grafals Ruiz, Dr. Rohid Sharma and Dr. Annelys Sánchez you have all my respect and admiration. I wish you the best in your life. Dr. Ricardo Noriega Rivera, my science partner, thanks for making easier my adaptation process in the Medical Science Campus, for being like a brother in the laboratory, and for all the long conversations. Marienid Flores Colón, thanks for all the times that you made me laugh. "You are the best BTS Army Soldier, your legacy chance the laboratory". Mariela Rivera, thanks for all your help during the RNA-Seq analysis. You are the best example of overcoming and dedication that I know. Both of
you girls are very noble and humanitarian. Victor Reyes Burgos thanks for your friendship. I really appreciate your help during the experiments. I bless you and wish an extraordinary life. To my Azerbaijani research mother, Fatma Valiyeva; Дорогая Фатима, Я всегда буду в долгу перед тобой. Спасибо за вашу помощь, за ваши консультации, ваши идеи, советы и дружбу. Благодаря вам этот тезис стал возможен. Я буду вечно благодарен. Спасибо, что стала моей русской мамой, за нагоняй и объятия. Нет слов, чтобы описать все, что вы сделали для меня. Я тебя люблю.

To the staff of the Biology Department, Mrs. Aidamarie Perez Burgos, thanks for giving more that you had to. Thanks for your help and support as the best administrative assistant in the UPR. You were always accessible to provide ideas and solve issues in the enrollment process. Thank you for your trust in me and for seeing my potential. I am part of the Biology Ph.D. program thanks to your advice. I also want to thank the staff of the Associated Deanship for Biomedical Science Graduate Program Julia Prado and Lisa Santos for kindly extending their help at various phases of my academic career. To the RISE program staff, Dr. Nestor Carballeira, Dr. Orestes Quesada, Julissa Morales and Grisselle I. Hernández, thanks you for your invaluable assistance during my academic travels and financial support (5R25GM061151-20). At last, I would like to acknowledge the proteomics facility core at the Comprehensive Cancer Center of the UPR, by the grant U54MD007600 from the National Institute on Minority Health and Health Disparities and by the PR- INBRE program Supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number "P20GM103475". In addition, we thank the "Fundación Intellectus" for its financial contribution to this work.

## Thank you all for believing in me!


#### Abstract

RNA-Binding Protein with Multiple Splicing (RBPMS) is member of a family of proteins that bind to nascent RNA transcripts and regulate their splicing, localization, and stability. Evidence indicates that RBPMS controls the activity of transcription factors associated with cell growth and proliferation, including AP-1 and Smads. Three major RBPMS protein splice variants (RBPMSA, RBPMSB, and RBPMSC) have been described in the literature. We previously reported that reduced RBPMS levels decreased the sensitivity of ovarian cancer cells to cisplatin treatment. However, little is known about the biological role of the RBPMS splice variants in ovarian cancer cells. We performed RT-PCR and Western blots and observed that both RBPMSA and RBPMSC are reduced at the mRNA and protein levels in cisplatin-resistant as compared with cisplatinsensitive ovarian cancer cells. The mRNA and protein levels of RBPMSB were not detectable in any of the ovarian cancer cells tested. To better understand the biological role of each RBPMSA and RBPMSC, we transfected these two splice variants in the A2780CP20 and OVCAR3CIS cisplatin resistant ovarian cancer cells and performed cell proliferation, cell migration, and invasion assays. Compared with control clones, a significant reduction in the number of colonies, colony size, cell migration, and invasion were observed with RBPMSA and RBPMSC overexpressed cells. Moreover, A2780CP20-RBPMSA and A2780CP20-RBPMSC clones showed reduced senescence-associated $\beta$-galactosidase ( $\beta$-Gal)-levels when compared with control clones. A2780CP20-RBPMSA clones were more sensitive to cisplatin treatment as compared with A2780CP20-RBPMSC clones. The A2780CP20-RBPMSA and A2780CP20-RBPMSC clones subcutaneously injected into athymic nude mice formed smaller tumors as compared with A2780CP20-EV control group. Additionally, immunohistochemical analysis showed lower proliferation (Ki67) and angiogenesis (CD31) staining in tissue sections of A2780CP20-RBPMSA


and A2780CP20-RBPMSC tumors compared with controls. In addition, Western blot analysis made with Immunoprecipitation (IP) samples suggested that Smad $2 / 3 / 4$, c-Fos and c-Jun interact with RBPMS A and C splice variants when compared with A2780CP20-EV. Luciferase reporter assays identify RBPMS as miR-21-3p target gene. Real-time PCR confirmed that pri-mir-21 was significantly down-regulated in RBPMSA and RBPMSC when compared with control cell lines. RNAseq studies revealed many common RNA transcripts altered in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones. Unique RNA transcripts deregulated by each RBPMS variant were also observed. Kaplan-Meier (KM) plotter database information identified clinically relevant RBPMSA and RBPMSC downstream effectors. Immunoprecipitation (IP) coupled to mass spectrometry (MS) revealed that RBPMSA and RBPMSC binds to proteins including the metastasis inhibition factor (NME1) and the immunoglobulin kappa locus (IGK). These studies suggest that increased levels of RBPMSA and RBPMSC reduce cell proliferation in ovarian cancer cells. However, only RBPMSA expression levels were associated with the sensitivity of ovarian cancer cells to cisplatin treatment. Also, our findings showed that RBPMS regulates the Smad-2,3,4/c-Fos/c-Jun/miR-21 pathway in ovarian cancer cells. Overall, our findings indicate that RBPMSA and RBPMSC acts as tumor suppressor gene in ovarian cancer cells.

## Table of Contents

Section ..... Pages
Dedication ..... IV
Acknowledgments ..... VI
Abstract ..... VIII
Table of Contents ..... X
List of Figures and Tables ..... XIII
List of Abbreviations ..... XV
Chapter 1. Introduction ..... 1
1.1 Ovarian cancer ..... 1
1.2 Molecular mechanism of cisplatin action ..... 7
1.3 Ovarian cancer and cisplatin resistance ..... 11
1.4 Current models to study ovarian cancer. ..... 18
1.5 Therapeutic targets for ovarian cancer treatment. ..... 25
1.6 RNA Binding Proteins (RBPs) ..... 29
1.7 RNA Binding Protein with Multiple Splicing (RBPMS) ..... 34
1.8 Biological roles of RNA Binding Protein with Multiple Splicing (RBPMS) ..... 38
1.9 RBPMS dysregulation and cancer. ..... 44
Chapter 2. Rationale, Hypothesis, and Specific Aims. ..... 47
Chapter 3. Materials and Methods ..... 52
3.1 Cell lines and Culture Conditions ..... 52
3.2 Western blot analysis ..... 53
3.3 RNA Isolation, cDNA Synthesis, and RT-PCR ..... 54
3.4 Stable transfection for RBPMS expression ..... 55
3.5 Colony formation, cell growth curve and cell viability assays ..... 56
3.6 Migration and Invasion Assays ..... 58
3.7 Mice Experiments ..... 59
3.8 Immunohistochemistry ..... 59
3.9 Senescence-Associated $\beta$-Galactosidase Activity ..... 60
3.10 RNA Sequencing Library Preparation, Data Processing, and Statistics ..... 61
3.11 RNA Seq validation by SYBR-Green Based qRT-PCR ..... 62
3.12 Immunoprecipitation (IP) studies ..... 62
3.13 Mass Spectroscopy (Proteomics), Data Processing, and Statistics. ..... 63
3.14 Clustering and Network Analysis ..... 64
3.15 Kaplan-Meyer (KM) Survival Analysis ..... 65
3.16 Small interference RNA (siRNA) transfection ..... 65
3.17 Statistical analysis ..... 66
Chapter 4. Results
4.1 RBPMSA and RBPMSC protein levels are reduced in cisplatin resistance ovarian cancer cell lines. ..... 66
4.2 Ectopic expression of RBPMSA and RBPMSC decreased cell growth and proliferation of cisplatin resistant ovarian cancer cells ..... 69
4.3 RBPMSA overexpression increased the sensitivity of ovarian cancer cells to cisplatin treatment ..... 72
4.4 RBPMSA and RBPMSC overexpression decreased the migration and the invasion ability of ovarian cancer cells ..... 74
4.5. RBPMSA and RBPMSC Overexpression Decreased the Senescence-Associated $\beta$ - Galactosidase Levels ..... 77
4.6 Effects of Subcutaneous Implantation of RBPMSA and RBPMSC Overexpressing Cells in tumor growth in an Ovarian Cancer Mouse Model ..... 80
4.7 Effects of cisplatin in RBPMS overexpressing in cell proliferation ..... 85
4.8 Ectopic expression of RBPMSA+Tag and RBPMSC+Tag in cisplatin resistant ovarian cancer cells ..... 88
4.9 RBPMSA and RBPMSC interacts with AP-1 members (c-Fos and c-Jun) and Smads proteins. ..... 90
4.10 Effect of overexpress RBPMSA and RBPMS C in pre-mir-21 transcription ..... 92
4.11 Identification of RBPMSA and RBPMSC downstream signaling pathways by RNAseq ..... 97
4.12 Prognostic Value of RBPMSA and RBPMSC Downstream Effectors ..... 109
4.13 Identification of additional RBPMSA and RBPMSC-interacting proteins ..... 112
4.14 Prognostic Value of RBPMSA and RBPMSC binds proteins NME1, IGK, MYH9 and MYH10 ..... 116
Chapter 5. Discussions ..... 118
Chapter 6. Conclusions and Future Directions. ..... 130
Appendix A: Isoforms messenger RNA alignments ..... 137
Appendix B: Amino acid alignment of RBPMSA, RBPMSB and RBPMSC. ..... 141
Appendix C: List of RNA transcripts identified by RNAseq. ..... 143
Appendix D: Top canonical pathways generated with the unique and common deregulated RNAs in A2780CP20- RBPMSA and A2780CP20-RBPMSC, in terms of the number of genes per pathway ..... 263
Appendix E: List of Proteins identified by IP/MS assay. ..... 265
Appendix F: Reduced RBPMS Levels Promote Cell Proliferation and Decrease Cisplatin Sensitivity in Ovarian Cancer Cells. ..... 272
Appendix G: Increased Expression of the RBPMS Splice Variants Inhibits Cell Proliferation in Ovarian Cancer Cells. ..... 273
References. ..... 274

## List of Figures and Tables

## Chapter 1. Introduction

Figure 1: Anatomy of female reproductive system.............................................. 3
Table 1: Principal histological types of ovarian epithelial tumors.............................. 4
Figure 2: Cisplatin mechanisms of action.......................................................... 9
Figure 3: Cisplatin resistance mechanisms of action............................................. 15
Figure 4: Fallopian tube origin of the high grade serous carcinoma.......................... 22
Figure 5: RBPMS isoforms A, B and C structural representation model.................... 36
Chapter 3. Materials and Methods
Figure 6. pTPC map vector............................................................................ 56

## Chapter 4. Results

Figure 7. Protein and mRNA levels of RBPMS splice variants in ovarian cancer cell lines and stable transfected clones..................................................................67-69

Figure 9. Viability Assays......................................................................73-74
Figure: 10. Cell invasion and migration assays................................................75-76
Figure 11. Effect of RBPMSA and RBPMSC overexpression on senescence..........78-79
Figure 12. Effect of RBPMSA and RBPMSC overexpression on in vivo tumor growth81-82

Figure 13. Representative images of IHC experiments for RBPMS protein levels, proliferation (KI-67), and blood vessel formation (CD31)................................83-85

Figure 14: Effect on proliferation of RBPMS splice variants A and C overexpressing clones treated with or without cisplatin. 86-87

Figure 15: Overexpression of RBPMS+Flag-Tag (DDK) isoform A and C in ovarian
cancer A2780CP20 cell line............................................................................................

Figure 16: Interaction of RBPMSA and RBPMSC with c-Fos, c- Jun, Smad 2/3 and Smad
$\qquad$
Figure 17: Effect of RBPMSA or RBPMSC on pri-mir-21 mRNA levels .94-96

Figure 18. Ingenuity pathway analysis (IPA) and functional enrichment analysis of top
deregulated transcripts in RBPMSA and RBPMSC clones.............................98-118
Table 2. Top 20 differentially expressed RNA transcripts in A2780CP20-RBPMSA vs. A2780CP20-EV clones

Table 3. Top 13 differentially expressed RNA transcripts in A2780CP20-RBPMSC vs.
A2780CP20-EV clones........................................................................ 100
Table 4. Top 20 RNA transcripts shared by A2780CP20-RBPMSA and A2780CP20-
RBPMSC clones................................................................................... 101
Table 5: Relative expression values of the differentially expressed RNA transcripts in
A2780CP20-RBPMSA vs. A2780CP20-EV clones.......................................... 104
Table 6: Relative expression values of the differentially expressed RNA transcripts in A2780CP20-RBPMSC vs. A2780CP20-EV clones. 105

Figure 19: KM survival curves..........................................................110-112
Table 7: Proteins identified in A2780CP20-RBPMSA overexpressing clones.113

Table 8: Proteins identified in A2780CP20-RBPMSC overexpressing
clones. ..... 113

Figure 20: Validation of proteins identified by IP/MS assay in RBPMSA and RBPMSC overexpressing clones 115-116

Figure 21: KM survival curves..................................................................... 117

## List of Abbreviations

\%
WHO
EOCs
BRCA1
BRCA2
KRAS
RAS
G proteins
TP53 or P53
Ki-67
ER
PR
g
M
mol
$\mathrm{cm}^{3}$
${ }^{\circ} \mathrm{C}$
log Kow
$\mathrm{g} / \mathrm{L}$
FDA
MDR1

ATPases

Percent
World Health Organization
Epithelial ovarian cancer
Breast cancer gene 1
Breast cancer gene 2
Kirsten rat sarcoma viral oncogene homolog
Rat sarcoma virus
Guanine nucleotide-binding proteins regulatory proteins
Tumor protein 53
Nonhistone nuclear protein 67
Estrogen receptors
Progesterone receptors
Grams
Molar
moles
Cubic centimeter
Degree celsius
The $\log$ of the n -octanol/water partition coefficient
Grams per liter
Federal drugs administration
Multidrug resistance mutation 1
Enzymes that catalyze the decomposition of adenosine triphosphate

| ATP7A/B | ATPase copper transporting alpha/beta |
| :---: | :---: |
| CTR1 | High affinity copper uptake protein 1 |
| SLCs | Solute-carrier genes |
| AQP2 | Aquaporin 2 |
| AQP9 | Aquaporin 9 |
| ATP | Adenosine 5'-triphosphate |
| DNA | Deoxyribonucleic acid |
| RNA | Ribonucleic acid |
| NER | Nucleotide excision repair |
| MMR | Mismatch repair systems |
| Phase S | Cell synthesizes a complete copy of the DNA |
| Phase G2 | Gap 1 stage |
| ATM | Ataxia telangiectasia mutated |
| RAD3 | Serine/threonine-protein kinase ATR |
| ATR | Ataxia telangiectasia related protein |
| CHEK1 | Checkpoint kinase 1 |
| CHEK2 | Checkpoint kinase 2 |
| MAPK | Mitogen-activated protein kinase |
| c-Jun | Jun oncogene AP-1 transcription factor subunit |
| GIST | Gastrointestinal stromal tumors |
| EGFR | Epidermal growth factor receptor |
| NSCLC | Non-small cell lung cancer |
| HER2 | Human epidermal growth factor receptor 2 |


| BCR | Breakpoint cluster region protein |
| :---: | :---: |
| ABL | Tyrosine-protein kinase ABL gene |
| CML | Chronic myelogenous leukemia |
| TKIs | Tyrosine kinase inhibitors |
| RTKs | Receptor tyrosine kinases |
| AKT | Protein kinase B |
| PI3K | Phosphatidylinositol 3-kinase |
| MET | MET proto-oncogene, receptor tyrosine kinase |
| RTK | Receptor tyrosine kinases |
| PTEN | Phosphatase and tensin homolog |
| MCT | Monocarboxylate transporter |
| MDR | Multidrug resistance protein |
| MRPs | Multidrug resistance associated proteins |
| PEPTs | Peptide transporters |
| NPTs | $\mathrm{Na}+$ phosphate transporters |
| NBD | Nucleotide- binding domains |
| kDa | Kilodalton |
| Pgp | P-glycoprotein |
| YB-1 | Y-box binding protein 1 |
| NF-кB | Kappa-light-chain-enhancer of activated B cells |
| ERK | Serine/threonine protein kinase |
| Wnt | Wingless-Type |
| $\beta$ | Beta |


| p38 | Mitogen-activated protein kinase 38 |
| :---: | :---: |
| miRNAs | MicroRNAs |
| JNK | c-Jun N -terminal kinases |
| 3'-UTR | Three prime untranslated region |
| Raf | Raf-1 Proto-Oncogene, Serine/Threonine Kinase |
| Pim-1 | Proviral integration site for moloney murine leukemia-1 |
| GTPases | Enzymes that catalyze the hydrolysis of guanosine triphosphate |
| Rab5 | RAB5, member RAS oncogene family |
| Rab4 | RAB4, member RAS oncogene family |
| VEGF | Vascular endothelial growth factor |
| VEGFR | Vascular endothelial growth factor receptor |
| VEGFR1-3 | Vascular endothelial growth factor receptor 1-3 |
| IgG | Immunoglobulin G |
| VEGF-A | Vascular endothelial growth factor A |
| EGFR | Epidermal growth factor receptor |
| ErbB | Erythroblastic oncogene B |
| ErbB2 | Erythroblastic oncogene B2 |
| MEK | Mitogen-activated protein kinase |
| PDGFR- $\beta$ | Platelet-derived growth factor receptor beta |
| mTOR | Mechanistic target of rapamycin kinase |
| IL8 | Interleukin-8 |
| RRM | RNA recognition motif |


| dsRNA | Double-stranded RNA |
| :--- | :--- |
| RBPs | RNA binding proteins |
| Zn $^{2+}$ | Zinc (II) ion |
| ssRNA | Sense single-stranded RNA |
| Elav | Embryonic lethal abnormal vision |
| Sx1 | Sex-lethal |
| Tra | T cell receptor alpha locus |
| Fog-1 | Zinc finger protein, FOG family member 1 |
| SRM | Spermidine synthase |
| Fos | Fos proto-oncogene, AP-1 transcription factor subunit |
| ETF1 | Eukaryotic translation termination factor 1 |
| Smad2 | Smad family member 2 |
| Smad3 | Smad family member 3 |
| TbetaR-1 | Transforming growth factor-beta R-1 binding protein, excretory canal abnormal |
| EXCC-7 | PDZ and LIM domain 5 |
| UNA | Myelin oligodendrocyte glycoprotein-5 binding protein, mechanosensory abnormality-8 |
| IL-1B | Interleukin-1beta |
| MOG-1 | Myelin oligodendrocyte glycoprotein-1 |
| MOG-4 | Myelin oligodendrocyte glycoprotein-4 |
| MOG-5 | RNP-4 |


| Sam68 | Src associated in mitosis 68 |
| :---: | :---: |
| HUR | Human antigen R |
| FXR1 | RNA-binding protein fragile-X mental retardation autosomal 1 |
| BYSL | Bystin like |
| hnRNP1 | Heterogeneous nuclear ribonucleoprotein A1 |
| Rbm42b | RNA-binding motif protein 42 |
| ESRP1 | Epithelial splicing regulatory protein 1 |
| CELF3 | CUGBP Elav-like family member 3 |
| RBM24 | RNA-binding motif protein 24 |
| IGF2BP2 | Insulin like growth factor 2 MRNA binding protein 2 |
| IGF2BP3 | Insulin like growth factor 2 MRNA binding protein 3 |
| MYC | MYC proto-oncogene, BHLH transcription factor |
| RBM38 | RNA binding motif protein 38 |
| CDKNIA | Cyclin dependent kinase inhibitor 1A |
| ZEB1 | Zinc finger E-Box binding Homeobox 1 |
| MM | Multiple myeloma |
| AML | Acute myeloid leukemia |
| DHCC | Dedifferentiated hepatocellular carcinoma |
| HCC | Hepatocellular carcinoma |
| CD44 | Cell surface adhesion receptor 44 |
| RBM38 | RNA-binding motif protein 38 |
| RBPMS2 | RNA binding protein, MRNA processing factor 2 |
| NMD | Mediated mRNA decay |

NCBI
3'UTR

NADH

ETF 1

BC

RAI2

CRC

National Center for Biotechnology Information
Three prime untranslated region
Nicotinamide adenine dinucleotide
Eukaryotic translation termination factor 1

Blander cancer

Retinoic acid induced 2
Colorectal cancer

## Chapter 1. Introduction

### 1.1 Ovarian cancer

Cancer is one of the leading cause of death in the world, no matter the countries or income levels [1]. The forecast is not encouraging; the number of cancer cases and deaths is expected to grow rapidly as populations grow, age, and adopt lifestyle behaviors that increase cancer risk [1]. This is especially relevant in low and middle income countries where economic transformation is ongoing, which includes significant changes in the wide range of human movement and labor, cultural shifts in the roles of women, increased exposure to chemicals and access to international food markets. As a result, many lifestyle risk factors that are prevalent in high-income countries such as tobacco use, physical inactivity, excess body weight, and reproductive patterns, are also becoming common in low and middle income countries [1]. In 2022, the International Agency for Research on Cancer in collaboration with the World Health Organization (WHO) estimated $1,918,030$ new cancer cases and 609,360 cancer deaths that are projected for the United States only [2].

Ovarian cancer is defined as uncontrolled growth of cells from one or more tissues that form the ovaries and fallopian tubes. These cells originate invagination, metaplasia and malignant transformation [3]. The ovaries are a pair of reproductive glands of the female reproductive system located on either side of the uterus, each about the size of a grape [4] (See Figure 1). They produce eggs that move through the fallopian tubes to enter the uterus, where they can be fertilized for reproduction. Also, the ovaries are the primary source of estrogen and progesterone, which are
hormones that are responsible for the health of the female reproductive system in premenopausal women [5].

Ovarian cancer is one of the 6 most common tumors in women and is the most common gynecological cause of death in western countries with a survival rate of $40 \%$ to $50 \%$ in the first 5 years following its diagnosis [6]. This is a global problem that is typically diagnosed at a late stage and has no effective screening strategy. Novoa et al. (2014) reported that ovarian cancer constitutes $4 \%$ of all cancers diagnosed in women, and there are 6.6 new cases per 100,000 women per year. Each year, 225,500 new ovarian cancer cases are diagnosed worldwide and are responsible for 140,200 cancer-specific deaths [7]. The American Cancer Society estimates that 19,880 women will receive a new diagnosis of ovarian cancer and 12,810 women will die from this disease in 2022 [8]. The incidence and survival rates depend by country, but the United Kingdom and Russia have the highest reported cases whereas China, the lowest rates [9]. In 2019, the American Cancer Society estimated that 233,565 women were living with ovarian cancer in the United States [10]. These proportions are based on the fact that the majority of patients are diagnosed in the advanced disease stage. The incidence and prevalence of ovarian cancer increases with age and is different between ethnic groups. For example, in 2019, ovarian cancer was more common among white women when compared with African American and Asian American women. On the other hand, Pacific Islanders have the lowest rate of incidence and mortality. The prognosis of ovarian cancer patients between 2012 to 2018 was $49.7 \%$ chance of survival in US, 5 years after completing chemotherapy treatment and using maintenance drugs [11]. Fortunately, reductions in incidence and improvements in treatment have been observed in the past decade. In the United States, the
ovarian cancer incidence rate declined from $15.9 \%$ to $9.1 \%$ between 1975 to 2020 , and the mortality rate declined from $9.8 \%$ to $6.0 \%$ between 1975 to 2020 [11].


Figure 1: Anatomy of female reproductive system. The female reproductive system is divided in the internal and external genitalia. The internal organs are ovaries, fallopian tubes, and uterus. The vagina is attached to the uterus through the cervix, while the uterus is attached to the ovaries via the fallopian tubes. Ovaries produce gametes, called oocytes. In addition, the female reproductive system produces female sex hormones that maintain the reproductive cycle. Image modified from Karst et al. (2009) [12].

Ovarian cancer can be generated from one of four cell types: germ cells, sex-cord stromal, border cells, and epithelial cells [13]. Ovarian tumors associated with germ cells and sex cord stromal cells, constitute between $3 \%$ and $2 \%$, respectively of the new diagnosis. On the other hand, epithelial ovarian cancer (EOCs) cells tumors arise in $90 \%$ of all new reported cases. Epithelial ovarian cancer are further subdivided into five histological types: high-grade serous, low grade serous, endometrioid, clear cell, and mucinous [4] (See Table 1). Each subtype has different cells of origin, molecular composition, risk factors, clinical features, and treatments. High grade serous tumors carcinomas, the most commonly diagnosed, are characterized by the involvement of both ovaries, aggressive behavior, late-stage diagnosis, and low survival rate. Accumulating evidence suggests its occurrence in $62 \%$ of cases and that it accounts for $80 \%$ of ovarian cancer deaths.

Low-grade tumors are slower growing, more genetically stable, and do not respond to chemotherapy as well as the faster growing and genomically unstable high-grade tumors [14].

Table 1: Principal histological types of ovarian epithelial tumors.

| Histological <br> Sub Type | Common Mutations | Response to <br> Chemotherapy | Frequency | Cell of Origin | Prognosis |
| :---: | :---: | :---: | :---: | :---: | :---: |
| High Grade <br> Serous | TP53, BRCA1, BRCA2 and <br> CDK12 <br> Deficiencies in homologous <br> recombination (50\% of <br> tumors) | Initially good | $\sim 70 \%$ | Fallopian Tube <br> Epithelium | Poor |
| Low Grade <br> Serous | BRAF, KRAS, NRAS, and <br> ERBB2 <br> Tumor has genomic stability | Intermediate | $\sim 5 \%$ | Fallopian Tube <br> Epithelium | Intermediate |
| Mucinous | KRAS and HER2 <br> amplification | Poor | $\sim 5 \%$ | Unknown | Favorable |
| Endometrioid | PTEN, CTNNB1, PPP21 <br> and MMR deficient <br> Tumors has microsatellite <br> instability | Good | $\sim 10 \%$ | Endometrium | Favorable |
| Clear cell | PIKECA, KRAS, PTEN, <br> and ARID1A | Notorious <br> Resistance | $\sim 5 \%$ | Endometrium | Intermediate |

Mucinous tumors of the ovary represent a spectrum of neoplastic disorders, including benign mucinous cystadenoma, pseudomyxoma peritonei, mucinous tumors of low malignant potential (borderline), and invasive mucinous ovarian carcinoma. Mucinous tumors also represent a spectrum of malignant behavior and have benign, borderline, and invasive histologic variants. Among benign ovarian neoplasms, mucinous cystadenomas account for approximately $10 \%$ to $15 \%$ of all ovarian cancer cases [15]. These tumors are closely related to each other and are distinct from other histologic subtypes of epithelial ovarian neoplasms from a clinical, histologic, and molecular standpoint. Mucinous cystadenomas usually occur as a large, multiloculated cystic mass with mucus-containing fluid [16]. These tumors occur most commonly in women in their twenties to forties, but occurrences in adolescent, premenarchal girls, as well as postmenopausal patients have been documented [17]. In contrast to serous ovarian carcinomas, in which only $4 \%$ of patients
are Stage I at the time of diagnosis, $83 \%$ of mucinous ovarian cancers are Stage I at the time of diagnosis [18]. Thus, only $17 \%$ of patients with mucinous ovarian cancers are Stage II or higher. Some genetic mutations that are characteristic in mucinous ovarian cancers have been identified in mucinous ovarian cancers. For example, KRAS mutations occur within the RAS family of G proteins, which signal cell division; such mutations stimulate cell growth and are significantly increased in mucinous ovarian tumors, including mucinous cystadenomas, low malignant potential tumors, and invasive adenocarcinomas [19]. BRCA1 and BRCA2 mutations, genetic alterations in specific tumor suppressor genes that occur in many hereditary and some sporadic cases of breast and ovarian cancer, are not present in most cases of mucinous ovarian cancer. Among patients with known BRCA mutations, only $2 \%$ are of mucinous histology [20]. Mutations in the p53 tumor suppressor gene are less frequent in mucinous ovarian cancers than serous ovarian cancers; mutations in p53 have been found in almost $60 \%$ of serous tumors, but only in $16 \%$ of mucinous tumors [21]. Clear separation has also been seen in the gene expression profiling between serous and mucinous ovarian cancers [21]. These characteristics lead to specific biologic behavior and guide both clinical management and research efforts concerning patients with mucinous ovarian tumors.

In contrast, endometrioid clear cell cancer is an uncommon but notorious type of epithelial cancer disease because of its aggressive behavior. Endometrial clear cell cancer is rare and generally, it consists of $<5 \%$ of all ovarian malignancies and its incidence of rate is in the range of $3.7 \%-12.1 \%$ of all EOCs [22]. It can be defined as lesions that are characterized by clear cells growing in solid/tubular or grandular patterns, as well as hobnail cells lining tubules and cysts [23]. These features can exist alone or in combination. These tumors have a high incidence of

Stage I disease [24], frequently manifest as a large pelvic mass [25], rarely occur bilaterally, and are often associated with endometriosis [26], thromboembolic vascular complications, and hypercalcemia [27]. Tumors of this kind are the most common in women ages 50 to 70 . Women with a family or personal history of colon or endometrial cancer have a higher risk. Moreover, women with endometriosis face a higher risk of developing this rare type of cancer. Most women with clear cell endometrial cancer are diagnosed after presenting post-menopausal bleeding. Many more women have endometriosis than those who are diagnosed with ovarian cancer, so having endometriosis should not cause undue concern [22].

Using cDNA microarray technology, Zorn et al. (2005) assessed the gene expression pattern of endometrioids, which are serous and clear cell cancers from the endometrium and ovary. Renal clear cell cancer was included for clear cell analysis. Endometrioid and serous cancers showed expression patterns that were unique to the organ of origin. Interestingly, the clear cell histologic type showed a remarkable similarity of gene expression patterns across the three organ sites, i.e. endometrium, ovaries, and kidneys [28]. Immunohistochemistry shows a high Ki-67 index, low immune reactivity for p 53 , and absence of estrogen receptor (ER) and progesterone receptor (PR). These can further help to distinguish clear cell cancer from endometrioid (usually ER/PR positive) and papillary serous endometrial cancers (high p53 immunoreactivity) [29]. This type of ovarian cancer is usually treated with a combination of chemotherapy and surgery. Additionally, hormonal therapies such as Letrozole or Anastrozole (aromatase inhibitors - drugs that block estrogen from being made) can be used [29]. Many researchers have studied the prognosis of patients with ovarian clear cell carcinomas, compared with that of patients with serous epithelial ovarian cancer. However, no clear agreement has been documented [30].

Ovarian cancer symptoms are not apparent in the early stages of the disease or may be confused with less serious, noncancerous conditions. Women are more likely to experience symptoms once the disease has spread beyond the ovaries. For that reason, most cases of ovarian cancer are not diagnosed until the disease has progressed to an advanced stage. Some of the symptoms of ovarian cancer include abdominal bloating, indigestion, nausea, changes in appetite, pressure in the pelvis or lower back, urinary urgency, constipation, changes in bowel habits, increased abdominal girth, tiredness, and changes in menstruation. Most of the current information on factors associated with ovarian cancer risks suggest that the strongest risk for ovarian cancer is a family history of breast or ovarian cancer [31]. Many other factors have been associated with increased risk of suffering ovarian cancer, such as menopausal hormone therapy, excess body weight, smoking, diet, and personal habits [32].

### 1.2 Molecular mechanism of cisplatin action

Cisplatin, cisplatinum, or cis-diamminedichloroplatinum, is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers [33]. Cisplatin has a molecular weight of $301.1 \mathrm{gm} / \mathrm{mol}$, a density of $3.74 \mathrm{~g} / \mathrm{cm}^{3}$, a melting point of $270^{\circ} \mathrm{C}$, a $\log \mathrm{K}_{\mathrm{ow}}$ of -2.19 and a water solubility of $2.53 \mathrm{~g} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$. This compound was first synthesized by Peyrone in 1844 and its chemical structure was first elucidated by Alfred Werner in 1893. However, the compound did not warrant scientific research until the 1960's when the initial observations of Rosenberg [34] at Michigan State University, pointed out that certain electrolysis products of platinum mesh electrodes were capable of inhibiting cell division in Escherichia coli. The research endeavor
generated much interest in the possible use of these products in cancer chemotherapy. Among many chemotherapy drugs that are widely used for cancer, cisplatin is one of the most effective. It was the first FDA-approved platinum compound for cancer treatment in 1978 [35].

Although the precise mechanism of cisplatin's cellular uptake and efflux is still not fully understood, it is believed that once administrated, cisplatin enters the cells through passive diffusion across the cell membrane. Also, the activity of several membrane transporters of platinum compounds that are analogous to MDR1, including efflux ATPases (MRPs, ATP7A/B) and solute carrier importers (CTR1, the SLCs, AQP2, and AQP9), has been reported. MDR1 is an ATP-binding cassette transporter, known for years as P-glycoprotein [36]. The uptake of cisplatin is mediated by the copper transporter Ctr 1 in yeast and mammals [37]. It has been further confirmed in human cells that cisplatin triggers rapid degradation of the copper membrane transporter CTR1, with diminished influx of cisplatin, resulting in resistance to the drug [38]. Genetic knockout of CTR1 results in cellular resistance to cisplatin in vivo. Cells with increased CTR1 expression exhibit increased platinum accumulation and in most instances, increased sensitivity to cisplatin.

Cisplatin is chemically inert; however, it is activated spontaneously once it enters the cell. In the cytoplasm, the chloride atoms in cisplatin are displaced by water molecules. This hydrolyzed product is a potent electrophile that can react with any nucleophile, including the sulfhydryl groups on proteins and nitrogen donor atoms on nucleic acids (deoxyribonucleic acid, DNA and ribonucleic acid, RNA) [39]. Cisplatin binds mainly to the N7 reactive center on purine residues and can cause a distortion in the structure of deoxyribonucleic acid (DNA), block cell division, arrest the cell cycle, and result in apoptotic cell death (See Figure 2). The 1,2-intrastrand crosslinks
of purine bases with cisplatin are the most notable among the changes in DNA. These include the 1,2-intrastrand $\mathrm{d}(\mathrm{GpG})$ adducts and 1,2-intrastrand $\mathrm{d}(\mathrm{ApG})$ adducts, which represent approximately $90 \%$ and $10 \%$ of adducts, respectively. 1,3-intrastrand $\mathrm{d}(\mathrm{GpXpG})$ adducts and others such as inter-strand crosslinks and nonfunctional adducts have been reported to contribute to cisplatin toxicity [40].


Figure 2: Cisplatin mechanisms of action. Through passive diffusion and active transport, cisplatin enters the cells in the cytoplasm and via a series of aquation reactions, it acquires the active form. The cisplatin hydrolyzed product reacts with the DNA, allowing the crosslinking with the urine bases which forms DNA adducts. These prevent the repair of the DNA, thus leading to DNA damage. They also induce programmed cell death within cancer cells. Image modified from Kelland et al. (2007) [35].

Distortion caused by cisplatin-induced lesions can be recognized by multiple repair pathways, including nucleotide excision repair (NER) and mismatch repair systems (MMR). Removal of cisplatin adducts occurs primarily through nucleotide excision repair, becoming one of the most important factors in cisplatin resistance. The mismatch repair system participates in
the recognition and resolution of cisplatin lesions [41]. When the extent of damage is limited, cisplatin adducts induce an arrest in the S and G 2 phases of the cell cycle. These promote cytoprotective effects, such as repair mechanisms to re-establish DNA integrity and preventing potentially abortive or abnormal mitoses [42]. Conversely, if DNA damage is beyond repair, cells become committed to apoptosis.

The signaling cascade that bridges cisplatin DNA lesions involves the sequential activation of the ataxia telangiectasia mutated (ATM) and RAD3 related protein (ATR, a sensor of DNA damage) and checkpoint kinase 1 (CHEK1), the most prominent substrate and downstream effector of ATR. These, in turn, phosphorylate the tumor suppression protein p 53 on serine 20 , allowing for its stabilization [43]. Activated p53 exerts lethal functions via nuclear and cytoplasmic mechanisms that eventually lead to mitochondrial outer membrane permeabilization or increased signaling via death receptors, followed by cell death [44]. In response to cisplatin, CHEK1 has also been shown to activate various branches of the mitogen-activated protein kinase (MAPK) system, including those mediated by extracellular signal-regulated kinases, c-Jun N-terminal kinases and stress-activated protein kinases [45]. The relative contribution of these signaling modules to the cytotoxic effects of cisplatin is yet to be deciphered. Intriguingly, although ATM appears to participate in cisplatin-induced cell cycle arrest, but not cell death [46], its major downstream target, CHEK2, has been shown to convey lethal signals in response to cisplatin in an ATM-independent fashion [47].

Cisplatin chemotherapy is associated with multiple side effects that include hepatotoxic, nephrotoxic, cardiotoxic, neurotoxic and/or hematotoxic damage. Also, some patients may relapse
from cisplatin treatment with their cancers being refractory to the cisplatin regimen [39]. Hence, combination therapies of cisplatin with other drugs are common practices in the treatment of human cancers. Findings of several studies have proposed that other compounds, combined with cisplatin, constitute the best therapeutic approach to overcome drug resistance and reduce the undesirable side effects [47]. Together, , combinatorial strategies that target various cell survival pathways, , may offer the best chance for clinically meaningful treatment [33].

### 1.3 Ovarian cancer and cisplatin resistance

In the past decade, drugs that target vulnerabilities in human tumors have been clinically validated as effective cancer therapies. However, the relatively rapid acquisition of resistance to such treatments, observed in virtually all types of cancer, significantly limits their utility and remains a substantial challenge to the clinical management of advanced cancers. Therefore, cancer drug resistance continues to be a major impediment in medical oncology. Drug resistance arises prior to or as a result of cancer therapy. Currently, $90 \%$ of failures in chemotherapy during the invasion and metastasis of cancers are related to drug resistance. Based on tumor response to the initial therapy, cancer resistance can be broadly classified into two categories, primary and acquired [48, 49]. In both cases, the emergence of resistant cells could be due to, at least, two mechanisms.

While primary drug resistance exists prior to any given treatment, acquired resistance occurs after initial therapy. Unfortunately, in practice, most patients will likely develop resistance at a certain point of treatment. For example, according to O'Connor et al. (2011), approximately $20 \%$ of adults with acute lymphoblastic leukemia suffer from primary resistance to treatment [50].

In addition, Dingemans et al. (1998) recognized primary resistance in nearly $50 \%$ of all cancer patients in the 1990s [51]. A number of innate resistance factors are already known; Lippert et al. (2008) mention some that include members of the adenosine triphosphate (ATP)-binding cassette transporter gene family, gluthathione-dependent enzymes, topoisomerase, metallothioneins, O6-methylguanine-DNAmethyltransferase, thymidilate synthetase, dihydrofolate reductase, heat shock proteins, growth factors, factors associated with proliferation, apoptotic signaling and angiogenetic factors, as well as protooncogenes and suppressor genes. In general, innate resistance to targeted therapies may be due to activation or mutation of downstream signaling pathways or mutations in domains such as kinases, which do not allow access of the drugs to the ATP pocket [52].

Consequently, targeted therapies with single agent for tumors with multiple mutations, amplifications, and/or translocations could be highly effective at the beginning, but rarely curative. Along the same line, most cancers have a multiplicity of innate genetic alterations that contribute to their capacity to proliferate, become malignant, and invade tissue; therefore, the benefit of targeted therapies can be modest and transient [53]. Even if an initial response to targeted therapies is obtained, the vast majority of tumors subsequently become refractory and patients eventually succumb to the disease's progression. Examples include C-Kit mutations in gastrointestinal stromal tumors (GIST), epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC), HER2 amplification in breast cancer, and the BCR-ABL translocation in chronic myelogenous leukemia (CML). These mutations will explain the molecular mechanism of drug resistance already dilucidated in non-small cell lung cancer studies [54].

Patients with advanced NSCLC would normally be treated with Erlotinib and Gefitinib drugs, classified as EGFR tyrosine kinase inhibitors (TKIs). Unfortunately, despite an initial response, many patients develop resistance, resulting in a median time to progression for patients on EGFRtargeted therapies of approximately 12 months [55]. Resistance can be mediated through events acting at the level of the target EGFR itself, compensatory activation of other receptor tyrosine kinases (RTKs), or activation of downstream signaling pathways. Hence, a genetic mechanism responsible for its resistance is the acquisition of a secondary missense mutation, on EGFR T790M on exon 20. By affecting the 'gatekeeper' residue of the catalytic domain, an increased affinity of the mutant kinase for ATP occurs [56]. This finding is pertinent for the development of target therapy that is based on irreversible EGFR inhibitors, with the rationale that such binding would result in greater occupancy of the ATP binding site, thereby inhibiting T790M- mutated EGFR despite its enhanced ATP binding. Unfortunately, it has been shown that amplification of the T790M allele can cause acquired resistance even to an irreversible EGFR inhibitor [57].

The mechanism of mutational activation of other RTKs also appears to be a mechanism of resistance to EGFR TKIs. For example, it has been reported that HER2 kinase domain mutations confer resistance to EGFR TKIs by activating the AKT-PI3K signaling axis and uncoupling signaling from EGFR [46]. Also, in preclinical studies, KRAS mutation has been proposed as a primary resistance mechanism for EGFR TKIs. In addition, amplification of the gene encoding the MET RTK has been identified as an acquired resistance mechanism to EGFR TKIs in an EGFRmutant NSCLC [58]. Engelman et al. (2007) suggests that cMET gene amplification in tumor cells can be clonally selected in the presence of EGFR inhibitors [58]. Activation of downstream signaling pathways that can uncouple EGFR from downstream signaling and confer resistance has
also been described; for example, the loss of the tumor suppressor PTEN leads to PI3K pathway activation. This study also revealed PTEN loss in primary NSCLC, suggesting that it may constitute an innate resistance mechanism [59].

Acquired resistance can be defined as the acquisition of stochastic alterations within cancer cells. In all cases, the surviving population of cells in the tumor is less likely to respond to any further therapy and will be responsible for the minimal residual disease and cancer relapse. The biochemical mechanisms associated with this kind of resistance are alterations to drug metabolism, increased drug efflux, decreased drug uptake, modification of the drug targets, specific protein modifications that are not driven by mutations, genetic rewiring, enhanced DNA repair, inactivation of apoptotic proteins, or activation of anti-apoptotic ones, the potential role of epigenetics, alternative RNA splicing, among others (See Figure 3). Nevertheless, such mechanisms play a significant role in the acquisition of resistance to cancer drugs, and while they remain poorly characterized thus far, evidence highlighting their importance is beginning to emerge [60]. Therefore, for this dissertation, I will explain the molecular mechanism of one of these mechanisms: the efflux pump.

Efflux pump mechanisms perform important physiological functions such as prevention of toxin absorption from the gastrointestinal tract, elimination of bile from the hepatocytes, effective functioning of the blood-brain barrier and placental barrier, and renal excretion of drugs. The problem of resistance to chemotherapeutic agents is perhaps one of the greatest challenges in clinical medicine [61]. Efflux pumps in eukaryotes are divided into five groups: Monocarboxylate transporter (MCT), Multidrug resistance protein (MDR, P-glycoprotein), Multidrug resistance-
associated proteins (MRPs), Peptide transporters (PEPTs), and Na+ phosphate transporters (NPTs). Its mechanism consists in the increased efflux of drugs from the intracellular compartment via energy-dependent efflux pumps. This mechanism is one of the main and best known mechanisms of resistance in cancer chemotherapy [62].


Figure 3: Cisplatin resistance mechanisms of action. Different mechanisms of cisplatin resistance have been identified in the past two decades. The postulated mechanism includes decrease in cisplatin uptake and increased efflux, increased detoxification by molecules such as sulfhydryl, increased inactivation of cisplatin, increased DNA repair, inactivation of cell death pathways and activation of cell survival pathways. Image modified from Kelland et al. (2007) [35].

Over 200 proteins involved in the transport of substrates across biological membranes are members of the ABC superfamily of proteins. A typical ABC transporter protein is consisted of four units [63]. Two are membrane-bound domains, both with six trans-membrane segments, and two are nucleotide- binding domains (NBD), which bind and hydrolyze ATP. Two sequence motifs located 100-200 amino acids apart in each NBD, designated as Walker A and Walker B, are conserved among all ABC transporter superfamily members. In addition, unique to ABC proteins, there is a third, highly conserved amino acid sequence (ALSGGQ) located between the Walker A
and B motifs, referred to as the ABC signature motif ( C motif). The precise function of this sequence has been directly implicated in the recognition, binding, and hydrolysis of ATP [64].

The most common member of ABC transporter is the 170 kDa multidrug resistance protein MDR or P- glycoprotein (P-gp) encoded by ABCB1. P-glycoprotein includes 10-15 kDa of Nterminal glycosylation and the overexpression of these into the cancer cells contribute to chemotherapy resistance. The N -terminal contains 6 transmembrane domains, followed by a large cytoplasmic domain with an ATP-binding site. The second section of the molecule contains 6 transmembrane domains and an ATP-binding site that shows $65 \%$ of amino acid similarity with the first half of the polypeptide. Among the physiological functions of P-glycoprotein, are included the secretion of metabolites such as conjugated bilirubin which come out of the hepatocytes and turns into the bile. Also, it mediates the tubular secretion of cholesterol and uric acid, thereby protecting the proximal tubular epithelial cells from cellular injury. It is located on the luminal membrane of renal epithelial cells and actively secretes digoxin, cimetidine, and many other drugs. Moreover, the genetic absence of P-glycoprotein causes a decrease in the production of bilirubin which characterizes the Dubin-Johnson syndrome. This is why the regulation at transcriptional and post transcriptional level of this mechanism has been intensively studied [65].

A variety of transcriptional factors, such as p 53 , YB-1, and NF- $\kappa \mathrm{B}$, are involved in the direct regulation of P-gp by binding to promoter regions of the ABCB1 gene [66]. Many cell signaling pathways positively regulates P-gp; for instance, MAPK/ERK, PI3K/Akt, and Wnt/ $\beta$ catenin. Conversely, the p38 MAPK pathway has been implicated in negatively regulating the
expression of P-gp and c-Jun N -terminal kinase, which are involved in both positive regulation and negative regulation [67].

Also, microRNAs (miRNAs) are identified as players in regulating the expression of P-gp in both transcriptional and post-transcriptional levels. Some members of miRNAs, miR- 200c and miR-145, decrease the expression of P-gp: the first one, through JNK signaling pathway and the second one, by directly binding to the 3 '-UTR of the ABCB 1 gene. In contrast, miR-27a upregulates the P-gp expression by suppressing the RAF kinase inhibitor protein [68]. This event occurs at the post-translational levelmainly by modification, degradation, and intracellular trafficking of P-gp. Pim-1 protects P-gp from ubiquitination and the subsequent degradation in proteasome. Small GTPases Rab5 down-regulates the endocytotic trafficking of P-gp and increases the functional P-gp level on the cell membrane while Small GTPases Rab4 downregulates the exocytotic trafficking of P-gp from intracellular compartments to cell membrane, which decreases the functional P-gp level on cell membrane [69].

Therefore, considering the numerous mechanisms and individual variabilities of drug resistance in cancer cells, novel treatments must consider innate resistance before therapy is initiated. Acquired resistance should be repeatedly tested throughout the course of drug administration. Detection tests for close treatment surveillance would certainly reduce the number of therapy failures and protect patients from dangerous, futile, and costly treatment. Hence, available resistance tests should be improved to find the best treatment from the large cancer drug arsenal and replace standard chemotherapy practices with personalized treatments [70].

### 1.4 Current models to study ovarian cancer

Experimental models used in ovarian cancer research have evolved over the last few years. As a general concept, the ability of the experimental models to accurately recapitulate the complexity of human cancer represents a critical issue in preclinical studies for drug discovery. The high rate at which novel cancer therapeutics fail during clinical trials highlights the inadequate predictability of laboratory cancer models that are currently available for preclinical studies [71]. Accordingly, a model must be developed to understand the development and progression of the disease.

Despite improvements in ovarian cancer treatment over the last decades, ovarian cancer remains the most lethal gynecological cancer among women. Notably, after an initial effective response to the chemotherapeutic regimen, therapeutic resistance rises which leads to a patient's death. This scenario accentuates the urgent need to develop novel diagnostic and therapeutic strategies. Recently, several efforts to better understand the molecular bases of ovarian cancer, using integrated multiplatform molecular profiling, have revealed an intrinsic complexity and heterogeneity among ovarian cancers [72]. In addition, although the ovarian surface epithelium has been historically considered the primary site of origin of all (both benign and malignant) epithelial ovarian tumors, the origin of epithelial ovarian cancer is still being debated with an increasing consideration of extra-ovarian origin [71]. In particular, emerging evidences indicate the fallopian tube epithelium (FTE) and the endometrium as the origin sites of ovarian high grade serous carcinoma and endometrioid/clear cell carcinoma, respectively [71]. Therefore, this new conceptual framework has shifted the attention of ovarian cancer research to outside the ovary,
from the ovarian surface epithelium to the fallopian tube epithelium, thus reviving interest in refining in vitro and in vivo high grade serous carcinoma models (See Figure 3).

Cancer cell lines are the most commonly used models in cancer research and their use has undoubtedly ameliorated our understanding of cancer biology [73]. Short-term cultures derived from freshly isolated cells or tissues (designed primary culture) have many important applications since they can closely recapitulate the pathophysiological system. However, primary cell cultures have limiting characteristics, such as slow growth capacity and limited overall lifespan. Moreover, limitations of primary cell culture systems include loss of the endocrine, paracrine and neural regulators, gradients of nutrients, and other factors [74].

Generally, cancer cell lines possess the same spectrum of genetic aberrations as primary tumors. However, each cell line presents only a limited number of genetic aberrations, as each one represents the intertumoral heterogeneity that is observed among primary tumors [74, 75]. Therefore, it is of extreme importance to confirm that these immortalized cell lines accurately represent primary tumors with respect to original genomic alterations, as these alterations may result in molecular characteristics that predict responses (sensitivity vs resistance) to specific therapeutics [76]. Several methods have been described for the isolation and culture of primary epithelial ovarian cancer cells, derived from either fresh solid tumors or ascites fluid [77]. In general, epithelial ovarian cancer cells usually adhere and tend to reach confluence quickly when kept in culture for 2-3 months before going into senescence and be used for immediate experiments or cryostorage. However, cells derived from high grade serous carcinomas that have received recent chemotherapy show less growing efficiency and cell viability, in vitro. Thus, numerous
epithelial ovarian cancer cell lines have been established, but the histopathological origin of the most commonly used epithelial ovarian cell lines, namely A2780, CAOV3, IGROV1, OVCAR3 and SKOV3, remains unclear. Therefore, these epithelial ovarian cancer cell lines can be considered the most suitable models for preclinical studies of high-grade serous carcinoma [78].

On the other hand, animal models are valuable tools for studying the biology and genetics of human cancers, as well as for preclinical investigation of anti-cancer therapeutics and cancer prevention. Accumulating data from studies using those models have enabled us to gain insight into the genetic mechanisms underlying malignant transformation and cancer progression. Studies from animal models of cancer have been utilized for preclinical investigation of therapeutic efficacy and toxicity of chemicals and biologicals [79]. Significant advances have been made on the generation of animal models of cancer, which have become increasingly sophisticated by application of new technologies and integration of clinical information from patients [80]. Studies from the spontaneous and carcinogen induced models, genetically engineered mouse models, and xenograft models have led to the discovery of the molecular basis of tumor initiation, growth, and metastasis, as well as being utilized for anti-cancer drug discovery and testing. It is known that hens, some strains of mice, Wistar and Sprague Dawley rats, and macaques spontaneously develop ovarian tumors, thus making them adequate spontaneous and carcinogen models [81]. In any case, these models have a relatively late onset of tumor development and low incidence rate that make them ineffectual for in vivo studies. Since the late sixties, ovarian tumors have been induced in experimental animals by direct application of chemical carcinogens, although no chemical carcinogen has been consistently associated to EOC etiopathogenesis [82]. Interestingly, the initial lesions induced by these carcinogens, when analyzed, were ovarian surface epithelial proliferations
that were supporting the cancer origin from the ovarian surface epithelium. However, the induced carcinomas were composed of neoplastic cells resembling either endometrium or oviduct (that corresponds to the human fallopian tube epithelium in mice) and were organized either in glandular or papillary structures, similar to human endometrioid and ovarian serous carcinomas.

Another case is the genetically engineered model. Mice have been the traditional animal model for basic and preclinical studies of cancer, and other organisms (including zebrafish) play important and complimentary roles as models of cancer research. Genetically engineered mouse and zebrafish models of cancer have been generated by a variety of interventions, such as chemical or physical mutagenesis, viral infection, insertion of transgenes, homologous recombination, and the recently developed gene edition [83]. Genetically engineered mouse models for high grade serous carcinoma have been difficult to generate. Recently, the direct introduction of oncogenes and disruption of tumor suppressor genes into the oviduct have allowed the generation of mouse models that recapitulate the new pathogenetic model of high grade serous carcinoma, including the presence of lesions similar to serous tubal intraepithelial carcinoma, the putative precursor lesion [84]. There are numerous research studies regarding the generation of animal models of cancer and their pre-clinical applications. For example, Kim et al. (2012) developed an EOC mice model by the Dicer-PTEN double knockout. Other researchers have generated mouse models through the inactivation of BRCA $1 / 2$, PTEN, and p53 in fallopian tube secretory cells, miming the molecular alterations commonly observed in human high grade serous carcinoma [83]. More recently, Sherman-Baust et al. (2014) reported a transgenic mouse model that develops high grade serous carcinoma from serous tubal intraepithelial carcinoma through the inactivation of both p53 and Rb pathways [84]. All these genetically modified mouse models provide new evidence
supporting the origin of high grade serous carcinoma from the fallopian tube in two possible manners (See Figure 4). Therefore, they certainly offer a unique opportunity for the investigation of high grade serous ovarian carcinogenesis and the exploration of new strategies for its early detection, prevention, and therapy. Nevertheless, the major limitations of these models are that they are labor-intensive, expensive, and time-consuming, and do not fully replicate the genetic and epigenetic complexity of a spontaneous high grade serous carcinoma [85].


Figure 4: Fallopian tube origin of the high grade serous carcinoma. Studies indicate the fallopian tube epithelium and the endometrium as the place of ovarian high grade serous carcinoma origin. (A) Normal fallopian tube epithelial cells are entrapped in the ovary, favored by their anatomical proximity and physiological ovulation process. Entrapped fallopian tube epithelial cells undergo progressive neoplastic transformation inside the ovary through the accumulation of molecular alterations. (B) Fallopian tube epithelial cells of the fimbriated ends undergo initial neoplastic transformation, becoming serous tubal intraepithelial carcinoma. The ovarian microenvironment, rich in hormonal and inflammatory factors, drives the full neoplastic transformation to invasive high grade serous carcinoma. Image modified from Kuhn et al. (2015) [86].

Epithelial ovarian cancer cell line xenografts are the most utilized animal model in epithelial ovarian cancer research, providing a multifaceted tool to explore epithelial ovarian cancer biology and treatment [87]. Only selected epithelial ovarian cancer cell lines develop
tumors when injected into immunocompromised mice; the engrafted tumor usually acquires an indistinct undifferentiated morphology and displays complex genetic makeup, since it is usually derived from patients in advanced stage [88]. The epithelial ovarian cancer cell line xenograft models that are commonly used in ovarian cancer studies are obtained by intraperitoneal injection of the human cell lines A2780, OVCAR3, and SKOV3. Nevertheless, some preclinical studies, using epithelial ovarian cancer cell line xenografts, correctly predicted anticancer drug response and effectively contributed in guiding high grade serous ovarian cancer therapy [89]. Clinical trials with bevacizumab, a monoclonal antibody to human vascular endothelial growth factor, confirmed its efficacy in high grade serous ovarian cancer patients, both as a single agent and in combination with paclitaxel [90]. The advantages of cell line xenografts include the rapidity of tumor formation, easy predictability, reproducibility, synchronization, and the need of few mice in drug response studies.

Human xenografts are generated by engrafting a human tumor, either from a primary tumor or a cancer cell line, into immunodeficient mice. These include athymic nude mice that are deficient in T lymphocytes, lacking B and T lymphocytes, and have defects in adaptive and innate immunity due to the lack of mature lymphocytes and natural killer T cells. The three main routes of implantation for epithelial ovarian cancer xenografts are subcutaneous (ectopic), intraperitoneal, and intrabursal (orthotopic) [91]. Subcutaneous implantation facilitates manipulation and serial measurements, but it does not recapitulate clinical tumor progression, since rarely malignant ascites and peritoneal carcinomatosis develop [87]. Intrabursal implantation is the injection of cells into the bursal membrane that envelops the mouse ovary and oviduct. This implantation site reproduces the physiological environment in which high grade serous carcinoma can grow [88].

Therefore, intrabursal and intraperitoneal implantations are best in reproducing the clinical manifestations of human high grade serous carcinoma and recapitulating the early and late stage of the disease. This recently established application of patient tumor xenograft in cancer research is expected to help personalize treatments using chemo and targeted therapeutics [91].

Concisely, experimental cell lines and animal models are of pivotal importance to understand the natural history and pathogenetic steps that lead to a fully developed disease, identify potential therapeutic targets, and test novel therapeutics, either alone or in combination with standard therapies [92]. Currently, there is a lack of inbred laboratory animals that can develop high grade serous carcinoma. This is largely due to the limited understanding of the initiating factors that trigger this disease. Moreover, anatomical, physiological, and pathophysiological differences between animals and human female reproductive systems, including short lifespan, seasonal mouse reproduction, estrous cycle instead of menstrual cycle, and lack of menstruation, may hinder the development of a representative laboratory animal model [91]. In the opening era of personalized medicine, the optimal choice of experimental cell and animal models remain fundamental to broaden current knowledge of ovarian cancer.

### 1.5 Therapeutic targets for ovarian cancer treatment

Over the last 2 decades, chemotherapy along with platinum-based agents and taxanes have been the first-line agents to fight against ovarian cancer and other gynecological cancer malignancies. Major improvements in parameters associated with the disease's microenvironment, growth, angiogenesis, invasion, and metastasis will require the development of therapies that target multiple biological processes. The identification of specific pathways related to ovarian cancer progression has allowed for the discovery of a new class of molecularly targeted therapies. Such drugs interact with and inhibit molecules in these pathways to affect tumor growth, proliferation and subsequently, preventing cancer recurrence [52].

The Vascular Endothelial Growth Factor (VEGF) is an integral player in the process of angiogenesis, which is required for the survival, growth, and metastasis of cancer. The expression of VEGF and its receptors, especially VEGF Receptor-2, are involved in the malignant progression of ovarian cancer, as well as the formation of ascites. In consequence, many studies have focused on developing agents to target this signaling pathway, such as small molecule inhibitors and monoclonal antibodies to VEGF and VEGFR. For example, Bevacizumab (Avastin), a monoclonal antibody against VEGF, has shown clinical efficacy in Phase III trials for colorectal, lung and breast cancer, and is showing potential effectiveness in Phase II trials for ovarian cancer. As a monotherapy for patients with persistent/recurrent ovarian cancer or platinum resistant disease, Bevacizumab has a $16-21 \%$ response rate, with $52 \%$ of persistent/recurrent patients having stable disease [90]. Furthermore, ongoing trials are combining Bevacizumab with other chemotherapeutics. Garcia et al. (2008) study combined Bevacizumab with cyclophosphamide in
recurrent ovarian cancer patients achieved a $28 \%$ response rate with a 6 -month progression-free survival rate of 57\% [93].

Another VEGFR1-3 inhibitor in clinical trial is Cediranib, designed for patients with recurrent, platinum-sensitive disease. A Phase II trial by Hirte et al. (2015) revealed that $41 \%$ of patients with platinum-sensitive disease responded to monotherapy, while there was a $29 \%$ response rate in platinum-resistant patients [94]. Matulonis et al. (2009) also conducted a Phase II trial of Cediranib for recurrent EOC and cited a $17 \%$ partial response rate with $13 \%$ of patients having stable disease [95]. Another novel inhibitor of this pathway is the VEGF trap, a fusion protein comprised of the VEGFR1 and VEGFR2 extracellular domains that is fused to the Fc portion of human IgG. This agent is able to bind to VEGF-A and placental growth factor. A current Phase II trial performed by García et al. (2008) reported an 11\% partial response rate in women with recurrent, platinum-resistant EOC [93].

Epidermal Growth factor receptor (EGFR) has been studied as a potential target for ovarian cancer treatment. EGFR is overexpressed in up to $70 \%$ of epithelia ovarian cancer [96]. Consequently, several inhibitors have been developed against this target. EGFR is a member of the ErbB family of receptor tyrosine kinases, which also includes ErbB2. When its ligand binds to these receptors, the tyrosine domains dimerize which leads to phosphorylation. This phosphorylation leads to the activation of multiple intracellular signaling pathways, such as the mitogen-activated protein kinase (MAPK) and the phosphatidylinositol 3- kinase (PI3K)-AKT pathways, which are involved in cell proliferation, growth, and survival [97].

An oral tyrosine kinase inhibitor EGFR Erlotinib was developed as a monotherapy in women with refractory, recurrent, EGFR positive epithelial ovarian cancer. There was a $6 \%$ response rate with $43 \%$ of patients having stabilized disease. This inhibitor has also been tested in combination with carboplatin and taxanes with positive results [98]. Another EGFR tyrosine kinase inhibitor in clinical trial is Gefitinib, which prevents the activation of EGFR as an ATP binding site competitor. Unfortunately, studies of this drug as a therapy and in combination with other drugs showed no significant clinical efficacy [99]. Another drug with similarly unremarkable results is Cetuximab. In a Phase II trial, Cetuximab was used in combination with carboplatin, in 28 women with recurrent platinum-sensitive ovarian and primary peritoneal carcinoma. The study reported that $32 \%$ had objective responses with an additional 8 patients having stable disease (Secord et al., 2008). Another trial combining cetuximab with carboplatin and paclitaxel evaluated 38 women and showed a progression-free survival of $39 \%$ at 18 months after treatment [100]. An evolutionarily conserved pathway that stimulates cell growth by producing metalloproteinases and facilitates drug resistance is MAPK (Raf/MEK/ERK). It is activated by receptor tyrosine kinases as well as other receptors for cytokines and integrins. Two isoforms b-Raf and c-Raf, have been associated with improved survival and poor prognosis, respectively, in ovarian cancer [101]. Oral kinase inhibitor, Sorafenib, targets the MAPK pathway as well as VEGFR1-3 and PDGFR- $\beta$ tyrosine kinase. In a Phase II trial, it was combined and tested with gemcitabine. Han et al. (2009) showed a $4.7 \%$ partial response rate and $60.4 \%$ stable disease, as well as a 5.4 and 13.3 months progression for free and overall survival [102].

A Phase II trial is underway to determine the clinical efficacy of Temsirolimus, an inhibitor of mTOR , in recurrent ovarian cancer. The target pathway in this study is PI3K. This molecule has
been involved with functions related to cell growth, such as transcription, translation, protein degradation, and reorganization of the actin cytoskeleton. Also, PI3K mediates angiogenesis and vascular permeability through its effectors, AKT and mTOR [103].

The NFкB signaling pathway is a key player in the induction of inflammatory response and provides the link between inflammation and oncogenesis. In an ovarian cancer model, inhibition of NFкB by immunosuppressive agents resulted in decreased VEGF and IL8 expression, which correlated with decreased tumorigenicity, decreased vascularization, decreased formation of malignant ascites, and the prolonged survival of mice [104]. Mabuchi et al. (2004) reported that the $\mathrm{NF} \kappa \mathrm{B}$ inhibitor increased the therapeutic efficacy of cisplatin [105]. Additionally, Liu et al. (2006) revealed that the use of antioxidants that block paclitaxel induced NFкB activation leads to increased sensitivity to paclitaxel treatment and increased cell apoptosis [106]. Unfortunately, there are currently no NFкB inhibitors in clinical trials for ovarian cancer. However, these results indicate that targeting NFкB is an auspicious target, as it may show promise as an adjunct to the currently available regimens.

In summary, further research is necessary to elucidate the molecular mechanisms underlying epithelial ovarian cancer initiation, progression, and metastasis. Also, more research must be realized to identify novel biomarkers for the detection and diagnosis of ovarian cancer. Some of the challenges to address include the molecular heterogeneity between tumors, frequency of benign disease that reduces biomarker specificity for cancer, and low concentration of the potential biomarker in early stages. Advances in proteomic technologies that identify hundreds of
potential clinically relevant proteins represent a promising research area for the discovery of biomarkers and targets for ovarian cancer-specific therapeutics.

### 1.6 RNA Binding Proteins (RBPs)

Messenger RNAs are produced in the nucleus from the primary transcripts of proteincoding genes, pre-mRNAs, or heterogeneous nuclear RNAs by a series of processing reactions that typically include capping, pre-mRNA splicing, polyadenylation, mRNA localization, and translation. mRNAs are then transported to the cytoplasm, where the protein synthesis machinery is located, and their translation and stability are also subject to regulation [107]. These processes are mediated by numerous RNA-binding proteins (RBPs), non-coding RNA (LncRNA), and microRNA (miRNA). RBPs contain various structural motifs, such as RNA recognition motif (RRM), dsRNA binding domain, zinc finger, and others [108]. RNA-binding proteins are proteins that bind to the double or single stranded RNA in cells and participate in forming ribonucleoprotein complexes [109]. RBPs are cytoplasmic and nuclear proteins. They exhibit high specificity to their RNA targets by recognizing their sequences and structures [110]. The specific binding of RBPs allows them to distinguish their targets and regulate a variety of cellular functions via control of the generation, maturation, and lifespan of the RNA transcript. This interaction begins during transcription as some RBPs remain bound to RNA until degradation, whereas others only transiently bind to RNA to regulate RNA splicing, processing, transport, and localization [111].

Three classes of RNA-binding domains have been acknowledged. The first one, the RNA recognition motif (RRM), is a small protein domain of $75-85$ amino acids that forms a four-
stranded $\beta$-sheet against the two $\alpha$-helices. This recognition motif exerts its role in numerous cellular functions, especially in mRNA and rRNA processing, splicing, translation regulation, RNA export, and RNA stability [111]. Ten identifiable structures illustrate the intricacy of proteinRNA recognition of RRM, as it entails RNA-RNA, protein-protein, and protein-RNA interactions. All of RRMs' main protein surfaces' four- stranded $\beta$-sheet were found to interact with the RNA, which usually contacts two or three nucleotides in a specific manner. In addition, strong RNA binding affinity and specificity towards variation are achieved through an interaction between the inter-domain linker, the RNA, and between RRMs themselves. RRM's plasticity is the reason why it is the most abundant domain [112].

The second group is RBPs that contain a double strand RNA binding domain (dsRNA); it is a 70-75 amino-acid domain that plays a critical role in RNA processing, RNA localization, RNA interference, RNA editing, and translational repression [113]. The dsRNAs interact along the RNA duplex via both $\alpha$-helices and $\beta 1-\beta 2$ loop. Moreover, all three dsRNA structures make contact with the sugar-phosphate backbone of the major groove and of one minor groove, which is mediated by the $\beta 1-\beta 2$ loop along with the N -terminus region of the alpha helix 2 . This interaction is a unique adaptation of the shape of an RNA double helix, as it involves 2'- hydroxyls and phosphate oxygen. Despite the common structural features among dsRNAs, they exhibit distinct chemical frameworks which permit specificity for a variety for RNA structures, including stem-loops, internal loops, bulges, or helices containing mismatches [113].

Finally, the zinc finger domains are the most common DNA-binding domain within the eukaryotic genome. Zinc fingers exhibit $\beta \beta \alpha$ protein fold, in which a $\beta$-hairpin and a $\alpha$-helix are
joined together via a $\mathrm{Zn} 2+$ ion [114]. Furthermore, the interaction between protein side-chains of the $\alpha$-helix with the DNA bases in the major groove allows for DNA-sequence-specific recognition. Recent research efforts show that zinc fingers also have the ability to recognize RNA. In addition, CCHH zinc fingers were recently discovered to employ sequence-specific recognition of single-stranded RNA through an interaction between intermolecular hydrogen bonds; CCHHtype zinc fingers employ two methods of RNA binding [115]. Firstly, the zinc fingers exert nonspecific interaction with the backbone of a double helix, whereas the second mode allows zinc fingers to specifically recognize the individual bases that bulge out. Differing from the CCHHtype, the CCCH-type zinc finger displays another mode of RNA binding, in which single-stranded RNA is identified in a sequence-specific manner. Overall, zinc fingers can directly recognize DNA via binding to a dsDNA sequence and RNA, via binding to a ssRNA sequence [112].

Since most mature RNA is exported from the nucleus relatively quickly, most RBPs in the nucleus exist as complexes of protein and pre-mRNA, called heterogeneous ribonucleoprotein particles. Eukaryotic cells encode diverse RBPs, approximately 500 genes, with unique RNAbinding activity and protein-protein interaction. During evolution, the diversity of RBPs greatly increase with the elevation in the number of introns. The diversity has enabled eukaryotic cells to utilize RNA exons in various arrangements, giving rise to a unique ribonucleoprotein (RNP) for each RNA. Although RBPs have a crucial role in post-transcriptional regulation in gene expression, relatively few RBPs have been studied systematically [116].

RBPs have been well studied in embryonic development. They control the transcriptional and post-transcriptional regulation of RNA, controlling the patterns of gene expression during
development [117]. RBPs are essential factors during germline and early embryonic development. Their specific function involves the development of somatic tissues, such as neurons, hypodermis, and muscles as well as providing timing cues for the developmental events [117]. Nevertheless, it is challenging to discover the mechanism behind RBPs' function in development, due to the difficulty in identifying their RNA targets because usually, most RBPs have multiple RNA targets [110]. However, it is indisputable that RBPs exert a critical control in regulating developmental pathways in a concerted manner. For example, Drosophila melanogaster, RNA-binding protein Elav, and Sxl encoding genes are critical in early sex determination and the maintenance of the somatic sexual state [118]. These genes regulate sex-specific splicing in Drosophila. Sxl produces a positive regulation of the feminizing gene Tra to produce a functional Tra mRNA in females. In other cases, RNA-binding proteins FOG-1, MOG-1/-4/-5, and RNP-4 regulate germline and somatic sex determination in C. elegans.

RBPs play a significant role and function in somatic development; they regulate tissuespecific alternative splicing of the mRNA targets. An example of these RBPs are MEC-8 and UNC-75, which contain RRM domains that localize regions of the hypodermis and nervous system, respectively [110]. Furthermore, another RRM-containing RBP, EXC-7, is localized in embryonic excretory canal cells and throughout the nervous system during somatic development in C. elegans.

In cancer, emerging RBPs are playing a crucial role in tumor progression and development [119]. The combination of their versatile RNA-binding domains with structural flexibility enables RBPs to control the metabolism of a large array of transcripts. Perturbations in RBP-RNA
networks' activity have been causally associated with cancer emergence, but the rational framework describing these contributions remains fragmented. Hundreds of RBPs are dysregulated across human cancers, impacting the expression and function of oncoproteins and tumor-suppressor proteins. Interestingly, most RBPs are predominantly downregulated in tumors related to normal tissues [109]. Several studies have provided immunohistochemical evidence that show how RBPs are abnormally expressed in cancer relative to adjacent normal tissues, and this expression correlates with patient prognosis [109]. It has been seen that many RBPs, including Sam68 [120], HuR [121], FXR1 [122] are differentially expressed in distinct cancer types. Some RBPs' change in expression is related to copy number variations; for example, gains in copy number of BYSL in colorectal cancer cells [121], ESRP1, CELF3 in breast cancer, RBM24 in liver cancer, and IGF2BP2, IGF2BP3 in lung cancer [123]. Hence, multiple in vitro studies have linked known cancer drivers to RBP dysregulation.

Particularly, the oncogenic transcription factor MYC upregulates the expression of heterogeneous nuclear ribonucleoprotein (hnRNP)A1 and hnRNPA2 in gliomas [124]. These hnRNPs promote the synthesis of the pyruvate kinase M isoform 2 (PKM2), which is involved in the glycolytic switch that underlies the Warburg effect. The PI3K/AKT/NF-kB signaling pathway activates the transcription of Hu-antigen $\mathrm{R}(\mathrm{HuR})$ in gastric cancer cells, enhancing cellular growth and resistance to apoptotic stresses [125]. The ZEB1 protein, an epithelial to the mesenchymal transition (EMT) specific transcription factor, directly represses the mRNA expression of the epithelial splicing regulatory protein 1 [126]. This event leads to the increased expression of a mesenchymal splice variant of the cell surface antigen CD44, thus inducing a more stemness and invasive phenotype in lung, breast, and pancreatic cancer cells [127]. The p53 tumor suppressor
protein induces the expression of RNA-binding motif protein 38 (RBM38) in cancer cell lines, which promotes G1 cell-cycle arrest by RBM 38 mediated stabilization of target mRNAs, such as cyclin-dependent kinase inhibitor 1A (CDKN1A)/p21 [128]. Several studies have related this change in the expression of RBPs to aberrant alternative splicing in cancer [129]. Therefore, understanding the function of RBPs in cancer cells will help in developing prognostic and response biomarkers, and in potentially unveiling new targets for the design of therapeutics.

### 1.7 RNA Binding Protein with Multiple Splicing (RBPMS)

The RBPMS gene is located on chromosome eight, position p12, and spans over 230 kb from $30,241,924$ to $30,430,508$ on the direct strand in the human genome. Previous studies show that this gene is expressed at high levels in the heart, breast, lung, kidney, ovary, stomach, muscle, liver, eye, adipose tissue, and ovary [130], [131-135]. RBPMS and its paralog RBPMS2 are expressed in several tissues and share $67 \%$ in amino acid composition with RBPMS isoform A, varying in their N - and C-terminal [130]. RBPMS and RBPMS2 can localize to the cytoplasm and nucleus, but aside from transcriptional co-regulation, most attention has been paid to cytoplasmic roles in mRNA stability [136], transport [137], and localization in cytoplasmic granules. Previous studies have shown that the expression of RBPMS2 in the intestine plays a role in motility disorders [138] and gastrointestinal tumors [139].

The RBPMS gene is also known as HERMES, FLJ32971, LOC11030 or sweyvyby. It contains 30 distinct gt-ag introns, 9 probable alternative promotors, 3 non-overlapping alternative last exons, and 13 validated alternative polyadenylation sites. The mRNAs appear to differ by
truncation of the $5^{\prime}$ end, truncation of the $3^{\prime}$ end, presence or absence of 10 cassette exons, overlapping exons with different boundaries, splicing versus retention of 2 introns. The 232 pb position of this gene is antisense to spliced gene, raising the possibility of regulated alternate expression.

At least 6 variants were isolated in vivo, despite being predicted targets of nonsense mediated mRNA decay (NMD) [140]. The gene has expressed multiple mRNA isoforms (5 according to uniport, 4 according to RefSeq, NCBI and at least 19 transcript variants according to AceView) resulting in multiple protein isoforms [140]. The RNA-binding protein with multiple splicing (RBPMS) is part of the RNA-binding proteins (RBPs) family. Each family is characterized for containing a single RNA recognition motif (RRM), corresponding to a protein domain of 80 amino acids. RRM domains are structurally diverse and bind to a multitude of sequence and structural motifs, such as the base and loop residues in stem-loop structures [141]. RRMs are present in proteins that regulate a variety of RNA processes, including pre-mRNA splicing, RNA transport, localization, translation, and stability. The RBPMS family is conserved in vertebrates and it is common to find RBPMS and RBPMS2 in the genome sequence from species that belong to this group. RBPMS and RBPMS2 are 70\% identical to each other and have a single RRM domain that is responsible for both RNA binding and dimerization [142]. Its domain is flanked by 23 aminoacids in the N -terminal and 95 aminoacids in the C -terminal regions. The C terminal of RBPMS is unstructured and characterized by a high density of prolines without homology to other proteins [143].


Figure 5: RBPMS isoforms $A, B$ and $C$ structural representation model.

RBPMS isoform A (GenBank accession numbers: NM_001008710) has a mass weight of 21,802 Da , encodes a protein of 196 aa , and has been chosen as the canonical sequence. Moreover, isoform C (GenBank accession numbers: NM_001008712) has a mass weight of $24,277 \mathrm{Da}$ and its length is 219 aa. Isoforms A and B share the same N-terminal RRM domain. The C-terminus of RBPMS A and C, however, is different in both length and composition. For isoform C, the C-terminal is longer in comparison with RBPMS A. RBPMS isoform C lacks several exons and its 3'-terminal exon extends past a splice site that is used in isoform A. RBPMS isoform B (GenBank accession numbers: NM_001008711) has a mass weight of $22,416 \mathrm{Da}$, its length is 204 aa , and includes an alternate exon in the $3^{\prime}$ end coding region of exon 7 and 8 which results in a frameshift and an early stop codon. The encoded isoform $B$ has a longer and distinct $C$ - terminus, compared to isoform A (See Figure 5). Isoform D isolates from Mus musculus differ from the canonical sequence between aminoacids 133 to 196 . RBPMS isoform D mass weight is $15,794 \mathrm{Da}$ and their length is 143 aa . Isoform E has a mass weight of $17,022 \mathrm{Da}$ and their length is 152 aa . The isoforms messenger and protein sequence are shown with more detail in Appendix A and Appendix B.

According to Farrazi et al. (2014), RBPMS primarily bound with $3^{\prime}$ UTR, intronic, and coding sequences. The RBPMS RNA recognition element (RRE) consists of tandem CACs, separated by a spacer of $\sim 1-12 \mathrm{nt}$. It is well known that RBPMS bound an (AC)9 dinucleotide repeat and (CAC)6 trinucleotide repeat RNA, that is responsible for both RNA binding and dimerization, but did not bind (CAU)6 nor (CU)9 [130]. Systematic deletion of AC study identifies four binding sites within the $3^{\prime}$ UTR of NDUFA6 a NADH dehydrogenase (ubiquinone), ETF1 a class-1 polypeptide chain release factor, $S R M$ that encodes a polycationic mediators of cell growth and differentiation, and UBE2V1 that encodes Ubiquitin-conjugating E2 enzyme, a transcriptional activation of the human FOS proto-oncogene [133].

Furthermore, Farazi et al. (2014) suggests that RBPMS interacts with TGF-beta receptor type I (TbetaR-I). This increases phosphorylation of C-terminal SSXS regions in Smad2 and Smad3, and promotes the nuclear accumulation of the Smad's proteins. Those proteins are considered key mediators of transforming growth factor-beta (TGF-beta) signaling, and dysregulation of the pathway would be derived in uncontrolled cell proliferation and cancer [133].

Dysregulation of RBPMS family proteins has been reported in cancer [144] and chronic intestinal pseudo-obstruction [138]. In breast cancer, RBPMS inhibited c-Fos or Smad3 mediated AP-1 transactivation and the expression of AP-1 target genes. AP-1 regulated genes including vascular endothelial growth factor (VEGF) and cyclin D1 have beenare associated with cancer growth and progression. Mechanistically, RBPMS blocks the formation of the c-Fos/c-Jun or Smad3/c-Jun complex, as well as the recruitment of c-Fos or Smad3 to the promoters of AP-1 target genes [130]. Manipulation of RBPMS levels during embryogenesis suggested functions in
X. laevis oocyte maturation [145], heart and kidney development [134], and retinal ganglion cell development [137]. In X. laevis, RBPMS regulated cleavage of vegetal blastomeres in early embryogenesis [145, 146] and control mRNA processing [134] and the transport of mRNAs along the axon to the axon terminal of retinal ganglion cells [137]. RBPMS has been recently addressed as a master regulator of alternative splicing. It has been directly associated with numerous components of the actin cytoskeleton and focal adhesion machineries, an activity that is crucial for smooth muscle cells. RBPMS also regulates splicing of other splicing, post-transcriptional, and transcription regulators, one of which is the transcription factor, myocardin [134].

### 1.8 Biological roles of RNA Binding Protein with Multiple Splicing (RBPMS)

The RNA binding protein with multiple splicing (RBPMS) is a member of a family of proteins that bind to the nascent RNA and control their transcription, degradation, editing, translocation, translation, and splicing [147]. However, the functions of many more biological processes and their relevance to disease states are yet to be elucidated. Recently, studies explored the functions of RBPMS in vascular smooth muscle cell differentiation, aging, oogenesis, and retina ganglion cell [132], [148-151].

Vascular smooth muscle cells are important in the skeletal and cardiac muscle. The phenotypic plasticity of smooth muscle cells in healthy arteries is necessary in response to any injury or disease that commences a synthetically active, motile, and proliferative state [152]. Nakagaki-Silva et al. (2019) reported that RBPMS highly down-regulated phenotypic switching of smooth muscle cells from a contractile to a motile [153]. Moreover, RBPMS is responsible for
$20 \%$ of the alternative splicing changes during this transition. RBPMS directly regulates alternative splicing of numerous components of the actin cytoskeleton and focal adhesion machineries, such as myocardin. The data presented by Nakagaki-Silva suggests that RBPMS has a critical role in vascular smooth muscle differentiation. Furthermore, RBPMS plays important roles in cardiac muscle and embryonic stem cells, where its expression is also a super-enhancer [153].

Peiheng Gan et al. (2022) showed that RBPMS deletion causes perinatal lethality in mice, due to congenital cardiovascular defects. They observed premature onset of cardiomyocyte binucleation and cell cycle arrest during mice development, after RBPMS was lost. Human cardiomyocytes with RBPMS gene deletion have a similar blockade to cytokinesis [154]. Data sequencing analysis revealed that RBPMS plays a role in RNA splicing involved in cytoskeletal signaling pathways. They concluded that RBPMS mediates the isoform switching of the heartenriched LIM domain protein Pdlim5. The loss of RBPMS leads to the accumulation of Pdlim5 isoforms, disrupting cardiomyocyte cytokinesis [154].

RBPMS not only functions as a marker for cardiomyocyte differentiation processes, it also serves as a marker for retinal ganglion cells. In studies conducted by Ye, Linda et al. (2018) expression of the RBPMS gene was 2-fold higher when the pGL3-Basic vector they used was a negative control [155]. Within RGC-5 cells, 5-UTR structural differences allowed for 60-to-25fold higher levels within promotor sequences in the -1603 to -1353 and -259 to -9 promotor regions in the RBPMS gene [155]. This made it possible to determine the effect of RGC cells and promotor
sequence regulation areas, relative to expression of the RBPMS gene. This was all allowed due to how the RGC cells serve to generate the marker function of RBPMS for these cells.

Additionally, information presented by Kwong et al. (2010) describing in situ hybridization with RBPMS antisense riboprobes postulated that RBPMS-positive cells were predominantly located in the ganglion cell layer, where they are co-localized with RGCs [132]. The latter was confirmed by using experimental RGC-deficient retinas, which showed that when RGC cells were not present, RBPMS was not present in the GCL as well. Interestingly, RBPMS expression was most noticeable in the cytoplasmic medium of these cells, given that the nuclear localization of these was too weak to assert a genuine presence [132]. This idea ties up with modern theories on cytoplasmic splicing, or the ability to give mRNA fragments resistance to the cytoplasmic medium for longer intervals until they reach a ribosome or the pertinent objective. RBPMS-positive cells also demonstrated staining near the perinuclear area of the cell, allowing for a possible association with the Golgi Complex. The importance of these conclusions is based on how RBPMS-positive cells expressed the gene in nearly $100 \%$ of the cell samples, which demonstrated the close association between RBPMS and RGC fuction [132].

Shanmugaapriya et al. (2016) examined how the RBPMS expression is altered during aging and whether RBPMS is regulated by the interleukin- $1 \beta$ (IL)- $1 \beta$ and TGF- $\beta$ growth factor. This study characterized how the Smad signaling pathways regulate RBPMS expression. They used inhibitors for blocking the phosphorylation of Smad2/3 and Smad $1 / 5 / 8$, through the use of inhibitors or inducing phosphorylation of Smad's via adenoviral vectors transfection [149]. Results showed that RBPMS expression increased when the phosphorylation of Smad2/3 was blocked or
when Smad $1 / 5 / 8$ signaling was activated. This suggested that reduced levels of $\mathrm{pSmad} 2 / 3$ or increased levels of $\mathrm{pSmad} 1 / 5 / 8$ directly regulate RBPMS expression. Also, this research team showed that significant reductions in the expression of RBPMS occur with aging in animal models, which contributes to the reduction of Smad2/3 signaling [149].

The reduced expression of the TGF- $\beta$ signaling regulator RBPMS during aging suggests functional loss of factors that regulate TGF- $\beta$ response. TGF- $\beta$ responsiveness in signaling contributes to the development of osteoarthritis during aging, presenting a possible role for RBPMS in the development of the degenerative disease [149]. The negative relation between positive RBPMS cell signal and tissue damage demonstrates that cartilage damage affects RBPMS expression and has a negative effect on the phosphorylation of Smad2/3. Shanmugaapriya et al. (2016) showed that RBPMS, as well as the unphosphorylated and phosphorylated states of Smad2 and Smad3, has a potential role in maintaining normal articular cartilage [149]. However, more studies are necessary to prove whether RBPMS is a significant functional factor that is involved in the regulation of TGF- $\beta$ responsiveness [149].

During oogenesis, a selected group of RNAs are localized and retained within the vegetal cortex at two different time periods [150]. The localization of these RNAs is a mechanism, by which cells control the protein synthesis at specific time periods in a particular space. In Xenopus laevis' vegetal region on the oocytes, the mRNA and RBPMS protein are localized in high amounts and decrease during maturation. The RBPMS protein is concentrated in a specific structure within the vegetal cortex, the germ plasm, where RBPMS protein co-localizes with different mRNAs. Aguero et al. (2016) explored the role of RBPMS in Xenopus laevis' stage I oocytes mitochondrial
cloud. One component of germinal granules in Drosophila melanogaster, Xenopus laevis, and Mus musculus is nanos, whose RNA product is essential for the preservation of the germline. Aguero et al. (2016) reported that the RBPMS protein is present throughout the cytoplasm and in the nucleus of stage I oocytes. Moreover, they confirmed that RBPMS co-localizes with nanos in the mitochondrial cloud, concentrating in the germ plasm within the germinal granules [150]. Song et al. (2007) results of the in vitro and in vivo assays suggest that RBPMS forms distinct particles and associates with nanos, but not with Vg 1 or VegT RNA in the nucleus [156]. These findings propose that RBPMS binding might initiate a sorting pathway that terminates with nanos/RBPMS within the germinal granules. Moreover, Song and coauthors found that UGCAC repeats are essential for nanos RNA mitochondrial cloud localization and required for RBPMS binding to the mitochondrial cloud localization signal. The 34 amino acids in the RBPMS N-terminal, conserved region in human RBPMS isoforms, are required to form homodimers and bind the nanos $3^{\prime} \mathrm{UTR}$ region. In addition, Song et al. (2007) report that RBPMS binds the GGLE domain, which does not contain a UGCAC region, but does contain two binding sites for VM1 hnRNP I [156]. The association between RBPMS, hnRNP I, and nanos RNA remains unclear. However, in the absence of any RNAs, hnRNP I does not interact directly with the RBPMS protein, as suggested by these authors.

Other authors, such as Nijjar and Woodland (2013), identified four other proteins in stage VI oocytes that directly bind with RBPMS: Xvelo splice variant, Xvelo-full length, Rbm42b, and Rbm24b. Their findings indicate that RBPMS binding in the nucleus with Rbm42b (RNA binding protein) which localizes nanos RNA in late stage oocytes [157]. Therefore, Rbm42b could be one of the factors required for RBPMS nanos RNA binding. RBPMS localization with Xvelo in the
germ plasm is a significant finding. Xvelo is required for the formation of the mitochondrial cloud balbiani bodies and oocyte polarity. Xvelo had its homologue in zebrafish, called Bucky ball. Their analysis affirms that Rbm24b and Xvelo bind with each other in the cytoplasm, but not in the nucleus. Thus, Xvelo may join the RBPMS/nanos ribonucleoprotein complex after it exits the nucleus, which indicates the occurrence dynamic remodeling [157].

Song et al. (2007) explored the role of RBPMS targets (RNAs-encoding proteins) involved in meiotic maturation, early cleavage, and germline development. During meiotic maturation and early cleavage in Xenopus leavis, a group of maternal mRNAs, including RINGO/Spy and Mos, are regulated at the translational level [156]. The ectopic expression of RINGO/Spy or Mos causes the activation of meiotic maturation and cleavage arrests, which correlates with the loss of RBPMS phenotypes [156]. Accelerated maturation was observed when RBPMS antisense morpholino oligonucleotide was injected, stemming from RINGO/Spy mRNA. The RBPMS protein was present as an mRNP complex, containing RINGO/Spy, Mos, and Xcat2 mRNAs in vivo. RBPMS appears to negatively regulate RINGO/Spy and Mos RNAs that are involved in meiotic maturation and early cleavage, respectively [156].

As has been demonstrated, RBPMS is an important component of embryonic development. RBPMS has a critical role in the localization and expression of molecular signals that are involved in such development. Its function as a homodimer, in concert with other proteins, is crucial in different pathways that are carried out in the cell nucleus, as well as in the cytoplasm.

### 1.9 RBPMS dysregulation and cancer

Dysregulation of RBPMS family proteins has been reported in cancer [144] and chronic intestinal pseudo-obstruction [138]. The Human Protein Atlas pathology expression summary indicates that most cases of endometrial, ovarian, testicular, renal, and pancreatic cancers along with few cases of melanomas, cervical, breast, and lung cancers displayed moderate to strong nuclear staining, with additional cytoplasmic positivity.

This information can be corroborated by few studies that explored the relationship between RBPMS dysregulation and cancer. For example, in a breast cancer report, RBPMS inhibited c-Fos or Smad3 mediated AP-1 transactivation, and blocking the expression of AP-1 target genes. These transcription factors have been associated with cancer growth and progression, such as vascular endothelial growth factor (VEGF) and cyclin D1. The blocking formation of c-Fos/c-Jun or Smad3/c-Jun complex by RBPMS makes impossible the link of c-Fos or Smad3 to the promoters of AP-1 target genes [130].

The role of RBPMS has been explored by different authors in blood related malignancies, such as multiple myeloma (MM) and acute myeloid leukemia (AML). Gene expression profiling studies in patients with AML surprisingly identified RBPMS as one of the twenty genes that are most frequently published in AML expression studies [158]. RBPMS was identified as one of the ten most up-regulated genes associated with poor prognosis, and has not been previously described in AML. During the gene expression profiling analysis, RBPMS is positioned as a key insight into disease pathogenesis while exposing a potential diagnostic and prognostic marker and therapeutic
target for AML. Miller et al. (2010) reported that RBPMS is a direct and functionally relevant target of EZH2 in multiple myeloma (MM) [158]. The authors showed that RBPMS silencing confers resistance to Bortezomib (BTZ) in MM cells. Furthermore, restoration of RBPMS by miR138 overexpression re-sensitizes the resistant cells to anti-myeloma drugs, such as BTZ and MG132 [158]. Rastgoo et al. (2018) demonstrated that miR-138 mimics a pharmacological inhibitor of EZH2. Delivery miR-138 in combination with a proteasome inhibitor BTZ, induces apoptosis and significant regression of tumor growth in assays that have mice xenograft models [159]. These results indicate that EZH2 regulates tumor cell proliferation by repression of tumor suppressor genes and RBPMS. It also remarks the importance of RBPMS in the drug resistance acquisition. In summary, Rastgoo et al. (2018) establishes the EZH2/miR-138 axis as a potential therapeutic target for MM [159]. Additionally, micro array analysis from dedifferentiated hepatocellular carcinoma (DHCC) and hepatocellular carcinoma (HCC) with chromosomal 13q region RBPMS loss, were among one of the six most significantly upregulated genes [144]. Drozdo et al. (2012) concluded that dedifferentiation of hepatocellular carcinoma is associated with upregulation of genes, such as RBPMS, which are involved in cell-cycle control and proliferation [160].

Growing evidence has revealed that RBPMS plays a critical role in the proliferation and invasion of bladder cancer (BC). Yang et al. (2021) performed an expression profile from qPCR in BC cell lines revealed that RBPMS was significantly downregulated in aggressive BC samples. However, upregulation of RBPMS suppresses BC proliferation and metastasis [161]. Yang et al. (2021) showed that miR-330-3p upregulation restored BC cancer cell proliferation, invasion, and migration, as well as silencing of RAI2. RAI2 silencing reversed miR-330-3p-induced cell growth,
invasion, and migration in vitro by directly targeting the miR-330-3p/ retinoic acid induced 2 (RAI2) axis [161]. Yang et al. (2021) concludes that RBPMS acts as a tumor suppressor and provides a potential biomarker and therapeutic target for BC.

Accumulating evidence supports a central role of RBPMS in ovarian cancer initiation, progression, and chemoresistance. Luciferase reporter assays identified RBPMS as a miR-21-3p target gene [162]. When RBPMS was silenced by siRNA, it exhibited a reduction of sensitivity in ovarian cancer cells towards platinum-based drugs, such as cisplatin. Also, significant decrease in RBMPS levels was observed between serous ovarian cancer patient and normal ovarian epithelium samples by immunohistochemical analyses [162]. Also, other micro RNAs (miRNAs) have been correlated with ovarian cancer recurrence prognosis, using bioinformatic tools. miRNAs, such as miR375 and miR141, are predominantly identified in literature as possible biomarkers and regulatory mechanisms during recurrent ovarian cancer [163]. The role of miR-21-3p in RBPMS regulation is also evident in colorectal cancer (CRC), one of the most prevalent malignancies in modern society, and a leading cause of cancer-related deaths [164]. Inhibition of miR-21-3p in CRC cells (Lovo, HT29, Colo320 and SW480 cells) resulted in the suppression of proliferation and induction of the cell cycle arrest, increasing the nuclear accumulation of Smad4 and reduced phosphorylation of ERK. Skawran et al. (2008) suggests that miR-21-3p inhibition suppresses cell biological functions depended on the cell cycle such as proliferation, thus inducing apoptosis by directly targeting RBPMS through the Smad4/ERK signaling pathway. Moreover, it suppresses cancer cell invasion as well as migration. In conclusion, all these studies assert that RBPMS dysregulation is an important factor in the development of cancer and a worse prognosis.

A recent publication from Rabelo et al. (2022) disclosed that reduced RBPMS levels increase the sensitivity of ovarian cancer cells to cisplatin treatment [147]. However, the role of RBPMS isoforms in cancer has not been explored sufficiently and as such, is not concretely understood. Some possible associations with the topic have been found in the literature but require more evidence. RBPMS could be an emergent and potent target for tumor progression suppression in the development of future cancers therapies.

## Chapter 2. Significance, Specific Aims, Rationale, and Hypothesis

Cancer is one of the leading causes of death worldwide [1]. In 2018, the International Agency for Research on Cancer, in collaboration with the World Health Organization, reported between 2012 to 2017, 18.1 million new cases and 9.6 million deaths. Today, the total number of people in the world that live with a cancer diagnosis are estimated at 43.8 million. Ovarian cancer is one of the six most common cancers among women, and the most common cause of gynecological cancer-related deaths in western countries with a survival proportion of $40 \%$ to $50 \%$ in the first 5 years of diagnosis [10]. Depending on the type of ovarian cancer and how advanced it is, the standard medical care plans for patients can include cytoreductive surgery, combined with taxane and platinum based chemotherapy. Unfortunately, this disease is still the most aggressive and malignant type of gynecological cancer [165]. Although $60 \%$ to $80 \%$ of patients initially respond to the traditional treatment, only $10 \%$ to $30 \%$ of them, eventually recur and develop resistance to platinum-based chemotherapy [166]. Furthermore, a combination of cytotoxic agents (gemcitabine, pegylated liposomal doxorubicin and topotecan) and a second cycle of chemotherapy are recommended for these patients, but the long term efficacy of this treatment
need further investigation. Platinum-based chemotherapy, such as cisplatin, is one of the most currently used active anticancer agents, and the resistance patients develop to it is a major obstacle. As a result, the survival rate for patients with ovarian cancer has not improved over the past 20 years [167].

It is imperative to understand and identify molecules that are involved in platinum resistance/sensitivity-related mechanisms. Therefore, it is necessary to find a new strategy for the management of ovarian cancer in particular for patients that become resistance to chemotherapy. Recently, our laboratory published that the c-Jun transcriptional activation increased the expression of miR-21 in cisplatin resistance ovarian cancer cells [168]. Several other miRNAs have been seen associated with cisplatin resistance in ovarian cancer cells [159, 169]. They have been directly implicated with ovarian cancer initiation, progression, and cisplatin resistance. According to a recent study by Baez et al. (2016), the upregulation of miR-21-3p contributed to the cisplatin resistance of ovarian cancer cells. Three miR-21-3p target genes were identified, including RBPMS. Dysregulation of RBPMS family proteins has been reported in cancer [140] and such reports describe how RBPMS plays a central role in inhibiting the proliferation and migration of breast cancer cells by blocking the formation of c-Jun-c-Fos or c-Jun-Smad3-4 complexes [110].

The RBPMS gene is located on chromosome eight, position p 12 , and spans over 230 kb . Previous studies show that this gene is expressed at high level in heart, breast, lung, kidney, ovary, stomach, muscle, liver, eye, adipose, and ovary [131-135]. The RBPMS gene contains 30 distinct gt-ag introns, 9 probable alternative promotors, 3 non-overlapping alternative last exons, and 13
validated alternative polyadenylation sites. The gene expresses multiple mRNA in humans, resulting in three different products or isoforms [140]. The RNA-binding protein, with multiple splicing (RBPMS), binds to the nascent RNA transcripts and regulates their processing, including the pre- mRNA splicing and transport, localization, and stability of the RNA molecules. Alternative splicing results in multiple transcript variants encoding different RBPMS isoforms. RBPMSA, RBPMSB, and RBPMSC are the best described isoforms, according to the literature.

It is well known that RBPMS is bound to the basic leucine zipper domain of c -Fos that mediates the dimerization of AP-1 proteins 4 [130]. RBPMS inhibits c-Fos or Smad3-mediated AP-1 transactivation, and the expression of AP-1 target genes that are known to be the key regulators of cancer growth and progression, including vascular endothelial growth factor (VEGF) and cyclin D1. Mechanistically, RBPMS blocks the formation of the c-Fos/c-Jun or Smad3/c-Jun complex, as well as the recruitment of c-Fos or Smad3-4 to the promoters of AP-1 target genes. In cultured cells and a mouse xenograft model, RBPMS inhibited the growth and migration of cancer cells through c-Fos or Smad2/3/4 [130]. Fu et al. (2015) suggests that RBPMS is a critical repressor of AP-1 signaling [130]. Hence, RBPMS-related molecules may be a useful strategy for cancer treatment. Presently, little is known about the biological function of RBPMS in ovarian cancer and less is known about the specific isoform associated with cisplatin resistance. The following specific aims are expected to address this knowledge gap:

Specific Aim 1: To determine whether the decreased expression of RBPMS isoforms promotes the cisplatin resistance of ovarian cancer cells.

Rationale: Preliminary data was obtained by using RT-PCR and western blot analysis, which identified that cisplatin resistance (A2780CP20 and OVCAR3CIS) cells express low levels of RBPMSA, RBPMSC mRNA, and protein levels, in comparison with the cisplatin sensitive (A2780 and OVCAR3) cells. However, the specific RBPMS isoform that is responsible for cisplatin resistance in ovarian cancer cells is yet to be studied.

Hypothesis: Increased levels of RBPMS isoform A will increase the sensitivity of ovarian cancer cells to cisplatin treatment.

Approach: Cell proliferation was assessed by clonogenicity assay and cell growth curve, cell migration, and cell invasion by wound healing assay and transwell chamber assay. Moreover, the dose response to cisplatin was assessed by viability assay. A2780CP20-RBPMSA and A2780CP20-RBPMSC was implanted by overexpressing clones in the right flank of the nude mice. After cell implantation, tumor growth was recorded three times per week with a vernier caliper. After twenty-seven days, the mice were euthanized. Mice weight, tumor size, and number of nudes were recorded. The tumors were then collected to perform immunohistochemical studies against the KI67 proliferation marker and CD31 vascular endothelial cells marker.

Specific Aim 2: To determine the RBPMS isoform that represses AP-1 (c-Fos and c-Jun) dependent gene regulation in ovarian cancer cells.

Rationale: Fu et al. (2015) showed that in breast cancer, each RBPMS isoform interacts differently with an AP-1 member (c-Fos and c-Jun). Particularly, the RNA-recognition motif (RRM) and C-
terminus of the RBPMS isoforms RBPMS-A and RBPMS-C. However, the specific AP-1 member interacting with RBPMS in cisplatin resistant ovarian cancer cells has not been determined.

Hypothesis: RBPMS A represses AP-1 (c-Fos and c-Jun-) dependent gene regulation in cisplatin resistance, in ovarian cancer cells.

Approach: Immunoprecipitation was performed using DDK agarose beats and western blots analysis to determine whether RBPMS binds to AP1 proteins members and Smad's proteins. RNAseq studies were realized to identify common and specific RBPMSA and RBPMSC downstream effectors. Also, to explore the effect of RBPMS isoforms expression in pre-mir-21 transcription, RT-PCR was performed with specific primers against pre-mir-21 and siRNA experiments to validate the results.

Specific Aim 3: To identify RBPMS associated proteins in ovarian cancer cells.

Rationale: Reports evidence that RBPMS bounds other proteins (beside c-Jun and Smad's) to regulate gene expression. However, the proteins that bound to RBPMS isoforms during cisplatin resistance in ovarian cancer cells have not been identified.

Hypothesis: Each RBPMS isoform binds to its own group of proteins that is involved in the cell growth, proliferation, and survival of ovarian cancer cells.

Approach: Liquid chromatography was realized with tandem mass spectrometry in the immunoprecipitation sample that was extracted from protein lysates. These were obtained from RBPMSA, RBPMSC and A2780CP20-EV clones to identify the proteins that bind to each RBPMS isoform. Western blots analysis was done in immunoprecipitation samples, extracted from protein lysates, to validate the proteomic data. Also, the KM plotter database (https://kmplot.com, accessed on January 21, 2021) was explored to uncover its clinical relevance in the overall survival (OS) and progression-free survival (PFS) of the disease.

## Chapter 3. Materials and Methods

### 3.1 Cell lines and Culture Conditions

The human ovarian epithelial cancer cells A2780 and A2780CIS cells were purchased from the European Collection of Cell Cultures (ECACC, Porton Down, Salisbury, UK), and the OVCAR3 cells from the American Type Culture Collection (ATCC, Manassas, VA, USA). The A2780CP20 cells were provided by Dr. Anil K. Sood (MD Anderson Cancer Center, Houston, TX, USA) and have been described elsewhere [168, 170]. The OVCAR3CIS cells were generated by exposing OVCAR 3 to increasing concentrations of cisplatin (CIS; Sigma-Aldrich, St. Louis, MO, USA), as previously described [171]. The IC50 values and molecular characterization of these cells (A2780, A2780CP20, A2780CIS, OVCAR3, and OVCAR3CIS) have been published previously [172-174]. For propagation, A2780, A2780CP20, and A2780CIS were maintained in a RPMI-1640 medium (Thermo Scientific, Logan, UT, USA), supplemented with $10 \%$ fetal bovine serum (FBS) (Thermo Scientific, Logan, UT, USA) and $0.1 \%$ antibiotic/antimycotic solution
(Thermo Scientific, Logan, UT, USA). The OVCAR3, and OVCAR3CIS cell lines were maintained and propagated in RPMI-1640 (GE Healthcare Life Sciences, Logan, UT, USA; supplemented with insulin ( $0.01 \mathrm{mg} / \mathrm{mL}$; Sigma-Aldrich, St. Louis, MO, USA; OVCAR3, OVCAR3CIS) supplemented with $10 \%$ FBS, and $0.1 \%$ antibiotic/antimycotic solution. All cells were maintained at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO} 2$ and $95 \%$ air. Cell lines were screened for mycoplasma, using the LookOut ${ }^{\circledR}$ Mycoplasma PCR detection kit as described by the manufacturer (Sigma-Aldrich, St. Louis, MO, USA), and authenticated by Promega (Madison, WI, USA) and ATCC using Short Tandem Repeat (STR) analysis. All in vitro assays were performed at a $70-85 \%$ cell density.

### 3.2 Western blot analysis

Cells were detached with Trypsin ( $0.25 \%$ ) at $37^{\circ} \mathrm{C}$, washed with Phosphate Buffer Saline (PBS), harvested, and stored at $-80^{\circ} \mathrm{C}$ until processed. Cells were lysed with ice-cold lysis buffer and incubated on ice for 30 min . Whole cell lysates were centrifuged, supernatants were collected, and protein concentration was determined using Bio-Rad Protein Reagents (Bio-Rad, Hercules, CA). In all cases, protein lysates ( $50 \mu \mathrm{~g}$ ) were separated by SDS-PAGE ( $12 \%$ Acrylamide), blotted onto nitrocellulose membranes, and probed with the appropriate dilution (1:1000) of primary antibody (Sigma, St. Louis, MO; Cat number AV3476). The membranes were rinsed and then incubated with mouse or rabbit IgG horseradish peroxidase (HRP)-linked secondary antibodies (Cell Signaling, 1:5000 dilution). Bound antibodies were detected using enhanced chemiluminescence (GE Healthcare, Logan, UT, USA) followed by autoradiography in a FluorChemTM 8900 (Alpha Innotech Corporation, San Leandro, CA). The signal intensity of each band was quantified using Image Lab software (BioRad, Hercules, CA, USA).

### 3.3 RNA Isolation, cDNA Synthesis, and RT-PCR

For the RT-PCR experiment, total RNA was isolated using the GenElute Mammalian Total RNA Miniprep kit from Sigma Aldrich (Cat \#RTN350). RNA was converted into complementary DNA (cDNA) with the Sigma-Aldrich Enhanced Avian RT first strand synthesis kit (Cat \#STR1$1 \mathrm{KT})$. In brief, total RNA $(1 \mu \mathrm{~g}), 500 \mathrm{mM} \mathrm{dNTP}, 2.5 \mathrm{mM}$ random nanomers, and nuclease-free water were mixed for a total volume of 10 mL . The mixture was centrifuged and heated at $70^{\circ} \mathrm{C}$ for 10 minutes. After this period, 1 mL of enhanced avian RT, 2 mL 10X buffer, 1 mL RNase inhibitor, and nuclease-free water were mixed into each sample. Samples were incubated at $25^{\circ} \mathrm{C}$ for 15 minutes, followed by incubation at $45^{\circ} \mathrm{C}$ for 50 minutes to allow the conversion reaction. The RT-PCR reaction included $12.5 \mu 1$ Master Mix (JumpStartTM REDTaq Ready Mix), $1.0 \mu \mathrm{l}$ forward Primer $(10 \mu \mathrm{M}), 1.0 \mu \mathrm{l}$ Reverse Primer $(10 \mu \mathrm{M}), 4.0 \mu \mathrm{l}$ cDNA, and $6.5 \mu \mathrm{l}$ RNase free dH 2 O . The PCR cycling conditions were one cycle of initial denaturation for 10 min at $95^{\circ} \mathrm{C} ; 40$ cycles of denaturation for 15 sec at $95^{\circ} \mathrm{C}$; annealing for 30 sec at $60^{\circ} \mathrm{C}$; and extension for 30 sec at $72^{\circ} \mathrm{C}$. $\beta$-actin was used as an endogenous control. The next primer sequences were used: for RBPMSA forward, 5'- TTCACTGCATGCCCAGATGC-3', and reverse, 5'-TTCAGCAGAACTGACGGGAC-3'; RBPMSB forward, 5'CCCAGCTCTGTGAAGGTCAG-3', and reverse, 5'-GCACTATCAGGAGACGGAGC-3'; RBPMSC forward, 5'ACACACCTGTCTTTTGTCC ACT-3', and reverse, $5^{\prime}$-TGCTGGTCTGCAGTAGGTTG-3'; total RBPMS (RBPMST): forward, 5'-CTGTACCCAGCGGAGTTAGC-3', and reverse, 5'-GTGAAGCGGGATAGGTGAAA- $3^{\prime}$; and $\beta$-actin forward, $5^{\prime}$-GAACCCTAAGGCCAAC- $3^{\prime}$, and reverse, $5^{\prime}$-TGTCACGCACGATTTCC- $3^{\prime}$ '. The next primer sequences were used: for pri-miR-21
experiment: forward, 5'-CATTGTGGGTTTTGAAAAGGT-3', and reverse, 5'-CCACGACTAGAGGCTGACTTAGA- $3^{\prime}$. The PCR products were separated in $3 \%$ tris-borateethylenediaminetetraacetic acid (TBE) agarose gel ( $1 \% \mathrm{EtBr}$ ). Bands were imaged using a gel imager (Gel Doc XR+, Bio Rad).

### 3.4 Stable transfection for RBPMS expression

A2780CP20 cells were seeded in 6 well plates at a concentration of $3.5 \times 104$ cells $/ \mathrm{mL}$ and incubated at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. The next day, pTPC (V123)-RBPMSA (1.0 $\mu \mathrm{g}$ ), pTPC (V123)RBPMSC or an Empty Vector (1.0 $\mu \mathrm{g}$ ) pTCP (V123) (transOMIC Technologies, Huntsville, AL) (See figure: 6) were transfected into the cells using MegaTran 1.0 transfection reagent ( $1: 1 \mathrm{v} / \mathrm{v}$ ) (OriGene, Rockville, MD). Twenty-four hours later, the culture media was replaced by RPMIcontaining puromycin $(2.2 \mathrm{mg} / \mathrm{mL})$. The pTCP plasmid contains a puromycin resistance cassette, which was used for mammalian cell clone selection and maintenance. Individual clones were picked up and grown in independent flasks. RBPMS expression levels in each clone were measured by western blot analysis. These RBPMS overexpressing cells are referred to as A2780CP20-RBPMSA and A2780CP20-RBPMSC clones.


Figure 6. pTPC map vector. Mammalian cell vector with a puromycin resistance marker, for expressing a cDNA from the CMV promoter.

### 3.5 Colony formation, cell growth curve and cell viability assays

Cell proliferation was assessed by colony formation assays. One thousand cells of each: A2780CP20-RBPMSA, A2780CP20-RBPMSC or A2780CP20-Empty Vector (A2780CP20-EV) clones were seeded in $10-\mathrm{cm}$ Petri dishes ( $2.0 \times 10^{4}$ cells $\left./ \mathrm{mL}\right)$. Seven to ten days later, colonies were stained with $0.5 \%$ crystal violet in methanol. Colonies of more than 50 cells were counted in five random fields (10X), using the Nikon Eclipse TS100 micro-scope (Nikon, Minato, Tokyo, Japan). The percentage of colonies was calculated, relative to the number of colonies in the A2780CP20-EV plate, which was considered as $100 \%$. For cell viability, cells ( $3.5 \times 10^{4}$ cells $/ \mathrm{mL}$ ) were seeded into 96 -well plates and 24 hours later, exposed to different concentrations of cisplatin $(0.1 \mu \mathrm{~g} / \mathrm{ml}, 1.0 \mu \mathrm{~g} / \mathrm{ml}, 10 \mu \mathrm{~g} / \mathrm{ml}, 25 \mu \mathrm{~g} / \mathrm{ml}, 50 \mu \mathrm{~g} / \mathrm{ml}, 100 \mu \mathrm{~g} / \mathrm{ml})$ and incubated for 72 hours
(Sigma-Aldrich, St. Louis, MO, USA). After this period of time, the medium was removed and $100 \mu 1$ of Alamar blue (Invitrogen) dye was added. The optical density (OD) values were obtained spectrophotometrically in a plate reader (BioRad, Hercules, CA, USA) after a maximum of 4 hr of dye incubation. In all cases, percentages of cell viability were obtained after blank OD subtraction, taking the untreated cells values as a normalization control. For cell growth, curve cells ( $2.0 \times 104$ cells $/ \mathrm{mL}$ ) were seeded in $10-\mathrm{cm}$ Petri dishes and incubated for 24 hours at $37^{\circ} \mathrm{C}$. Cells were detached with Trypsin $(0.25 \%)$ at $37^{\circ} \mathrm{C}$, stained with $0.5 \%$ trypan blue solution, and counted in triplicates in 24-hour intervals for 96 hours after plating with a hemocytometer. The effect of RBPMS A and C in cell growth, in combination with cisplatin, was assessed with clonogenic assays. Cells $\left(5.0 \times 10^{3}\right)$ were plated in a six well plate, and twenty-four hours later, cisplatin $(2 \mu \mathrm{M}$, final concentration) was added to the cells. Twenty-four hours after, cells were detached and 2.0 x $10^{4}$ cells $/ \mathrm{mL}$ was seeded onto $10-\mathrm{cm}$ Petri dishes containing RPMI- 1640 medium ( $10 \%$ FBS, $0.1 \%$ antibiotic/antimycotic solution), and incubated at $37^{\circ} \mathrm{C}$. Seven to ten days later, colonies were stained with $0.5 \%$ crystal violet in methanol. Colonies with more than 50 cells were counted in five random fields (10X), using the Nikon Eclipse TS100 microscope (Nikon, Minato, Tokyo, Japan). The percentage of colonies was calculated relative to the number of colonies in the A2780CP20-EV plate, which was considered as $100 \%$.

### 3.6 Migration and Invasion Assays

Cell migration was measured with the wound healing assay and cell invasion by the matrigel transwell method, as previously described [147, 175]. For invasion assay, cells ( $3.5 \times 10^{4}$ cells $/ \mathrm{mL}$ ) were seeded into 6-well plates. The next day, Matrigel (BD Biosciences, San Jose, CA, USA) in serum-free medium was added onto the upper chambers of 24 transwell plates and incubated at $37{ }^{\circ} \mathrm{C}$ for polymerization. Clones and controls cells were collected and resuspended in serum-free medium, and re-seeded onto the Matrigel-coated chamber. Medium containing $10 \%$ FBS was added to the lower part of the wells and plates were incubated for 48 hours at $37{ }^{\circ} \mathrm{C}$. Then, the medium was removed, and cells that had invaded through the Matrigel were fixed and stained using the Protocol Hema 3 Stain Set (Fisher Scientific, Kalamazoo, MI, USA). The invading cells were counted at 20X using an Olympus 1X71 microscope equipped with a digital camera (Olympus DP26). The cell invasion percentages were calculated by assuming the A2780CP20-EV values in terms of $100 \%$ cell invasion. For the wound healing assay, cells were seeded into 6 -well plates and scraped with $200 \mu 1$ pipette tips. The plates were washed with PBS to remove detached cells and then, incubated with the proper growth media for 24 hours. Cell migration was observed under a phase contrast microscope at 20X magnification at 0,12 and 24 hours post-induction of injury. Migrated cells in the clean area in each of the five random fields were measured and quantified, using Nikon Eclipse Ts2R microscope with the Nikon DS-Qi2 camera and subsequently, analyzed with the NIS-Element Microscope Software.

### 3.7 Mice Experiments

Female BALB/c nude mice (4-6 weeks of age) were purchased from Taconic Biosciences (Rensselaer, NY, USA). Cells $(2.0 \times 106$ cells $/ 200 \mu \mathrm{~L}$ in PBS/Matrigel mixture) were subcutaneously injected into the right dorsal flank. The tumor growth was monitored with a Vernier caliper, three times per week. Tumor volumes were calculated using the following formula: volume $=(\mathrm{L} \times \mathrm{W} \times \mathrm{H}) \times 0.5$, where L is the length (longest diameter), W is the weight (thickness), and H is the height (shorter diameter). The size and weight of the tumors, as well as number of nodules, were recorded. Animal handling and research protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Puerto Rico, Medical Sciences Campus on 25 January 2022 (protocol number: A870110).

### 3.8 Immunohistochemistry

Pieces of tumors, collected from mice experiments, were fixed on paraffin blocks and sectioned ( $5 \mu \mathrm{~m}$ thick). The slides were then deparaffinized, rehydrated, and immersed in distilled water with $3 \%$ hydrogen peroxidase to suppress endogenous peroxidase activity. Antigen retrieval of tissue sections was performed by microwave treatment in an antigen unmasking solution (Vector Laboratories, Inc, Burlingame, CA) for 15 minutes. Sections were incubated with RBPMS antibody, proliferation antibody Ki67, or anti-VEGF antibody CD31 (Abcam, Cambridge, MA) at a dilution of 1:100, 1:500 and 1:100 respectively; in Dako antibody diluent (Dako North America Inc, Carpinteria, CA), overnight at $4^{\circ} \mathrm{C}$. Subsequently, the Envision peroxidase-labeled polymer (goat anti-mouse; Dako North America Inc, Carpinteria, CA) was applied to the sections and
signals were developed with diaminobenzidine (DAB) chromogen. Three slides per mice were analyzed. Images from five microscopic fields per slide were taken using an Olympus 1X71 microscope equipped with a digital camera (Olympus DP26). The immunoreactivity was estimated and compared using Student's t-test for comparing two groups, and by ANOVA for multiple group comparisons. P-values of $<0.05$ were considered statistically significant.

### 3.9 Senescence-Associated $\boldsymbol{\beta}$-Galactosidase Activity

Senescence was measured with the beta-galactosidase ( $\beta$-Gal) Detection Kit from Abcam (catalog \#AB176721). The fluorescein di- $\beta$-D-galactopyranoside (FDG) substrate kit generates a fluorescent product that can be measured. In brief, cells were collected, lysed with protein lysis buffer, and diluted for a final protein concentration of $1 \mu \mathrm{~g} / \mathrm{mL}$. The protein samples were incubated with FDG for four hours. After incubation, a stop buffer was added, and fluorescence was quantified in a Thermo Scientific Varioskan Flash spectral reader machine at 490 nm excitation and 525 nm emission. $\beta$-Gal levels of each sample were calculated with respect to the $\beta$-galactosidase standard curve prepared for each experiment. To assess the senescence associated $\beta$-galactosidase staining, 30,000 cells of each cell type (A2780-CP20, A2780CP20-EV, A2780CP20-RBPMSA (clones 7 and 8) and A2780CP20-RBPMSC (clones 3.3 and 3.10) per well in a 6 -well plate, were seeded. Twenty-four hours later, the $\beta$-galactosidase staining was assessed using a senescence detection kit (Ab65351, Abcam, Cambridge, MA, USA), following the manufacturer's recommendations. Cell images were taken at 20X with an Olympus 1X71 microscope.

### 3.10 RNA Sequencing Library Preparation, Data Processing, and Statistics

For RNA sequencing library preparation, total RNA was extracted from cell pellets using the Qiagen RNeasy Kit (Cat \#74004). The RNA quality was verified sing Agilent RNA TapeStation, and 1 ug of high-quality RNA was used for polyA mRNA enrichment (RIN > 9.7). The NEBNext polyA mRNA magnetic isolation module (NEB \#E7490) was used for purification of the polyA mRNAs, according to the manufacturer's protocol. The isolated mRNA was then fragmented into $\sim 200 \mathrm{bp}$ fragments and further purified for the library preparation. cDNA preparation and adaptor ligation were performed, according to the manufacturer's protocol. The resulted DNA was amplified for eight PCR cycles. The final library was purified using NEBnext sample purification beads, and quality control was performed using Agilent HS-DNA Tapestation analysis. The samples were multiplexed for a final concentration of 5 nM and sequenced on the IlluminaNovaseq platform. Files containing RNA sequencing reads were adapted and qualitytrimmed, using Trim-Galore-0.6.0. Bowtie2 (version 2.2.9) was used to remove contaminating reads from ribosomal RNA and transfer RNA [176, 177]. The trimmed and contamination-filtered reads were mapped to the hg38 genome (GENCODE Release 31) using STAR aligner version 2.5.2a, and a count matrix was obtained using the "Gene Counts" option [178]. The DESeq2 (version 1.28.1) package was used to perform a differential expression analysis, using R version 4.0.1 [179]. The Ensembl IDs were converted to gene symbols and names, using the org.Hs.eg.db package (version 3.11.4). Significance was set at an FDR-adjusted p-value $<0.05$ and fold change $\geq|2.0|$.

### 3.11 RNA Seq validation by SYBR-Green Based qRT-PCR

A custom-made 384 -well plate containing pre-designed forward and reverse primers was purchased from Bio-Rad (Hercules, CA, USA). Total RNA was isolated from A2780CP20-EV, RBPMSA, and RBPMSC overexpressing clones, using the GenElute Mammalian Total RNA Mini Kit (Millipore-Sigma, St. Louis, MO, USA) following the manufacturer's instructions. RNA was reverse transcribed with the iScript Reverse Transcription Supermix for RT-qPCR from Bio-Rad. SYBR Green-based qPCR was performed using the SsoAdvanced ${ }^{\text {TM }}$ Universal SYBR® ${ }^{\circledR}$ Green Supermix (Bio-Rad) and a CFX384 Touch Real-Time PCR detection system. Fold-changes and cycle threshold $(\mathrm{Ct})$ values were calculated by the instrument's internal software relative to A2780CP20-EV samples, and normalized to $\beta$-actin along with controls for gDNA, PCR reaction, RT reaction, and RNA quality.

### 3.12 Immunoprecipitation (IP) studies

IP was performed, as previously described [180]. Cells were collected, lysed in lysis buffer ( 50 mM Na -Hepes ( pH 7.5 ), $150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EdTA), and disrupted by pipetting for $5 \mathrm{~min} .40 \mu \mathrm{~L}$ of cleared supernatant was mixed with $15 \mu \mathrm{~L}$ anti-FLAG M2 affinity gel (SigmaAldrich), and incubated with gentle rotation at $4{ }^{\circ} \mathrm{C}$ for two hours. After supernatant removal, beads were washed out twice with wash 1 buffer ( 50 mM Na -Hepes, $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 1$ mM EDTA, $0.5 \%$ Triton X-100, $6 \%$ Glycerol, 0.5 mM DTT, 1 mM PMSF) and once with wash 2 buffer ( 50 mM Na-Hepes, $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, $6 \%$ Glycerol, 1 mM PMSF). Then, proteins were eluted with $200 \mu \mathrm{~L}$ flag elution buffer ( 25 mM Na -Hepes, $\mathrm{pH} 7.5,100 \mathrm{mM}$
$\mathrm{NaCl}, 0.2 \mathrm{mg} / \mathrm{mL} 3 \times$ FLAG peptide; Sigma Aldrich). Eluent was analyzed by western blot to confirm the RBPMS co-immunoprecipitation. The samples were analyzed by mass spectrometry (San Juan, PR, USA).

### 3.13 Mass Spectroscopy (Proteomics), Data Processing, and Statistics

Sample Preparation for $L C-M S / M S$ : Protein extracts $(50 \mu \mathrm{~g})$ of the IPs were mixed with 2X sample buffer ( $95 \%$ Laemli $/ 5 \% \beta$-mercaptoethanol) and heated at $70^{\circ} \mathrm{C}$ for 10 minutes, followed by SDS-PAGE. The gels were Coomassie-stained, and proteome bands were cut out. Gel pieces were distained by incubation with 50 mM ammonium bicarbonate $/ 50 \%$ Acetonitrile solution at $37^{\circ} \mathrm{C}$ for 2 hrs . Afterwards, samples were reduced with Dithiothreitol ( 25 mM DTT in 50 mM Ammonium Bicarbonate) at $55^{\circ} \mathrm{C}$, alkylated with Iodoacetamide ( 10 mM IAA in 50 mM Ammonium Bicarbonate) at room temperature in the dark, and digested with Trypsin (Promega) overnight at $37^{\circ} \mathrm{C}$. Trypsin/Protein ratio used for optimal digestion was $1: 50$. The next day, digested peptides were extracted out of the gel pieces, using a mixture of $50 \%$ acetonitrile / $2.5 \%$ formic acid in water. Extracts were reconstituted for MS analysis, using $0.1 \%$ formic acid in water (Buffer A) and a small portion was transferred to a special sample vial for injection into the instrument.

LC-MS/MS Analysis Easy-nLC1200 (Thermo Fisher Scientific): For peptide separation, a PicoChip H354 REPROSIL-Pur C18-AQ $3 \mu \mathrm{~m} 120$ A ( $75 \mu \mathrm{~m} \times 105 \mathrm{~mm}$ ) chromatographic column was used. The separation was achieved using a gradient of $0.1 \%$ of formic acid in $80 \%$ acetonitrile (Buffer B) from $5 \%$ to $95 \%$ twice, in a total time frame of 69 minutes. Flow rate was set at 300 $\mathrm{nl} / \mathrm{min}$ with a maximum pressure of 300 bar, and the injection volume was of $2 \mu \mathrm{~L}$ per sample. Q -

Exactive Plus (Thermo Fisher Scientific) was operated in positive polarity mode and datadependent mode. The full scan/MS1 was measured over the range of 400 to $1600 \mathrm{~m} / \mathrm{z}$. The MS2 was configured to select the 10 most intense ions for fragmentation (resolution 17,500; AGC target 1e5). A dynamic exclusion parameter was set for 15 seconds.

Database analysis: The raw data was analyzed using Proteome Discoverer (PD) software version 2.5. The files were searched with a Human (Homo sapiens Tax ID=9606) database, downloaded through the software's protein center, last updated on July 30, 2021. A dynamic modification for oxidation $+15.995 \mathrm{Da}(\mathrm{M})$ and a static modification carbamidomethyl +57.021 $\mathrm{Da}(\mathrm{C})$ generated by the alkylation during processing were included in the parameters for the search.

### 3.14 Clustering and Network Analysis

To determine the functional networks and pathways associated with the differentially abundant transcripts, IPA (Ingenuity Systems, Qiagen, Redwood City, CA, USA) was performed. The cutoff for considering significance in the genes and proteins in the IPA CORE analysis, was based on a fold change $\geq|2.0|$ and $p$-value $\leq 0.05$; the human was considered as the model organism for annotations [181]. Network and canonical pathway enrichment analyses were performed using Metascape a Gene Annotation \& Analysis Resource, filtering for all tissues, cell lines, and human species [182].

### 3.15 Kaplan-Meyer (KM) Survival Analysis

KM survival analysis was performed using publicly available gene chip and RNA-Seq datasets in the KM plotter database (www.kmplot.com) [183]. For each gene symbol, a probe ID was selected, and the ovarian cancer patients were categorized into high- and low-expression groups, based on the RNA expression median values of the dataset. For genes with multiple probes, the best probe was selected. All available datasets were used for survival analysis. KM survival plots for OS and PFS were generated with their respective hazard ratios (HRs), confidence intervals (CIs), and p-values (log-rank). p-values $<0.05$ were considered statistically significant.

### 3.16 Small interference RNA (siRNA) transfection

To silence human RBPMS (NM_001008710) two siRNAs targeting the sequences: $5^{\prime}$ -GGGCTATGAGGGTTGTGTT-3', and 5'-AAGAGAAACCCTCATAGCC-3' were used (SigmaAldrich Cat\# SASI_Hs01_00024546 and SASI_Hs01_00024547). A non-silencing siRNA (NCsiRNA) was used as the negative control (Sigma-Aldrich). In brief, A2780CP20-RBPMSA, A2780CP20-RBPMSC, A2780CP20-RBPMS-EV ( $3.5 \times 10^{4}$ cells $/ \mathrm{mL}$ ) were seeded in petri dishes. Twenty-four hours later, 200 nM of siRNA (final concentration) were mixed with using MegaTran 1.0 transfection reagent ( $1: 1 \mathrm{v} / \mathrm{v}$ ) (OriGene, Rockville, MD) at 1:2 ratio (siRNA:transfection reagent) in Opti-MEM I growth medium. The mix was incubated for 15 minutes at room temperature and added to the cells. Cells were collected after 24 hours and RBPMS expression levels in each clone were measured by western blot analysis.

### 3.17 Statistical analysis

All experiments were performed in triplicates and analyzed using GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA). Statistical differences were determined using a 2-tailed, unpaired Student's t-test, and one-way and two-way ANOVA tests were performed as per the requirement of the analysis $* \mathrm{p} \leq 0.05,{ }^{* *} \mathrm{p} \leq 0.01,{ }^{* * *} \mathrm{p} \leq 0.001,{ }^{* * * *} \mathrm{p} \leq 0.0001$. p -value of less than 0.05 was considered statistically significant.

## Chapter 4. Results

### 4.1 RBPMSA and RBPMSC protein levels are reduced in cisplatin resistance ovarian cancer cell lines

To assess the protein and mRNA levels of RBPMS splice variants, Western blots and realtime PCR was performed. The protein levels of RBPMSA and RBPMC levels were negligible in the cisplatin-resistant ovarian cancer cell lines (A2780CP20, A2780CIS, and OVCAR3CIS), when compared with their cisplatin-sensitive counterparts (A2780 and OVCAR3) (Figure 7A). The half maximal inhibitory concentration (IC50) values of these cells to cisplatin have been published [174]. Densitometric analysis of the band intensities confirmed the observation (Figures 7B and 7C). RT-PCR results showed that mRNA levels of RBPMSA and RBPMSC were also significantly lower in cisplatin resistant ovarian cancer cells, as compared with cisplatin-sensitive ovarian cancer cells (Figures 7D and 7E). Also, densitometric analyses of the PCR bands in the agarose gels confirmed the findings (Figures 7F and 7G). RBPMSA and RBPMSC levels in cisplatinresistant ovarian cancer cells are reduced not only at protein level, but also at the transcriptional level. Levels of RBPMSB were not detected in cisplatin-sensitive ovarian cancer cells lines at the
mRNA and protein levels. Therefore, the focus was narrowed to the RBPMSA and RBPMSC
splice variants.


7B




Figure 7. Protein and mRNA levels of RBPMS splice variants in ovarian cancer cell lines and stable transfected clones. (A) Western blot analysis was performed with $50 \mu \mathrm{~g}$ protein extracts and $\beta$-actin was used as a loading control. (B and C) Densitometry analysis of band intensities, shown in Figure 7A. (D and E) RTPCR was performed, starting with 100 ng of total RNA. DNA products were separated in $2 \%$ agarose gel electrophoresis and the gel was stained with Ethidium bromide. (F and G) Densitometry analysis of band intensities, shown in Figures 7D and 7E. Fold changes at the protein and mRNA levels were calculated relative to the cisplatin sensitive cell pairs. Bars: averages $\pm$ SEM of three in-dependent experiments. (H and I) Western Blot images obtained with $50 \mu \mathrm{~g}$ of proteins, extracted of RBPMS and RBPMSC overexpression clones. (J and K) Densitometry analysis of band intensities, shown in Figures 7H and 7I. Fold changes in protein levels were calculated relative to the A2780CP20-EV clones. * $\mathrm{p}<0.05$, ${ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001,{ }^{* * * *} \mathrm{p}<0.0001$.

### 4.2 Ectopic expression of RBPMSA and RBPMSC decreased cell growth and proliferation of cisplatin resistant ovarian cancer cells

Since RBPMSA and RBPMSC were dramatically reduced in cisplatin resistant ovarian cancer cells in contrast to cisplatin sensitive cells, the biological consequences of overexpressing each RBPMSA and RBPMSC in A2780CP20 and OVCAR3CIS cells was studied. A2780CP20 cells were stable transfected and OVCAR3CIS were transiently transfected with RBPMSA or RBPMSC plasmids. Figures 7 H and 7 I are Western blots that show the protein levels of A2780CP20-RBPMSA ( 21.8 kDa ) or A2780CP20-RBPMSC ( 24.2 kDa ) clones. Figure 7 J and 7 K are densitometric analyses of the Western blot images' band intensities. In the clonogenic assays, a significant reduction was observed in the number of colonies formed by cells that overexpressed

RBPMSA or RBPMSC $\left({ }^{* * *} \mathrm{p}<0.001\right.$ and $* * * * \mathrm{p}<0.0001$, respectively), compared with A2780CP20-EV clones (Figures 8A and 8B). Moreover, the size of the colonies (Figures 8C and 8D) formed by A2780CP20-RBPMSA or A2780CP20-RBPMSC overexpressing clones were significantly smaller when compared with A2780CP20-EV clones $\left(* * * * p<0.0001\right.$ and ${ }^{* *} \mathrm{p}<0.01$, respectively). Figure 8E is a Western blot, showing the overexpression of each RBPMS isoform in OVCAR3CIS. The bands close to 21.8 kDa correspond to RBPMSA, and the band close to 24.2 kDa corresponds to OVCAR3CIS-RBPMSC. These increases in molecular weight are due to the additional 12 aminoacids of a DDK-Tag sequence. Overexpression of RBPMSA and RBPMSC in OVCAR3CIS resulted in a significant reduction in the number of colonies, and the colony sizes compared with OVCAR3CIS-EV clones $\left({ }^{* * *} \mathrm{p}<0.001^{* * * *} \mathrm{p}<0.0001\right)$ (Figure 8 F and 8 G ). The effect of RBPMSA and RBPMSC overexpression on cell growth rates was also tested. Figure 8 H shows that both A2780CP20-RBPMSA and A2780CP20-RBPMSC grew slower than the A2780CP20-EV clones. Together, these results suggest that increased levels of RBPMSA and RBPMSC reduce cell proliferation in cisplatin resistant ovarian cancer cells.



Figure 8. Effect of RBPMSA and RBPMSC overexpression in cell growth, proliferation, invasion, and migration. (A and B) Colony formation assay. Percentages of clonogenicity were calculated relative to A2780CP20EV cells. (C and D) Colony Size. Percentages of size measures were calculated relative to A2780CP20-EV cells. (E) OVCAR3CIS were transiently transfected with RBPMSA, RBPMSC, or an empty vector. A concentration of $50 \mu \mathrm{~g}$ of protein extracts was used to perform Western blots, and $\beta$-actin was used as a loading control. The increases in molecular weight of the RBPMSA and RBPMSC bands correspond to the additional 12 amino acids of the DDK-Tag sequence. (F) Colony formation assay. Percentages of clonogenicity were calculated relative to OVCAR3CIS-EV cells. (G) Colony Size. Percentages of size measures were calculated relative to OVCAR3CIS-EV cells. (H) Cell growth curves cells $\left(2.0 \times 10^{4}\right.$ cells $\left./ \mathrm{mL}\right)$ were seeded in a 10 cm Petri, detached with Trypsin $(0.25 \%)$ at $37^{\circ} \mathrm{C}$, stained with $0.5 \%$ trypan blue solution, and counted in triplicates every 24 h for 96 h after plating using a hemocytometer.

### 4.3 RBPMSA overexpression increased the sensitivity of ovarian cancer cells to cisplatin treatment

The next aim was to determine whether the overexpression of RBPMSA or RBPMSC splice variants increased the sensitivity of ovarian cancer cells to cisplatin treatment. A2780CP20-

RBPMSA (clone 7 IC50: $29.77 \mu \mathrm{~g} / \mathrm{ml}$ and clone 8 IC50: $30.03 \mu \mathrm{~g} / \mathrm{ml}$ ) showed an increase in cisplatin sensitivity compared with the control, A2780CP20-EV (IC50: $57.73 \mu \mathrm{~g} / \mathrm{ml}$ ) (Figure 9A).

However, A2780CP20-RBPMSC (clone 3.3 IC50: $53.42 \mu \mathrm{~g} / \mathrm{ml}$ and clone 3.10 IC50: $56.69 \mu \mathrm{~g} / \mathrm{ml}$ ) did not show a significant increase in cisplatin sensitivity compared to A2780CP20-EV (IC50: $58.99 \mu \mathrm{~g} / \mathrm{ml}$ ). (Figure 9B). A similar tendency was observed in OVCAR3CIS cells, as the obtained overexpression of RBPMSA in these cells exhibited an increase in cisplatin sensitivity (IC50: $18.89 \mu \mathrm{~g} / \mathrm{ml}$ ), compared with OVCAR3CIS-EV (IC50: $33.01 \mu \mathrm{~g} / \mathrm{ml}$ ) cells. OVCAR3CIS cells with RBPMSC overexpression did not show increases in cisplatin sensitivity (IC50: $31.69 \mu \mathrm{~g} / \mathrm{ml}$ ) compared to OVCAR3CIS-EV cells (Figure 9C). Together, these results suggest that RBPMSA levels, but not RBPMSC levels, increase the sensitivity of ovarian cancer cells to cisplatin treatment.




Figure 9. Viability Assays. (A and B) A2780CP20-EV, A2780CP20-RBPMSA (clones 7 and 8), and A2780CP20RBPMSC (clones 3.10 and clones 3.3) and (C) OVCAR3CIS-EV, OVCAR3CIS-RBPMSA, and OVCAR3CISRBPMSC transiently transfected cells (all at $3 \times 104$ cell $/ \mathrm{mL}$ ) were exposed to different concentrations ( $0.1 \mu \mathrm{~g} / \mathrm{mL}$, $1.0 \mu \mathrm{~g} / \mathrm{mL}, 10 \mu \mathrm{~g} / \mathrm{mL}, 25 \mu \mathrm{~g} / \mathrm{mL}, 50 \mu \mathrm{~g} / \mathrm{mL}$ and $100 \mu \mathrm{~g} / \mathrm{mL}$ ) of cisplatin for 72 h . Percentages of cell viability were calculated relative to EV cells.

### 4.4 RBPMSA and RBPMSC overexpression decreased the migration and the invasion ability of ovarian cancer cells

RBPMS knockout has been associated with increased invasion ability in ovarian cancer [147]. The effect of RBPMSA and RBPMSC overexpression in the migration and invasiveness potential in ovarian cancer cells, was assessed. In transwell invasion assays, A2780CP20RBPMSA decreased the invasion capacity of the cells in clones $7(* * * * p<0.0001)$ and 8 (**** ${ }^{2}<0.0001$ ) when compared with the A2780CP20-EV clone. Similarly, results were observed in A2780CP20-RBPMSC clones 3.3 (**** $\mathrm{p}<0.0001$ ) and $3.10(* * * * \mathrm{p}<0.0001)$. Remarkably, the number of invaded cells in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones were 50\% less than with the A2780CP20-EV clones (Figure 10A). In the wound healing assays, the A2780CP20-RBPMSA and A2780CP20-RBPMSC clones lost their ability to migrate, as shown in Figure 10B. Significant migration of cells was noted only with the A2780CP20-EV clones (Figure 10B). This data suggests that RBPMSA and RBPMSC significantly reduced the invasive and migration ability of cells when compared to A2780CP20-EV clones.



Figure: 10. Cell invasion and migration assays. (A) Percentages of invasion were calculated relative to A2780CP20EV cells. Bars represent the means of triplicates $\pm$ S.E.M. (B) Representative images of scratch wound healing assays at 0,12 , and 24 h . Bars in the graph of ( L ) represent the area between the black lines in $\mu \mathrm{m}^{2}$ in the cell migration images. Bars: mean of triplicates $\pm$ S.E.M. $* \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001, * * * * \mathrm{p}<0.0001$ and ns $=$ not significant.

### 4.5. RBPMSA and RBPMSC Overexpression Decreased the Senescence-Associated $\beta$ Galactosidase Levels

Evidence indicates that the acquisition of drug resistance by cancer cells is accompanied by senescence phenotypes [174]. Thus, further research was done to know if RBPMSA or RBPMSC overexpression promotes senescence phenotypes in ovarian cancer cells. Lower SA- $\beta$ Gal positive staining cells were observed in A2780CP20-RBPMSA or A2780CP20-RBPMSC clones, compared with A2780CP20-EV clones (Figure 11A). Figure 11B shows the number of SA- $\beta$-Gal-positive cells registered in Figure 3A, which confirmed our observations. The senescence-associated beta-galactosidase ( $\beta$-Gal) levels were also quantified in A2780CP20-EV, A2780CP20-RBPMSA, and A2780CP20-RBPMSC clones. Smaller $\beta$-Gal levels were detected in A2780CP20-RBPMSA (* $\mathrm{p}<0.1$ ) or A2780CP20-RBPMSC ( ${ }^{* *} \mathrm{p}<0.01$ ) clones compared with A2780CP20-EV clones (Figure 11C). Increased levels of p21, p38, and p53 are associated with senescence phenotypes of cancer cells [174]. Figure 11D shows that the p53 and p38 protein levels were reduced in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones, as compared with A2780CP20-EV clones or with A2780CP20 cells. Densitometry analysis of band intensities are shown in Figures 11E and 11F. P21 protein expression was not observed in A2780CP20 cells nor the clones.


11B


11C


$11 E$


11F


Figure 11. Effect of RBPMSA and RBPMSC overexpression on senescence. (A) Representative images of SA- $\beta$ -Gal-stained cells. (B) Quantification of the positive SA- $\beta$-Gal-stained cells. Images scale bar: $50 \mu \mathrm{~m}$ (bars: five microscopic fields per condition). Staining was done according to manufacturer's specifications. ${ }^{*} p<0.05$, ** $p<$ $0.01, * * * * p<0.0001$ and ns $=$ no significant. $(\mathbf{C})$ Cells $\left(1 \times 10^{4}\right.$ cells $\left./ \mathrm{mL}\right)$ were plated in Petri dishes. Next day, cells were rinsed with PBS, and protein extracts were prepared at $1 \mu \mathrm{~g} / \mathrm{mL}$ protein concentration. Senescence-associated $\beta$ galactosidase activity (SA- $\beta$-gal) was assessed via fluorescence. $\beta$-galactosidase levels were calculated relative to A2780CP20-EV cells. Averages $\pm$ SEM are shown for three independent experiments. (D) Western blots were performed with $50 \mu \mathrm{~g}$ of protein extracts, and $\beta$-actin was used as a loading control. ( $\mathbf{E}$ and $\mathbf{F}$ ) Densitometry analysis of band intensities shown in (D). Fold changes in protein levels were calculated relative to the A2780CP20-EV clones (** $p<0.01$ ).

### 4.6 Effects of Subcutaneous Implantation of RBPMSA and RBPMSC Overexpressing Cells in tumor growth in an Ovarian Cancer Mouse Model

The effect of RBPMSA or RBPMSC on tumor progression in a subcutaneous ovarian cancer mouse model, was assessed. A2780CP20-RBPMSA (clone 8), A2780CP20-RBPMSC (clone 3.10), and A2780CP20-EV cells (see Figure 7H and 7I) were subcutaneously injected into the right dorsal flank of female athymic mice (Figure 12A). Seven days after cell implantation, tumor size was measured with a Vernier caliper, three times per week for three weeks. Figure 12B shows that the tumors of A2780CP20-RBPMSA and A2780CP20-RBPMSC clones grew slower compared with tumors of A2780CP20-EV clones. At the end of the experiment, the difference in the tumor sizes between A2780CP20-RBPMSA or A2780CP20-RBPMSC and the control group (A2780CP20-EV) was statistically significant ( $* * \mathrm{p}<0.01$, and $* \mathrm{p}<0.05$, respectively). Figure 12 C shows the appearance of the tumors at the end of the experiment. Additionally, tumor weight and the number of nodules showed a statistically significant difference between the A2780CP20RBPMSA or A2780CP20-RBPMSC groups, and the A2780CP20-EV group (Figure 12D and 12E).




Figure 12. Effect of RBPMSA and RBPMSC overexpression on in vivo tumor growth. (A) Graphical image of the in vivo experiment. Mice were subcutaneously injected with A2780CP20-RBPMSA, A2780CP20-RBPMSC, and A2780CP20-EV (Number of mice, $\mathrm{N}=7$ per group). The tumor growth was monitored with a Vernier caliper, three times per week. (B) Tumor size measurements. (C) A visual image of tumor size at the end of the experiment. (D) Tumor weight (E) Number of nudes.

Then, IHC studies were performed to measure the RBPMS protein levels, tumor cell proliferation rates (Ki67), and blood vessel formation (CD31) in tissue sections of the mice tumors (Figure 13A-C). As expected, the RBPMS immunoreactivity was significantly higher for A2780CP20-RBPMSA ( $* * * \mathrm{p}<0.0001$ ) or A2780CP20-RBPMSC ( $* * \mathrm{p}<0.01$ ) tumor tissues compared with A2780CP20-EV tumor tissues (Figure 13A). The tumor tissues of A2780CP20RBPMSA or A2780CP20-RBPMSC overexpressing cells had a significantly lower percentage of Ki67 positive stained cells (proliferative index), compared with tumor tissues of A2780CP20-EV cells (Figure 13B). Tumor tissue sections were also stained with the endothelial CD31 marker to
assess angiogenesis. As shown in Figure 13C, tissues of A2780CP20-RBPMSA ( $* * * * \mathrm{p}<0.0001$ ) or A2780CP20-RBPMSC ( ${ }^{* * * *} \mathrm{p}<0.0001$ ) had a significantly lower percentage of positive blood vessels, as compared with A2780CP20-EV tumor tissues.

## 13A

RBPMS Staining


13B

## KI67 Expression in Mice Tumor Tissue



## 13C CD31 Expression in Mice Tumor Tissue



Figure 13. Representative images of IHC experiments for RBPMS protein levels, proliferation (KI-67), and blood vessel formation (CD31). Microscopy images were taken at $40 \times$ magnification. Red arrow shows a positive cell staining signal with respective antibody. Quantification of RBPMS (13A), CD31 (13B), and KI67 (13C) staining was determined by Image J software. Data is presented as the mean $\pm$ SEM of staining relative to A2780CP20-EV. Significant variations between groups and A2780CP20-EV control were determined by Student's t -test. * $\mathrm{p}<0.05$, $* * \mathrm{p}<0.01, * * * * \mathrm{p}<0.0001$ and $\mathrm{ns}=$ no significant.

### 4.7 Effects of cisplatin in RBPMS overexpressing in cell proliferation

Seeing that the RBPMSA and RBPMSC overexpressing clones dramatically reduced the number of colonies formed by cells, the cells were treated with cisplatin $(2 \mu \mathrm{M})$ to determine whether RBPMS splice variants A and C potentiated cell growth inhibition. In clonogenic assays
presented in Figures 14A and 14B, a significant increase was observed in the number of colonies in cisplatin-untreated than in cisplatin-treated RBPMS splice variants A and C overexpressing clones $\left({ }^{* * * *} \mathrm{p}<0.0001\right.$ and ${ }^{*} \mathrm{p}<0.1$, respectively). In addition, the colony area did not show any statistical significance between A2780CP20-EV treated and untreated with cisplatin. The data suggests that RBPMS A and C overexpressing clones enhance the reduction of colony formation when cells are treated with cisplatin, in comparison with the untreated counterparts, making RBPMS A and C viable options as adjunct treatment for ovarian cancer.



Figure 14: Effect on proliferation of RBPMS splice variants $A$ and $C$ overexpressing clones treated with or without cisplatin. Number of colonies was counted on RBPMSA (clones 7 and 8) and RBPMSC (clones 3.10 and 3.3) treated and not treated with cisplatin. RBPMS spice variant $A$ and $C$ showed significant reduction tendencies $\left({ }^{* * * *} \mathrm{P}<0.0001\right.$ and $* \mathrm{P}<0.1$, respectively) when exposed to cisplatin compared with the untreated condition (Figures 14 A and 14B).

## Aim 2: Results

### 4.8 Ectopic expression of RBPMSA+Tag and RBPMSC+Tag in cisplatin resistant ovarian cancer cells

A2780CP20 cells were stable transfected with pCMV6-RBPMSA or pCMV6-RBPMSC plasmids. Figure 15A and 15C show a western blot of the protein levels of A2780CP20-RBPMSA ( 31.8 kDa ) and A2780CP20-RBPMSC ( 34.2 kDa ) clones. Figure 15B and 15D are densitometric analyses of the Western blot images' band intensities. The increase in molecular weight of the RBPMSA and RBPMSC bands correspond to the additional 12 mino acids of the DDK-Flag-Tag sequence, included in the pCMV6 vector. Moreover, DDK-Flag-Tag sequence was detected in the western blot to corroborate the successful transfection, as seen below in Figures 15A and 15C.



15D


Figure 15: Overexpression of RBPMS+Flag-Tag (DDK) isoform A and C in ovarian cancer A2780CP20 cell line. (A) Western Blot showed overexpression of RBPMSA in A2780-CP20 cells using stable transfection. High density band of 31.8 kDa is visible on clones 1 to 5 in RBPMS A stable transfected clones. (B) Densitometry analysis showed overexpression of RBPMSA band ( 31.4 kDa ) when compared with A2780CP20-EV. (C) Western Blot showed overexpression of RBPMSC in A2780CP20 cells using stable transfection. High density band of 34.8 kDa is visible on clones 1 to 5 in RBPMSC stable transfected clones. (D) Densitometry analysis showed overexpression of

RBPMSC band ( 34.8 kDa ) when compared with A2780CP20-EV. Flag-Tag (DDK) Sequence has been detected to confirm the successful transfection of RBPMSA and RBPMSC clones, figure 15A and 15C lower image.

### 4.9 RBPMSA and RBPMSC interacts with AP-1 members (c-Fos and c-Jun) and Smad's proteins

Evidence indicates that RBPMS binds to AP-1 members [130]. Thus, to assess if this interaction occurs also in ovarian cancer cells, the interaction between RBPMSA and RBPMSC with AP-1 protein members (c-Jun and c-Fos), was investigated. Fu et al. (2015) showed that in breast cancer, each RBPMS isoform interacts differentially with AP-1 members (c-Fos and c-Jun). Particularly, the RNA-recognition motif (RRM) and C-terminus of the RBPMS isoforms (RBPMSA and RBPMSC, but not RBPMSB,) interacted with c-Fos. To elucidate if RBPMSA and RBPMSC interacts with AP-1 protein members in ovarian cancer, an immunoprecipitation (IP) with anti-DDK-antibody was performed, followed by blotting with RBPMS, c-Fos, c-Jun, Smad 2/3, and Smad4 antibodies. RBPMSA and RBPMSC were detected on the immunoprecipitated samples from RBPMSA+Tag clones and RBPMSC+Tag clones (Figure 16A), which indicate successful IP. The DDK Tag signal was also detected which confirmed the positive IP (Figure 16A, lower image). RBPMS or DDK-protein bands in the IP sample from A2780CP20-EV, used as control, was unable to be detected. Similar results were observed in the western blot image from the RBPMSA+Tag clones, RBPMSC+Tag clones, and A2780CP20-EV input samples (Figure 16A, upper image). Moreover, IP assays followed by western blot showed that RBPMSA+Tag and RBPMSC+Tag interacted with c-Fos, c-Jun, Smad 2/3, and Smad 4 (Figures 16B, 16C, 16D and 16E, lower image). As expected, A2780CP20-EV failed to coimmunoprecipitate to members of the AP-1 protein members (c-Fos and c-Jun) or Smad's proteins. c-Fos, c-Jun, Smad 2/3, and Smad 4 antibody signal were detected in the western blots input sample fraction from RBPMSA+Tag clones, RBPMSC+Tag clones and A2780CP20-EV.



Figure 16: Interaction of RBPMSA and RBPMSC with c-Fos, c- Jun, Smad 2/3 and Smad 4. (A) A2780CP20 cells were stable transfected with RBPMSA+Tag and RBPMSC+Tag vector, IP immunoblotting with RBPMS antibody confirmed the successful transfection. (B) RBPMSA+Tag and RBPMSC+Tag cell lysates were immunoprecipitated (IP) with anti-FLAG beads, followed by western blot with the c-Fos antibody. (C) RBPMSA+Tag and RBPMSC+Tag cell lysates were immunoprecipitated (IP) with anti-DDK FLAG beads, followed by western blot with the c-Jun antibody. (D) RBPMSA+Tag and RBPMSC+Tag cell lysates were immunoprecipitated (IP) with anti-DDK FLAG beads, followed by western blot with the Smad4 antibody. (E) RBPMSA+Tag and RBPMSC+Tag cell lysates were immunoprecipitated (IP) with anti-DDK FLAG beads, followed by western blot with the Smad2/3 antibody.

### 4.10 Effect of overexpression of RBPMSA and RBPMS C in pre-mir-21 transcription

MicroRNA-21 (miR-21) is overexpressed in most cancers and has been implicated in tumor initiation, progression, and chemoresistance [162]. Evidence indicates that AP-1 members regulate the expression of miR-21 in ovarian cancer cells [168]. Since RBPMS isoforms binds to AP-1 members, the study sought to determine if RBPMS splice variants regulate this molecular pathway. Thus, the effect of RBPMSA or RBPMSC ectopic expression in pre-mir-21 transcription, was explored. As showed in the agarose gel (Figure 17A), expression of RBPMSA or RBPMSC decreased pre-mir-21 expresion when compared to A2780CP20-EV, which was used as the control. Densitometric analysis of the bands in agarose gel confirmed these observations (Figure 17B). To validate these results, RBPMS was knocked down with small-interference RNAs
(siRNAs). In Figures 17B and 17C, RBPMS-targeted siRNA-1 and siRNA-2 (see sequences in the "Material and Methods" section) was successfully reduced more than $50 \%$ of the RBPMS expression in the RBPMS overexpressed clones, compared with the untreated sample and the samples treated with a negative control siRNA. After the transfection with the siRNAs, cells and isolated the total RNA were collected from each experimental condition. RT-PCR was performed to detect changes in the pre-mir-21 levels after RBPMS siRNA transfection. As shown in Figure 17E and their corresponding densitometric analysis (Figure 17F), increased levels of pre-mir-21 were obtained in RBPMSA clones, after siRNA treatment when compared with RBPMSA-NC samples. Moreover, band intensity appears to be similar for A2780CP20-NC, A2780CP20-siRNA, and A2780CP20-EV. The NC-siRNA did not increase pre-mir-21 expression levels in RBPMSA overexpressing clones. The same experiments were performed with RBPMSC clones. As shown in Figure 17 G and its corresponding densitometric analysis, Figure 17 H , increased levels of pre-mir-21 were obtained in RBPMSC clones after siRNA treatment, when compared with RBPMSCNC and A2780CP20-EV siRNA. Also, band intensity looks similar for A2780CP20-NC, A2780CP20-siRNA, and A2780CP20-EV. The NC-siRNA did not increase pre-mir-21 expression levels in RBPMSC overexpressing clones. The attained data suggests that RBPMSA and RBPMSC control the AP-1-mediated pre-mir-21 expression in ovarian cancer cells.


17B


17C



17F



Figure 17: Effect of RBPMSA or RBPMSC on pri-mir-21 mRNA levels. (A and B) RT-PCR and densitometric analyses of the band intensities. The pre-mir-21 mRNA levels decreased when RBPMSA or RBPMSC were overexpressed in A2780CP20 clones. (C and D) SiRNA-mediated RBPMS knockdown. The western blots showed that the two RBPMS-targeted siRNAs successfully reduced by more than $50 \%$ the RBPMS expression. (E and F) RTPCR gel ( $2 \%$ agarose) for pre-mir-21, after siRNA transfection of RBPMSA overexpressing cells. An increase in the pre-mir-21 levels is observed in RBPMSA clones. However, pre-mir-21 expression levels were still similar in A2780CP20-NC, A2780CP20-siRNA, A2780CP20-EV-NC and A2780CP20-EV-siRNA samples. (G and H) RTPCR gel ( $2 \%$ agarose) for pre-mir-21 after siRNA transfection in RBPMSC overexpressing cells. An increase in the pre-mir-21 levels in RBPMSC is observed in de agarose gel. However, the pre-mir-21 expression levels were still similar in the A2780CP20-NC, A2780CP20-siRNA, A2780CP20-EV-NC and A2780CP20-EV-siRNA samples.

### 4.11 Identification of RBPMSA and RBPMSC downstream signaling pathways by RNAseq

To further identify additional downstream effectors of each RBPMS splice variant, RNAseq was performed with total RNA that was extracted from A2780CP20-EV, A2780CP20RBPMSA, and A2780CP20-RBPMSC overexpressed clones. 16,968 RNA transcripts were initially identified in the A2780CP20-RBPMSA sample, and 16,717 in the A2780CP20-RBPMSC sample. Further filtering was done by using a cut-off p-value $<0.05$ and fold change $\geq|2.0|$, which reduced the list of significantly expressed RNA transcripts to 4161 in A2780CP20-RBPMSA and 1869 for A2780CP20-RBPMSC samples (See Appendix C). A Venn diagram showed that 2995 RNA transcripts were exclusive to A2780CP20-RBPMSA and 703 for A2780CP20-RBPMSC. Moreover, 1161 transcripts were shared by the two RBPMS splice variants (Figure 18A). Table 2 includes the top 20 (10 upregulated and 10 downregulated, selected by fold change) differentially regulated transcripts in the A2780CP20-RBPMSA overexpression clones, and Table 3 shows the top 13 differentially regulated transcripts in the A2780CP20-RBPMSC overexpression clones (only three genes were significantly downregulated in the A2780CP20-RBPMSC clones). The RNAseq results were validated using quantitative real time PCR. The validation included the top 10 differentially expressed transcripts (7 upregulated and 3 downregulated) in RBPMSA vs. A2780CP20-EV. As shown in Table 5 and Figure 18B, nine (of the 10 genes validated by PCR) correlated well with the RNAseq results. The same validation was performed for the top eight differentially expressed transcripts in RBPMSC vs. A2780CP20-EV (five upregulated and three downregulated). The PCR data showed that five out of eight genes were validated and confirmed the RNAseq data (Table 6 and Figure 18C). Deregulation of most of these genes has already been associated with cancer progression, metastasis, and immune system response [184] [147, 185-187].

For example, interferon induced protein 44 (IFI44), one of the most increased transcripts upon A2780CP20-RBPMSA overexpression, has been linked to the suppression of the proliferation of human melanoma cell lines [188], as well as immune response to autoimmune disease [189]. Interestingly, two long non-coding RNAs (lncRNAs), LINC01504 (increased) and SNORD99 (decreased), were regulated in A2780CP20-RBPMSA clones. For A2780CP20-RBPMSC, Calbindin 2 (CALB2), the second most increased transcript, has been linked as an important mediator of 5-FU-induced cell death [190]. Moreover, in the list of common transcripts shared by A2780CP20-RBPMSA and A2780CP20-RBPMSC clones, ANKRD33B was identified, whose increase in CpG methylation was associated with oral and pharyngeal squamous cell carcinoma cell lines and primary non-neoplastic oral epithelial cells [191]. Also, RAD51 was identified, it has received considerable attention due to its function in tumor progression and decisive role in tumor resistance to chemotherapy. Moreover, RAD51 plays a role in maintaining genomic instability by mediating the DNA damage repair [192] (Table 4).

## 18A

A2780CP20-RBPMSA A2780CP20-RBPMSC


Table 2. Top 20 differentially expressed RNA transcripts in A2780CP20-RBPMSA vs. A2780CP20-EV clones.

| Symbol | Gene Name | Fold Change | Biological Role | Reference |
| :---: | :---: | :---: | :---: | :---: |
| IFI44 | Interferon induced protein 44 | 9.66541828 | Plays a role in the immune response during autoimmune diseases. | [193] |
| XAF1 | XIAP Associated Factor 1 | 8.297767889 | A putative tumor suppressor candidate that junction to several pathways leading to apoptosis. | [185] |
| GBP4 | Guanylate Binding Protein 4 | 6.931543382 | Involved in the host-defense mechanisms response against cellular pathogens and tumorigenesis. | [194] |
| SLC15A3 | Solute Carrier Family 15 Member 3 | 6.865730827 | Transporting histidine, peptides and peptidomimetics from inside the lysosome to cytosol. | [195] |
| RBPMS | RNA Binding Protein | 6.758908087 | Regulate the RNA transport, stability and localization. | [147] |
| LINC01504 | Long Intergenic NonProtein Coding RNA 1504 | 6.554246988 | A lncRNA which has a role on the suppression of malignant phenotypes of lung cancer. | [196] |
| NUPR1 | Nuclear Protein 1, Transcriptional Regulator | 6.087442834 | Upregulation of this protein is associated with malignant characteristics of cancer as well as with chemoresistance. | [186] |
| BST2 | Bone Marrow Stromal Cell Antigen 2 | 5.971957997 | Lipid raft-associated type II transmembrane glycoprotein which mediates various facets of cancer progression and metastasis | [197] |
| FGF21 | Fibroblast Growth Factor 21 | 5.930365363 | Member of the FGF family which possess broad mitogenic and cell survival activities. | [198] |
| HSH2D | Hematopoietic SH2 Domain Containing | 5.864666169 | Play a role in various cellular functions such as apoptosis, membrane-associated intracellular trafficking, and the biogenesis of lipid and collagen remodeling. | [199] |
| S100A2 | S100 Calcium Binding Protein A2 | -2.477696881 | Plays a role in metastasis process by transforming growth factor- $\beta$ (TGF- $\beta$ ) mediated cancer cell invasion and migration. | [200] |
| KCNH4 | Potassium VoltageGated Channel Subfamily H Member 4 | -2.510279699 | Transport positively charged potassium atoms between neighboring cells. KCNH4 plays a key role in the ability of cells to generate and transmit electrical signals. | [201] |
| SNORD99 | Small Nucleolar RNA, C/D Box 99 | -2.521724113 | Related with diverse cellular functions such as regulation of T cell proliferation and death balance to promoting cancer cell plasticity. | [202] |
| LRRC8D-DT | LRRC8D Divergent Transcript | -3.051305443 | Plays important pharmacological and physiological roles in supporting the transport of anti-cancer drugs and of the organic osmolyte taurine. | [203] |
| TXK | TXK Tyrosine Kinase | -3.120303742 | Play important roles in the immune response and pathway signaling mediator | [204] |
| SGCZ | Sarcoglycan Zeta | -4.110780038 | Part of the sarcoglycan complex which have a structural role in connecting cytoskeletal proteins with the extracellular matrix. | [205] |
| HIST1H2BH | H2B Clustered Histone 9 | -4.323395136 | Responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Low levels of HIST1H2BEH caused decreased proliferation in breast cancer cell lines. | [206] |
| COL12A1 | Collagen Type XII <br> Alpha 1 Chain | -4.332051747 | Found in several cancer types and could be involved in tumor progression. | [207] |

\(\left.$$
\begin{array}{ccccc}\hline & \begin{array}{c}\text { Phosphatidylinositol- } \\
3,4,5-\text { Trisphosphate } \\
\text { Dependent Rac } \\
\text { Exchange Factor 2 }\end{array}
$$ \& -4.381347741 \& \begin{array}{c}Implicated in the inhibition of phosphatase and tensin <br>
homolog (PTEN). Overexpression significantly <br>
increases the proliferation, invasion, and migration of <br>

pancreatic cancer.\end{array} \& [208]\end{array}\right]\)|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PREX2 | C-C Motif Chemokine <br> Ligand 2 | -4.644149886 | Strongest chemoattractant synthesized and secreted <br> mainly by monocytic cells. | [209] |

Table 3. Top 13 differentially expressed RNA transcripts in A2780CP20-RBPMSC vs. A2780CP20-EV clones.

| Symbol | Gene Name | Fold Change | Biological Role | Reference |
| :---: | :---: | :---: | :---: | :---: |
| DAB2 | DAB Adaptor Protein 2 | 7.15380118 | Multi-function signaling molecule which catalytic enzyme activity suggest that it is an adaptor molecule involved in multiple receptor-mediated signalling pathways that plays a pivotal role in the cellular homeostasis. | [210] |
| CALB2 | Calbindin 2 | 6.574845254 | Important mediator of 5-FU-induced cell death and specific marker for the diagnosis of malignant mesothelioma. | [211] |
| CTNND2 | Catenin Delta 2 | 6.484328261 | Recognized to be a biomarker for cancers, overexpressed in various types of cancers, including prostate, breast, lung, and ovarian cancer. | [212] |
| CYP24A1 | Cytochrome P450 Family 24 Subfamily A Member 1 | 6.041287981 | Member of the cytochrome P450 superfamily of enzymes which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids, and other lipids. | [213] |
| FAR2P2 | $\begin{gathered} \text { Fatty Acyl-CoA } \\ \text { Reductase } 2 \\ \text { Pseudogene } 2 \\ \hline \end{gathered}$ | 5.29742507 | Catalyzes the reduction in saturated but not unsaturated C16 or C18 fatty acyl-CoA to fatty alcohols. | [214] |
| RBPMS | RNA Binding Protein | 4.920050075 | Regulate the RNA transport, stability and localization. | [147] |
| PPP1R1C | Protein Phosphatase 1 Regulatory Inhibitor Subunit 1C | 4.253043369 | Major serine/threonine phosphatase that regulates a variety of cellular functions and themselves regulated by phosphorylation. | [215] |
| SLFN11 | Schlafen Family Member 11 | 3.827804248 | DNA/RNA helicase that is recruited during stressed replication fork and irreversibly triggers replication block and cell death. | [216] |
| PTGER4 | Prostaglandin E Receptor 4 | 3.770525307 | Member of the G-protein coupled receptor family which bind and mediate cellular responses to PGE2 and other prostanoids. | [217] |
| $\begin{gathered} \text { FOXD3- } \\ \text { AS1 } \end{gathered}$ | FOXD3 Antisense RNA 1 | 3.654548595 | Is abnormally expressed in many disease types. Reports suggest that FOXD3-AS1 is highly expressed in different cancer types promoting migration and invasion capacity. | [218] |
| TP63 | Tumor Protein P63 | $2.226163472$ | Functions as a transcription factor interacting with other proteins to turn different genes on and off at different times. | [187] |
| DTNA | Dystrobrevin Alpha | $2.582128781$ | Belongs to the dystrobrevin subfamily of the dystrophin family. Reports suggest that DTNA binds and activates STAT3 to induce TGF $\beta 1$ expression and repress P53 expression. | [219] |
| SCN3A | Sodium VoltageGated Channel Alpha Subunit 3 | $4.437260362$ | Is a transmembrane glycoprotein responsible for the generation and propagation of action potentials in neurons and muscle. | [220] |

Table 4. Top 20 RNA transcripts shared by A2780CP20-RBPMSA and A2780CP20-RBPMSC clones.

| Symbol | Gene Name | Fold Change | Biological Role | Reference |
| :---: | :---: | :---: | :---: | :---: |
| FAR2P2 | Fatty Acyl-CoA Reductase 2 Pseudogene 2 | 5.29742507 | Acts as guanine nucleotide exchange factor that activates RAC1. Also, plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. | [214] |
| RBPMS | RNA Binding Protein | 4.920050075 | Regulate the RNA transport, stability, and localization. | [147] |
| ANKRD33B | Ankyrin Repeat Domain 33B | 4.556503793 | Involved in negative regulation of transcription by RNA polymerase II and negative regulation of transcription regulatory region DNA binding activity. | [221] |
| PPP1R1C | Protein Phosphatase 1 Regulatory Inhibitor Subunit $\qquad$ | 4.253043369 | Major serine/threonine phosphatase that regulates a variety of cellular functions and themselves regulated by phosphorylation. | [215] |
| FGF12 | Fibroblast Growth Factor 12 | 3.920423579 | Involved in a broad mitogenic and cell survival activities, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth, and invasion. | [222] |
| GABRA2 | GammaAminobutyric Acid Type A Receptor Subunit Alpha2 | 3.844344607 | Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. | [223] |
| FOXD3-AS1 | FOXD3 Antisense RNA 1 | 3.654548595 | Is abnormally expressed in many disease types. Reports suggest that FOXD3-AS1 is highly expressed in different cancer types promoting migration and invasion capacity. | [224] |
| NFATC1 | Nuclear Factor of Activated T Cells 1 | 3.620469318 | Family of proteins that play a central role in inducible gene transcription during immune response. | [225] |
| ROBO2 | Roundabout Guidance Receptor 2 | 3.448549593 | Transmembrane receptor for the slit homolog 2 protein that play a function in axon guidance and cell migration. | [226] |
| CDH6 | Cadherin 6 | 3.421265843 | Membrane glycoprotein that mediates homophilic cell-cell adhesion and play critical roles in cell differentiation and morphogenesis. | [227] |
| HOXD8 | Homeobox D8 | -2.593778164 | Gene belongs to the homeobox family of genes which play an important role in morphogenesis in all multicellular organisms. | [228] |
| MYL7 | Myosin Light Chain 7 | -2.677248207 | Part of the family motor proteins that have ATPase enzyme activity, actin binding, and potential for kinetic energy transduction. | [229] |
| SSUH2 | Ssu-2 Homolog | -2.71336991 | Gene that encodes a protein tyrosine phosphatase that plays a key role in the regulation of actin filaments. | [230] |
| HOXD9 | Homeobox D9 | $-2.800133712$ | Transcription factor which is part of a developmental regulatory system providing cells the specific positional identities on the anterior-posterior axis. | [231] |
| DAPK1 | Death-Associated Protein Kinase 1 | -3.221475672 | Mediator of gamma-interferon involved in multiple cellular signaling pathways that trigger cell survival, apoptosis, and autophagy. | [232] |


| SNTG1 | Syntrophin <br> Gamma 1 | -3.228723507 | Cytoplasmic peripheral membrane proteins that <br> contain 2 pleckstrin domains. | [233] |
| :---: | :---: | :---: | :---: | :---: |
| NRP1 | Neuropilin 1 | -3.454159744 | Cell membrane receptor involved in the development <br> of cardiovascular system, angiogenesis, certain <br> neuronal circuits, and organogenesis in nervous <br> system. | [234] |
| ERICH3 | Glutamate Rich 3 | -3.951576843 | Interacts with proteins function in vesicle biogenesis <br> and may play a significant role in vesicular function <br> in serotonergic, and other neuronal cell types. | [235] |
| JAG1 | Jagged Canonical <br> Notch Ligand 1 | -6.91254142 | Ligand for multiple Notch receptors involved in the <br> mediation of Notch signaling, cell-fate decisions <br> during, and cardiovascular development. | [236] |
| TRBV12-4 | T Cell Receptor <br> Beta Variable 12-4 | -6.91254142 | Antigen specific receptor which are essential to the <br> immune response, and are present on the cell surface <br> of T lymphocytes | [237] |

To better examine the interaction networks of RBPMS downstream genes, the lists with 2995 transcripts of A2780CP20-RBPMSA, 703 of A2780CP20-RBPMSC, and the common 1161 transcripts were subjected to functional enrichment using Metascape via Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and uploaded into the Ingenuity Pathway Analysis (IPA) software [182]. Among the top 20 most significantly (p-value $\leq 0.05$ ) enriched ontology clusters of A2780CP20-RBPMSA, the most relevant clusters included the metabolism of RNA, ribonucleoprotein complex biogenesis, and cell cycle (Figure 18D). Figure 18E shows the interactions between the top canonical pathways, identified in the A2780CP20RBPMSA clones. The top canonical pathways were the hepatic fibrosis/hepatic stellate cell activation, inhibition of matrix metalloproteases, wound healing signaling, CDC42 signaling, and PD-1-PD-L1 cancer immunotherapy. The top five networks, in terms of the number of genes per pathway, are depicted in Appendix D. These pathways include Cancer, Cardiovascular System Development, and Function Organismal Development (31 genes); Cell Cycle, Cellular Development, Cellular Growth, and Proliferation (25 genes); and, Antimicrobial Response, Inflammatory Response, and Organismal Injury and Abnormality (55 genes).

Similarly, for the A2780CP20-RBPMSC, the top 20 most significantly ( p -value $\leq 0.05$ ) enriched ontology clusters included the cell junction organization, blood vessel development, and non-integrin membrane-ECM interactions (Figure 18F). Figure 18G includes the interaction network of the top canonical pathways that were identified for A2780CP20-RBPMSC clones. The top canonical pathways were the P53 signaling, hepatic fibrosis/hepatic stellate cell activation, pulmonary fibrosis idiopathic signaling, CDK5 signaling, and IGF1 signaling. The networks in terms of the number of genes per pathway for A2780CP20-RBPMSC are depicted in Appendix D. These pathways included cardiovascular system development and function, cell to cell signaling and interaction, cellular movement (2 genes), organ morphology, reproductive system development and function, tissue development (3 genes), antimicrobial response, cell cycle, and survival (2 genes).

A similar analysis was also completed with the common transcripts, regulated in both A2780CP20-RBPMSA and A2780CP20-RBPMSC clones. Among the top 20 most significantly ( p -value $\leq 0.01$ ) enriched ontology clusters, the most relevant included ribosome biogenesis, DNA metabolic process, and mitochondrial gene expression (Figure 18 H ). Figure 18I includes the interaction between the top canonical pathways, identified with the common transcripts between A2780CP20-RBPMSA and A2780CP20-RBPMSC clones. The top canonical pathways involved TGF- $\beta$ signaling, role of tissue factor in cancer, and cytokine production in macrophages and T helped cells by IL-17A and IL-17F. The networks shared by A2780CP20-RBPMSA and A2780CP20-RBPMSC, in terms of the number of genes per pathway, included: Cancer, Cardiovascular Disease Hematological System Development and Function (2 genes); Cell to Cell

Signaling and Interaction, Cellular Development, Cellular growth, and Proliferation (2 genes); and
Cancer, Cellular Movement, Organismal Injury, and Abnormality (2 genes) (Appendix D).

Table 5: Relative expression values of the differentially expressed RNA transcripts in A2780CP20-RBPMSA vs. A2780CP20-EV clones.

| RBPMS-A Transcripts Validation Expression |  |  |
| :---: | :---: | :---: |
| Gene ID | RT-qPCR FC | RNA-Seq FC |
| IF144 | 9.666 | 9.665 |
| XAF1 | 8.298 | 8.297 |
| GBP4 | 6.932 | 6.931 |
| NUPR1 | 6.087 | 6.087 |
| BST2 | 5.972 | 5.971 |
| HSH2D | 5.865 | 5.864 |
| COL12A1 | -4.332 | -4.332 |
| LLRC8D-DT | -3.050 | -3.058 |
| SLC15A3 | -2.273 | 6.865 |
| RBPMS | 6.499 | 6.758 |

18B


Table 6: Relative expression values of the differentially expressed RNA transcripts in A2780CP20-RBPMSC vs. A2780CP20-EV clones.

| RBPMS-C Transcripts Validation Expression |  |  |
| :---: | :---: | :---: |
| Gene ID | RT-qPCR FC | RNA-Seq FC |
| DAB2 | 7.154 | 7.15 |
| CALB2 | 6.575 | 6.57 |
| CYP24A1 | 6.041 | 6.041 |
| SLFN11 | 3.828 | 3.827 |
| PTGERR4 | 3.771 | 3.770 |
| TP63 | 2.861 | -2.226 |
| DTNA | 2.783 | -2.582 |
| SCN3A | 2.775 | -4.437 |

18C


## 18D



18E


18F


18G


Acetate Conversion to Acetyl-CoA

## 18H



18I


Figure 18. Ingenuity pathway analysis (IPA) and functional enrichment analysis of top deregulated transcripts in RBPMSA and RBPMSC clones. (A) Venn diagram showing that 2995 RNA transcripts were deferentially abundant in RBPMSA clones, 703 in RBPMSC clones, and 1166 were common to both, A2780CP20-RBPMSA and A2780CP20-RBPMSC clones. (B) Validation of 10 differentially abundant transcripts by RT-qPCR in A2780CP20EV cells and A2780CP20-RBPMSA. The normalized expression values were calculated relative to A2780CP20-EV. Green and red symbols represent downregulated and upregulated genes, respectively. Diagonal green and red lines represent the selected threshold for significant fold changes. (C) Validation of 8 differentially abundant transcripts by RT-qPCR in A2780CP20-EV cells and A2780CP20-RBPMSC. The normalized expression values were calculated relative to A2780CP20-EV. Green and red symbols represent downregulated and upregulated genes, respectively. Diagonal green and red lines represent the selected threshold for significant fold changes. (D) The 20 top most significant ( $p$-value $\leq 0.05$ ) enriched ontology clusters by Gene ontology analysis of functional enrichment in A2780CP20-RBPMSA clones. (E) Interaction network of the top canonical pathways identified in the A2780CP20RBPMSA clones. (F) The 13 top most significant (p-value $\leq 0.05$ ) enriched ontology clusters by Gene ontology
analysis of functional enrichment in A2780CP20-RBPMSC clones. (G) Interaction network of the top canonical pathways identified in the A2780CP20-RBPMSC clones. (H) The 20 top most significant ( $p$-value $\leq 0.05$ ) enriched ontology clusters by Gene ontology analysis of functional enrichment in common transcripts between A2780CP20RBPMSA and A2780CP20-RBPMSC clones. (I) Interaction network of the top canonical pathways identified in the common transcripts between A2780CP20-RBPMSA and A2780CP20-RBPMSC clones.

### 4.12 Prognostic Value of RBPMSA and RBPMSC Downstream Effectors

To assess the clinical relevance of the top differentiated abundant transcripts (see Table 2, Table 3 and Table 4) identified by RNAseq in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones, the Kaplan-Meier plotter data base (KM plotter) was interrogated. The Ovarian Cancer KM plotter includes data from "The Cancer Genome Atlas" (TCGA), Gene Expression Omnibus (GEO), and European Genome Archive (EGA) for a total of 1436 ovarian cancer samples [238]. Overexpression of RBPMSA in A2780CP20 cell line increased the RNA levels of BST2 (also known as CD317), GBP4, and SLC15A. In agreement with these results, higher RNA expression levels of these genes were associated with better prognosis of the disease (OS; $\mathrm{HR}<1$ ) (Figure 19A-C). On the other hand, overexpression of RBPMSA reduced the expression levels of COL12A1 and CCL2. Again, KM plotter data analysis showed that lower expression levels of COL12A1 were associated with longer PFS (HR > 1) and better prognosis (OS; HR > 1) (Figure 6 D,E). High expression levels of CYP24A1, PPPIRIC, and FOXD3-AS1, detected in A2780CP20-RBPMSC clones, were associated with longer PFS (HR $<1$ ) and better prognosis (OS; HR $<1$ ) of ovarian cancer patients (Figure $6 \mathrm{~F}-\mathrm{H}$ ). Moreover, decreased levels of DTNA in A2780CP20-RBPMSC clones were associated with longer PFS ( $\mathrm{HR}>1$ ) and better prognosis ( $\mathrm{OS} ; \mathrm{HR}>1$ ) in patients (Figure 6I).

19A-G



PFS OS





Figure 19: KM survival curves. KM plots for ovarian cancer patients were generated using the KM plotter database. The OS and PFS of the ovarian cancer patients were stratified based on the median RNA expression levels for each gene (A) CD3117 (B) GBP4 (C) SLC15A3 (D) COL12A1 (E) CCL2 (F) CYP24A1 (G) PPP1R1C (H) FOXD3-AS1 (I) DTNA.

## Aim 3: Results

### 4.13 Identification of additional RBPMSA and RBPMSC-interacting proteins.

Following peptide separation and protein identification by mass spectroscopy (MS), the MS raw data was analyzed and filtered using Proteome Discoverer (PD) software version 2.5. Cutoff for considering significance in the proteins list was based on a fold change $\geq|2.0|$ and p value $\leq 0.05$. The human was the model organism for annotations. Through IP/MS assay, 49
proteins that may directly bind to A2780CP20-RBPMSA clones were found, and 29 for A2780CP20-RBPMSC (Appendix E). After subtracting the identified proteins in A2780CP20-EV cells, which were used as control, four proteins that differentially attached to A2780CP20RBPMSA were able to be identified (Table 7), as well as three proteins to A2780CP20-RBPMSC (Table 8). Based on their biological roles, the unique group of proteins were selected for further validation by Western blots.

Table 7: Proteins identified in A2780CP20-RBPMSA overexpressing clones
$\left.\begin{array}{|c|c|}\hline \text { Gene ID } & \text { Biological Role } \\ \hline \text { NME1 } & \text { Metastasis suppressor gene which inhibits the metastatic activity of tumor } \\ \text { cells }\end{array}\right]$

Table 8: Proteins identified in A2780CP20-RBPMSC overexpressing clones
$\left.\begin{array}{|c|c|}\hline \text { Gene ID } & \text { Biological Role } \\ \hline \text { NME1 } & \text { Metastasis suppressor gene which inhibits the metastatic activity of tumor } \\ \text { cells }\end{array}\right\}$

The following proteins of the MS studies were validated by western blots: Diphosphate Kinase 1 (NME1), Immunoglobulin Kappa Locus (IGK), Myosin Heavy Chain 9 (MYH9) and Myosin Heavy Chain 10 (MYH10). Western blots band intensities showed significant differences in protein abundance between A2780CP20-EV vs. A2780CP20-RBPMSA, and A2780CP20-EV vs. A2780CP20-RBPMSC for NME1, IGK, MYH9 and MYH10. In Figure 20A, a band was observed near 17 kDa , corresponding to NME1 in A2780CP20-RBPMSA and A2780CP20RBPMSC IP samples. NME1 protein levels were absent in A2780CP20-EV as compared with A2780CP20-RBPMSA and A2780CP20-RBPMSC, where the NME1 levels were prominent. NME1 protein levels were detected with less intensity in the western blot of A2780CP20-EV, A2780CP20-RBPMSA, and A2780CP20-RBPMSC input samples. As expected, protein levels of IGK (56 kDa) were absent in A2780CP20-EV. Also, western blot of IGK in A2780CP20-EV, A2780CP20-RBPMSA, and A2780CP20-RBPMSC input samples showed a less signal intensity compared with the IP samples. On the other hand, bands corresponding to 210 kDa and 220 kDa (corresponding to MYH9 and MYH10, respectively) were detected in the western blots image of the A2780CP20-RBPMSA and A2780CP20-RBPMSC IP samples (Figures 20C and 20D). MYH9 and MYH10 proteins could not be detected in A2780CP20-EV IP samples. Input A2780CP20-EV, A2780CP20-RBPMSA, and A2780CP20-RBPMSC immunoblotting samples showed a lower intensity signal of MYH9 and MYH10 when compared with the IP samples. To corroborate the coimmunoprecipitation between RBPMS and the proteins identified by MS studies (NME1, IGK, MYH9 and MYH10), RBPMS was detected in the same immunoblotting IP samples membrane, as control of successful immunoprecipitation (Figure 20A, 20B, 20C and 20D, lower image). However, the biological role of these proteins in ovarian cancer cells and its association with cisplatin resistance is not well understood and needs further investigation.


Figure 20: Validation of proteins identified by IP/MS assay in RBPMSA and RBPMSC overexpressing clones. (A) NME1 input immunoblotting (upper image), follow by NME1 IP immunoblotting (middle image). RBPMS immunoblotting confirmed the successful coimmunopresipitation. (B) IGK input immunoblotting (upper image), follow by IGK IP immunoblotting (middle image). RBPMS immunoblotting confirmed the successful coimmunopresipitation. (C) MYH9 input immunoblotting (upper image), follow by MYH9 IP immunoblotting (middle image). RBPMS immunoblotting confirmed the successful coimmunopresipitation. (D) MYH10 input immunoblotting (upper image), follow by MYH10 IP immunoblotting (middle image). RBPMS immunoblotting confirmed the successful coimmunopresipitation.

### 4.14 Prognostic Value of RBPMSA and RBPMSC binds proteins NME1, IGK, MYH9 and MYH10

To assess the clinical relevance of the proteins identified by MS in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones, the Kaplan-Meier plotter data base (KM plotter) was interrogated. NME1 and IGKC bind to RBPMSA and RBPMSC splice variants when overexpressed in the A2780CP20 cell line. In agreement with these results, higher expression levels of this protein were associated with better prognosis of the disease (OS; $\mathrm{HR}<1$ ) (Figures 21A and 21B). On the other hand, overexpression of RBPMSA and RBPMSC splice variants bind to MYH9 and MYH10 in A2780CP20. Again, KM plotter data analysis showed that lower expression levels of MYH9 and MYH10 were associated with unfavorable prognosis of the disease $(\mathrm{OS} ; \mathrm{HR}<1)$ (Figures 21C and 21D). In summary, proteomic analysis showed that few proteins bound to each RBPMS splice variant. Moreover, RBPMS splice variants are associated with proteins which acts as tumor metastasis suppressors and cancer biomarkers.


Figure 21: KM survival curves. KM plots for ovarian cancer patients were generated using the KM plotter database. The OS of the ovarian cancer patients was stratified based on the median RNA expression levels for each gene (A) NME1 (B) IGK (C) MYH9 (D) MYH10

## Chapter 5. Discussion

Accumulating evidence indicates that RBPMS is a key RNA binding protein that is involved in the metabolism of RNA molecules. Several RBPMS splice variants originate from a single primary transcript; three of them have been reported at the protein level: RBPMSA, RBPMSB, and RBPMC. It is speculated that each RBPMS splice variant binds and processes its own group of RNAs [148]. In preliminary studies, CRISPR-mediated RBPMS knockdown reduced the sensitivity of ovarian cancer cells to cisplatin treatment [147]. However, the role of each RBPMS splice variant in ovarian cancer cells had not been studied previously. The reduction of mRNA and protein levels of RBPMSA and RBPMSC in cisplatin-resistant ovarian cancer cell lines, compared to their cisplatin-sensitive counterparts, was reported for the first time in this study. Non-significant mRNA and protein levels of RBPMSB were observed in cisplatin sensitive and cisplatin resistant ovarian cancer cells. Overexpression of RBPMSA and RBPMSC into cisplatin-resistant ovarian cancer cell line A2780CP20 decreased cell growth, migration, invasion, and reduced senescence that were associated with $\beta$-Galactosidase levels. Moreover, RBPMSA, but not RBPMSC, increased the sensitivity of ovarian cancer cells to cisplatin treatment. Similar results were obtained by using the HGSOC cell line OVCAR3CIS.

Nakagaki et al. (2019) showed that RBPMS is a master splicing regulator in vascular smooth muscle cells (SMCs) [148]. Knockdown of RBPMS in differentiated smooth muscle cell line PAC1 led to changes in mRNA abundance levels, promoting a differentiated alternative splicing program [148]. Also, Rastgoo et al. (2018) reported that RBPMS restauration by overexpressing miR-138 re-sensitized multiple myeloma cells to the proteasome inhibitor
bortezomib (BTZ) [159]. These two reports only interrogated the canonical RBPMS (RBPMSA, also known as RBPMS1). Fu et al. (2015) showed that decreased expression of RBMSA and RBPMSC promoted cell growth, survival and drug resistance of breast cancer cells [130]. The exact molecular mechanism by which each RBPMS splice variant exerts its biological effects are currently unknown; but Fu et al. (2015) reported that RBPMSA and RBPMSC bind and repress AP-1 transcription factor [130]. Also, Sun et al. (2006) reported that overexpression of RBPMS enhanced Smad's transcriptional activity in human embryonic kidney 293T cells. They showed that interaction of RBPMS with TGF- $\beta$ receptor type I increased phosphorylation of Smad2 and Smad3, and promoted the nuclear accumulation of the Smad's proteins [239]. Therefore, each RBPMS splice variant could bind to key transcription factors and/or modify its own groups of RNA transcripts. These hypotheses can be further tested in future research endeavors.

The observed overexpression of RBPMSA and RBPMSC in A2780CP20 cells decreased the senescence-associated $\beta$-Gal levels of these cells. This effect was accompanied by the increased protein levels of p53 and p38. Curiously, A2780CP20 cells do not express p21 [174]. Decreased expression of p 21 and p 53 , two key cell cycle progression regulators, had also been associated with a senescence phenotype of cancer cells [240]. Santana et al. (2020) studied the effect of Enolase-1 (ENO1) in ovarian cancer cells and observed that decreased expression of ENO1 promoted glucose accumulation, induced senescence, increased the p53 protein levels, and promoted cisplatin resistance of ovarian cancer cells [174]. In addition, the mitogen activated protein kinase p38 activates a wide range of substrates that include transcription factors, protein kinases, and nuclear proteins, thus leading to diverse responses, including senescence and chemoresistance processes [241]. Guo et al. (2008) studied the effect of phosphorylated p38 in the
human gastric cancer cells SGC7901/VCR cell line and observed that inhibition of p38 with the small molecule inhibitor SB203580 reversed the multidrug resistance of these cells [241]. Although evidence indicates that chemotherapy induces a beneficial short term senescence stage during treatment, it could promote changes in gene expression that lead to reprogramming in cancer cells. Reprogramming of these cancer cell populations in a tumor could be an adaptive pathway that later generates more aggressive and highly drug-resistant phenotype clones, characteristic of tumor heterogeneity [242]. Senescent cells are characterized by altered cell metabolism, increased lysosomal capacity, and their potential to secrete different molecules (i.e., pro-inflammatory cytokines and growth factors) to the microenvironment (TME) [240, 243]. The production of all these molecules is known as the senescence associated secretory phenotype (SASP). SASP promotes cell proliferation, induces epithelial to mesenchymal transition EMT [244], enhances invasion [245], and promotes chemo-resistant and radioresistant phenotypes [246]. In consequence, increasing the RBPMS levels could potentially take out cells of senescence stages, and reduce the cell growth and proliferation of cisplatin resistant ovarian cancer cells, which would require further research.

Reduced protein levels of RBPMS have been documented in bladder cancer [161], multiple myeloma [159], ovarian cancer [147], and osteoarthritic cartilage cell lines [149]. However, in these studies, only RBPMSA (RBPMS1) was studied. By using a subcutaneous ovarian cancer mouse model, the increased expression of RBPMSA and RBPMSC that was observed, resulted in smaller tumors compared with the controls. This effect was more noticeable with tumors that overexpressed the RBPMSA isoform. Tumors that overexpressed the RBPMSA isoform also had reduced blood vessel formation and proliferation by measuring CD31 and Ki-67. The results are
in agreement with the studies of Fu et al. (2015), which reported that RBPMSA and RBPMSC reduced proliferation and migration of breast cancer cells, in vitro and in vivo [130].

IP studies allowed us to identify proteins bound to RBPMSA and RBPMSC, including cJun, c-Fos, Smad2, Smad3 and Smad4. Sundqvist et al. (2020), suggested that Smad2/3-Fra1 complexes mediate the activation of the Smad/AP-1-dependent TGF $\beta$-induced epithelial mesenchymal transition and invasion program [247]. In addition, Wong et al. (1999) demonstrated that Smad3-Smad4 is important for TGF- $\beta$ induction of $\mathrm{c}-\mathrm{Jun}$, and that AP-1/CRE is also required for TGF- $\beta$ regulation of the c-Jun promoter [248]. The RNA-binding protein with multiple splicing mediates the transcriptional activity of Smad's proteins, mainly by enhancing the phosphorylation of Smad2 and Smad3 [239]. Upon phosphorylation, Smad's accumulate in the cell nucleus and act as mediators of transcriptional activation [239]. Also, Fu, et al. (2015) reported that RBPMS inhibited breast cancer cell proliferation and migration by blocking the formation of c-Jun-c-Fos or c-Jun-Smad3 complexes. However, their function in ovarian cancer drug resistance needs to be further investigated.

High expression of miR-21 has been related with cancer proliferation in several types of cancer, such as colorectal cancer [249] [250], glioma [251], breast cancer [252], lung cancer [253], and prostate cancer [254]. Echevarria Vargas et al. (2014) showed that miR-21 is a downstream target gene of AP-1 [168]. AP-1 signaling pathway and its protein members c-Jun and c-Fos works as transcription factors involved in a wide variety of physiological responses including cancer. The study suggested that the JNK-1/c-Jun signaling pathway regulates miR-21 expression in ovarian cancer cells. [168]. Moreover, the association between c-Jun and pri-mir-21 DNA promoter
regions was demonstrated. Using a small interference RNA (siRNA) against JNK-1, the major activator of c-Jun phosphorylation, they decreased the expression of pre-mir-21 and increasing the expression of PDCD4 [168].

However, these studies did not address which RBPMS splice variant control the transcriptional activation of pre-miR-21 gene. Del Mar Díaz-González et al. (2019) demonstrated that c-Fos and c-Jun proteins are expressed and regulate the expression of miR-21 in cervical cancer cells [255]. Through DNA sequence analysis and EMSA analyses, they confirmed the presence of AP-1 DNA-binding sites in the human miR-21 promoter region [255]. In this project, siRNA mediated RBPMS knockdown increased the pre-miR-21 transcription activation. This suggests that RBPMSA and RBPMSC control the transcriptional activation of pre-miR-21 in cisplatin resistant ovarian cancer cells. Therefore, the data from this study strengthens the role of an interesting regulatory genetic network involving AP-1/RBPMS and miR-21, which modulates critical genes in ovarian cancer tumorigenesis. Eventually, this knowledge may encourage the use of AP-1, RBPMS and miR-21 as therapeutic targets in ovarian cancer treatment, and to overcome cisplatin resistance.

To further explore the downstream effectors of RBPMSA and RBPMSC in ovarian cancer cells, RNAseq was performed. Firstly, each RBPMS splice variant regulate its own group of transcripts. Within the RBPMSA downstream transcripts, multiple transcripts of genes associated with chemoresistance were identified, including NUPR1 and XAF1 (both increased in this study's RNAseq). Wen Jiang et al. (2006) reported that knockout of NUPR1 (also known as Com-1/p8) correlated with the increased invasiveness and growth of prostate cancer cells [256].

Overexpression of NUPR1 reduced the growth of prostate tumors in athymic mice model [256]. NUPR1 has been shown to interact with transcriptional regulators such as p300, PTIP, estrogen receptor-beta, and Smads [257]. Clack et al. (2008) reported that NUPR1 formed a complex with p53 and p300 in epithelial breast cancer cells [258]. These complexes bound the p21 DNA promoter and transcriptionally upregulated p21 expression [258]. Wen Jiang et al. (2006) suggested that in prostate cancer, NUPR1 acts as a tumor suppressor and facilitator of apoptosis because it was able to trans activates p53 following DNA damage [256]. Interestingly, Jiang et al. (2005) reported an association between low levels of NUPR1 expression with shorter survival in both ER $\alpha$-positive and ER $\alpha$-negative breast cancer patients [259]. Together, these observations show that RBPMSA could transcriptionally regulate the expression levels of NUPR1 by interacting with transcriptional regulators. Another possible scenario that would warrant further research is RBPMSA's interaction with the mRNA of NUPR1, which could increase translation into the NURP1 protein.

Increased levels of LINC01504 and decreased levels of SNORD99 were also observed in the RBPMSA overexpressed cells. Increased levels of LINC01504 in the non-small cell lung cancers cell lines A549, NCI-H1650, SK-MES-1, and NCI-H226 exposed to cinnamaldehyde promoted the production of cytokine signaling 1 (SOCS1), BTG anti-proliferation factor 2 (BTG2), and Bruton tyrosine kinase (BTK) [196]. Cinnamaldehyde is the main component extracted from cinnamon, which has antiviral and anti-tumor effects in HepG2 hepatocellular carcinoma cell line [260]. SNORD99, one of the downregulated transcripts in RBPMSA overexpressed clones, was expressed at a higher level in hepatocellular carcinoma patient tissue samples, and in the hepatocellular carcinoma cell lines SK-Hep1 and HCCLM9 [261]. Increased
levels of SNORD99 have been implicated in the regulation of cell proliferation and death balance by promoting cancer cell plasticity [261]. This evidence suggests that RBPMSA could inhibit transcription factors that regulate SNORD99 expression (i.e., AP-1). Moreover, RBPMSA expression levels could enhance the LINC01504 levels by promoting its RNA processing, through the JAK/STAT3 signaling pathway.

Overexpression of RBPMSC increased the RNA levels of DAB2, SLFN11, FOXD3-AS1, PTGER4, among others. These transcripts have been endowed with tumor suppressor capabilities and better prognostic patient outcomes [217, 262] [263]. For example, high levels of DAB and PTGER4, two of the top upregulated genes in RBPMS clones, act as tumor suppressor genes. Jia et al. (2014) reported that in human colorectal cancer, loss of DAB increased cellular migration, reduced sensitivity to chemotherapeutic agents, and markedly reduced survival rate [262]. Tseng et al. (1999) reported that the phosphorylation of the DOC-2/DAB2 protein complex inhibited the AP-1 activity [264]. In addition, Murn et al. (2008) reported that PTGER4 knockdown accelerated tumor growth, whereas PTGER4 overexpression yielded significant protection to B cell lymphoma development through the intrinsic activity between PTGER4 and PGE2-EP4 signaling target genes [217]. PTGER4 expression had an inhibitory effect on the transcriptional activity of the AP1 components c-Fos and c-Jun [217]. Also, expression of PTGER4 decreased the expression of IL-2 promoter, which is critically important AP-1 signaling activation [217]. These reports are in agreement with Fu et al. (2015)'s study, in where RBPMS splice variants bind to c-Fos and c-Jun and inhibit the binding of the AP-1 complex to its DNA recognition sites [130].

Decreased mRNA levels of TP63 in RBPMSC overexpressing clones were also observed. TP63 is a critical suppressor of tumorigenesis and metastasis [265]. Sundqvist et al. (2020) reported that in breast cancer cell lines HCC1954, HCC202, MCF10A MI, and MII; TP63 is a AP1 downstream effector [247]. In the same report, TP63 strongly potentiates TGF $\beta$ induction of AP1 protein members, in particular c-Fos [247]. Moreover, TP63 stabilized the interactions between Smad's and AP-1, and enhanced the binding of Smad's/AP-1 complexed in the chromatin [247]. These reports are in agreement with evidence that RBPMS splice variants interact with Smad's and/or c-Jun and c-Fos to regulate AP-1/Smad's-dependent genes. Interestingly, Lau et al. (2013) reported that TP63 knockdown decreased the proliferation of neoplastic stromal cells, through CDC2 and CDC25C suppression [266]. Also, Senoo et al. (2013) reported that TP63 null tymus epithelial cells decreased their proliferative rate as compared with normal cells [267]. These pathways could contribute to the reduced cell proliferation of RBPMS overexpressed clones. However, the mechanism by which RBPMS regulates TP63 function needs further investigation.

Within the RNA regulated transcripts shared by both, A2780CP20-RBPMSA and A2780CP20-RBPMSC overexpressing clones, genes associated with biological processes including ion transportation, lipid biogenesis, collagen remodeling, tumor microenvironment, and immune response activity were identified. For example, decreased mRNA levels of NRP1 were observed in the top 20 RNA transcripts shared between A2780CP20-RBPMSA and A2780CP20RBPMSC overexpressing clones. Neuropilin-1 (NRP1) is a cell surface glycoprotein that has been previously associated with nervous system axonal guidance and as a receptor for the collapsin/semaphorin family of proteins [268]. Soker et al. (1998) showed that coexpression of NRP1 with the kinase insert domain receptor (KDR) increased VEGF, angiogenesis as well as
chemotaxis in porcine aortic endothelial cells line PAE [269]. Also, Gagnon et al. (2000) reported that inhibition of AP-1 significantly attenuated VEGF-dependent NRP1 in human umbilical vascular endothelial cells (HUVECs) [234]. These results suggest that RBPMSA and RBPMSC could bind and metabolize RNA transcripts associated with a variety of cellular processes.

Using Kaplan-Meier analysis of publicly available mRNA expression (RNA-Seq data), it was further observed that several RNA transcripts differentially abundant in RBPMSA and RBPMSC overexpression clones are significantly associated with survival outcomes in ovarian cancer patients. In particular, BST2 (also known as CD317), GBP4, and SLC15A3 were associated with OS but not with PFS. Wang et al. (2018) observed that high expression of GBP4 was correlated with good overall survival in cutaneous skin melanoma [194]. SLC15A3 has been postulated by Song et al. (2018) as a prognostic biomarker and target in lung adenocarcinoma [195]. Yi et al. (2020) reported that overexpression of CYP24A1 plays an essential role in enhancing immune activity and inhibiting tumorigenesis [270]. Opposite, PPP1R1C has been linked by Liu et al. (2017) with the progression and resistance to temozolomide therapy in glioblastoma [215]. Wan et al. (2020) identified FOXD3-AS1 as a cancer-promoting gene in glioma [218]. In addition, Li et al. (2021) suggested that downregulation of COL12A1 has a key role in regulating tumor immune interactions [207]. Therefore, further studies are needed to confirm the biological role of these RBPMS downstream genes and their diagnostic, prognostic, and/or therapeutic potential in ovarian cancer.

Furthermore, IP/MS studies allowed us to identify proteins bound to RBPMA and RBPMSC variants including Diphosphate Kinase 1 (NME1), Immunoglobulin Kappa Locus
(IGK), Myosin Heavy Chain 9 (MYH9), and Myosin Heavy Chain 10 (MYH10). The nucleoside diphosphate kinase A is an enzyme that, in humans, is encoded by the NME1 gene, which catalyzes the exchange of terminal phosphate between different nucleoside diphosphates to produce nucleotide triphosphates [271]. The immunoglobulin kappa locus (IGK) is a region in chromosome 2, which contains genes for the kappa light chains of immunoglobulins. IGK locus includes the variable (V), joining (J), and constant (C) segments of the immunoglobulins. For that reason, their biological role crucial in the initiate immune responses, such as phagocytosis and the complement system. Myosin Heavy Chain 9 and Myosin Heavy Chain 10 are highly conserved ubiquitous actin-based motor proteins that drive a wide range of motile processes in eukaryotic cells. These proteins convert the chemical energy derived from hydrolysis of ATP into mechanical force. MYH9 and MYH10 drives a diverse motile process including cytokinesis, vesicular transport, and cellular locomotion.

The role of NME1, IGK, MYH9 and MYH10 in cancer has been studied in difference instances at transcriptional level [272-275]. Reduced levels of NME1 are associated with highly metastatic cells [271]. NME1 is also involved in cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene expression [276]. Also, studies demonstrated an affinity of NME1 for single-stranded motifs in the promoter regions of c-MYC, TP53 and PDGFA, as well as the ability to regulate transcription from those promoters [277-279]. Therefore, the interaction of NME1 and RBPMS splice variants A and C, could be control the expression of proto-oncogene and tumor suppressor genes such as c-MYC and TP53, respectively. Moreover, IGK plays a role in pathways related with CD16 in NK cells during immune system response [273, 280]. IGK is altered in $0.18 \%$ of all cancers such as breast
invasive ductal carcinoma, endometrial endometrioid adenocarcinoma, diffuse large B-cell lymphoma, bladder urothelial carcinoma, and Burkitt lymphoma having the greatest prevalence of alterations [281]. The interaction between IGK and RBPMSA could be controlling the transcription of genes related to the tumor microenvironment and immune system response. Previous studies suggested that the interaction between RBPMS and MET proteins promotes an aberrant cell signaling pathway expression related with tumor microenvironment [273]. Perhaps, the interaction between IGK and RBPMSA could have the same function.

MYH10 has diverse functions that include regulation of cytokinesis, cell motility, and cell polarity. This protein is involved in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2 [282]. MYH9 plays a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Also, during cell spreading, MYH9 is involved in cell motility maintenance of cell and cell focal contact formation [274]. Nakagaki-Silva et al. (2019) showed that RBPMS directly regulates components of the actin cytoskeleton and focal adhesion machineries, whose activity is critical for vascular smooth muscle cell's function [153]. The interaction between RBPMS splice variants A and C, MYH9, and MYH10, presented in this study, could explain the role of RBPMS in the RNA splicing involved in cytoskeletal signaling pathways.

Using Kaplan Meier analysis, high levels of NME1 were observed and seen to be related with a good overall survival outcome in ovarian cancer patients. In agreement with these results, Shi et al. (2018) reported that NME1 was linked to improve overall survival in gastric cancer [272]. Also, increased level of IGK in RBPMSA and RBPMSC overexpressing clones is associated with good overall survival in cancer patients. Kacsoh et al. (2022) reported that high levels of IGK in
pediatric neuroblastoma, one of the most common pediatric cancers, is associated with better overall survival [283]. In contrast, increased levels of MYH9 and MYH10 remarkably correlate with poor prognosis and represents a novel biomarker and drug target for the diagnosis and treatment of esophageal cancer [284]. Wang et al. (2018) showed that overexpression of MYH10 protein is associated with malignant tumors [275]. However, the biological consequences of these proteins NME1, IGK, MYH9, and MYH10 in ovarian cancer cells, and their association with cisplatin resistance are not well understood which demands further investigation.

Overall, this study provides evidence that increased expression of RBPMSA and RBPMSC contribute to the reduction of ovarian cancer cell proliferation, invasion, and migration. However, only RBPMSA was associated with the cisplatin sensitivity of ovarian cancer cells. RBPMSA and RBPMSC negatively regulated the pre-miR-21 transcriptional activation. Furthermore, RBPMSA and RBPMSC bind to c-Fos and c-Jun, protein members of the AP-1 transcription factor. RBPMSA and RBPMSC emerge as possible candidates that could control the transcriptional activation of the AP-1 downstream target genes. Also, RBPMSA and RBPMSC control the expression of RNAs that is associated with the remodeling of the tumor microenvironment, cell proliferation, cell survival, and cell integrity, among others. These findings highlight the important role of RBPMS splice variants in the regulation of gene expression in health and disease.

Although this study focused on the biological role of RBPMSA and RBPMSC in ovarian cancer, we identified several other downstream target genes whose clinical and therapeutic relevance remains unknown. Future studies need to be conducted to confirm their potential as therapy and their relevance in cancer drug resistance. Also, studies should be performed to
investigate the relation of RBPMSA and RBPMSC with other microRNAs in addition to pre-miR21. Moreover, further studies should assess if RBPMS interacts or is associated with other transcription factors by regulating gene expression at the transcriptional and posttranscriptional level. Lastly, the role in cancer of RBPMS predicted splice variants (RBPMSB, RBPMSE) needs to be investigated.

## Chapter 6. Conclusions and Future Directions

Cancer is one of the leading cause of death worldwide. In 2020, the International Agency for Research on Cancer, in collaboration with the World Health Organization, reported 19,094,716 million new cases and 10 million deaths. Today, $1.3 \%$ of people in the worldwide population live with cancer. Ovarian cancer is one of the six most common cancers among women and the most common cause of gynecological cancer-related deaths in western countries, with a survival proportion of $40 \%$ to $50 \%$ in the first five years of diagnosis [6]. Depending on the type of ovarian cancer and how advanced it is, the standard medical care plans for patients can include cytoreductive surgery combined with platinum and taxane based chemotherapy. Unfortunately, this disease remains the most aggressive and malignant gynecological cancer. Though 60\%-80\% of patients initially respond to the traditional treatment, only $10 \%$ to $30 \%$ of them eventually recur and develop resistance to platinum-based chemotherapy [170]. Furthermore, a combination of cytotoxic agents (gemcitabine, pegylated liposomal doxorubicin, and topotecan) and a second cycle of chemotherapy are recommended for these patients, but the efficacy has not yet been determined. Platinum-based chemotherapy such as cisplatin, is one of the most active anticancer agents now used, and resistance represents a major obstacle to overcome. As a result, the survival
rate for patients with ovarian cancer has not improved over the past 20 years [159]. It is imperative to understand and identify molecules that are involved in the platinum resistance/sensitivity-related mechanisms.

RNA binding protein with multiple splicing (RBPMS) is a member of a family of proteins that bind to the nascent RNA and control their pre-mRNA processing, splicing, alternative splicing, RNA editing, mRNA export, mRNA stability, pre-rRNA complex formation, translational regulation, and protein degradation [147]. However, the functions of many more biological processes and their relevance to disease states remain to be elucidated. Recently, studies explored the functions of RBPMS in vascular smooth muscle cell differentiation, aging, oogenesis, and retina ganglion cell. Nakagaki-Silva et al. (2019) reported that RBPMS highly down-regulated phenotypic switching of smooth muscle cells from a contractile to a motile [153]. Moreover, RBPMS is responsible for $20 \%$ of the alternative splicing changes during this transition. In breast cancer, RBPMS interacts with AP-1 protein members in vitro. Fu et al. (2015) demonstrated that RBPMS inhibited the growth and migration of breast cancer cells through its interaction with cFos or Smad3. RBPMS inhibited c-Fos or Smad3-mediated AP-1 transactivation and the expression of AP-1 target genes known to be the key regulators of cancer growth and progression. Some of the AP-1 target genes include the vascular endothelial growth factor (VEGF) and cyclin D1. Mechanistically, it is speculated that RBPMS blocks the formation of the c-Fos/c-Jun or Smad3/c-Jun complex as well as the recruitment of c-Fos or Smad3 to the promoters of AP-1 target genes [133].

This study is novel because it reports, for the first time, CRISPR-mediated RBPMS knockdown promoted cell proliferation and invasion, as well as increased the cisplatin resistance of ovarian cancer cells. The study also concluded that RBPMS expression levels can be reduced in ovarian cancer patients, since they were reduced in cisplatin resistant ovarian cancer cells, compared to cisplatin sensitive cells. Until today, no previous scientific evidence reported the biological function of RBPMS in ovarian cancer; much less, which splice variants are related to cisplatin resistance.

In this dissertation, a systematic experimental validation and bioinformatic analysis was developed to unravel the role of RBPMSA and RBPMSC splice variants in ovarian cancer and cisplatin drug resistance. Western blot analyses were performed to determine the protein expression of RBPMS splice variants A and C in ovarian cancer cell panels. RBPMSA and RBPMSC was highly expressed in cisplatin-sensitive, compared with cisplatin-resistant ovarian cancer cells. The results also demonstrate that increased expression of RBPMSA and RBPMSC splice variants reduced cell proliferation, invasion, and migration in ovarian cancer cells. However, only RBPMSA was associated with the cisplatin sensitivity of ovarian cancer cells. Using a mouse model, increased expression of RBPMSA and RBPMSC was seen to result in smaller tumors compared with controls. This effect was more noticeable with tumors overexpressing the RBPMSA isoform. Tumors overexpressing the RBPMSA and RBPMSC splice variants also had reduced cell proliferation rate and blood vessel formation.

In addition, evidence was provided on how RBPMSA and RBPMSC interact with the transcription factors c-Fos, c-Jun, Smad2, Smad3, and Smad4. Previous research suggested that

RBPMS is a critical repressor of AP-1 signaling [130]. The data of this dissertation demonstrated that RBPMSA and RBPMSC interacted with c-Fos and c-Jun in ovarian cancer cells. Therefore, in agreement with previous reports, RBPMSA and RBPMSC could be critical repressors of AP-1 signaling and its activation should be a valuable strategy for ovarian cancer treatment.

Using RNA sequencing of RBPMSA and RBPMSC overexpressing clones unveiled the transcriptional changes that these cells go through when they express one of these protein splice variants. Evidence indicates that RBPMSA and RBPMSC control the expression of RNA transcripts associated with remodeling the tumor microenvironment, cell proliferation, cell survival, cell integrity, among others. These findings highlight the vital role of RBPMS splice variants in the regulation of gene expression in health and disease. Moreover, through CO-IP/MS assay, RBPMS was found to directly bind to proteins such as NME1 and IGK, among others. High levels of NME1 and IGK in cancer patients are significantly related with overall survival in ovarian cancer patients. However, their function in ovarian cancer and relation with RBPMSA and RBPMSC merits further investigation.

This project contributes significant findings for understanding the role of RBPMS and their splice variants in cancer. It identifies RBPMS splice variants A and C as potential tumor suppressors in ovarian cancer. Despite the significant impacts of this project, many questions remain unanswered. Notwithstanding, this project could pave the way for the future development of further research projects, with the following suggested aims:

1. To perform a comprehensive identification of the RNA interacting with each of the RBPMS splice variants in nuclear and cytoplasm fraction by immunoprecipitation, followed by sequencing (Clip-seq). Clip-seq is a novel technique that has become one of the standard techniques to identify in vivo transcriptome-wide binding sites of RNA binding proteins. In general, the cells are treated by UV, which introduces covalent bonds between the RNA and protein that are in direct contact. Then, the cells are lysed and treated with an RNase to degrade naked RNAs, but not RNA regions bound by proteins. The target RNA Binding Protein (in our case RBPMS) and the RNA fragments it binds are isolated via immunoprecipitation. The RNA and protein complex are then resolved on an SDS-PAGE gel, followed by transferal to a membrane. The RNA-protein complexes are cut in the membrane, and proteinase K digestion is used to separate the RNA Binding Protein from the RNA-protein complexes. The resulting RNA fragments are subject to library construction, followed by high throughput sequencing.
2. To generate CRISPR/Cas9 RBPMS knockout mouse models by injecting Cas9 mRNA and multiple single guide RNAs directly into the embryos to induce precise genomic edits. Following these embryos will be transfer into oviduct of surrogate mother. Genotype the mice that develop from these embryos to determine if they carry the RBPMS knockout, and those that do, breed to confirm germline transmission. These genetically engineered animal models should be used to study the biological process and pathological diseases in which RBPMS was involved.
3. To confirm the role of RBPMS as a tumor suppressor gene in mice. In these experiments, double allele mutations RBPMS-/- need to be generated, combined with mutations in other critical oncogenes/tumor suppressor genes, including c-MYC, PTEN, AKT, APC, ATM, CHK2, VHL, or TP53. For this experiment, advantage can be taken of the CRISPR-mediated lentivirus transfections to generate a new clone. The generated doble mutated clones would be implanted
into the mice's ovaries or fallopian tubes, by micro injection. These studies could evaluate the molecular and physiological effects of RBPMS in vivo, and elucidate the effect on angiogenesis, apoptosis, and cellular proliferation.
4. To identify whether other RBPMS splice variants (RBPMSB, RBPMSD, and RBPMSE) are expressed in normal and cancer cells. Specific antibodies could be generated against the Cterminal of the RBPMSB, RBPMSD, and RBPMSE. This would require the determination of protein and mRNA levels of RBPMSB, RBPMSD, and RBPMSE in a panel of cisplatin-sensitive and cisplatin-resistant ovarian cancer cells using a western blot and RT-PCR, respectively.
5. To perform comprehensive identification of the sites, at which RBPMS binds to the RNA within RNA-protein complexes. In this technique, the RNA-protein complexes are immunoprecipitated with the antibodies targeted to the protein of interest (In our case, we can use the DDK-Tag-RBPMS clones). Then, RNase digestion is performed where RNA, protected by protein binding, is extracted and reverse transcribed to cDNA. The exact locations of the proteins and RNA's interactions can then be mapped back to the genome.
6. To perform IP-Ms experiments after crosslink proteins interact with different RBPMS splice variants. Crosslinking is the process of chemically joining two molecules by a covalent bond. This process could help identify more RBPMS interacting proteins; in this study, there was loss during the multiple washing steps while completing the IP protocol.
7. To assess RBPMS as a diagnostic biomarker for ovarian cancer and other types of cancer. To consider RBPMS as good biomarker, it must meet the following criteria:
a. Be specific for ovarian cancer
b. Easy to measure and safe for the patients
c. Rapid detection which allows for faster diagnosis
e. Able to give accurate results within a short period of time
f. Be consistent between ethnic groups or genders.

The expression levels of RBPMS in tumor biopsies could be evaluated in a large group of samples by qRT-PCR and immunohistochemistry to predict cancer drug response.
8. To assess whether the RBPMS splice variants levels are related to the sensitivity of ovarian cancer cells in other chemotherapeutic agents, such as carboplatin, vinorelbine, gemcitabine, paclitaxel, docetaxel, etoposide, and pemetrexed.
9. To identify other miRNAs that potentially able to potentially regulate the RBPMS splice variants at the posttranscriptional level.

Appendix A

Isoforms messenger RNA aliments of NM_001008710.3 Homo sapiens RNA binding protein, mRNA processing factor (RBPMS), transcript variant 1, mRNA (Isoform A), NM_001008711.3 Homo sapiens RNA binding protein, mRNA processing factor (RBPMS), transcript variant 2, mRNA (Isoform B) and NM_001008712.2 Homo sapiens RNA binding protein, mRNA processing factor (RBPMS), transcript variant 3, mRNA (Isoform C). In Blue the sequence that not has been share between mRNA sequence isoforms.

Isoform A: agagcctgce tggagcgegt actcagcgge tctcgggtce cagcgtccca gccgcggcce gcgctcctcc gccccgetcc
Isoform B: agagcctgcc tggagcgegt actcagcgge tctcgggtcc cagcgtccca gccgeggcce gcgctcctcc gccecgetcc
Isoform C: aaggcgagag aaagggaget gettccatcc cggacttcce agagcetgce tggagcgegt actcagcgge tctcgggtce
Isoform A: tcctcctcct cttcctectc ctcctcctct ctaggcacce ccgtcccetc cttccagegg ctgcagccce cagccccaac
Isoform B: tcetcetcet cttcctcctc ctcetcetct ctaggcacce cegtccectc ettccagegg etgcageccc cagccecaac
Isoform C : cagcgtccea gecgeggcce gcgetcctcc gccecgetce tectcctcet cttcctcctc ctcctectct ctaggcacce cegtccectc
Isoform A: tctccgegct tactcctggg acgegcgtcc tcgccccatc ctttgettce ttcettcctt cettcttcet tcctcccetg gctccegcce tccetctcca
Isoform B: tctccgeget tactectggg acgegegtcc tcgecceatc ctttgettce ttcettcctt cettcttcet tcctcccetg getccegcce tccetctcca
Isoform C: cttccagcgg etgcagccec cagccecaac tctccgegct tactcctggg acgegcgtce tcgccecatc etttgettce ttcettcett

Isoform A: ggtcgecctc ccggggcceg attgtctcgg tgccecgctc ccggccegcg ccetgccecg tctctccett gcacttcctg agtcgccegc
Isoform B: ggtcgccetc ccggggcceg attgtctcgg tgccecgctc ccggccegcg ccctgccecg tctctccett gcacttcctg agtcgccegc
Isoform C: ccttcttcct tcctccectg gctcccgcce tccetctcca ggtcgccetc ccggggcceg attgtctcgg tgccecgetc ccggccegcg
Isoform A: gcagactcgc cgcgggagce ccagcccaac cegagccega cagccactgc cccggctcca gctccagcce cacagccegc
Isoform B: gcagactcge cgcgggagce ccagcccaac ccgagccega cagccactgc cccggctcca getccagcce cacagccegc
Isoform C: ccctgccceg tctctccett gcacttcctg agtcgccegc cgccgccgtc gcagactcge cgcgggagcc ccagcceaac
Isoform A: ggcgcccgcc cgagggagce ccggcgcceg gggaaggetc cagtgggeta gcgcgccetc gcceagcccc gcgccccagc
Isoform B: ggcgccegcc cgagggagce ccggegcceg gggaaggetc cagtgggeta gcgegccetc gcccagccec gcgecccage
Isoform C: ccgagcccga cagccactgc cccggetcca gctccagcce cacagcccge ccgagcccga cagccactge cceggetcca
Isoform A: cctgcccggc ccggcgagga aggaccggga agatgaacaa cggcggcaaa gccgagaagg agaacacccc gagcgaggcc
Isoform B: cctgcccggc ccggcgagga aggaccggga agatgaacaa cggcggcaaa gccgagaagg agaacacccc gagcgaggcc
Isoform C: gctccagcce cacagccegc ggcgcccgec cgagggagce ccggcgeccg gggaaggctc cagtgggcta gegcgecctc

Isoform A: aaccttcagg aggaggaggt ccggacceta tttgtcagtg gccttcctct ggatatcaaa cctcgggage tctatctgct
Isoform B: aaccttcagg aggaggaggt ccggacceta tttgtcagtg gccttcctct ggatatcaaa cctcgggage tctatctgct
Isoform C : gcccagcccc gcgecccagc cetgccegge ccggcgagga aggaccggga agatgaacaa cggcggcaaa gccgagaagg
Isoform A: tttcagacca tttaagggct atgagggttc tcttataaag ctcacatcta aacagcctgt aggtttgtc agtttgaca gtcgetcaga
Isoform B: tttcagacca tttaagggct atgagggttc tcttataaag ctcacatcta aacagcctgt aggtttgtc agttttgaca gtcgctcaga
Isoform C: agaacacccc gagcgaggcc aaccttcagg aggaggaggt ccggacceta tttgtcagtg gccttcctct ggatatcaaa cctcgggagc
Isoform A: agcagagget gcaaagaatg ctttgaatgg catccgcttc gatcetgaaa ttccgcaaac actacgacta gagtttgcta aggcaaacac
Isoform B: agcagagget gcaaagaatg ctttgaatgg catccgcttc gatcctgaaa ttccgcaaac actacgacta gagtttgcta aggcaaacac

Isoform C: tctatctgct tttcagacca tttaagggct atgagggttc tcttataaag ctcacatcta aacagcctgt aggttttgtc agtttgaca gtcgctcaga Isoform A: gaagatggcc aagaacaaac tcgtagggac tccaaaccec agtactcctc tgcccaacac tgtacctcag ttcattgcca gagagccata Isoform B: gaagatggcc aagaacaaac tcgtagggac tccaaacccc agtactcctc tgcccaacac tgtacctcag ttcattgcca gagagccata Isoform C: agcagagget gcaaagaatg ctttgaatgg catccgcttc gatcctgaaa ttccgcaaac actacgacta gagttgcta aggcaaacac

Isoform A: tgagctcaca gtgcetgcac tttaccccag tagccetgaa gtgtgggece cgtaccetct gtacceagcg gagttagcge ctgctctacc Isoform B: tgagctcaca gtgcetgcac tttaccccag tagcectgaa gtgtgggcce cgtaccetct gtacceagcg gagttagcge ctgctctacc Isoform C: gaagatggcc aagaacaaac tcgtagggac tccaaaccec agtactcctc tgcceaacac tgtacctcag ttcattgcca gagagccata Isoform A: tcctcctgct ttcacctatc ccgettcact gcatgcceag atgcgetgge tccetccetc cgaggctact tctcaggget ggaagtcceg Isoform B: gagttagcge ctgctctacc tcetcctgct ttcacctatc ccgettcact geatgcceag ctctgtgaag gtcagactgt gaggagaage Isoform C: tgagctcaca gtgcctgcac tttaccccag tagcectgaa gtgtgggcce cgtaccetct gtacceagcg gagttagcge ctgctctacc Isoform A: tcagttctge tgaatactat gtcccaggtg tgtgatggcg gctgcaatct gtcttgtggg tattaatgca atcttcagtg gtggetactg Isoform B: caccecttga gcgetccgtc tcetgatagt gccagcetgg cetggtttce tgtttgatgc getggctcce tccetccgag getacttctc Isoform C: tcctcctgct ttcacctatc ccgcttcact gcatgcceag tgtttctctc ctgaggcaaa gcccaacaca cctgtcttt gtccacttct Isoform A: ttctctagct gttctacaaa actggagcat gctggettga aaaaccettg cccagtttg atccettcaa gactttgtca cagcetctat Isoform B: gccagcetgg cetggtttcc tgtttgatgc gctggctcce tccctccgag getacttctc agggetggaa gtccegtcag ttctgctgaa Isoform C: ccagcaaatt gcccaacaca cctgtctttt gtccacttct ccagcaaatt agattgtct ctgggaatgt gtttgtaaca taccaaccta

Isoform A: cacacatctg tttttctcga agaaaaaaat ataattaata aaaatgtttt actetttac actgtataat ttttctcga agaaaaaaat Isoform B: tactatgtcc caggtgtgtg atggcggctg caatctgtct tgtgggtatt aatgcaatct tcagtggtgg ctactgttct ctagctgttc Isoform C: ctgcagacca gcagagggag ctcccatgtt gaatttgttt gttagctatt ttcccccett tcacaaaaac tatttcttga cgacetttga Isoform A: ataattaata aaaatgtttt actcttttac actgtataat tgtaagaaat agcgtattat ttgtgaatgc atggtctgaa atttctgtac

Isoform B: tacaaaactg gagcatgctg gettgaaaaa ccettgccea gttttgatcc cttcaagact ttgtcacagc ctctatcaca catctgtttt
Isoform C: gagatttcaa taaaaatttt aatcagagca aaaatgaact caaaaaaaaa aaaaaa
Isoform A: agtttggaga tgtaagaaat agcgtattat ttgtgaatgc atggtctgaa atttctgtac agtttggaga tattttcaaa cgaaacgtaa Isoform B: ttgtcacagc ctctatcaca catctgtttt tctcgaagaa aaaaatataa ttaataaaaa tgtttactc tttacactg tataattgta Isoform A: tattttcaaa cgaaacgtaa gagaagtcaa caataaaacc aagaaaagtg agtatttta taccaaacat tttaagtatg ctgggatgga Isoform B: agaaatagcg tattatttgt gaatgcatgg tctgaaattt ctgtacagtt tggagatatt ttcaaacgaa acgtaagaga agtcaacaat Isoform A: cgatcttaca ctggtttgga tcacagtttt tgttcttgac tttgaatgc ttgtaattaa aaatatctat tttttcctc tgaagtaagt Isoform B: aaaaccaaga aaagtgagta ttttatacc aaacattta agtatgctgg gatggacgat cttacactgg tttggatcac agttttgtt Isoform A: tgcatgtttg aggcatgttt ccaaatatta tcaaaatatc ctgaattgta ttgtgaatat atagaaatct gtgcctggcc ggagtccagg Isoform B: cttgactttt gaatgcttgt aattaaaaat atctattttt ttcctctgaa gtaagttgca tgtttgaggc atgtttccaa atattatcaa Isoform A: gtaaattagt agcatggtgt tagatgttag aaacagaact gttatttgca gtgttaggtc taggatccca gttctagtag gacagccetg Isoform B: atctatttt ttcctctgaa gtaagttgca tgtttgagge atgtttccaa atattatcaa aatatcctga attgtattgt gaatatatag Isoform A: caagacaatc aaccagaage ctccaggage ttctacctat ggettattca caactgggca agaaaacatc attggtaaga actgctgagt Isoform B: aaatctgtgc ctggccggag tccagggtaa attagtagca tggtgttaga tgttagaaac agaactgtta tttgcagtgt taggtctagg Isoform A: gtgccettag aaagecetag tagctccagc tgtgactata tcaactgtgt gccaagtgtg actttgtaca gtttatgtt tecactctcc

Isoform B: atcccagttc tagtaggaca gccetgcaag acaatcaacc agaagcctcc aggagcttct acctatggct tattcacaac tgggcaagaa
Isoform A: tgtgactata tcaactgtgt gccaagtgtg actttgtaca gtttatgtt tccactctcc tgtgactata tcaactgtgt gccaagtgtg
Isoform B: aacatcattg gtaagaactg ctgagtgtgc cettagaaag ccctagtage tccagctgtg actatatcaa ctgtgtgcca agtgtgactt
Isoform A: actttgtaca gttttatgtt tccactctcc tgtatgtgta gccactcgat gectaaccta cettccacaa gccagccceg catccetgct
Isoform B: tgtacagttt tatgtttcca ctctcctgta tgtgtageca ctcgatgect aacctacctt ccacaagcca gccecgeatc cetgetcceg
Isoform A: cccgcagtgt aagtgcagag cetgcctcac tggtaaggga aaaccttgge ttgggaggcc agccetggce cttgaagggg
Isoform B: ccacaagcca gccccgcatc cctgctcccg cagtgtaagt gcagagcctg cctcactggt aagggaaaac cttggcttgg
Isoform A: ttggctgtgc ccagcccace tggetgcagt gggcagctca tgtctgtatc tccaaagtga tgttgtttg caaaacaccg Isoform B: gaggccagcc ctggccettg aaggggttgg ctgtgcceag cccacctggc tgcagtgggc agctcatgtc tgtatctcca Isoform A: gctgaactga getggtgttg ccaactcttg gcagcactgg gccaaaccga ccacatacca tgagctccea aatggegtg Isoform B: aagtgatgtt tgtttgcaaa acaccggctg aactgagctg gtgttgccaa ctcttggcag cactgggcca aaccgaccac Isoform A: gctcactgtg agacgtcctg ccacacccca caggagacgg aggcagtggg catttggaac caattctatt cagacttcgt Isoform B: ataccatgag ctcccaaatg gcgtgtgctc actgtgagac gtcetgccac accecacagg agacggagge agtgggcatt Isoform A: caaagccaaa gtcagtctgg tgttgtcagt tgacacatct ccagagttca tgacagctca acctctcccc ttgtacagaa Isoform B: tggaaccaat tctattcaga cttcgtcaaa gccaaagtca gtctggtgtt gtcagttgac acatctccag agttcatgac Isoform A: gccattttg taaaaccaca ctgacctaaa ttcagctgcc aaacacagtc tttcctattg atccgctcgg cttatgttga aaatttcaat Isoform B: agctcaacct ctcccettgt acagaagcca ttttgtaaa accacactga cctaaattca getgccaaac acagtctttc ctattgatcc Isoform A: gtcatgatta cctggttggt ttgggtttt gttttgttat tttccattag aaatataaag atgtcaagaa gcttttaaag gtcaacacaa Isoform B: gctcggctta tgttgaaaat ttcaatgtca tgattacctg gttggtttgg gttttgttt tgttatttc cattagaaat ataaagatgt Isoform A: aaaaccaagg ccaggagtga ggggetcttt cttaccgtaa ataaggggaa aaggcagtta gctcaaggac ttgtgacgga Isoform B: caagaagctt ttaaaggtca acacaaaaaa ccaaggccag gagtgagggg ctctttctta ccgtaaataa ggggaaaagg Isoform A: tccactttgg tgttcaagga cctgcttatg ccctcagtgc caatcggctc ttggtgagat gactgtactc ctaaggaaaa Isoform B: cagttagctc aaggacttgt gacggatcca ctttggtgtt caaggacctg cttatgccet cagtgccaat cggctcttgg Isoform A: tagccacttc tgcagtctat tatgetttta taactgttta aaggtacttt tctattgtca ttttaaaaa ataaagtgct tattccagct gtca Isoform B: tgagatgact gtactcctaa ggaaaatagc cacttctgca gtctattatg cttttataac tgtttaaagg tactttcta ttgtcatttt Isoform B: taaaaaaataa agtgettatt ccagctgtca ccagctgtca

Appendix B

Amino acid alignment of the three well studied RBPMS protein isoforms. Isoform Protein sequences according to Unitpro.org, Accession number: Q93062. We performed alignments with the Multiple Sequence Alignment by CLUSTALW program (https://www.genome.jp/toolsbin/clustalw). In red, the amino acid sequence that changes between isoforms. In blue, the RRM domain characteristic of RNA binding proteins. In green, the antibody sequence that recognized the sigma RBPMS antibody.

Isoform A: MNNGGKAEKENTPSEANLQEEEVRTLFVSGLPLDIKPRELYLLFRPFKGYEG
Isoform B: MNNGGKAEKENTPSEANLQEEEVRTLFVSGLPLDIKPRELYLLFRPFKGYEG
Isoform C: MNNGGKAEKENTPSEANLQEEEVRTLFVSGLPLDIKPRELYLLFRPFKGYEG
Isoform A: SLIKLTSKQPVGFVSFDSRSEAEAAKNALNGIRFDPEIPQTLRLEFAKANTKM
Isoform B: SLIKLTSKQPVGFVSFDSRSEAEAAKNALNGIRFDPEIPQTLRLEFAKANTKM
Isoform C: SLIKLTSKQPVGFVSFDSRSEAEAAKNALNGIRFDPEIPQTLRLEFAKANTKM
Isoform A: AKNKLVGTPNPSTPLPNTVPQFIAREPYELTVPALYPSSPEVWAPYPLYPAELA Isoform B: AKNKLVGTPNPSTPLPNTVPQFIAREPYELTVPALYPSSPEVWAPYPLYPAELA Isoform C: AKNKLVGTPNPSTPLPNTVPQFIAREPYELTVPALYPSSPEVWAPYPLYPAELA

Isoform A: PALPPPAFTYPASLHAQMRWLPPSEATSQGWKSRQFC
Isoform B: PALPPPAFTYPASLHAQLCEGQTVRRSHPLSAPSPDSASLAWFPV
Isoform C:PALPPPAFTYPASLHAQCFSPEAKPNTPVFCPLLQQIRFVSGNVFVTYQPTADQQRELPC

Appendix C

## List of Transcripts in A2780CP20-RBPMSA

| ID | log2FoldChange | pvalue | Gene.name |
| :---: | :---: | :---: | :---: |
| ENSG00000117281 | 7.061648 | \#\#\#\#\#\#\#\#\# | CD160 |
| ENSG00000081138 | 6.696741 | \#\#\#\#\#\#\#\#\# | CDH7 |
| ENSG00000248905 | 4.229346 | \#\#\#\#\#\#\#\#\# | FMN1 |
| ENSG00000174827 | 3.581563 | \#\#\#\#\#\#\#\#\# | PDZK1 |
| ENSG00000156453 | 3.547803 | \#\#\#\#\#\#\#\#\# | PCDH1 |
| ENSG00000184731 | 3.815345 | \#\#\#\#\#\#\#\#\# | FAM110C |
| ENSG00000141750 | 1.94467 | \#\#\#\#\#\#\#\#\# | STAC2 |
| ENSG00000137965 | 9.665418 | \#\#\#\#\#\#\#\#\# | IFI44 |
| ENSG00000168952 | 2.699767 | \#\#\#\#\#\#\#\#\# | STXBP6 |
| ENSG00000183248 | 2.73186 | \#\#\#\#\#\#\#\#\# | PRR36 |
| ENSG00000165821 | 1.660758 | \#\#\#\#\#\#\#\#\# | SALL2 |
| ENSG00000160963 | 2.703602 | \#\#\#\#\#\#\#\#\# | COL26A1 |
| ENSG00000224536 | 4.079151 | \#\#\#\#\#\#\#\#\# | AC096677.1 |
| ENSG00000151012 | 2.875087 | \#\#\#\#\#\#\#\#\# | SLC7A11 |
| ENSG00000130224 | 3.450166 | \#\#\#\#\#\#\#\#\# | LRCH2 |
| ENSG00000137962 | 4.55751 | \#\#\#\#\#\#\#\#\# | ARHGAP29 |
| ENSG00000066468 | 3.37452 | \#\#\#\#\#\#\#\#\# | FGFR2 |
| ENSG00000170271 | 2.57907 | \#\#\#\#\#\#\#\#\# | FAXDC2 |
| ENSG00000241644 | 4.53226 | \#\#\#\#\#\#\#\#\# | INMT |
| ENSG00000149021 | 7.72195 | \#\#\#\#\#\#\#\#\# | SCGB1A1 |
| ENSG00000115461 | 4.808982 | \#\#\#\#\#\#\#\#\# | IGFBP5 |
| ENSG00000133321 | 4.104905 | \#\#\#\#\#\#\#\#\# | RARRES3 |
| ENSG00000100593 | 1.627568 | \#\#\#\#\#\#\#\#\# | ISM2 |
| ENSG00000138764 | 1.794789 | \#\#\#\#\#\#\#\#\# | CCNG2 |
| ENSG00000152952 | 2.618066 | \#\#\#\#\#\#\#\#\# | PLOD2 |
| ENSG00000260807 | 2.48413 | \#\#\#\#\#\#\#\#\# | AC009041.2 |
| ENSG00000137573 | 1.683238 | \#\#\#\#\#\#\#\#\# | SULF1 |
| ENSG00000148942 | 2.789883 | \#\#\#\#\#\#\#\#\# | SLC5A12 |
| ENSG00000223396 | 3.818768 | \#\#\#\#\#\#\#\#\# | RPS10P7 |
| ENSG00000138606 | 2.385711 | \#\#\#\#\#\#\#\#\# | SHF |
| ENSG00000129244 | 2.693013 | \#\#\#\#\#\#\#\#\# | ATP1B2 |
| ENSG00000128284 | 4.522353 | \#\#\#\#\#\#\#\#\# | APOL3 |
| ENSG00000040731 | 2.481557 | \#\#\#\#\#\#\#\#\# | CDH10 |
| ENSG00000166448 | 2.922946 | \#\#\#\#\#\#\#\#\# | TMEM130 |
| ENSG00000272931 | -3.05131 | \#\#\#\#\#\#\#\#\# | AC099568.2 |
| ENSG00000106868 | 2.446266 | \#\#\#\#\#\#\#\#\# | SUSD1 |
| ENSG00000046889 | -4.38135 | \#\#\#\#\#\#\#\#\# | PREX2 |
| ENSG00000186470 | 1.404181 | \#\#\#\#\#\#\#\#\# | BTN3A2 |


| ENSG00000160323 | 1.323483 | \#\#\#\#\#\#\#\#\# | ADAMTS13 |
| :---: | :---: | :---: | :---: |
| ENSG00000137203 | 2.177523 | \#\#\#\#\#\#\#\#\# | TFAP2A |
| ENSG00000050767 | 2.152862 | \#\#\#\#\#\#\#\#\# | COL23A1 |
| ENSG00000187268 | -2.02028 | \#\#\#\#\#\#\#\#\# | FAM9C |
| ENSG00000072195 | 1.512706 | \#\#\#\#\#\#\#\#\# | SPEG |
| ENSG00000261051 | 4.93514 | \#\#\#\#\#\#\#\#\# | AC107021.2 |
| ENSG00000166816 | 1.669122 | \#\#\#\#\#\#\#\#\# | LDHD |
| ENSG00000259884 | 5.486558 | \#\#\#\#\#\#\#\#\# | AC025259.3 |
| ENSG00000250033 | 5.666149 | \#\#\#\#\#\#\#\#\# | SLC7A11-AS1 |
| ENSG00000052344 | 3.02167 | \#\#\#\#\#\#\#\#\# | PRSS8 |
| ENSG00000157514 | 2.529853 | \#\#\#\#\#\#\#\#\# | TSC22D3 |
| ENSG00000214274 | 1.474773 | \#\#\#\#\#\#\#\#\# | ANG |
| ENSG00000069812 | 3.354458 | \#\#\#\#\#\#\#\#\# | HES2 |
| ENSG00000134013 | 1.697994 | \#\#\#\#\#\#\#\#\# | LOXL2 |
| ENSG00000265972 | 3.958924 | \#\#\#\#\#\#\#\#\# | TXNIP |
| ENSG00000173157 | 2.683433 | \#\#\#\#\#\#\#\#\# | ADAMTS20 |
| ENSG00000215915 | -1.912 | \#\#\#\#\#\#\#\#\# | ATAD3C |
| ENSG00000183049 | 1.538965 | \#\#\#\#\#\#\#\#\# | CAMK1D |
| ENSG00000108947 | 1.623675 | \#\#\#\#\#\#\#\#\# | EFNB3 |
| ENSG00000148143 | 1.813476 | \#\#\#\#\#\#\#\#\# | ZNF462 |
| ENSG00000157303 | 3.73631 | \#\#\#\#\#\#\#\#\# | SUSD3 |
| ENSG00000136378 | 1.645541 | \#\#\#\#\#\#\#\#\# | ADAMTS7 |
| ENSG00000262001 | 1.456036 | \#\#\#\#\#\#\#\#\# | DLGAP1-AS2 |
| ENSG00000100167 | 1.033558 | \#\#\#\#\#\#\#\#\# | SEPT3 |
| ENSG00000108984 | 1.732926 | \#\#\#\#\#\#\#\#\# | MAP2K6 |
| ENSG00000061656 | 1.342071 | \#\#\#\#\#\#\#\#\# | SPAG4 |
| ENSG00000108771 | 2.637488 | \#\#\#\#\#\#\#\#\# | DHX58 |
| ENSG00000168350 | 2.497218 | \#\#\#\#\#\#\#\#\# | DEGS2 |
| ENSG00000160818 | -1.29756 | \#\#\#\#\#\#\#\#\# | GPATCH4 |
| ENSG00000128394 | 1.449079 | \#\#\#\#\#\#\#\#\# | APOBEC3F |
| ENSG00000107968 | 1.568218 | \#\#\#\#\#\#\#\#\# | MAP3K8 |
| ENSG00000165675 | -1.12983 | \#\#\#\#\#\#\#\#\# | ENOX2 |
| ENSG00000181513 | 1.136722 | \#\#\#\#\#\#\#\#\# | ACBD4 |
| ENSG00000242574 | 2.202546 | \#\#\#\#\#\#\#\#\# | HLA-DMB |
| ENSG00000068831 | 1.711108 | \#\#\#\#\#\#\#\#\# | RASGRP2 |
| ENSG00000130304 | 1.428097 | \#\#\#\#\#\#\#\#\# | SLC27A1 |
| ENSG00000225434 | 6.554247 | \#\#\#\#\#\#\#\#\# | LINC01504 |
| ENSG00000168062 | 2.241166 | \#\#\#\#\#\#\#\#\# | BATF2 |
| ENSG00000240694 | 2.343762 | \#\#\#\#\#\#\#\#\# | PNMA2 |
| ENSG00000119922 | 4.629633 | \#\#\#\#\#\#\#\#\# | IFIT2 |
| ENSG00000102683 | 2.931468 | \#\#\#\#\#\#\#\#\# | SGCG |


| ENSG00000162654 | 6.931543 | \#\#\#\#\#\#\#\#\# | GBP4 |
| :---: | :---: | :---: | :---: |
| ENSG00000204767 | 4.905735 | \#\#\#\#\#\#\#\#\# | FAM196B |
| ENSG00000213420 | 1.776686 | \#\#\#\#\#\#\#\#\# | GPC2 |
| ENSG00000120738 | 2.273067 | \#\#\#\#\#\#\#\#\# | EGR1 |
| ENSG00000176406 | 1.292923 | \#\#\#\#\#\#\#\#\# | RIMS2 |
| ENSG00000092068 | 3.223802 | \#\#\#\#\#\#\#\#\# | SLC7A8 |
| ENSG00000188897 | 2.956762 | \#\#\#\#\#\#\#\#\# | AC099489.1 |
| ENSG00000143226 | 4.501612 | \#\#\#\#\#\#\#\#\# | FCGR2A |
| ENSG00000124143 | 1.695956 | \#\#\#\#\#\#\#\#\# | ARHGAP40 |
| ENSG00000120217 | 2.573364 | \#\#\#\#\#\#\#\#\# | CD274 |
| ENSG00000128165 | 4.651843 | \#\#\#\#\#\#\#\#\# | ADM2 |
| ENSG00000158710 | -1.5107 | \#\#\#\#\#\#\#\#\# | TAGLN2 |
| ENSG00000205795 | 3.048989 | \#\#\#\#\#\#\#\#\# | CYS1 |
| ENSG00000185561 | 2.174608 | \#\#\#\#\#\#\#\#\# | TLCD2 |
| ENSG00000105639 | 1.25664 | \#\#\#\#\#\#\#\#\# | JAK3 |
| ENSG00000184678 | 2.287248 | \#\#\#\#\#\#\#\#\# | HIST2H2BE |
| ENSG00000164086 | -1.08132 | \#\#\#\#\#\#\#\#\# | DUSP7 |
| ENSG00000179041 | -1.05868 | \#\#\#\#\#\#\#\#\# | RRS1 |
| ENSG00000126583 | 1.244188 | \#\#\#\#\#\#\#\#\# | PRKCG |
| ENSG00000196684 | 5.864666 | \#\#\#\#\#\#\#\#\# | HSH2D |
| ENSG00000111801 | 1.391975 | \#\#\#\#\#\#\#\#\# | BTN3A3 |
| ENSG00000186868 | 1.271379 | \#\#\#\#\#\#\#\#\# | MAPT |
| ENSG00000282851 | 3.518552 | \#\#\#\#\#\#\#\#\# | BISPR |
| ENSG00000139572 | 3.170133 | \#\#\#\#\#\#\#\#\# | GPR84 |
| ENSG00000208028 | 4.426901 | \#\#\#\#\#\#\#\#\# | MIR616 |
| ENSG00000108829 | -1.22479 | \#\#\#\#\#\#\#\#\# | LRRC59 |
| ENSG00000154874 | 1.956932 | \#\#\#\#\#\#\#\#\# | CCDC144B |
| ENSG00000130528 | 3.743749 | \#\#\#\#\#\#\#\#\# | HRC |
| ENSG00000196415 | 3.62375 | \#\#\#\#\#\#\#\#\# | PRTN3 |
| ENSG00000106305 | -1.06491 | \#\#\#\#\#\#\#\#\# | AIMP2 |
| ENSG00000132603 | -0.95678 | \#\#\#\#\#\#\#\#\# | NIP7 |
| ENSG00000014914 | 1.229848 | \#\#\#\#\#\#\#\#\# | MTMR11 |
| ENSG00000232721 | 1.745501 | \#\#\#\#\#\#\#\#\# | AC239800.2 |
| ENSG00000105327 | 2.193872 | \#\#\#\#\#\#\#\#\# | BBC3 |
| ENSG00000168209 | 2.165621 | \#\#\#\#\#\#\#\#\# | DDIT4 |
| ENSG00000214357 | 1.10629 | \#\#\#\#\#\#\#\#\# | NEURL1B |
| ENSG00000124383 | -0.94133 | \#\#\#\#\#\#\#\#\# | MPHOSPH10 |
| ENSG00000128917 | 2.024312 | \#\#\#\#\#\#\#\#\# | DLL4 |
| ENSG00000185053 | -4.11078 | \#\#\#\#\#\#\#\#\# | SGCZ |
| ENSG00000033050 | -0.81629 | \#\#\#\#\#\#\#\#\# | ABCF2 |
| ENSG00000155961 | 2.263183 | \#\#\#\#\#\#\#\#\# | RAB39B |


| ENSG00000116254 | 1.605628 | \#\#\#\#\#\#\#\#\# | CHD5 |
| :---: | :---: | :---: | :---: |
| ENSG00000052850 | 2.731533 | \#\#\#\#\#\#\#\#\# | ALX4 |
| ENSG00000054392 | 1.317658 | \#\#\#\#\#\#\#\#\# | HHAT |
| ENSG00000169418 | 1.117657 | \#\#\#\#\#\#\#\#\# | NPR1.00 |
| ENSG00000136045 | -0.87764 | \#\#\#\#\#\#\#\#\# | PWP1 |
| ENSG00000011600 | 3.647828 | \#\#\#\#\#\#\#\#\# | TYROBP |
| ENSG00000119917 | 4.321095 | \#\#\#\#\#\#\#\#\# | IFIT3 |
| ENSG00000234160 | -1.38825 | \#\#\#\#\#\#\#\#\# | AL513165.1 |
| ENSG00000142046 | 1.678942 | \#\#\#\#\#\#\#\#\# | TMEM91 |
| ENSG00000005513 | 1.674885 | \#\#\#\#\#\#\#\#\# | SOX8 |
| ENSG00000105173 | -1.18391 | \#\#\#\#\#\#\#\#\# | CCNE1 |
| ENSG00000233967 | 1.871983 | \#\#\#\#\#\#\#\#\# | AL359715.1 |
| ENSG00000140450 | 2.00479 | \#\#\#\#\#\#\#\#\# | ARRDC4 |
| ENSG00000072133 | 1.439895 | 0.0001 | RPS6KA6 |
| ENSG00000196337 | 2.127355 | 0.000101 | CGB7 |
| ENSG00000108018 | 5.895097 | 0.000101 | SORCS1 |
| ENSG00000072274 | -1.41207 | 0.000103 | TFRC |
| ENSG00000151224 | 2.433938 | 0.000103 | MAT1A |
| ENSG00000188452 | 3.677324 | 0.000104 | CERKL |
| ENSG00000172828 | 1.594397 | 0.000104 | CES3 |
| ENSG00000186994 | 3.080561 | 0.000106 | KANK3 |
| ENSG00000260001 | 1.999004 | 0.000108 | TGFBR3L |
| ENSG00000125508 | 2.965505 | 0.000111 | SRMS |
| ENSG00000147183 | 6.930851 | 0.000112 | CPXCR1 |
| ENSG00000115946 | -0.79827 | 0.00012 | PNO1 |
| ENSG00000235863 | 1.371934 | 0.000121 | B3GALT4 |
| ENSG00000165271 | -1.02282 | 0.000122 | NOL6 |
| ENSG00000143319 | -0.8002 | 0.000131 | ISG20L2 |
| ENSG00000139174 | 2.762563 | 0.000135 | PRICKLE1 |
| ENSG00000108840 | 1.442705 | 0.000135 | HDAC5 |
| ENSG00000184500 | 1.150706 | 0.000136 | PROS1 |
| ENSG00000213928 | 2.513039 | 0.000137 | IRF9 |
| ENSG00000248514 | 1.470285 | 0.000138 | AC008443.4 |
| ENSG00000130303 | 5.971958 | 0.000138 | BST2 |
| ENSG00000130513 | 5.715488 | 0.000139 | GDF15 |
| ENSG00000100889 | 1.786649 | 0.000139 | PCK2 |
| ENSG00000117266 | 1.155845 | 0.00014 | CDK18 |
| ENSG00000261236 | -1.45662 | 0.000144 | BOP1.00 |
| ENSG00000116761 | 1.482136 | 0.000144 | CTH |
| ENSG00000109654 | 1.604518 | 0.000144 | TRIM2 |
| ENSG00000163811 | -0.76875 | 0.000147 | WDR43 |


| ENSG00000127415 | 1.674184 | 0.000147 | IDUA |
| :---: | :---: | :---: | :---: |
| ENSG00000101255 | 2.084738 | 0.000148 | TRIB3 |
| ENSG00000101076 | 6.743273 | 0.000149 | HNF4A |
| ENSG00000125347 | 1.750063 | 0.000152 | IRF1 |
| ENSG00000070182 | 3.002206 | 0.000155 | SPTB |
| ENSG00000172426 | 1.581787 | 0.000155 | RSPH9 |
| ENSG00000160190 | 1.155402 | 0.000156 | SLC37A1 |
| ENSG00000104888 | 1.188479 | 0.000162 | SLC17A7 |
| ENSG00000197989 | -1.44691 | 0.000163 | SNHG12 |
| ENSG00000127585 | 1.491184 | 0.000164 | FBXL16 |
| ENSG00000115226 | 1.623698 | 0.00017 | FNDC4 |
| ENSG00000278962 | 3.808058 | 0.000173 | AC092645.1 |
| ENSG00000129451 | 5.034537 | 0.000177 | KLK10 |
| ENSG00000177337 | 1.054721 | 0.000178 | DLGAP1-AS1 |
| ENSG00000144136 | -0.94663 | 0.000183 | SLC20A1 |
| ENSG00000104369 | -1.58449 | 0.000185 | JPH1 |
| ENSG00000168899 | 1.552272 | 0.00019 | VAMP5 |
| ENSG00000176533 | 1.428823 | 0.00019 | GNG7 |
| ENSG00000135763 | -0.98839 | 0.000192 | URB2 |
| ENSG00000229950 | 3.506545 | 0.000194 | TFAP2A-AS1 |
| ENSG00000105668 | 1.792068 | 0.000198 | UPK1A |
| ENSG00000168333 | 6.108959 | 0.0002 | PPDPFL |
| ENSG00000155846 | -0.95619 | 0.000201 | PPARGC1B |
| ENSG00000103522 | 4.790108 | 0.000203 | IL21R |
| ENSG00000274021 | 2.152944 | 0.000205 | AC024909.2 |
| ENSG00000038945 | -1.37995 | 0.000209 | MSR1 |
| ENSG00000259953 | 4.355291 | 0.00021 | AL138756.1 |
| ENSG00000160208 | -0.83872 | 0.000212 | RRP1B |
| ENSG00000131067 | 1.400825 | 0.000213 | GGT7 |
| ENSG00000106665 | 1.918251 | 0.000213 | CLIP2 |
| ENSG00000217442 | 2.442425 | 0.000215 | SYCE3 |
| ENSG00000206503 | 2.298012 | 0.000225 | HLA-A |
| ENSG00000166197 | -0.73624 | 0.000232 | NOLC1 |
| ENSG00000266302 | 4.851928 | 0.000234 | AC098850.3 |
| ENSG00000115761 | -0.92179 | 0.000236 | NOL10 |
| ENSG00000117360 | -0.77911 | 0.000238 | PRPF3 |
| ENSG00000095596 | 3.087763 | 0.000245 | CYP26A1 |
| ENSG00000144152 | 1.802502 | 0.000248 | FBLN7 |
| ENSG00000154358 | 1.587232 | 0.000256 | OBSCN |
| ENSG00000167632 | 1.053381 | 0.000257 | TRAPPC9 |
| ENSG00000128285 | 2.718826 | 0.000261 | MCHR1 |


| ENSG00000187486 | 1.105937 | 0.000269 | KCNJ11 |
| :---: | :---: | :---: | :---: |
| ENSG00000121552 | 3.88724 | 0.000271 | CSTA |
| ENSG00000105447 | -1.28767 | 0.000272 | GRWD1 |
| ENSG00000187140 | 5.270456 | 0.000276 | FOXD3 |
| ENSG00000035862 | 1.415516 | 0.000277 | TIMP2 |
| ENSG00000105550 | 5.930365 | 0.000282 | FGF21 |
| ENSG00000162367 | 3.35196 | 0.000283 | TAL1 |
| ENSG00000173638 | -1.21905 | 0.000284 | SLC19A1 |
| ENSG00000074966 | -3.1203 | 0.000286 | TXK |
| ENSG00000100439 | 1.080637 | 0.000287 | ABHD4 |
| ENSG00000103196 | 2.835103 | 0.000291 | CRISPLD2 |
| ENSG00000187994 | 3.602864 | 0.000301 | RINL |
| ENSG00000165684 | -0.88105 | 0.00031 | SNAPC4 |
| ENSG00000183666 | -1.4586 | 0.000314 | GUSBP1 |
| ENSG00000112238 | -1.87762 | 0.000317 | PRDM13 |
| ENSG00000167601 | 1.304903 | 0.000317 | AXL |
| ENSG00000186517 | 1.650674 | 0.000318 | ARHGAP30 |
| ENSG00000146054 | 0.890051 | 0.000322 | TRIM7 |
| ENSG00000188747 | 1.506754 | 0.000326 | NOXA1 |
| ENSG00000118292 | 1.207673 | 0.000327 | C1orf54 |
| ENSG00000087269 | -1.0707 | 0.00033 | NOP14 |
| ENSG00000173208 | 1.923978 | 0.00033 | ABCD2 |
| ENSG00000104870 | 1.590767 | 0.000331 | FCGRT |
| ENSG00000130517 | 1.047937 | 0.000334 | PGPEP1 |
| ENSG00000135424 | 1.085419 | 0.000338 | ITGA7 |
| ENSG00000115053 | -1.24438 | 0.000341 | NCL |
| ENSG00000141682 | 1.769668 | 0.000346 | PMAIP1 |
| ENSG00000244041 | 0.951575 | 0.000348 | LINC01011 |
| ENSG00000131467 | -0.91799 | 0.000348 | PSME3 |
| ENSG00000088881 | 2.314594 | 0.000352 | EBF4 |
| ENSG00000145014 | 0.886872 | 0.000353 | TMEM44 |
| ENSG00000187091 | 1.141992 | 0.00037 | PLCD1 |
| ENSG00000145194 | -1.26919 | 0.000372 | ECE2 |
| ENSG00000174564 | 2.908358 | 0.000373 | IL20RB |
| ENSG00000162591 | 2.381914 | 0.000374 | MEGF6 |
| ENSG00000167721 | -0.85816 | 0.000381 | TSR1 |
| ENSG00000198944 | 1.511651 | 0.000383 | SOWAHA |
| ENSG00000099953 | 1.364167 | 0.000388 | MMP11 |
| ENSG00000136875 | -1.03039 | 0.00039 | PRPF4 |
| ENSG00000206559 | 1.391151 | 0.000391 | ZCWPW2 |
| ENSG00000104765 | 0.874577 | 0.000394 | BNIP3L |


| ENSG00000089195 | -0.73627 | 0.000396 | TRMT6 |
| :---: | :---: | :---: | :---: |
| ENSG00000003400 | 1.151111 | 0.000398 | CASP10 |
| ENSG00000176046 | 6.087443 | 0.000401 | NUPR1 |
| ENSG00000041802 | -0.73961 | 0.000403 | LSG1 |
| ENSG00000170581 | 1.355389 | 0.000405 | STAT2 |
| ENSG00000162426 | 1.57107 | 0.000405 | SLC45A1 |
| ENSG00000115271 | 2.74221 | 0.000406 | GCA |
| ENSG00000007314 | 3.036166 | 0.000424 | SCN4A |
| ENSG00000165475 | 1.032925 | 0.000428 | CRYL1 |
| ENSG00000170684 | -1.26783 | 0.000429 | ZNF296 |
| ENSG00000188933 | 2.206837 | 0.000433 | USP32P1 |
| ENSG00000130363 | 1.524602 | 0.000434 | RSPH3 |
| ENSG00000183072 | -0.78738 | 0.000434 | NKX2-5 |
| ENSG00000066185 | 1.528207 | 0.000441 | ZMYND12 |
| ENSG00000101361 | -1.12897 | 0.000442 | NOP56 |
| ENSG00000125999 | 3.962015 | 0.000447 | BPIFB1 |
| ENSG00000170412 | 2.155127 | 0.000452 | GPRC5C |
| ENSG00000099194 | 1.498504 | 0.000452 | SCD |
| ENSG00000053918 | 4.926976 | 0.000458 | KCNQ1 |
| ENSG00000082516 | -0.95806 | 0.000461 | GEMIN5 |
| ENSG00000168961 | 6.507802 | 0.00047 | LGALS9 |
| ENSG00000170017 | 1.284602 | 0.000473 | ALCAM |
| ENSG00000152583 | 3.388799 | 0.000474 | SPARCL1 |
| ENSG00000131069 | 1.227859 | 0.000479 | ACSS2 |
| ENSG00000167157 | 1.955894 | 0.000482 | PRRX2 |
| ENSG00000151789 | 2.655202 | 0.000483 | ZNF385D |
| ENSG00000232352 | 2.212548 | 0.000485 | SEMA3B-AS1 |
| ENSG00000170390 | 1.159124 | 0.000486 | DCLK2 |
| ENSG00000149131 | 1.613542 | 0.000488 | SERPING1 |
| ENSG00000197324 | 1.323296 | 0.000506 | LRP10 |
| ENSG00000184060 | 2.014594 | 0.000507 | ADAP2 |
| ENSG00000009950 | 1.401053 | 0.00051 | MLXIPL |
| ENSG00000253500 | 0.963641 | 0.000513 | AF121898.1 |
| ENSG00000197948 | 0.898571 | 0.000519 | FCHSD1 |
| ENSG00000110446 | 6.865731 | 0.000523 | SLC15A3 |
| ENSG00000182871 | 1.242694 | 0.000525 | COL18A1 |
| ENSG00000198223 | 1.786365 | 0.000526 | CSF2RA |
| ENSG00000130826 | -0.81684 | 0.000527 | DKC1 |
| ENSG00000185155 | 3.548535 | 0.000528 | MIXL1 |
| ENSG00000260645 | 1.548169 | 0.000529 | AL359715.2 |
| ENSG00000235300 | 2.125238 | 0.000529 | AC090627.1 |


| ENSG00000128298 | 1.740278 | 0.000529 | BAIAP2L2 |
| :---: | :---: | :---: | :---: |
| ENSG00000221539 | -2.52172 | 0.000538 | SNORD99 |
| ENSG00000235831 | 2.12688 | 0.000539 | BHLHE40-AS1 |
| ENSG00000247077 | -0.84183 | 0.000541 | PGAM5 |
| ENSG00000160781 | 1.70834 | 0.000542 | PAQR6 |
| ENSG00000172409 | -0.9373 | 0.000546 | CLP1 |
| ENSG00000155158 | 1.545619 | 0.000549 | TTC39B |
| ENSG00000111641 | -0.72175 | 0.000564 | NOP2 |
| ENSG00000184481 | 1.126321 | 0.000579 | FOXO4 |
| ENSG00000108592 | -0.8383 | 0.000581 | FTSJ3 |
| ENSG00000088205 | -0.71422 | 0.000582 | DDX18 |
| ENSG00000159173 | 3.106137 | 0.000584 | TNNI1 |
| ENSG00000136819 | -0.71452 | 0.000586 | C9orf78 |
| ENSG00000244219 | 2.804392 | 0.000586 | TMEM225B |
| ENSG00000198176 | -0.9902 | 0.000588 | TFDP1 |
| ENSG00000110104 | -1.04317 | 0.000592 | CCDC86 |
| ENSG00000162699 | 3.076529 | 0.000609 | DNAJA1P5 |
| ENSG00000130294 | 1.875152 | 0.00061 | KIF1A |
| ENSG00000145703 | 3.045269 | 0.000615 | IQGAP2 |
| ENSG00000104356 | -1.07932 | 0.000616 | POP1 |
| ENSG00000102984 | 1.183785 | 0.00062 | ZNF821 |
| ENSG00000170542 | 1.565508 | 0.000626 | SERPINB9 |
| ENSG00000270666 | 2.925138 | 0.000627 | AL021918.1 |
| ENSG00000100100 | 1.105258 | 0.000639 | PIK3IP1 |
| ENSG00000181350 | 1.30698 | 0.000642 | LRRC75A |
| ENSG00000119801 | 1.266204 | 0.000645 | YPEL5 |
| ENSG00000277459 | -1.87699 | 0.000651 | AP001527.2 |
| ENSG00000185163 | -0.87273 | 0.000655 | DDX51 |
| ENSG00000160111 | 1.921754 | 0.000658 | CPAMD8 |
| ENSG00000100285 | -1.42852 | 0.000664 | NEFH |
| ENSG00000175938 | 1.173002 | 0.000665 | ORAI3 |
| ENSG00000070814 | -1.0779 | 0.000665 | TCOF1 |
| ENSG00000105849 | -0.94017 | 0.000671 | TWISTNB |
| ENSG00000223669 | 5.638946 | 0.000679 | AL357033.2 |
| ENSG00000111271 | 0.980663 | 0.000689 | ACAD10 |
| ENSG00000100029 | -0.98635 | 0.000689 | PES1.00 |
| ENSG00000172037 | 1.072857 | 0.000689 | LAMB2 |
| ENSG00000114315 | 1.789226 | 0.00069 | HES1 |
| ENSG00000070669 | 1.884527 | 0.000695 | ASNS |
| ENSG00000159199 | -1.2184 | 0.000703 | ATP5MC1 |
| ENSG00000107798 | 1.545303 | 0.000706 | LIPA |


| ENSG00000114648 | -0.75376 | 0.000715 | KLHL18 |
| :---: | :---: | :---: | :---: |
| ENSG00000171798 | 2.332277 | 0.000718 | KNDC1 |
| ENSG00000239282 | 1.792082 | 0.000719 | CASTOR1 |
| ENSG00000133067 | 4.870829 | 0.000726 | LGR6 |
| ENSG00000070540 | 1.429653 | 0.000738 | WIPI1 |
| ENSG00000134697 | -0.79121 | 0.000745 | GNL2 |
| ENSG00000175356 | 1.913444 | 0.000754 | SCUBE2 |
| ENSG00000131781 | 1.393061 | 0.000757 | FMO5 |
| ENSG00000070444 | 1.392247 | 0.000757 | MNT |
| ENSG00000073150 | 1.394323 | 0.000759 | PANX2 |
| ENSG00000117305 | 0.799632 | 0.000769 | HMGCL |
| ENSG00000197496 | 1.360388 | 0.000771 | SLC2A10 |
| ENSG00000132530 | 8.297768 | 0.000782 | XAF1 |
| ENSG00000171223 | 1.508508 | 0.000792 | JUNB |
| ENSG00000258580 | 5.077016 | 0.000795 | AL136298.1 |
| ENSG00000101445 | 1.40552 | 0.000801 | PPP1R16B |
| ENSG00000130529 | 1.217643 | 0.000803 | TRPM4 |
| ENSG00000111540 | 0.895376 | 0.000807 | RAB5B |
| ENSG00000196517 | 1.799331 | 0.000813 | SLC6A9 |
| ENSG00000220008 | 2.161571 | 0.000814 | LINGO3 |
| ENSG00000155438 | -0.8871 | 0.00082 | NIFK |
| ENSG00000121297 | 3.446574 | 0.000835 | TSHZ3 |
| ENSG00000265817 | 3.321043 | 0.000841 | FSBP |
| ENSG00000239779 | 0.830244 | 0.000842 | WBP1 |
| ENSG00000139625 | 0.683821 | 0.00086 | MAP3K12 |
| ENSG00000204305 | 1.139591 | 0.000868 | AGER |
| ENSG00000168939 | 1.81469 | 0.000876 | SPRY3 |
| ENSG00000075043 | -1.31207 | 0.000877 | KCNQ2 |
| ENSG00000204282 | 2.826788 | 0.000883 | TNRC6C-AS1 |
| ENSG00000188573 | 2.464702 | 0.000884 | FBLL1 |
| ENSG00000065183 | -0.73201 | 0.000892 | WDR3 |
| ENSG00000196363 | -0.80091 | 0.000893 | WDR5 |
| ENSG00000111319 | 2.021261 | 0.000899 | SCNN1A |
| ENSG00000258837 | 1.794881 | 0.000899 | AL133370.1 |
| ENSG00000115263 | 1.494541 | 0.000907 | GCG |
| ENSG00000162733 | 1.464615 | 0.000921 | DDR2 |
| ENSG00000129932 | -0.89564 | 0.000924 | DOHH |
| ENSG00000142235 | 0.88357 | 0.000933 | LMTK3 |
| ENSG00000138759 | 4.07941 | 0.000942 | FRAS1 |
| ENSG00000148229 | -1.02633 | 0.000943 | POLE3 |
| ENSG00000139597 | 1.603627 | 0.000948 | N4BP2L1 |


| ENSG00000115468 | 1.127388 | 0.00095 | EFHD1 |
| :---: | :---: | :---: | :---: |
| ENSG00000131981 | 1.97137 | 0.000966 | LGALS3 |
| ENSG00000163017 | -2.19861 | 0.000978 | ACTG2 |
| ENSG00000105821 | -0.9853 | 0.001012 | DNAJC2 |
| ENSG00000162849 | -1.57858 | 0.001012 | KIF26B |
| ENSG00000105967 | 3.039575 | 0.001013 | TFEC |
| ENSG00000184669 | 1.63048 | 0.001019 | OR7E14P |
| ENSG00000126217 | 1.518953 | 0.001019 | MCF2L |
| ENSG00000100077 | 1.328656 | 0.001024 | GRK3 |
| ENSG00000206341 | 2.19888 | 0.001037 | HLA-H |
| ENSG00000163840 | 1.752244 | 0.001054 | DTX3L |
| ENSG00000232530 | 1.50365 | 0.001055 | LIF-AS1 |
| ENSG00000162413 | -0.88015 | 0.001055 | KLHL21 |
| ENSG00000186496 | 1.167034 | 0.001059 | ZNF396 |
| ENSG00000261270 | 2.795555 | 0.001064 | AC012181.2 |
| ENSG00000100462 | -0.95241 | 0.001066 | PRMT5 |
| ENSG00000133874 | 0.815955 | 0.001067 | RNF122 |
| ENSG00000099617 | 3.144231 | 0.001068 | EFNA2 |
| ENSG00000044090 | 0.985887 | 0.001069 | CUL7 |
| ENSG00000154134 | 1.223226 | 0.001074 | ROBO3 |
| ENSG00000230615 | 1.609283 | 0.001076 | AL139220.2 |
| ENSG00000205250 | -0.84169 | 0.00108 | E2F4 |
| ENSG00000011021 | 1.110713 | 0.001088 | CLCN6 |
| ENSG00000078081 | 4.07203 | 0.001089 | LAMP3 |
| ENSG00000119812 | -0.83138 | 0.001101 | FAM98A |
| ENSG00000130726 | -1.07741 | 0.001108 | TRIM28 |
| ENSG00000251381 | 5.683703 | 0.001109 | LINC00958 |
| ENSG00000178685 | 3.893206 | 0.001114 | PARP10 |
| ENSG00000065717 | 0.840534 | 0.001116 | TLE2 |
| ENSG00000261884 | -1.23635 | 0.001118 | AC040162.1 |
| ENSG00000113356 | -0.93226 | 0.001133 | POLR3G |
| ENSG00000121579 | -0.73091 | 0.001141 | NAA50 |
| ENSG00000129103 | 0.845156 | 0.001142 | SUMF2 |
| ENSG00000168924 | -0.97 | 0.001163 | LETM1 |
| ENSG00000154553 | 1.347746 | 0.001176 | PDLIM3 |
| ENSG00000196421 | 2.411486 | 0.001194 | C20orf204 |
| ENSG00000131171 | 0.849941 | 0.0012 | SH3BGRL |
| ENSG00000272512 | 2.521189 | 0.001205 | AL645608.8 |
| ENSG00000259319 | 2.397304 | 0.001207 | AF111167.2 |
| ENSG00000151576 | -0.81386 | 0.001212 | QTRT2 |
| ENSG00000182919 | 1.074684 | 0.001243 | C11orf54 |


| ENSG00000158156 | 3.208944 | 0.001245 | XKR8 |
| :---: | :---: | :---: | :---: |
| ENSG00000204128 | 1.484981 | 0.001253 | C2orf72 |
| ENSG00000183431 | -1.0957 | 0.001257 | SF3A3 |
| ENSG00000228203 | -3.66095 | 0.001258 | RNF144A-AS1 |
| ENSG00000135636 | 1.592639 | 0.001263 | DYSF |
| ENSG00000184564 | 2.550643 | 0.001265 | SLITRK6 |
| ENSG00000172183 | 3.311568 | 0.00127 | ISG20 |
| ENSG00000167123 | 1.279362 | 0.001283 | CERCAM |
| ENSG00000224843 | 1.635311 | 0.00129 | LINC00240 |
| ENSG00000275713 | -4.3234 | 0.001298 | HIST1H2BH |
| ENSG00000186998 | 1.446607 | 0.001309 | EMID1 |
| ENSG00000125744 | 1.030243 | 0.00131 | RTN2 |
| ENSG00000135521 | -0.75194 | 0.001312 | LTV1 |
| ENSG00000111912 | 1.596153 | 0.001316 | NCOA7 |
| ENSG00000170791 | -0.98918 | 0.001318 | CHCHD7 |
| ENSG00000071967 | 1.167342 | 0.001319 | CYBRD1 |
| ENSG00000148300 | -0.72738 | 0.001326 | REXO4 |
| ENSG00000214212 | 1.87927 | 0.001369 | C19orf38 |
| ENSG00000164889 | -0.98199 | 0.001372 | SLC4A2 |
| ENSG00000123999 | 1.269927 | 0.00138 | INHA |
| ENSG00000187266 | 0.756913 | 0.001403 | EPOR |
| ENSG00000227946 | 0.986452 | 0.00141 | AC007383.2 |
| ENSG00000142303 | 1.153839 | 0.001411 | ADAMTS10 |
| ENSG00000104081 | 1.316 | 0.00142 | BMF |
| ENSG00000198865 | 2.240307 | 0.001426 | CCDC152 |
| ENSG00000184787 | -0.68048 | 0.001436 | UBE2G2 |
| ENSG00000134668 | 1.012588 | 0.001436 | SPOCD1 |
| ENSG00000138772 | 1.687598 | 0.001453 | ANXA3 |
| ENSG00000168065 | 3.818054 | 0.001459 | SLC22A11 |
| ENSG00000175309 | 1.011259 | 0.001461 | PHYKPL |
| ENSG00000086827 | -0.91364 | 0.001475 | ZW10 |
| ENSG00000149150 | 1.501306 | 0.001478 | SLC43A1 |
| ENSG00000167995 | 4.703248 | 0.001483 | BEST1 |
| ENSG00000162772 | 3.853352 | 0.001519 | ATF3 |
| ENSG00000105472 | -1.37629 | 0.00152 | CLEC11A |
| ENSG00000111364 | -0.7048 | 0.001558 | DDX55 |
| ENSG00000099875 | 1.586125 | 0.00156 | MKNK2 |
| ENSG00000150471 | 4.14806 | 0.001561 | ADGRL3 |
| ENSG00000007944 | 1.026902 | 0.001561 | MYLIP |
| ENSG00000182040 | 1.046929 | 0.001595 | USH1G |
| ENSG00000162572 | 0.832052 | 0.001615 | SCNN1D |


| ENSG00000187244 | 1.457612 | 0.001616 | BCAM |
| :---: | :---: | :---: | :---: |
| ENSG00000231925 | 0.903551 | 0.001619 | TAPBP |
| ENSG00000090006 | 0.901549 | 0.001622 | LTBP4 |
| ENSG00000130254 | -0.77888 | 0.001629 | SAFB2 |
| ENSG00000171490 | -0.65487 | 0.001631 | RSL1D1 |
| ENSG00000107165 | -2.31519 | 0.001634 | TYRP1 |
| ENSG00000179409 | -0.92364 | 0.001647 | GEMIN4 |
| ENSG00000105204 | 0.834029 | 0.001651 | DYRK1B |
| ENSG00000167600 | 0.989229 | 0.00168 | CYP2S1 |
| ENSG00000258952 | 1.378909 | 0.001684 | SALRNA1 |
| ENSG00000130935 | -0.82417 | 0.001685 | NOL11 |
| ENSG00000196843 | -1.26967 | 0.001708 | ARID5A |
| ENSG00000179598 | -0.91381 | 0.001724 | PLD6 |
| ENSG00000136699 | -0.88749 | 0.001732 | SMPD4 |
| ENSG00000169439 | 1.873355 | 0.001744 | SDC2 |
| ENSG00000128590 | 1.167184 | 0.001745 | DNAJB9 |
| ENSG00000225138 | 1.264902 | 0.001753 | SLC9A3-AS1 |
| ENSG00000115257 | 0.896892 | 0.001776 | PCSK4 |
| ENSG00000127561 | 1.162663 | 0.001783 | SYNGR3 |
| ENSG00000181938 | -1.18565 | 0.001801 | GINS3 |
| ENSG00000144331 | 2.940823 | 0.001802 | ZNF385B |
| ENSG00000164093 | -1.51512 | 0.001804 | PITX2 |
| ENSG00000112578 | -0.715 | 0.001816 | BYSL |
| ENSG00000196605 | 1.066519 | 0.001825 | ZNF846 |
| ENSG00000108679 | 3.687035 | 0.001831 | LGALS3BP |
| ENSG00000135372 | -0.71824 | 0.001847 | NAT10 |
| ENSG00000120158 | -0.86171 | 0.001849 | RCL1 |
| ENSG00000124593 | 1.047899 | 0.001859 | AL365205.1 |
| ENSG00000138675 | -2.16884 | 0.001886 | FGF5 |
| ENSG00000136718 | -0.852 | 0.001888 | IMP4 |
| ENSG00000168216 | 1.010756 | 0.001899 | LMBRD1 |
| ENSG00000070047 | -0.73089 | 0.001922 | PHRF1 |
| ENSG00000125485 | -0.84531 | 0.00193 | DDX31 |
| ENSG00000167552 | 0.695483 | 0.001956 | TUBA1A |
| ENSG00000179532 | 1.178888 | 0.001958 | DNHD1 |
| ENSG00000152518 | -0.68631 | 0.001977 | ZFP36L2 |
| ENSG00000175634 | -0.80962 | 0.001989 | RPS6KB2 |
| ENSG00000069122 | 2.898767 | 0.00199 | ADGRF5 |
| ENSG00000110002 | 1.145685 | 0.001995 | VWA5A |
| ENSG00000125630 | -0.75847 | 0.002009 | POLR1B |
| ENSG00000086717 | 1.703989 | 0.002024 | PPEF1 |


| ENSG00000228705 | 2.502071 | 0.002031 | LINC00659 |
| :---: | :---: | :---: | :---: |
| ENSG00000159784 | 1.997729 | 0.002033 | FAM131B |
| ENSG00000106263 | -0.88979 | 0.002035 | EIF3B |
| ENSG00000144659 | -0.75792 | 0.00204 | SLC25A38 |
| ENSG00000181544 | -1.37618 | 0.002043 | FANCB |
| ENSG00000158423 | 0.921364 | 0.002055 | RIBC1 |
| ENSG00000138613 | 0.863329 | 0.002066 | APH1B |
| ENSG00000241288 | 1.275762 | 0.002078 | AC092902.2 |
| ENSG00000107902 | 1.204279 | 0.002086 | LHPP |
| ENSG00000104901 | 1.212409 | 0.002089 | DKKL1 |
| ENSG00000237441 | 0.812275 | 0.002096 | RGL2 |
| ENSG00000160471 | 1.863782 | 0.002103 | COX6B2 |
| ENSG00000262468 | 0.94625 | 0.002103 | LINC01569 |
| ENSG00000184220 | -0.71386 | 0.002107 | CMSS1 |
| ENSG00000116922 | -0.67765 | 0.002116 | C1orf109 |
| ENSG00000101004 | 0.800173 | 0.002133 | NINL |
| ENSG00000102057 | 1.672556 | 0.002135 | KCND1 |
| ENSG00000254858 | -0.98466 | 0.002142 | MPV17L2 |
| ENSG00000187955 | 4.329544 | 0.002142 | COL14A1 |
| ENSG00000080608 | -0.65679 | 0.002148 | PUM3 |
| ENSG00000141756 | 0.921956 | 0.002151 | FKBP10 |
| ENSG00000085741 | 1.973227 | 0.002154 | WNT11 |
| ENSG00000106948 | 3.393675 | 0.002172 | AKNA |
| ENSG00000099864 | 1.11459 | 0.002176 | PALM |
| ENSG00000148296 | -0.72887 | 0.002178 | SURF6 |
| ENSG00000007516 | 2.005964 | 0.002182 | BAIAP3 |
| ENSG00000166145 | 1.631715 | 0.002189 | SPINT1 |
| ENSG00000188511 | 3.32028 | 0.002193 | C22orf34 |
| ENSG00000278771 | -1.63419 | 0.002198 | RN7SL3 |
| ENSG00000226510 | 1.497186 | 0.002217 | UPK1A-AS1 |
| ENSG00000162496 | 1.280727 | 0.002232 | DHRS3 |
| ENSG00000165959 | 1.524454 | 0.002238 | CLMN |
| ENSG00000189283 | 1.173916 | 0.002262 | FHIT |
| ENSG00000178075 | 0.841085 | 0.002278 | GRAMD1C |
| ENSG00000174951 | 4.949331 | 0.002284 | FUT1 |
| ENSG00000147251 | 1.299587 | 0.002293 | DOCK11 |
| ENSG00000198723 | 1.010794 | 0.002311 | TEX45 |
| ENSG00000166224 | 1.08451 | 0.002323 | SGPL1 |
| ENSG00000068976 | 2.080847 | 0.002332 | PYGM |
| ENSG00000100196 | 0.828866 | 0.002337 | KDELR3 |
| ENSG00000154127 | -1.55144 | 0.002338 | UBASH3B |


| ENSG00000244675 | 3.021661 | 0.002369 | AC108676.1 |
| :---: | :---: | :---: | :---: |
| ENSG00000116455 | -1.22857 | 0.00237 | WDR77 |
| ENSG00000064703 | -0.73916 | 0.002374 | DDX20 |
| ENSG00000167874 | -1.66872 | 0.002383 | TMEM88 |
| ENSG00000183496 | 0.73595 | 0.002385 | MEX3B |
| ENSG00000119599 | -0.81824 | 0.002385 | DCAF4 |
| ENSG00000100299 | 1.048743 | 0.002399 | ARSA |
| ENSG00000182447 | 2.815431 | 0.00241 | OTOL1 |
| ENSG00000117533 | 0.952639 | 0.00244 | VAMP4 |
| ENSG00000205129 | 1.067256 | 0.00244 | C4orf47 |
| ENSG00000144021 | -0.60369 | 0.002459 | CIAO1 |
| ENSG00000170919 | 1.249101 | 0.002459 | TPT1-AS1 |
| ENSG00000142207 | -0.77556 | 0.002467 | URB1 |
| ENSG00000175606 | -0.81253 | 0.002483 | TMEM70 |
| ENSG00000162194 | 0.946058 | 0.002491 | LBHD1 |
| ENSG00000165733 | -0.76013 | 0.002493 | BMS1 |
| ENSG00000099337 | 1.208696 | 0.002497 | KCNK6 |
| ENSG00000188729 | 3.122175 | 0.002499 | OSTN |
| ENSG00000107815 | -0.6797 | 0.002512 | TWNK |
| ENSG00000055044 | -0.93487 | 0.002516 | NOP58 |
| ENSG00000165259 | 1.000282 | 0.002538 | HDX |
| ENSG00000070081 | 0.867175 | 0.002552 | NUCB2 |
| ENSG00000110628 | 1.13728 | 0.002569 | SLC22A18 |
| ENSG00000168734 | 1.211622 | 0.002576 | PKIG |
| ENSG00000157212 | -0.89557 | 0.002579 | PAXIP1 |
| ENSG00000107949 | -0.79959 | 0.002579 | BCCIP |
| ENSG00000114491 | -1.02175 | 0.002581 | UMPS |
| ENSG00000198467 | -1.25086 | 0.002599 | TPM2 |
| ENSG00000128973 | -1.06811 | 0.002604 | CLN6 |
| ENSG00000162377 | -0.60187 | 0.002614 | COA7 |
| ENSG00000261716 | 0.782954 | 0.002617 | AC239868.1 |
| ENSG00000141030 | -0.83499 | 0.002646 | COPS3 |
| ENSG00000116584 | 1.411329 | 0.002663 | ARHGEF2 |
| ENSG00000185133 | 0.921647 | 0.002666 | INPP5J |
| ENSG00000135124 | 1.117942 | 0.002716 | P2RX4 |
| ENSG00000240303 | 1.301837 | 0.002718 | ACAD11 |
| ENSG00000118816 | 0.88625 | 0.002741 | CCNI |
| ENSG00000008086 | 1.661895 | 0.002752 | CDKL5 |
| ENSG00000162913 | 1.790539 | 0.002758 | OBSCN-AS1 |
| ENSG00000159210 | -0.80434 | 0.002771 | SNF8 |
| ENSG00000198604 | -0.66315 | 0.002787 | BAZ1A |


| ENSG00000079385 | 2.687623 | 0.002795 | CEACAM1 |
| :---: | :---: | :---: | :---: |
| ENSG00000234494 | -1.25009 | 0.00281 | SP2-AS1 |
| ENSG00000181744 | 1.083811 | 0.002826 | C3orf58 |
| ENSG00000111799 | -4.33205 | 0.002829 | COL12A1 |
| ENSG00000165997 | 1.417375 | 0.002863 | ARL5B |
| ENSG00000103005 | -0.71804 | 0.002872 | USB1 |
| ENSG00000147224 | -0.66495 | 0.002877 | PRPS1 |
| ENSG00000188312 | -1.19348 | 0.002878 | CENPP |
| ENSG00000167085 | -0.9573 | 0.002896 | PHB |
| ENSG00000163354 | 1.347519 | 0.002909 | DCST2 |
| ENSG00000175198 | 0.78743 | 0.002915 | PCCA |
| ENSG00000184619 | 1.559467 | 0.002915 | KRBA2 |
| ENSG00000161921 | 0.831697 | 0.002939 | CXCL16 |
| ENSG00000068971 | 1.270825 | 0.00294 | PPP2R5B |
| ENSG00000168872 | -0.68048 | 0.002953 | DDX19A |
| ENSG00000137767 | 0.748623 | 0.002976 | SQOR |
| ENSG00000231721 | 1.266401 | 0.002981 | LINC-PINT |
| ENSG00000168672 | 3.598847 | 0.002997 | FAM84B |
| ENSG00000052802 | 1.247247 | 0.003006 | MSMO1 |
| ENSG00000134453 | -0.72482 | 0.003009 | RBM17 |
| ENSG00000160097 | 1.146588 | 0.003011 | FNDC5 |
| ENSG00000105538 | 1.415622 | 0.003012 | RASIP1 |
| ENSG00000148411 | -0.75564 | 0.003022 | NACC2 |
| ENSG00000165269 | 3.601286 | 0.003023 | AQP7 |
| ENSG00000105642 | 1.024791 | 0.003023 | KCNN1 |
| ENSG00000141622 | 2.865455 | 0.003023 | RNF165 |
| ENSG00000115902 | 1.588239 | 0.003027 | SLC1A4 |
| ENSG00000217801 | 1.383159 | 0.003029 | AL390719.1 |
| ENSG00000123505 | -0.84011 | 0.003036 | AMD1.00 |
| ENSG00000146416 | 0.760942 | 0.003061 | AIG1 |
| ENSG00000136271 | -0.8592 | 0.003074 | DDX56 |
| ENSG00000176624 | 0.962218 | 0.003094 | MEX3C |
| ENSG00000132254 | -0.67819 | 0.003097 | ARFIP2 |
| ENSG00000166986 | 1.041665 | 0.003097 | MARS |
| ENSG00000204131 | 1.490151 | 0.00312 | NHSL2 |
| ENSG00000188486 | -0.89076 | 0.003128 | H2AFX |
| ENSG00000128965 | 3.265234 | 0.003133 | CHAC1 |
| ENSG00000116990 | 1.480099 | 0.003134 | MYCL |
| ENSG00000112761 | 2.215649 | 0.003147 | WISP3 |
| ENSG00000135074 | 1.732943 | 0.003148 | ADAM19 |
| ENSG00000092096 | 1.07761 | 0.00315 | SLC22A17 |


| ENSG00000004399 | 0.953944 | 0.003201 | PLXND1 |
| :---: | :---: | :---: | :---: |
| ENSG00000278259 | -0.92587 | 0.003203 | MYO19 |
| ENSG00000100968 | 0.787404 | 0.00322 | NFATC4 |
| ENSG00000123453 | 2.352911 | 0.003231 | SARDH |
| ENSG00000169083 | 3.150837 | 0.003233 | AR |
| ENSG00000162552 | 2.801586 | 0.00324 | WNT4 |
| ENSG00000120334 | -0.7534 | 0.003247 | CENPL |
| ENSG00000163491 | -1.52769 | 0.00328 | NEK10 |
| ENSG00000159166 | 2.49192 | 0.003291 | LAD1 |
| ENSG00000198911 | 0.966325 | 0.003306 | SREBF2 |
| ENSG00000225345 | -1.66716 | 0.003307 | SNX18P3 |
| ENSG00000175305 | -1.48428 | 0.003321 | CCNE2 |
| ENSG00000133216 | 2.120514 | 0.003322 | EPHB2 |
| ENSG00000133119 | -0.80865 | 0.003325 | RFC3 |
| ENSG00000138119 | 1.195491 | 0.003362 | MYOF |
| ENSG00000007402 | 1.098709 | 0.003364 | CACNA2D2 |
| ENSG00000119899 | 0.99877 | 0.003381 | SLC17A5 |
| ENSG00000135829 | -0.94523 | 0.003393 | DHX9 |
| ENSG00000188807 | -0.66333 | 0.003397 | TMEM201 |
| ENSG00000105737 | 1.590278 | 0.0034 | GRIK5 |
| ENSG00000156697 | -0.88671 | 0.003411 | UTP14A |
| ENSG00000270441 | 1.755716 | 0.003423 | AC135506.1 |
| ENSG00000067334 | -0.65473 | 0.003425 | DNTTIP2 |
| ENSG00000177606 | 1.463565 | 0.003433 | JUN |
| ENSG00000236698 | -1.04599 | 0.003445 | EIF1AXP1 |
| ENSG00000197444 | 0.918165 | 0.003452 | OGDHL |
| ENSG00000143443 | 0.690894 | 0.003472 | C1orf56 |
| ENSG00000213024 | -0.74471 | 0.003478 | NUP62 |
| ENSG00000214944 | 2.058477 | 0.003487 | ARHGEF28 |
| ENSG00000118733 | 0.84407 | 0.003509 | OLFM3 |
| ENSG00000084090 | -0.80542 | 0.003519 | STARD7 |
| ENSG00000115828 | 1.741262 | 0.003522 | QPCT |
| ENSG00000146909 | -0.81224 | 0.003523 | NOM1 |
| ENSG00000198496 | 0.944866 | 0.003526 | NBR2 |
| ENSG00000167371 | 0.720219 | 0.003529 | PRRT2 |
| ENSG00000136856 | -1.02192 | 0.00355 | SLC2A8 |
| ENSG00000102967 | -1.00831 | 0.003566 | DHODH |
| ENSG00000171298 | 0.896372 | 0.003594 | GAA |
| ENSG00000225648 | -0.7062 | 0.003608 | SBDSP1 |
| ENSG00000181381 | 2.794727 | 0.003618 | DDX60L |
| ENSG00000104381 | -0.89134 | 0.003627 | GDAP1 |


| ENSG00000164211 | 1.352051 | 0.00363 | STARD4 |
| :---: | :---: | :---: | :---: |
| ENSG00000179528 | 2.568181 | 0.003637 | LBX2 |
| ENSG00000138074 | -0.81003 | 0.003641 | SLC5A6 |
| ENSG00000256268 | 1.135328 | 0.003686 | LINC02454 |
| ENSG00000021300 | 0.946305 | 0.003708 | PLEKHB1 |
| ENSG00000108785 | 1.69217 | 0.003711 | HSD17B1P1 |
| ENSG00000167617 | 1.322195 | 0.003722 | CDC42EP5 |
| ENSG00000116711 | -1.15491 | 0.003736 | PLA2G4A |
| ENSG00000140105 | 1.324156 | 0.003747 | WARS |
| ENSG00000162664 | -0.7224 | 0.003749 | ZNF326 |
| ENSG00000160193 | -1.20309 | 0.003774 | WDR4 |
| ENSG00000107371 | -1.03997 | 0.003778 | EXOSC3 |
| ENSG00000132470 | 1.031135 | 0.00379 | ITGB4 |
| ENSG00000261114 | 1.942156 | 0.003816 | AC012181.1 |
| ENSG00000164742 | 1.199394 | 0.00382 | ADCY1 |
| ENSG00000263812 | 2.790646 | 0.00382 | LINC00908 |
| ENSG00000148840 | -0.6252 | 0.003827 | PPRC1 |
| ENSG00000181085 | 1.276191 | 0.003834 | MAPK15 |
| ENSG00000127995 | 0.943069 | 0.003841 | CASD1 |
| ENSG00000120942 | -0.67474 | 0.003846 | UBIAD1 |
| ENSG00000104921 | 2.814961 | 0.003856 | FCER2 |
| ENSG00000226349 | 1.545496 | 0.003856 | AC099066.1 |
| ENSG00000105376 | 1.243778 | 0.003861 | ICAM5 |
| ENSG00000248383 | -1.03465 | 0.003868 | PCDHAC1 |
| ENSG00000204815 | 1.450282 | 0.003878 | TTC25 |
| ENSG00000196449 | -0.62915 | 0.003885 | YRDC |
| ENSG00000170954 | 2.679253 | 0.003902 | ZNF415 |
| ENSG00000277161 | -1.15568 | 0.003907 | PIGW |
| ENSG00000172346 | 1.403289 | 0.003909 | CSDC2 |
| ENSG00000144401 | 0.626177 | 0.003941 | METTL21A |
| ENSG00000146731 | -0.81835 | 0.003941 | CCT6A |
| ENSG00000165905 | 1.274048 | 0.003962 | LARGE2 |
| ENSG00000130706 | -0.78874 | 0.003969 | ADRM1 |
| ENSG00000110723 | 1.253173 | 0.004006 | EXPH5 |
| ENSG00000258634 | 0.910167 | 0.004007 | AL160006.1 |
| ENSG00000135698 | -0.77957 | 0.004011 | MPHOSPH6 |
| ENSG00000170965 | 1.693196 | 0.004012 | PLAC1 |
| ENSG00000197536 | 1.674059 | 0.004041 | C50rf56 |
| ENSG00000196998 | 1.008333 | 0.004056 | WDR45 |
| ENSG00000170558 | 1.306178 | 0.004064 | CDH2 |
| ENSG00000206053 | -0.77046 | 0.00408 | JPT2 |


| ENSG00000160401 | -1.17522 | 0.004089 | CFAP157 |
| :---: | :---: | :---: | :---: |
| ENSG00000138685 | 1.102373 | 0.004104 | FGF2 |
| ENSG00000120053 | 1.196739 | 0.00411 | GOT1 |
| ENSG00000261438 | 1.95512 | 0.00413 | AL157394.1 |
| ENSG00000132170 | -0.80617 | 0.004134 | PPARG |
| ENSG00000102878 | 0.81602 | 0.004146 | HSF4 |
| ENSG00000198042 | -0.55228 | 0.004216 | MAK16 |
| ENSG00000140057 | 0.742774 | 0.004217 | AK7 |
| ENSG00000176619 | -0.77992 | 0.00423 | LMNB2 |
| ENSG00000146242 | 0.785493 | 0.004233 | TPBG |
| ENSG00000165480 | -1.19655 | 0.004255 | SKA3 |
| ENSG00000188157 | 1.18558 | 0.004262 | AGRN |
| ENSG00000138750 | -0.58584 | 0.00427 | NUP54 |
| ENSG00000145526 | 4.578614 | 0.004302 | CDH18 |
| ENSG00000123737 | -0.9848 | 0.004305 | EXOSC9 |
| ENSG00000170396 | -0.89038 | 0.004318 | ZNF804A |
| ENSG00000260412 | 1.427883 | 0.004321 | AL353746.1 |
| ENSG00000099251 | 1.190758 | 0.004353 | HSD17B7P2 |
| ENSG00000135899 | 1.857665 | 0.00436 | SP110 |
| ENSG00000115241 | -0.86348 | 0.004362 | PPM1G |
| ENSG00000162063 | -1.11073 | 0.004366 | CCNF |
| ENSG00000101003 | -1.11296 | 0.004377 | GINS1 |
| ENSG00000181163 | -1.01301 | 0.004379 | NPM1 |
| ENSG00000169188 | -0.76664 | 0.004383 | APEX2 |
| ENSG00000011007 | -0.68071 | 0.004416 | ELOA |
| ENSG00000055163 | 1.202493 | 0.004426 | CYFIP2 |
| ENSG00000158290 | 0.640063 | 0.004439 | CUL4B |
| ENSG00000135678 | 1.382991 | 0.004445 | CPM |
| ENSG00000116237 | -0.61654 | 0.004483 | ICMT |
| ENSG00000181577 | 2.82111 | 0.004488 | C6orf223 |
| ENSG00000139233 | -0.73614 | 0.004496 | LLPH |
| ENSG00000070423 | -0.69889 | 0.004502 | RNF126 |
| ENSG00000155816 | 2.264344 | 0.004516 | FMN2 |
| ENSG00000116117 | 1.664614 | 0.00454 | PARD3B |
| ENSG00000204592 | 1.262801 | 0.004552 | HLA-E |
| ENSG00000092929 | 1.863712 | 0.004561 | UNC13D |
| ENSG00000077092 | 2.887572 | 0.004587 | RARB |
| ENSG00000167578 | 0.837738 | 0.004598 | RAB4B |
| ENSG00000185090 | -0.68894 | 0.004602 | MANEAL |
| ENSG00000174804 | 0.726124 | 0.004611 | FZD4 |
| ENSG00000065357 | 0.681843 | 0.004638 | DGKA |


| ENSG00000143878 | 0.956542 | 0.004645 | RHOB |
| :---: | :---: | :---: | :---: |
| ENSG00000102547 | 1.131594 | 0.004654 | CAB39L |
| ENSG00000142864 | -0.69336 | 0.00466 | SERBP1 |
| ENSG00000185437 | 0.933571 | 0.004678 | SH3BGR |
| ENSG00000156265 | 0.990422 | 0.004685 | MAP3K7CL |
| ENSG00000163485 | -1.29056 | 0.004696 | ADORA1 |
| ENSG00000184634 | 0.819141 | 0.004704 | MED12 |
| ENSG00000138642 | 1.489441 | 0.004718 | HERC6 |
| ENSG00000183145 | 0.720404 | 0.004731 | RIPPLY3 |
| ENSG00000054793 | 0.993103 | 0.004735 | ATP9A |
| ENSG00000180801 | -2.8782 | 0.004743 | ARSJ |
| ENSG00000261652 | 0.831758 | 0.004747 | C15orf65 |
| ENSG00000152778 | 1.406144 | 0.004772 | IFIT5 |
| ENSG00000134516 | 5.548323 | 0.004782 | DOCK2 |
| ENSG00000135316 | -0.78634 | 0.00479 | SYNCRIP |
| ENSG00000133315 | 1.166111 | 0.00481 | MACROD1 |
| ENSG00000140688 | 0.783342 | 0.004833 | C16orf58 |
| ENSG00000188051 | 1.282842 | 0.004834 | TMEM221 |
| ENSG00000135269 | 3.664881 | 0.004839 | TES |
| ENSG00000122884 | 0.984086 | 0.004855 | P4HA1 |
| ENSG00000175868 | 1.896796 | 0.004862 | CALCB |
| ENSG00000135540 | 1.319979 | 0.004869 | NHSL1 |
| ENSG00000132522 | -1.06111 | 0.00488 | GPS2 |
| ENSG00000178177 | 0.895782 | 0.00488 | LCORL |
| ENSG00000226137 | 0.696824 | 0.004882 | BAIAP2-AS1 |
| ENSG00000112146 | -0.63522 | 0.004883 | FBXO9 |
| ENSG00000212232 | -1.61319 | 0.004888 | SNORD17 |
| ENSG00000130164 | 1.303815 | 0.00489 | LDLR |
| ENSG00000171421 | -1.11431 | 0.004891 | MRPL36 |
| ENSG00000120075 | 0.86738 | 0.004893 | HOXB5 |
| ENSG00000155970 | 0.805152 | 0.004895 | MICU3 |
| ENSG00000147124 | 0.996425 | 0.004926 | ZNF41 |
| ENSG00000182459 | 1.852202 | 0.004939 | TEX19 |
| ENSG00000185838 | -0.93007 | 0.004977 | GNB1L |
| ENSG00000113161 | 1.066427 | 0.004996 | HMGCR |
| ENSG00000145604 | -0.87121 | 0.005008 | SKP2 |
| ENSG00000244242 | 2.552465 | 0.005008 | IFITM10 |
| ENSG00000145736 | -0.64902 | 0.005022 | GTF2H2 |
| ENSG00000249242 | 0.838051 | 0.005057 | TMEM150C |
| ENSG00000109971 | -0.92727 | 0.005067 | HSPA8 |
| ENSG00000114867 | -0.76212 | 0.005074 | EIF4G1 |


| ENSG00000145907 | -0.70586 | 0.005077 | G3BP1 |
| :---: | :---: | :---: | :---: |
| ENSG00000205978 | 1.114565 | 0.005077 | NYNRIN |
| ENSG00000240849 | 1.137896 | 0.00509 | TMEM189 |
| ENSG00000137266 | 1.018394 | 0.005095 | SLC22A23 |
| ENSG00000090554 | 1.413735 | 0.005095 | FLT3LG |
| ENSG00000165240 | 0.882406 | 0.005097 | ATP7A |
| ENSG00000134815 | -0.77025 | 0.005103 | DHX34 |
| ENSG00000176595 | 1.328586 | 0.005119 | KBTBD11 |
| ENSG00000196981 | 0.681788 | 0.005126 | WDR5B |
| ENSG00000136450 | -0.93945 | 0.005126 | SRSF1 |
| ENSG00000255284 | 1.097078 | 0.005129 | AP006621.3 |
| ENSG00000267649 | 1.397807 | 0.005141 | AC010327.4 |
| ENSG00000186635 | 0.755335 | 0.005162 | ARAP1 |
| ENSG00000100372 | -0.65393 | 0.005192 | SLC25A17 |
| ENSG00000231503 | -1.0666 | 0.005193 | PTMAP4 |
| ENSG00000087076 | 1.291444 | 0.0052 | HSD17B14 |
| ENSG00000077585 | 0.978401 | 0.005217 | GPR137B |
| ENSG00000249464 | 0.989367 | 0.005222 | LINC01091 |
| ENSG00000232445 | -0.69773 | 0.005234 | AC006329.1 |
| ENSG00000134001 | -0.58522 | 0.005271 | EIF2S1 |
| ENSG00000100216 | -1.00962 | 0.005276 | TOMM22 |
| ENSG00000125457 | 0.639037 | 0.005288 | MIF4GD |
| ENSG00000162408 | -0.8542 | 0.005294 | NOL9 |
| ENSG00000066923 | 1.262264 | 0.005333 | STAG3 |
| ENSG00000250899 | -0.79712 | 0.005341 | AC125807.2 |
| ENSG00000135625 | 2.025347 | 0.005346 | EGR4 |
| ENSG00000172432 | 1.160136 | 0.005375 | GTPBP2 |
| ENSG00000013275 | -0.76902 | 0.005382 | PSMC4 |
| ENSG00000166341 | 1.508488 | 0.00539 | DCHS1 |
| ENSG00000132561 | 1.440611 | 0.005449 | MATN2 |
| ENSG00000130158 | 0.913109 | 0.005467 | DOCK6 |
| ENSG00000165556 | 2.739589 | 0.005468 | CDX2 |
| ENSG00000187193 | -0.91223 | 0.005484 | MT1X |
| ENSG00000171793 | -0.85299 | 0.005501 | CTPS1 |
| ENSG00000111142 | -0.61835 | 0.005522 | METAP2 |
| ENSG00000158828 | 0.973797 | 0.005528 | PINK1 |
| ENSG00000162231 | -0.58226 | 0.005555 | NXF1 |
| ENSG00000136891 | -0.53473 | 0.005592 | TEX10 |
| ENSG00000149547 | -0.62892 | 0.005602 | EI24 |
| ENSG00000170322 | -0.63744 | 0.005616 | NFRKB |
| ENSG00000163597 | -0.85881 | 0.005622 | SNHG16 |


| ENSG00000231607 | -1.05746 | 0.005689 | DLEU2 |
| :---: | :---: | :---: | :---: |
| ENSG00000104723 | 0.761522 | 0.005712 | TUSC3 |
| ENSG00000047644 | 1.248184 | 0.005712 | WWC3 |
| ENSG00000187372 | 2.204105 | 0.005731 | PCDHB13 |
| ENSG00000185345 | 1.713553 | 0.005823 | PRKN |
| ENSG00000282826 | 0.795296 | 0.005826 | FRG1CP |
| ENSG00000156374 | -0.63566 | 0.005837 | PCGF6 |
| ENSG00000172216 | 1.335832 | 0.005852 | CEBPB |
| ENSG00000114698 | 2.1244 | 0.005874 | PLSCR4 |
| ENSG00000255008 | 1.827645 | 0.00589 | AP000442.1 |
| ENSG00000160678 | 1.241846 | 0.005892 | S100A1 |
| ENSG00000168003 | 1.329833 | 0.005894 | SLC3A2 |
| ENSG00000145833 | -1.06186 | 0.005898 | DDX46 |
| ENSG00000130725 | -0.72026 | 0.005899 | UBE2M |
| ENSG00000144231 | -0.67912 | 0.005902 | POLR2D |
| ENSG00000130766 | 2.700174 | 0.005922 | SESN2 |
| ENSG00000101493 | 0.977298 | 0.005925 | ZNF516 |
| ENSG00000261824 | 1.09104 | 0.005927 | LINC00662 |
| ENSG00000267309 | 0.94617 | 0.005929 | AC092295.2 |
| ENSG00000134107 | 1.248276 | 0.005932 | BHLHE40 |
| ENSG00000116120 | -0.76692 | 0.00596 | FARSB |
| ENSG00000231689 | 4.7308 | 0.005967 | LINC01090 |
| ENSG00000106462 | -0.93034 | 0.00598 | EZH2 |
| ENSG00000108312 | -0.63637 | 0.005993 | UBTF |
| ENSG00000145414 | -0.67705 | 0.006008 | NAF1 |
| ENSG00000091651 | -0.83011 | 0.006022 | ORC6 |
| ENSG00000103227 | 0.729168 | 0.006031 | LMF1 |
| ENSG00000130700 | 1.266087 | 0.006039 | GATA5 |
| ENSG00000266947 | 1.190431 | 0.006039 | AC022916.1 |
| ENSG00000130830 | -0.87729 | 0.006045 | MPP1 |
| ENSG00000105928 | 0.715115 | 0.006085 | GSDME |
| ENSG00000103326 | -0.656 | 0.006096 | CAPN15 |
| ENSG00000139112 | 1.379842 | 0.0061 | GABARAPL1 |
| ENSG00000012061 | 1.024426 | 0.006102 | ERCC1 |
| ENSG00000078804 | 0.88339 | 0.006105 | TP53INP2 |
| ENSG00000282988 | 1.639146 | 0.006117 | AL031777.3 |
| ENSG00000262528 | 1.40637 | 0.006131 | AL022341.2 |
| ENSG00000130733 | 1.147514 | 0.006137 | YIPF2 |
| ENSG00000058729 | -0.58592 | 0.006138 | RIOK2 |
| ENSG00000237877 | 2.126064 | 0.006139 | LINC01473 |
| ENSG00000167670 | -0.8464 | 0.006145 | CHAF1A |


| ENSG00000125434 | 0.799146 | 0.006146 | SLC25A35 |
| :---: | :---: | :---: | :---: |
| ENSG00000006638 | -1.09081 | 0.006219 | TBXA2R |
| ENSG00000171435 | 1.437392 | 0.006222 | KSR2 |
| ENSG00000090861 | 1.108857 | 0.006251 | AARS |
| ENSG00000205571 | -0.88983 | 0.006271 | SMN2 |
| ENSG00000140941 | 1.180686 | 0.006279 | MAP1LC3B |
| ENSG00000172062 | -0.72244 | 0.0063 | SMN1 |
| ENSG00000163762 | 1.885176 | 0.006305 | TM4SF18 |
| ENSG00000164024 | -0.62396 | 0.006305 | METAP1 |
| ENSG00000177370 | -0.79372 | 0.006314 | TIMM22 |
| ENSG00000141101 | -0.55958 | 0.006317 | NOB1 |
| ENSG00000104936 | 0.72393 | 0.00632 | DMPK |
| ENSG00000186298 | -0.71015 | 0.006339 | PPP1CC |
| ENSG00000197771 | -0.76892 | 0.006376 | MCMBP |
| ENSG00000165410 | -0.69683 | 0.0064 | CFL2 |
| ENSG00000131876 | -0.80598 | 0.006423 | SNRPA1 |
| ENSG00000100276 | 1.884189 | 0.006423 | RASL10A |
| ENSG00000133466 | 1.444649 | 0.006424 | C1QTNF6 |
| ENSG00000117399 | -1.30321 | 0.006437 | CDC20 |
| ENSG00000112033 | 0.849995 | 0.006439 | PPARD |
| ENSG00000170160 | 2.053248 | 0.006455 | CCDC144A |
| ENSG00000090273 | -0.89632 | 0.006503 | NUDC |
| ENSG00000198133 | 1.016221 | 0.006509 | TMEM229B |
| ENSG00000168883 | -0.61716 | 0.006525 | USP39 |
| ENSG00000204709 | 1.680752 | 0.006526 | LINC01556 |
| ENSG00000106031 | -2.70321 | 0.006527 | HOXA13 |
| ENSG00000146250 | 1.317754 | 0.006547 | PRSS35 |
| ENSG00000111012 | 1.265756 | 0.006558 | CYP27B1 |
| ENSG00000124784 | -0.58015 | 0.006568 | RIOK1 |
| ENSG00000185669 | 1.703981 | 0.006571 | SNAI3 |
| ENSG00000150990 | -0.67324 | 0.006577 | DHX37 |
| ENSG00000197905 | -0.87457 | 0.006582 | TEAD4 |
| ENSG00000184702 | 0.694177 | 0.006611 | SEPT5 |
| ENSG00000102900 | -0.67498 | 0.006623 | NUP93 |
| ENSG00000159588 | 1.365763 | 0.006624 | CCDC17 |
| ENSG00000021762 | 0.788672 | 0.006632 | OSBPL5 |
| ENSG00000168843 | 4.94718 | 0.00665 | FSTL5 |
| ENSG00000008735 | -1.16274 | 0.006692 | MAPK8IP2 |
| ENSG00000196743 | 0.636441 | 0.00671 | GM2A |
| ENSG00000167037 | 1.556845 | 0.006726 | SGSM1 |
| ENSG00000156587 | 2.372796 | 0.006744 | UBE2L6 |


| ENSG00000112651 | -0.68778 | 0.006749 | MRPL2 |
| :---: | :---: | :---: | :---: |
| ENSG00000161036 | -0.88875 | 0.006756 | LRWD1 |
| ENSG00000255310 | 1.214584 | 0.006757 | AF131215.5 |
| ENSG00000113739 | 2.332185 | 0.006764 | STC2 |
| ENSG00000164338 | -0.57533 | 0.006805 | UTP15 |
| ENSG00000118655 | -0.75057 | 0.006814 | DCLRE1B |
| ENSG00000241399 | 1.298645 | 0.006814 | CD302 |
| ENSG00000166226 | -0.82189 | 0.006823 | CCT2 |
| ENSG00000185615 | 1.063076 | 0.006834 | PDIA2 |
| ENSG00000133424 | 2.705624 | 0.00685 | LARGE1 |
| ENSG00000138073 | -0.77277 | 0.006857 | PREB |
| ENSG00000205959 | 2.381591 | 0.006877 | AC105345.1 |
| ENSG00000234928 | 1.332892 | 0.006883 | LINC01659 |
| ENSG00000130487 | 5.258587 | 0.006892 | KLHDC7B |
| ENSG00000106560 | 1.333218 | 0.0069 | GIMAP2 |
| ENSG00000235513 | 2.121719 | 0.006902 | AL035681.1 |
| ENSG00000260920 | 0.928661 | 0.00694 | AL031985.3 |
| ENSG00000197461 | 3.403128 | 0.006949 | PDGFA |
| ENSG00000173545 | -0.56496 | 0.00695 | ZNF622 |
| ENSG00000001497 | -0.93774 | 0.006982 | LAS1L |
| ENSG00000109107 | 0.658175 | 0.006988 | ALDOC |
| ENSG00000105127 | -0.61475 | 0.007041 | AKAP8 |
| ENSG00000005194 | -0.67258 | 0.007054 | CIAPIN1 |
| ENSG00000166710 | 1.187799 | 0.007061 | B2M |
| ENSG00000176723 | 1.414916 | 0.007064 | ZNF843 |
| ENSG00000196220 | 1.226719 | 0.007078 | SRGAP3 |
| ENSG00000116750 | -0.5969 | 0.007095 | UCHL5 |
| ENSG00000105401 | -0.73199 | 0.007103 | CDC37 |
| ENSG00000120800 | -0.82514 | 0.007109 | UTP20 |
| ENSG00000166246 | -1.7883 | 0.007123 | C16orf71 |
| ENSG00000279520 | 1.565297 | 0.007136 | AC093525.8 |
| ENSG00000113657 | -2.1884 | 0.007152 | DPYSL3 |
| ENSG00000167711 | 1.072229 | 0.007191 | SERPINF2 |
| ENSG00000107959 | -0.68254 | 0.007207 | PITRM1 |
| ENSG00000133863 | -0.90219 | 0.007208 | TEX15 |
| ENSG00000162461 | 1.898423 | 0.007251 | SLC25A34 |
| ENSG00000275700 | -0.67572 | 0.007271 | AATF |
| ENSG00000177679 | 1.606904 | 0.007272 | SRRM3 |
| ENSG00000099783 | -0.90868 | 0.007274 | HNRNPM |
| ENSG00000206190 | 1.165111 | 0.007277 | ATP10A |
| ENSG00000185513 | 0.81976 | 0.007295 | L3MBTL1 |


| ENSG00000228397 | 1.405689 | 0.007296 | LINC01635 |
| :---: | :---: | :---: | :---: |
| ENSG00000232656 | 2.130902 | 0.007297 | IDI2-AS1 |
| ENSG00000271581 | 1.723136 | 0.007342 | AL671883.2 |
| ENSG00000158406 | 1.485064 | 0.007348 | HIST1H4H |
| ENSG00000106976 | 0.731387 | 0.00736 | DNM1 |
| ENSG00000227799 | 1.531926 | 0.007399 | AC012358.2 |
| ENSG00000148843 | -0.62693 | 0.007399 | PDCD11 |
| ENSG00000109323 | 0.746678 | 0.007401 | MANBA |
| ENSG00000181444 | 0.886386 | 0.007404 | ZNF467 |
| ENSG00000084731 | 0.923911 | 0.00741 | KIF3C |
| ENSG00000164161 | 2.015097 | 0.007422 | HHIP |
| ENSG00000129472 | 0.787955 | 0.007428 | RAB2B |
| ENSG00000104324 | 1.181046 | 0.007429 | CPQ |
| ENSG00000163879 | 2.108345 | 0.007441 | DNALI1 |
| ENSG00000104805 | 0.755593 | 0.007463 | NUCB1 |
| ENSG00000135365 | 0.807944 | 0.007498 | PHF21A |
| ENSG00000197768 | 1.090463 | 0.007522 | STPG3 |
| ENSG00000185046 | 1.501764 | 0.007531 | ANKS1B |
| ENSG00000260428 | 1.94505 | 0.007532 | SCX |
| ENSG00000268108 | 3.241492 | 0.007544 | AC008687.2 |
| ENSG00000236824 | -1.35418 | 0.007545 | BCYRN1 |
| ENSG00000225855 | 0.655936 | 0.007554 | RUSC1-AS1 |
| ENSG00000142871 | 0.98857 | 0.007561 | CYR61 |
| ENSG00000140464 | 1.175763 | 0.007573 | PML |
| ENSG00000117407 | 1.108559 | 0.007593 | ARTN |
| ENSG00000254819 | 1.145439 | 0.007611 | AC021698.1 |
| ENSG00000162069 | 1.301047 | 0.007618 | BICDL2 |
| ENSG00000148835 | -0.74023 | 0.00763 | TAF5 |
| ENSG00000186567 | 1.173666 | 0.007638 | CEACAM19 |
| ENSG00000197555 | 0.81804 | 0.007651 | SIPA1L1 |
| ENSG00000229431 | 1.696551 | 0.007687 | AL139289.1 |
| ENSG00000198125 | 1.912676 | 0.007689 | MB |
| ENSG00000125459 | -0.92132 | 0.007705 | MSTO1 |
| ENSG00000213551 | -0.98965 | 0.007727 | DNAJC9 |
| ENSG00000169499 | 1.091793 | 0.00773 | PLEKHA2 |
| ENSG00000165105 | 2.985848 | 0.007784 | RASEF |
| ENSG00000168827 | -0.51992 | 0.007789 | GFM1 |
| ENSG00000250241 | 1.504081 | 0.007814 | AC105383.1 |
| ENSG00000224152 | 0.821469 | 0.007818 | AC009506.1 |
| ENSG00000104969 | -0.5838 | 0.007833 | SGTA |
| ENSG00000126953 | -0.76597 | 0.00785 | TIMM8A |


| ENSG00000133302 | 0.794871 | 0.007905 | SLF1 |
| :---: | :---: | :---: | :---: |
| ENSG00000111845 | -0.64423 | 0.007906 | PAK1IP1 |
| ENSG00000138381 | -0.68932 | 0.007907 | ASNSD1 |
| ENSG00000264364 | -0.51213 | 0.007943 | DYNLL2 |
| ENSG00000156639 | 1.042015 | 0.007948 | ZFAND3 |
| ENSG00000196787 | 0.980645 | 0.007953 | HIST1H2AG |
| ENSG00000037897 | -0.73016 | 0.007961 | METTL1 |
| ENSG00000100410 | -0.7361 | 0.007963 | PHF5A |
| ENSG00000139438 | -1.54524 | 0.007972 | FAM222A |
| ENSG00000185250 | 0.72973 | 0.007993 | PPIL6 |
| ENSG00000150593 | 1.267347 | 0.008016 | PDCD4 |
| ENSG00000118473 | -3.36286 | 0.008061 | SGIP1 |
| ENSG00000066427 | 0.741958 | 0.008078 | ATXN3 |
| ENSG00000113460 | -0.66321 | 0.008083 | BRIX1 |
| ENSG00000174938 | 0.850089 | 0.008097 | SEZ6L2 |
| ENSG00000065150 | -0.6336 | 0.008171 | IPO5 |
| ENSG00000141576 | 0.993122 | 0.008175 | RNF157 |
| ENSG00000280734 | 0.724077 | 0.008178 | LINC01232 |
| ENSG00000145244 | -2.26965 | 0.008182 | CORIN |
| ENSG00000198053 | 0.906435 | 0.008223 | SIRPA |
| ENSG00000166401 | 1.633047 | 0.008228 | SERPINB8 |
| ENSG00000227620 | -1.23109 | 0.008242 | ALG1L8P |
| ENSG00000104413 | 6.499193 | 0.008245 | ESRP1 |
| ENSG00000130522 | 1.089629 | 0.008284 | JUND |
| ENSG00000095752 | 1.052653 | 0.008308 | IL11 |
| ENSG00000164308 | 0.787818 | 0.008308 | ERAP2 |
| ENSG00000100031 | 1.050294 | 0.008321 | GGT1 |
| ENSG00000181610 | -0.69078 | 0.008342 | MRPS23 |
| ENSG00000107937 | -0.53926 | 0.008363 | GTPBP4 |
| ENSG00000141314 | 2.225795 | 0.008399 | RHBDL3 |
| ENSG00000160087 | -0.64667 | 0.008399 | UBE2J2 |
| ENSG00000088247 | -0.59002 | 0.008404 | KHSRP |
| ENSG00000131979 | 0.960035 | 0.008411 | GCH1 |
| ENSG00000169245 | 3.305495 | 0.00842 | CXCL10 |
| ENSG00000224419 | 1.399324 | 0.008453 | KRT18P27 |
| ENSG00000152795 | -0.87651 | 0.008459 | HNRNPDL |
| ENSG00000248333 | -0.63147 | 0.008465 | CDK11B |
| ENSG00000087087 | -0.83847 | 0.008483 | SRRT |
| ENSG00000033011 | -0.95245 | 0.008493 | ALG1 |
| ENSG00000138316 | 1.784879 | 0.008525 | ADAMTS14 |
| ENSG00000239900 | -0.79583 | 0.008558 | ADSL |


| ENSG00000241489 | 1.648713 | 0.008563 | AC244197.3 |
| :---: | :---: | :---: | :---: |
| ENSG00000174243 | -0.926 | 0.008583 | DDX23 |
| ENSG00000185359 | -0.62109 | 0.008625 | HGS |
| ENSG00000167772 | 1.123448 | 0.008665 | ANGPTL4 |
| ENSG00000143390 | 0.594044 | 0.008671 | RFX5 |
| ENSG00000096384 | -0.72044 | 0.008694 | HSP90AB1 |
| ENSG00000155508 | 0.557777 | 0.008712 | CNOT8 |
| ENSG00000179292 | 1.461138 | 0.008713 | TMEM151A |
| ENSG00000163412 | 2.211316 | 0.008715 | EIF4E3 |
| ENSG00000163866 | -0.73357 | 0.008716 | SMIM12 |
| ENSG00000132780 | -0.91729 | 0.008737 | NASP |
| ENSG00000163938 | -0.59188 | 0.008759 | GNL3 |
| ENSG00000135776 | -0.71125 | 0.008761 | ABCB10 |
| ENSG00000174446 | -0.63867 | 0.00878 | SNAPC5 |
| ENSG00000164136 | 2.281411 | 0.008782 | IL15 |
| ENSG00000147813 | -1.2163 | 0.008784 | NAPRT |
| ENSG00000153187 | -0.66392 | 0.008799 | HNRNPU |
| ENSG00000156502 | -0.49531 | 0.008803 | SUPV3L1 |
| ENSG00000187642 | -0.90989 | 0.008836 | PERM1 |
| ENSG00000117477 | -1.51666 | 0.00884 | CCDC181 |
| ENSG00000144381 | -0.79705 | 0.008844 | HSPD1 |
| ENSG00000100219 | 0.911438 | 0.008861 | XBP1 |
| ENSG00000146197 | 1.540049 | 0.008868 | SCUBE3 |
| ENSG00000278828 | 1.021229 | 0.008884 | HIST1H3H |
| ENSG00000103064 | -0.71167 | 0.00889 | SLC7A6 |
| ENSG00000066135 | 0.885289 | 0.008891 | KDM4A |
| ENSG00000132256 | 1.072452 | 0.008906 | TRIM5 |
| ENSG00000240065 | 1.069189 | 0.008918 | PSMB9 |
| ENSG00000228084 | 1.220535 | 0.008949 | AC118553.1 |
| ENSG00000060688 | -0.70716 | 0.008964 | SNRNP40 |
| ENSG00000168779 | 0.861114 | 0.00897 | SHOX2 |
| ENSG00000268964 | 3.201666 | 0.008994 | ERVV-2 |
| ENSG00000112343 | 1.657062 | 0.009015 | TRIM38 |
| ENSG00000226699 | 2.194883 | 0.009016 | AL360181.1 |
| ENSG00000103550 | -0.56225 | 0.009019 | KNOP1 |
| ENSG00000114349 | 2.813419 | 0.009019 | GNAT1 |
| ENSG00000108424 | -0.66033 | 0.00905 | KPNB1 |
| ENSG00000120162 | -1.0076 | 0.009054 | MOB3B |
| ENSG00000232859 | 0.928395 | 0.00906 | LYRM9 |
| ENSG00000128923 | 0.797144 | 0.009095 | MINDY2 |
| ENSG00000064300 | 1.780035 | 0.009098 | NGFR |


| ENSG00000133816 | -1.20321 | 0.009102 | MICAL2 |
| :---: | :---: | :---: | :---: |
| ENSG00000158526 | -0.69991 | 0.009108 | TSR2 |
| ENSG00000268655 | 1.092847 | 0.00912 | AC008687.4 |
| ENSG00000174013 | -0.57808 | 0.009139 | FBXO45 |
| ENSG00000189114 | -0.69447 | 0.009152 | BLOC1S3 |
| ENSG00000185386 | 0.724452 | 0.009164 | MAPK11 |
| ENSG00000251129 | 3.429092 | 0.00918 | LINC02506 |
| ENSG00000074211 | 1.020064 | 0.00919 | PPP2R2C |
| ENSG00000143368 | -0.75979 | 0.009227 | SF3B4 |
| ENSG00000092201 | -0.58087 | 0.009254 | SUPT16H |
| ENSG00000245248 | -1.1404 | 0.009256 | USP2-AS1 |
| ENSG00000108306 | 0.962369 | 0.009277 | FBXL20 |
| ENSG00000127990 | 0.665333 | 0.009305 | SGCE |
| ENSG00000112365 | -0.60225 | 0.00932 | ZBTB24 |
| ENSG00000179846 | 2.779643 | 0.009335 | NKPD1 |
| ENSG00000144043 | -0.8217 | 0.00937 | TEX261 |
| ENSG00000120725 | 0.856758 | 0.009443 | SIL1 |
| ENSG00000136828 | 0.696319 | 0.009449 | RALGPS1 |
| ENSG00000197283 | 0.86138 | 0.009452 | SYNGAP1 |
| ENSG00000125740 | 2.481283 | 0.009469 | FOSB |
| ENSG00000142449 | 2.982606 | 0.009476 | FBN3 |
| ENSG00000107317 | 1.513799 | 0.009496 | PTGDS |
| ENSG00000276900 | 1.068783 | 0.009499 | AC023157.3 |
| ENSG00000163507 | -0.98183 | 0.0095 | CIP2A |
| ENSG00000169180 | -0.64348 | 0.009508 | XPO6 |
| ENSG00000138380 | 1.025093 | 0.009548 | CARF |
| ENSG00000149084 | 0.81437 | 0.009577 | HSD17B12 |
| ENSG00000185880 | 1.18495 | 0.009607 | TRIM69 |
| ENSG00000198369 | 0.964371 | 0.009622 | SPRED2 |
| ENSG00000225921 | -0.77372 | 0.009625 | NOL7 |
| ENSG00000186088 | 0.705307 | 0.009652 | GSAP |
| ENSG00000139620 | -0.54189 | 0.009662 | KANSL2 |
| ENSG00000197299 | -1.04135 | 0.009664 | BLM |
| ENSG00000169756 | 0.864414 | 0.009678 | LIMS1 |
| ENSG00000168259 | -0.6979 | 0.009681 | DNAJC7 |
| ENSG00000121851 | 0.864651 | 0.009697 | POLR3GL |
| ENSG00000122952 | -1.21505 | 0.009707 | ZWINT |
| ENSG00000128191 | -0.59418 | 0.00971 | DGCR8 |
| ENSG00000183760 | 2.587608 | 0.009716 | ACP7 |
| ENSG00000137171 | 0.784143 | 0.009727 | KLC4 |
| ENSG00000151135 | 0.626781 | 0.009764 | TMEM263 |


| ENSG00000171843 | -1.8719 | 0.009768 | MLLT3 |
| :---: | :---: | :---: | :---: |
| ENSG00000163320 | 0.61685 | 0.009815 | CGGBP1 |
| ENSG00000080839 | -0.74815 | 0.009842 | RBL1 |
| ENSG00000106078 | 0.821284 | 0.009854 | COBL |
| ENSG00000184916 | -0.72283 | 0.009858 | JAG2 |
| ENSG00000181409 | 0.905744 | 0.009869 | AATK |
| ENSG00000124279 | -0.63606 | 0.009904 | FASTKD3 |
| ENSG00000137547 | -0.74663 | 0.009909 | MRPL15 |
| ENSG00000148408 | 1.68156 | 0.00991 | CACNA1B |
| ENSG00000188493 | 0.613945 | 0.009971 | C19orf54 |
| ENSG00000162385 | -0.69436 | 0.009997 | MAGOH |
| ENSG00000117122 | 1.048136 | 0.010011 | MFAP2 |
| ENSG00000158717 | -0.5869 | 0.010034 | RNF166 |
| ENSG00000107938 | -0.61467 | 0.010035 | EDRF1 |
| ENSG00000105171 | -0.74398 | 0.010046 | POP4 |
| ENSG00000130270 | 1.030632 | 0.010052 | ATP8B3 |
| ENSG00000183474 | -0.55091 | 0.010064 | GTF2H2C |
| ENSG00000147676 | 1.860456 | 0.010065 | MAL2 |
| ENSG00000091127 | -0.65735 | 0.010072 | PUS7 |
| ENSG00000123607 | 0.669867 | 0.010103 | TTC21B |
| ENSG00000154845 | -0.67038 | 0.010167 | PPP4R1 |
| ENSG00000112658 | -0.54134 | 0.010176 | SRF |
| ENSG00000111261 | 0.640316 | 0.010237 | MANSC1 |
| ENSG00000100027 | 1.996108 | 0.010254 | YPEL1 |
| ENSG00000165861 | 0.804034 | 0.010275 | ZFYVE1 |
| ENSG00000160469 | 0.911871 | 0.010281 | BRSK1 |
| ENSG00000144867 | -0.56607 | 0.01029 | SRPRB |
| ENSG00000093217 | -0.98812 | 0.010297 | XYLB |
| ENSG00000124532 | -0.58275 | 0.010303 | MRS2 |
| ENSG00000198892 | 1.062316 | 0.010337 | SHISA4 |
| ENSG00000159200 | -0.58911 | 0.010377 | RCAN1 |
| ENSG00000042493 | 1.218815 | 0.010377 | CAPG |
| ENSG00000182481 | -0.86612 | 0.010382 | KPNA2 |
| ENSG00000198482 | 1.057014 | 0.010415 | ZNF808 |
| ENSG00000143845 | 1.102208 | 0.010452 | ETNK2 |
| ENSG00000051596 | -0.86207 | 0.010493 | THOC3 |
| ENSG00000173805 | 1.175175 | 0.010512 | HAP1 |
| ENSG00000132688 | -0.84419 | 0.010519 | NES |
| ENSG00000235385 | 4.836401 | 0.010529 | LINC02154 |
| ENSG00000251201 | 1.223396 | 0.010534 | TMED7-TICAM2 |
| ENSG00000130600 | -2.06108 | 0.010551 | H19 |


| ENSG00000076344 | 2.623139 | 0.010564 | RGS11 |
| :---: | :---: | :---: | :---: |
| ENSG00000168913 | -1.18499 | 0.010613 | ENHO |
| ENSG00000112294 | 0.737078 | 0.010682 | ALDH5A1 |
| ENSG00000101084 | -0.8024 | 0.010686 | C20orf24 |
| ENSG00000173145 | -0.50499 | 0.010687 | NOC3L |
| ENSG00000070950 | -0.77897 | 0.010696 | RAD18 |
| ENSG00000168101 | -0.97975 | 0.010752 | NUDT16L1 |
| ENSG00000172071 | 1.03839 | 0.010787 | EIF2AK3 |
| ENSG00000087191 | -0.89642 | 0.010806 | PSMC5 |
| ENSG00000110944 | 1.20949 | 0.010813 | IL23A |
| ENSG00000177302 | -0.61429 | 0.010815 | TOP3A |
| ENSG00000145777 | 2.763066 | 0.010829 | TSLP |
| ENSG00000255717 | -0.72689 | 0.010848 | SNHG1 |
| ENSG00000155393 | -0.6636 | 0.010858 | HEATR3 |
| ENSG00000130881 | -0.71066 | 0.010898 | LRP3 |
| ENSG00000165304 | -0.78762 | 0.010925 | MELK |
| ENSG00000140443 | 1.215952 | 0.010941 | IGF1R |
| ENSG00000183520 | -0.63653 | 0.010945 | UTP11 |
| ENSG00000177706 | 1.230647 | 0.010972 | FAM20C |
| ENSG00000187522 | -0.68394 | 0.010975 | HSPA14 |
| ENSG00000139323 | 0.623159 | 0.011051 | POC1B |
| ENSG00000013503 | -0.67576 | 0.011074 | POLR3B |
| ENSG00000174943 | 0.752571 | 0.011155 | KCTD13 |
| ENSG00000204525 | 1.182465 | 0.011173 | HLA-C |
| ENSG00000213996 | 1.416497 | 0.011187 | TM6SF2 |
| ENSG00000125482 | -0.70962 | 0.011212 | TTF1 |
| ENSG00000138760 | 0.785542 | 0.011226 | SCARB2 |
| ENSG00000075131 | -0.63728 | 0.011238 | TIPIN |
| ENSG00000185798 | -0.656 | 0.01127 | WDR53 |
| ENSG00000265354 | -0.61505 | 0.011305 | TIMM23 |
| ENSG00000127528 | 1.007571 | 0.011307 | KLF2 |
| ENSG00000198551 | 0.718072 | 0.011322 | ZNF627 |
| ENSG00000113360 | -0.62311 | 0.011393 | DROSHA |
| ENSG00000148331 | -0.59526 | 0.011401 | ASB6 |
| ENSG00000129484 | -0.53322 | 0.011404 | PARP2 |
| ENSG00000196943 | -0.58664 | 0.011414 | NOP9 |
| ENSG00000163468 | -0.88285 | 0.011417 | CCT3 |
| ENSG00000099999 | 0.999341 | 0.011419 | RNF215 |
| ENSG00000185633 | 1.640183 | 0.01145 | NDUFA4L2 |
| ENSG00000132872 | 2.66812 | 0.011471 | SYT4 |
| ENSG00000100170 | 2.074889 | 0.011473 | SLC5A1 |


| ENSG00000260776 | 3.325417 | 0.011509 | AC104758.3 |
| :---: | :---: | :---: | :---: |
| ENSG00000166508 | -1.05465 | 0.011509 | MCM7 |
| ENSG00000090661 | 0.87895 | 0.011528 | CERS4 |
| ENSG00000184371 | 1.431866 | 0.011554 | CSF1 |
| ENSG00000224481 | 3.173755 | 0.011574 | AC245100.1 |
| ENSG00000105926 | -0.76509 | 0.011576 | MPP6 |
| ENSG00000065320 | 2.45223 | 0.011584 | NTN1 |
| ENSG00000169136 | 1.34858 | 0.011624 | ATF5 |
| ENSG00000132386 | 1.062858 | 0.011641 | SERPINF1 |
| ENSG00000279713 | 2.809525 | 0.011646 | AC080038.3 |
| ENSG00000105559 | 1.021521 | 0.011651 | PLEKHA4 |
| ENSG00000185418 | -0.92327 | 0.011663 | TARSL2 |
| ENSG00000169727 | -0.71616 | 0.011677 | GPS1 |
| ENSG00000175792 | -0.85739 | 0.011682 | RUVBL1 |
| ENSG00000120694 | -0.70281 | 0.011706 | HSPH1 |
| ENSG00000165689 | -0.5892 | 0.011731 | SDCCAG3 |
| ENSG00000071994 | -0.65821 | 0.011747 | PDCD2 |
| ENSG00000258818 | 1.220907 | 0.011772 | RNASE4 |
| ENSG00000237440 | 0.846359 | 0.011782 | ZNF737 |
| ENSG00000125450 | -0.67851 | 0.011788 | NUP85 |
| ENSG00000164687 | -1.2212 | 0.01179 | FABP5 |
| ENSG00000236104 | 0.744767 | 0.011832 | ZBTB22 |
| ENSG00000104497 | 0.744419 | 0.011864 | SNX16 |
| ENSG00000171488 | -0.9029 | 0.01187 | LRRC8C |
| ENSG00000186480 | 0.856488 | 0.011879 | INSIG1 |
| ENSG00000142178 | -0.68587 | 0.011911 | SIK1 |
| ENSG00000137692 | -0.60229 | 0.011915 | DCUN1D5 |
| ENSG00000088002 | 0.990275 | 0.011924 | SULT2B1 |
| ENSG00000090889 | -0.83369 | 0.011938 | KIF4A |
| ENSG00000160563 | -0.66796 | 0.011948 | MED27 |
| ENSG00000108883 | -0.61816 | 0.011951 | EFTUD2 |
| ENSG00000101040 | 0.700106 | 0.011955 | ZMYND8 |
| ENSG00000099995 | -0.59385 | 0.011964 | SF3A1 |
| ENSG00000132507 | -0.90823 | 0.011965 | EIF5A |
| ENSG00000072858 | 2.052408 | 0.01197 | SIDT1 |
| ENSG00000184898 | 0.723759 | 0.011972 | RBM43 |
| ENSG00000230306 | 2.033695 | 0.011989 | BANF1P2 |
| ENSG00000080224 | 1.925639 | 0.012013 | EPHA6 |
| ENSG00000215808 | 0.556611 | 0.012048 | LINC01139 |
| ENSG00000144647 | -0.74522 | 0.012073 | POMGNT2 |
| ENSG00000197498 | -0.62806 | 0.012085 | RPF2 |


| ENSG00000237276 | 1.536644 | 0.012103 | ANO7L1 |
| :---: | :---: | :---: | :---: |
| ENSG00000163376 | -1.31114 | 0.012122 | KBTBD8 |
| ENSG00000074695 | 0.719717 | 0.012127 | LMAN1 |
| ENSG00000110108 | -0.61324 | 0.012136 | TMEM109 |
| ENSG00000148308 | -0.58635 | 0.01218 | GTF3C5 |
| ENSG00000109674 | -0.96647 | 0.01221 | NEIL3 |
| ENSG00000104897 | -0.68151 | 0.012214 | SF3A2 |
| ENSG00000198522 | -0.58887 | 0.01222 | GPN1 |
| ENSG00000106244 | -0.5468 | 0.012231 | PDAP1 |
| ENSG00000128604 | 1.160224 | 0.012234 | IRF5 |
| ENSG00000086619 | 1.208421 | 0.012251 | ERO1B |
| ENSG00000258216 | 2.947775 | 0.012358 | AC084200.1 |
| ENSG00000124562 | -0.73327 | 0.012376 | SNRPC |
| ENSG00000129968 | -0.73994 | 0.012389 | ABHD17A |
| ENSG00000185963 | -0.6239 | 0.012392 | BICD2 |
| ENSG00000156983 | -0.5997 | 0.012397 | BRPF1 |
| ENSG00000187942 | 1.969259 | 0.012401 | LDLRAD2 |
| ENSG00000000460 | -0.99346 | 0.012417 | C1orf112 |
| ENSG00000268713 | 1.02489 | 0.012422 | AC005261.3 |
| ENSG00000100320 | 0.723066 | 0.012445 | RBFOX2 |
| ENSG00000271601 | 0.653965 | 0.012471 | LIX1L |
| ENSG00000164053 | -0.92851 | 0.012476 | ATRIP |
| ENSG00000182325 | -0.65787 | 0.012535 | FBXL6 |
| ENSG00000103342 | -0.50982 | 0.012556 | GSPT1 |
| ENSG00000164362 | -1.24864 | 0.012601 | TERT |
| ENSG00000101189 | -0.5139 | 0.012602 | MRGBP |
| ENSG00000023318 | 0.688413 | 0.012626 | ERP44 |
| ENSG00000180817 | -0.87486 | 0.012639 | PPA1 |
| ENSG00000030419 | 3.402612 | 0.012653 | IKZF2 |
| ENSG00000167216 | 2.020267 | 0.012669 | KATNAL2 |
| ENSG00000274020 | 0.691495 | 0.012675 | LINC01138 |
| ENSG00000160888 | 0.889659 | 0.01268 | IER2 |
| ENSG00000099817 | -0.66835 | 0.012682 | POLR2E |
| ENSG00000149136 | -0.76902 | 0.012686 | SSRP1 |
| ENSG00000197472 | -0.88587 | 0.012749 | ZNF695 |
| ENSG00000005884 | 0.740283 | 0.012764 | ITGA3 |
| ENSG00000167671 | 0.655141 | 0.012776 | UBXN6 |
| ENSG00000140678 | 3.077356 | 0.012777 | ITGAX |
| ENSG00000272419 | 0.850914 | 0.012789 | AC241585.2 |
| ENSG00000183837 | 0.896457 | 0.012797 | PNMA3 |
| ENSG00000239306 | -0.77205 | 0.012824 | RBM14 |


| ENSG00000102226 | 0.58019 | 0.012894 | USP11 |
| :---: | :---: | :---: | :---: |
| ENSG00000198435 | -0.70272 | 0.012903 | NRARP |
| ENSG00000163684 | -0.49784 | 0.012904 | RPP14 |
| ENSG00000171453 | -0.67915 | 0.012924 | POLR1C |
| ENSG00000235119 | 3.746313 | 0.012954 | AL138895.1 |
| ENSG00000129636 | 0.64034 | 0.012984 | ITFG1 |
| ENSG00000129566 | 0.915726 | 0.013016 | TEP1 |
| ENSG00000132109 | 1.266632 | 0.013041 | TRIM21 |
| ENSG00000089351 | 0.724337 | 0.01306 | GRAMD1A |
| ENSG00000171388 | -1.84474 | 0.013067 | APLN |
| ENSG00000242861 | 1.069698 | 0.013087 | AL591895.1 |
| ENSG00000156469 | -0.71599 | 0.01309 | MTERF3 |
| ENSG00000105612 | 0.925224 | 0.013111 | DNASE2 |
| ENSG00000245526 | -3.29377 | 0.013169 | LINC00461 |
| ENSG00000080644 | 1.352919 | 0.013184 | CHRNA3 |
| ENSG00000156471 | -0.77004 | 0.013192 | PTDSS1 |
| ENSG00000120820 | 0.669445 | 0.013211 | GLT8D2 |
| ENSG00000166548 | 0.660585 | 0.013232 | TK2 |
| ENSG00000204634 | 0.743904 | 0.013236 | TBC1D8 |
| ENSG00000020129 | -0.6061 | 0.013251 | NCDN |
| ENSG00000156966 | 2.691517 | 0.013257 | B3GNT7 |
| ENSG00000152292 | 1.153327 | 0.013275 | SH2D6 |
| ENSG00000139926 | 0.612842 | 0.013283 | FRMD6 |
| ENSG00000267365 | 0.884269 | 0.013327 | KCNJ2-AS1 |
| ENSG00000067840 | 1.132129 | 0.013363 | PDZD4 |
| ENSG00000181031 | 0.831253 | 0.013383 | RPH3AL |
| ENSG00000095739 | 2.401039 | 0.013417 | BAMBI |
| ENSG00000102032 | 1.479426 | 0.013438 | RENBP |
| ENSG00000132334 | 0.852587 | 0.013454 | PTPRE |
| ENSG00000163754 | -0.75339 | 0.01346 | GYG1 |
| ENSG00000106571 | 1.59275 | 0.013499 | GLI3 |
| ENSG00000132819 | -0.57953 | 0.013508 | RBM38 |
| ENSG00000115816 | -0.53136 | 0.013526 | CEBPZ |
| ENSG00000087995 | -0.55113 | 0.013571 | METTL2A |
| ENSG00000132664 | -0.64853 | 0.013582 | POLR3F |
| ENSG00000202337 | -1.4865 | 0.013596 | RNU6-8 |
| ENSG00000085832 | 0.688097 | 0.013596 | EPS15 |
| ENSG00000241015 | -0.66341 | 0.0136 | TPM3P9 |
| ENSG00000162607 | -0.54065 | 0.013635 | USP1 |
| ENSG00000259494 | -0.65105 | 0.01364 | MRPL46 |
| ENSG00000250722 | 3.084155 | 0.013718 | SELENOP |


| ENSG00000182700 | 1.082261 | 0.013734 | IGIP |
| :---: | :---: | :---: | :---: |
| ENSG00000105825 | 1.724721 | 0.013782 | TFPI2 |
| ENSG00000165879 | 1.185605 | 0.013787 | FRAT1 |
| ENSG00000105810 | -1.81628 | 0.013827 | CDK6 |
| ENSG00000050820 | -0.67955 | 0.013833 | BCAR1 |
| ENSG00000101868 | -0.75824 | 0.01388 | POLA1 |
| ENSG00000171766 | 0.791297 | 0.013886 | GATM |
| ENSG00000182718 | -0.74756 | 0.013933 | ANXA2 |
| ENSG00000186765 | 1.583494 | 0.013947 | FSCN2 |
| ENSG00000124212 | 2.557832 | 0.013952 | PTGIS |
| ENSG00000132326 | -0.68379 | 0.013964 | PER2 |
| ENSG00000175063 | -0.98711 | 0.013968 | UBE2C |
| ENSG00000198908 | 0.743159 | 0.013982 | BHLHB9 |
| ENSG00000130066 | 1.151974 | 0.013989 | SAT1 |
| ENSG00000204104 | -0.5697 | 0.014004 | TRAF3IP1 |
| ENSG00000160392 | -0.61716 | 0.014019 | C19orf47 |
| ENSG00000153574 | -0.59022 | 0.014026 | RPIA |
| ENSG00000204055 | 2.236248 | 0.014034 | AL158151.1 |
| ENSG00000130720 | 2.095724 | 0.01407 | FIBCD1 |
| ENSG00000246339 | 1.424355 | 0.014071 | EXTL3-AS1 |
| ENSG00000108561 | -0.78963 | 0.014081 | C1QBP |
| ENSG00000275325 | 0.753875 | 0.014105 | PDCD6IPP1 |
| ENSG00000111644 | 2.503834 | 0.01412 | ACRBP |
| ENSG00000153879 | 1.053092 | 0.014132 | CEBPG |
| ENSG00000181924 | -0.65886 | 0.014155 | COA4 |
| ENSG00000161547 | -0.83374 | 0.014162 | SRSF2 |
| ENSG00000181004 | 0.690629 | 0.014169 | BBS12 |
| ENSG00000149483 | -0.6392 | 0.014199 | TMEM138 |
| ENSG00000138111 | -0.95852 | 0.014212 | MFSD13A |
| ENSG00000005073 | -2.5424 | 0.01422 | HOXA11 |
| ENSG00000134375 | -0.7609 | 0.014267 | TIMM17A |
| ENSG00000133687 | 2.656361 | 0.014277 | TMTC1 |
| ENSG00000145687 | 0.618225 | 0.014307 | SSBP2 |
| ENSG00000157224 | 0.781419 | 0.014324 | CLDN12 |
| ENSG00000119705 | -0.91961 | 0.014333 | SLIRP |
| ENSG00000142156 | 1.216118 | 0.014361 | COL6A1 |
| ENSG00000163002 | -0.79438 | 0.014363 | NUP35 |
| ENSG00000087086 | -0.58752 | 0.01437 | FTL |
| ENSG00000165175 | 0.75311 | 0.014382 | MID1IP1 |
| ENSG00000146918 | -0.81158 | 0.014385 | NCAPG2 |
| ENSG00000068654 | -0.59642 | 0.014386 | POLR1A |


| ENSG00000175467 | -0.68531 | 0.014399 | SART1 |
| :---: | :---: | :---: | :---: |
| ENSG00000142784 | 0.729968 | 0.014419 | WDTC1 |
| ENSG00000136937 | -0.64665 | 0.014449 | NCBP1 |
| ENSG00000006634 | -0.58875 | 0.014497 | DBF4 |
| ENSG00000184900 | -0.5712 | 0.014528 | SUMO3 |
| ENSG00000129250 | -0.57081 | 0.014567 | KIF1C |
| ENSG00000141384 | -0.9109 | 0.014624 | TAF4B |
| ENSG00000249992 | -0.82077 | 0.014649 | TMEM158 |
| ENSG00000143549 | -0.5555 | 0.01468 | TPM3 |
| ENSG00000149260 | 0.666443 | 0.014687 | CAPN5 |
| ENSG00000184979 | 1.066297 | 0.014708 | USP18 |
| ENSG00000170049 | 0.744857 | 0.014713 | KCNAB3 |
| ENSG00000143412 | 0.753737 | 0.014734 | ANXA9 |
| ENSG00000182612 | 0.930639 | 0.014815 | TSPAN10 |
| ENSG00000165121 | 0.780795 | 0.014819 | AL353743.1 |
| ENSG00000184661 | -0.85193 | 0.014822 | CDCA2 |
| ENSG00000185033 | 0.986993 | 0.014833 | SEMA4B |
| ENSG00000160633 | -0.57414 | 0.014853 | SAFB |
| ENSG00000204574 | -0.56483 | 0.014883 | ABCF1 |
| ENSG00000188282 | 5.034788 | 0.014913 | RUFY4 |
| ENSG00000144655 | 1.188625 | 0.014918 | CSRNP1 |
| ENSG00000005961 | 2.457238 | 0.014941 | ITGA2B |
| ENSG00000174799 | -0.77013 | 0.014969 | CEP135 |
| ENSG00000235245 | 1.818486 | 0.015046 | AL360181.2 |
| ENSG00000185269 | 0.977585 | 0.015082 | NOTUM |
| ENSG00000167553 | -0.67838 | 0.015092 | TUBA1C |
| ENSG00000049769 | 1.01882 | 0.015097 | PPP1R3F |
| ENSG00000142687 | 0.640238 | 0.015127 | KIAA0319L |
| ENSG00000075618 | 0.60487 | 0.015146 | FSCN1 |
| ENSG00000142444 | -0.65707 | 0.015163 | TIMM29 |
| ENSG00000107719 | -0.53314 | 0.015179 | PALD1 |
| ENSG00000146540 | -0.68105 | 0.015217 | C7orf50 |
| ENSG00000110060 | -0.63148 | 0.015237 | PUS3 |
| ENSG00000136122 | -0.74467 | 0.015255 | BORA |
| ENSG00000156650 | 0.660699 | 0.01527 | KAT6B |
| ENSG00000249082 | -1.34133 | 0.015299 | C5orf66-AS1 |
| ENSG00000161270 | 2.24425 | 0.015306 | NPHS1 |
| ENSG00000197415 | 2.906312 | 0.015306 | VEPH1 |
| ENSG00000116985 | 0.608318 | 0.015307 | BMP8B |
| ENSG00000196118 | -0.90027 | 0.015348 | CCDC189 |
| ENSG00000262712 | -1.78791 | 0.015377 | AC012676.1 |


| ENSG00000106554 | -0.70029 | 0.015385 | CHCHD3 |
| :---: | :---: | :---: | :---: |
| ENSG00000126254 | -0.64576 | 0.015386 | RBM42 |
| ENSG00000199753 | -0.9445 | 0.01542 | SNORD104 |
| ENSG00000139131 | -0.62162 | 0.015465 | YARS2 |
| ENSG00000109576 | -0.79076 | 0.015502 | AADAT |
| ENSG00000114923 | 0.864469 | 0.015508 | SLC4A3 |
| ENSG00000138160 | -0.81586 | 0.015551 | KIF11 |
| ENSG00000262768 | 1.384171 | 0.015643 | AC100791.2 |
| ENSG00000182389 | 1.123109 | 0.015685 | CACNB4 |
| ENSG00000205702 | 1.504532 | 0.015701 | CYP2D7 |
| ENSG00000175470 | -0.63192 | 0.015733 | PPP2R2D |
| ENSG00000110237 | 0.721273 | 0.015742 | ARHGEF17 |
| ENSG00000234664 | -0.95985 | 0.015853 | HMGN2P5 |
| ENSG00000133226 | -0.66681 | 0.015867 | SRRM1 |
| ENSG00000157856 | 1.930431 | 0.015874 | DRC1 |
| ENSG00000155100 | -0.57559 | 0.015881 | OTUD6B |
| ENSG00000059728 | 1.33938 | 0.015893 | MXD1 |
| ENSG00000121390 | -0.5257 | 0.015902 | PSPC1 |
| ENSG00000165521 | -2.47373 | 0.015911 | EML5 |
| ENSG00000123374 | -0.75013 | 0.015917 | CDK2 |
| ENSG00000172201 | 0.740394 | 0.015942 | ID4 |
| ENSG00000158941 | -0.60646 | 0.015942 | CCAR2 |
| ENSG00000177889 | -0.64397 | 0.016028 | UBE2N |
| ENSG00000101346 | -0.49079 | 0.016029 | POFUT1 |
| ENSG00000135378 | 0.952429 | 0.016079 | PRRG4 |
| ENSG00000084092 | -0.57254 | 0.016085 | NOA1 |
| ENSG00000136158 | 0.639968 | 0.016125 | SPRY2 |
| ENSG00000213700 | 1.51358 | 0.016145 | RPL17P50 |
| ENSG00000185100 | 0.834846 | 0.016163 | ADSSL1 |
| ENSG00000174442 | -0.68317 | 0.016177 | ZWILCH |
| ENSG00000248663 | 2.861861 | 0.016195 | LINC00992 |
| ENSG00000100065 | 0.785446 | 0.016202 | CARD10 |
| ENSG00000149050 | 0.813613 | 0.01623 | ZNF214 |
| ENSG00000172469 | 0.544248 | 0.016233 | MANEA |
| ENSG00000150938 | -1.26804 | 0.016236 | CRIM1 |
| ENSG00000164543 | -0.61693 | 0.016249 | STK17A |
| ENSG00000136944 | 0.787803 | 0.01625 | LMX1B |
| ENSG00000254470 | -0.58491 | 0.016275 | AP5B1 |
| ENSG00000196263 | 0.889652 | 0.016275 | ZNF471 |
| ENSG00000159267 | 0.809873 | 0.016287 | HLCS |
| ENSG00000261512 | 0.980575 | 0.016295 | AC092368.3 |


| ENSG00000108671 | -0.54125 | 0.016308 | PSMD11 |
| :---: | :---: | :---: | :---: |
| ENSG00000067798 | -3.04959 | 0.016353 | NAV3 |
| ENSG00000124587 | 0.627311 | 0.016365 | PEX6 |
| ENSG00000066044 | -0.60288 | 0.016399 | ELAVL1 |
| ENSG00000141522 | -0.76296 | 0.01641 | ARHGDIA |
| ENSG00000114423 | 0.825546 | 0.016422 | CBLB |
| ENSG00000107611 | 0.631652 | 0.016425 | CUBN |
| ENSG00000090863 | 0.639013 | 0.016438 | GLG1 |
| ENSG00000224596 | 2.033609 | 0.016452 | ZMIZ1-AS1 |
| ENSG00000102241 | -0.65052 | 0.016453 | HTATSF1 |
| ENSG00000275064 | 3.767117 | 0.016458 | AC239860.1 |
| ENSG00000089737 | -0.52478 | 0.016494 | DDX24 |
| ENSG00000163629 | 1.00237 | 0.016498 | PTPN13 |
| ENSG00000110321 | -0.53588 | 0.016526 | EIF4G2 |
| ENSG00000274307 | 1.607653 | 0.016538 | AC023449.2 |
| ENSG00000118004 | 0.912724 | 0.016543 | COLEC11 |
| ENSG00000124160 | -0.908 | 0.016543 | NCOA5 |
| ENSG00000138668 | -0.85181 | 0.016612 | HNRNPD |
| ENSG00000141456 | -0.52368 | 0.016627 | PELP1 |
| ENSG00000165943 | 0.690432 | 0.016666 | MOAP1 |
| ENSG00000171241 | -0.93597 | 0.016668 | SHCBP1 |
| ENSG00000089159 | -0.88279 | 0.016671 | PXN |
| ENSG00000138092 | -0.73547 | 0.016678 | CENPO |
| ENSG00000180957 | -0.50361 | 0.016685 | PITPNB |
| ENSG00000134690 | -0.83806 | 0.016696 | CDCA8 |
| ENSG00000126500 | 1.785051 | 0.016699 | FLRT1 |
| ENSG00000115841 | 0.482022 | 0.016728 | RMDN2 |
| ENSG00000054654 | 0.736222 | 0.016735 | SYNE2 |
| ENSG00000166888 | 0.559024 | 0.016761 | STAT6 |
| ENSG00000164134 | -0.5001 | 0.016777 | NAA15 |
| ENSG00000137074 | -0.58797 | 0.016785 | APTX |
| ENSG00000257261 | 0.792639 | 0.016831 | AC008014.1 |
| ENSG00000184205 | 0.979622 | 0.016852 | TSPYL2 |
| ENSG00000257337 | 0.659756 | 0.01686 | AC068888.1 |
| ENSG00000186591 | 0.726465 | 0.016872 | UBE2H |
| ENSG00000125124 | 0.521502 | 0.016881 | BBS2 |
| ENSG00000150275 | 0.758507 | 0.016888 | PCDH15 |
| ENSG00000124228 | -0.49512 | 0.016894 | DDX27 |
| ENSG00000151694 | 1.06786 | 0.016908 | ADAM17 |
| ENSG00000159079 | -0.58871 | 0.016917 | C21orf59 |
| ENSG00000184178 | -0.79142 | 0.016951 | SCFD2 |


| ENSG00000068079 | 2.301491 | 0.016968 | IFI35 |
| :---: | :---: | :---: | :---: |
| ENSG00000160803 | -0.52612 | 0.017023 | UBQLN4 |
| ENSG00000184557 | 0.754748 | 0.017043 | SOCS3 |
| ENSG00000061794 | -0.47298 | 0.017056 | MRPS35 |
| ENSG00000179348 | -0.79732 | 0.017056 | GATA2 |
| ENSG00000228649 | -1.07488 | 0.017071 | SNHG26 |
| ENSG00000154743 | -0.70223 | 0.01708 | TSEN2 |
| ENSG00000130649 | 1.775671 | 0.017088 | CYP20.00 |
| ENSG00000126778 | 0.564983 | 0.017091 | SIX1 |
| ENSG00000011260 | -0.48563 | 0.017119 | UTP18 |
| ENSG00000159322 | -0.58247 | 0.017137 | ADPGK |
| ENSG00000170734 | -0.68498 | 0.017166 | POLH |
| ENSG00000186020 | 0.718229 | 0.017173 | ZNF529 |
| ENSG00000136518 | -0.53283 | 0.017194 | ACTL6A |
| ENSG00000106003 | -1.38337 | 0.01723 | LFNG |
| ENSG00000124207 | -0.76209 | 0.017234 | CSE1L |
| ENSG00000143815 | -0.6333 | 0.017237 | LBR |
| ENSG00000171307 | -0.69732 | 0.017342 | ZDHHC16 |
| ENSG00000122507 | 0.613653 | 0.017345 | BBS9 |
| ENSG00000136059 | 1.344912 | 0.017366 | VILL |
| ENSG00000101938 | 1.783118 | 0.017367 | CHRDL1 |
| ENSG00000168993 | -0.83904 | 0.017392 | CPLX1 |
| ENSG00000100814 | 0.953239 | 0.017517 | CCNB1IP1 |
| ENSG00000170445 | -0.53352 | 0.017521 | HARS |
| ENSG00000107796 | -0.97437 | 0.017545 | ACTA2 |
| ENSG00000241852 | -0.80674 | 0.017549 | C8orf58 |
| ENSG00000225206 | 0.745308 | 0.017579 | MIR137HG |
| ENSG00000107537 | 0.644451 | 0.017606 | PHYH |
| ENSG00000104218 | -0.59354 | 0.01761 | CSPP1 |
| ENSG00000141431 | 2.636202 | 0.017695 | ASXL3 |
| ENSG00000177200 | 0.634952 | 0.017708 | CHD9 |
| ENSG00000164649 | -0.60652 | 0.017711 | CDCA7L |
| ENSG00000198841 | -0.65319 | 0.017722 | KTI12 |
| ENSG00000139714 | 1.421569 | 0.01774 | MORN3 |
| ENSG00000146950 | 1.91415 | 0.017755 | SHROOM2 |
| ENSG00000116729 | 0.765631 | 0.017762 | WLS |
| ENSG00000196230 | -0.83797 | 0.017772 | TUBB |
| ENSG00000183605 | -0.59922 | 0.017779 | SFXN4 |
| ENSG00000126947 | 1.83981 | 0.01778 | ARMCX1 |
| ENSG00000214160 | -0.61751 | 0.017817 | ALG3 |
| ENSG00000266208 | 0.744575 | 0.017858 | AC080112.1 |


| ENSG00000132467 | -0.48137 | 0.017888 | UTP3 |
| :---: | :---: | :---: | :---: |
| ENSG00000225913 | -1.66434 | 0.017894 | AL138767.3 |
| ENSG00000225530 | 1.039019 | 0.017913 | SP3P |
| ENSG00000115368 | -0.65361 | 0.017924 | WDR75 |
| ENSG00000145743 | 0.594415 | 0.017955 | FBXL17 |
| ENSG00000229132 | -1.10047 | 0.017959 | EIF4A1P10 |
| ENSG00000119669 | 0.889568 | 0.017971 | IRF2BPL |
| ENSG00000225678 | 1.500831 | 0.017986 | AP000619.1 |
| ENSG00000198000 | -0.62201 | 0.017989 | NOL8 |
| ENSG00000150527 | 1.004101 | 0.017995 | CTAGE5 |
| ENSG00000165568 | 0.864038 | 0.017997 | AKR1E2 |
| ENSG00000221923 | 1.621258 | 0.018026 | ZNF880 |
| ENSG00000175985 | 2.237603 | 0.018028 | PLEKHD1 |
| ENSG00000171865 | -0.55632 | 0.01805 | RNASEH1 |
| ENSG00000010165 | -0.60356 | 0.018056 | METTL13 |
| ENSG00000262521 | 1.608513 | 0.018087 | AJ003147.1 |
| ENSG00000243989 | 0.645879 | 0.018097 | ACY1 |
| ENSG00000261428 | -1.63657 | 0.018101 | AC097461.1 |
| ENSG00000169612 | -0.57381 | 0.018105 | FAM103A1 |
| ENSG00000196497 | -1.03447 | 0.018108 | IPO4 |
| ENSG00000161847 | -0.69081 | 0.018113 | RAVER1 |
| ENSG00000234653 | -1.28696 | 0.018121 | AC079117.1 |
| ENSG00000213430 | -1.02164 | 0.018152 | HSPD1P1 |
| ENSG00000108773 | -0.66213 | 0.018176 | KAT2A |
| ENSG00000164761 | 1.93678 | 0.01821 | TNFRSF11B |
| ENSG00000165490 | -0.84674 | 0.018213 | DDIAS |
| ENSG00000093000 | -0.60125 | 0.018244 | NUP50 |
| ENSG00000156170 | -0.72768 | 0.018272 | NDUFAF6 |
| ENSG00000083290 | 0.845094 | 0.018276 | ULK2 |
| ENSG00000196358 | 1.084823 | 0.018303 | NTNG2 |
| ENSG00000135446 | -0.58284 | 0.018333 | CDK4 |
| ENSG00000065978 | -0.64054 | 0.018335 | YBX1 |
| ENSG00000004478 | -0.79143 | 0.018385 | FKBP4 |
| ENSG00000215251 | -0.53381 | 0.018418 | FASTKD5 |
| ENSG00000139405 | -0.59748 | 0.018425 | RITA1 |
| ENSG00000185818 | -0.51729 | 0.018427 | NAT8L |
| ENSG00000144802 | 1.05121 | 0.018435 | NFKBIZ |
| ENSG00000169758 | 1.239367 | 0.018439 | TMEM266 |
| ENSG00000136932 | -0.66196 | 0.018471 | TRMO |
| ENSG00000163026 | -0.71812 | 0.018486 | WDCP |
| ENSG00000112592 | -0.51746 | 0.018493 | TBP |


| ENSG00000100395 | -0.63423 | 0.018498 | L3MBTL2 |
| :---: | :---: | :---: | :---: |
| ENSG00000039560 | -0.6491 | 0.018499 | RAI14 |
| ENSG00000103707 | -0.58698 | 0.018551 | MTFMT |
| ENSG00000167491 | -0.4723 | 0.01856 | GATAD2A |
| ENSG00000150991 | 0.690586 | 0.018569 | UBC |
| ENSG00000158428 | 2.26167 | 0.018594 | CATIP |
| ENSG00000129455 | 2.424792 | 0.018612 | KLK8 |
| ENSG00000119335 | -0.4941 | 0.018618 | SET |
| ENSG00000272841 | -0.78885 | 0.018628 | AL139393.2 |
| ENSG00000164176 | 2.251833 | 0.018644 | EDIL3 |
| ENSG00000165424 | 0.799986 | 0.018668 | ZCCHC24 |
| ENSG00000198089 | 0.48581 | 0.018689 | SFI1 |
| ENSG00000166987 | 0.642388 | 0.018755 | MBD6 |
| ENSG00000170860 | -0.83845 | 0.018793 | LSM3.00 |
| ENSG00000108064 | -0.64495 | 0.018801 | TFAM |
| ENSG00000197599 | 1.851574 | 0.018913 | CCDC154 |
| ENSG00000121057 | -0.67443 | 0.018943 | AKAP1 |
| ENSG00000063127 | 0.934631 | 0.018956 | SLC6A16 |
| ENSG00000130813 | 0.98364 | 0.01897 | C19orf66 |
| ENSG00000104679 | -0.70209 | 0.018978 | R3HCC1 |
| ENSG00000138131 | 2.667509 | 0.01898 | LOXL4 |
| ENSG00000188229 | -0.73328 | 0.01898 | TUBB4B |
| ENSG00000111224 | 0.684528 | 0.018984 | PARP11 |
| ENSG00000260231 | 0.706542 | 0.018988 | JHDM1D-AS1 |
| ENSG00000248238 | 0.922776 | 0.019 | LINC02438 |
| ENSG00000133028 | -0.56298 | 0.019033 | SCO1 |
| ENSG00000080031 | 1.035862 | 0.019078 | PTPRH |
| ENSG00000104859 | -0.57253 | 0.019078 | CLASRP |
| ENSG00000267317 | 0.740799 | 0.019122 | AC027307.2 |
| ENSG00000204392 | -0.69654 | 0.019123 | LSM2.00 |
| ENSG00000136367 | 0.638168 | 0.019131 | ZFHX2 |
| ENSG00000131015 | 1.11661 | 0.019139 | ULBP2 |
| ENSG00000175662 | 0.548893 | 0.019144 | TOM1L2 |
| ENSG00000162694 | 0.686963 | 0.019152 | EXTL2 |
| ENSG00000013573 | -0.77335 | 0.019155 | DDX11 |
| ENSG00000153292 | 2.913408 | 0.019156 | ADGRF1 |
| ENSG00000107731 | 2.472672 | 0.019159 | UNC5B |
| ENSG00000104825 | -0.62141 | 0.019159 | NFKBIB |
| ENSG00000176087 | -0.78268 | 0.019173 | SLC35A4 |
| ENSG00000148154 | 0.64918 | 0.01921 | UGCG |
| ENSG00000172336 | -0.76271 | 0.019236 | POP7 |


| ENSG00000227057 | -0.58936 | 0.019247 | WDR46 |
| :---: | :---: | :---: | :---: |
| ENSG00000271992 | 2.139841 | 0.01929 | AL354872.2 |
| ENSG00000259605 | 0.870679 | 0.019306 | AC074212.1 |
| ENSG00000147874 | -0.65522 | 0.019354 | HAUS6 |
| ENSG00000063244 | -0.50274 | 0.019366 | U2AF2 |
| ENSG00000239857 | -0.66543 | 0.01937 | GET4 |
| ENSG00000151491 | 1.22082 | 0.0194 | EPS8 |
| ENSG00000163138 | -0.71995 | 0.019409 | PACRGL |
| ENSG00000137198 | 1.471684 | 0.019415 | GMPR |
| ENSG00000136866 | 0.624837 | 0.019415 | ZFP37 |
| ENSG00000071626 | -0.61462 | 0.019423 | DAZAP1 |
| ENSG00000141968 | 1.112092 | 0.019442 | VAV1 |
| ENSG00000122644 | 0.607376 | 0.019447 | ARL4A |
| ENSG00000138385 | -0.66795 | 0.019519 | SSB |
| ENSG00000167770 | -0.65314 | 0.019528 | OTUB1 |
| ENSG00000268041 | 2.518552 | 0.019531 | AC010616.1 |
| ENSG00000160255 | 1.659267 | 0.019554 | ITGB2 |
| ENSG00000100625 | 0.757763 | 0.019578 | SIX4 |
| ENSG00000224805 | 1.020996 | 0.019597 | LINC00853 |
| ENSG00000149503 | -0.84705 | 0.019621 | INCENP |
| ENSG00000100591 | -0.69996 | 0.019641 | AHSA1 |
| ENSG00000182853 | 0.88122 | 0.019641 | VMO1 |
| ENSG00000139890 | 2.08123 | 0.019658 | REM2 |
| ENSG00000123473 | -0.6023 | 0.019686 | STIL |
| ENSG00000181991 | -0.73572 | 0.019695 | MRPS11 |
| ENSG00000125835 | -0.72011 | 0.0197 | SNRPB |
| ENSG00000165238 | -0.60418 | 0.019739 | WNK2 |
| ENSG00000075336 | -0.90158 | 0.019752 | TIMM21 |
| ENSG00000101849 | 0.792631 | 0.01976 | TBL1X |
| ENSG00000214646 | 2.429339 | 0.019807 | AC104758.1 |
| ENSG00000183153 | 1.369592 | 0.019825 | GJD3 |
| ENSG00000090674 | -0.78939 | 0.01983 | MCOLN1 |
| ENSG00000280423 | 2.077301 | 0.019887 | AL359852.1 |
| ENSG00000257194 | 1.45775 | 0.019892 | AC126178.1 |
| ENSG00000007923 | -0.65974 | 0.019971 | DNAJC11 |
| ENSG00000138496 | 2.122313 | 0.019993 | PARP9 |
| ENSG00000062038 | 1.54849 | 0.020005 | CDH3 |
| ENSG00000120008 | 0.725631 | 0.020022 | WDR11 |
| ENSG00000125912 | -0.63022 | 0.020033 | NCLN |
| ENSG00000078699 | 0.592053 | 0.02004 | CBFA2T2 |
| ENSG00000070882 | -0.52182 | 0.020103 | OSBPL3 |


| ENSG00000111186 | 1.233583 | 0.020104 | WNT5B |
| :---: | :---: | :---: | :---: |
| ENSG00000100226 | 0.922433 | 0.020118 | GTPBP1 |
| ENSG00000152223 | 0.716031 | 0.020134 | EPG5 |
| ENSG00000165626 | 0.722672 | 0.020161 | BEND7 |
| ENSG00000269343 | -0.7853 | 0.020183 | ZNF587B |
| ENSG00000086200 | -0.56648 | 0.020233 | IPO11 |
| ENSG00000102595 | 0.789491 | 0.020263 | UGGT2 |
| ENSG00000142961 | 0.685608 | 0.020273 | MOB3C |
| ENSG00000167680 | 0.838268 | 0.020318 | SEMA6B |
| ENSG00000169718 | -0.64044 | 0.020338 | DUS1L |
| ENSG00000100867 | 1.406243 | 0.020341 | DHRS2 |
| ENSG00000255471 | 1.962484 | 0.020361 | AP001528.2 |
| ENSG00000120438 | -0.75949 | 0.020397 | TCP1 |
| ENSG00000151883 | 0.643848 | 0.020413 | PARP8 |
| ENSG00000246523 | 1.255416 | 0.020414 | AP001528.1 |
| ENSG00000144736 | -0.63162 | 0.020424 | SHQ1 |
| ENSG00000171943 | 0.676828 | 0.020461 | SRGAP2C |
| ENSG00000157895 | -0.53737 | 0.020474 | C12orf43 |
| ENSG00000058804 | -0.55236 | 0.020514 | NDC1 |
| ENSG00000241622 | 2.015374 | 0.020532 | RARRES2P1 |
| ENSG00000173821 | 0.922955 | 0.020558 | RNF213 |
| ENSG00000138623 | 0.819947 | 0.020578 | SEMA7A |
| ENSG00000100626 | 0.861811 | 0.02058 | GALNT16 |
| ENSG00000159917 | -0.75556 | 0.020637 | ZNF235 |
| ENSG00000111252 | 0.840913 | 0.020667 | SH2B3 |
| ENSG00000172301 | -0.7473 | 0.020711 | COPRS |
| ENSG00000080561 | 0.766207 | 0.020716 | MID2 |
| ENSG00000232040 | 0.811128 | 0.020751 | ZBED9 |
| ENSG00000085433 | 0.941383 | 0.020777 | WDR47 |
| ENSG00000129951 | 0.791859 | 0.020794 | PLPPR3 |
| ENSG00000071127 | -0.74676 | 0.020832 | WDR1 |
| ENSG00000134597 | -0.53304 | 0.020851 | RBMX2 |
| ENSG00000102316 | 0.628597 | 0.020863 | MAGED2 |
| ENSG00000104361 | 0.735984 | 0.020902 | NIPAL2 |
| ENSG00000138346 | -0.94368 | 0.020914 | DNA2 |
| ENSG00000112787 | -0.57395 | 0.020926 | FBRSL1 |
| ENSG00000180353 | 2.406001 | 0.020965 | HCLS 1 |
| ENSG00000105711 | 1.610075 | 0.021031 | SCN1B |
| ENSG00000132763 | -0.75841 | 0.021045 | MMACHC |
| ENSG00000197093 | 2.109429 | 0.021111 | GAL3ST4 |
| ENSG00000101182 | -0.74008 | 0.021174 | PSMA7 |


| ENSG00000140263 | -0.50626 | 0.021182 | SORD |
| :---: | :---: | :---: | :---: |
| ENSG00000250326 | 1.74164 | 0.021212 | AC104596.1 |
| ENSG00000186871 | -0.99304 | 0.021225 | ERCC6L |
| ENSG00000171219 | 1.021764 | 0.021266 | CDC42BPG |
| ENSG00000135452 | 0.635804 | 0.021269 | TSPAN31 |
| ENSG00000156802 | -0.62919 | 0.021273 | ATAD2 |
| ENSG00000185730 | -0.52585 | 0.021298 | ZNF696 |
| ENSG00000225159 | -1.47468 | 0.021316 | NPM1P39 |
| ENSG00000127837 | -0.49805 | 0.021323 | AAMP |
| ENSG00000170291 | -0.58989 | 0.021329 | ELP5 |
| ENSG00000110851 | -0.50099 | 0.021357 | PRDM4 |
| ENSG00000167088 | -0.7424 | 0.021386 | SNRPD1 |
| ENSG00000179403 | -0.6954 | 0.021398 | VWA1 |
| ENSG00000186792 | -1.10419 | 0.021405 | HYAL3 |
| ENSG00000152818 | 2.325129 | 0.021428 | UTRN |
| ENSG00000251661 | 1.008361 | 0.021428 | AC136475.1 |
| ENSG00000120949 | 2.464825 | 0.021456 | TNFRSF8 |
| ENSG00000260276 | 0.965889 | 0.021463 | AC022167.2 |
| ENSG00000170144 | -0.5656 | 0.021474 | HNRNPA3 |
| ENSG00000134057 | -0.92493 | 0.021505 | CCNB1 |
| ENSG00000111696 | -0.58577 | 0.021515 | NT5DC3 |
| ENSG00000150753 | -0.6455 | 0.021551 | CCT5 |
| ENSG00000163636 | -0.58532 | 0.021558 | PSMD6 |
| ENSG00000123545 | -0.67059 | 0.021558 | NDUFAF4 |
| ENSG00000160993 | -0.62198 | 0.021598 | ALKBH4 |
| ENSG00000041880 | 0.763687 | 0.021607 | PARP3 |
| ENSG00000106344 | -0.48046 | 0.021624 | RBM28 |
| ENSG00000101391 | -0.46962 | 0.021711 | CDK5RAP1 |
| ENSG00000070495 | -0.71355 | 0.021808 | JMJD6 |
| ENSG00000169045 | -0.48655 | 0.02186 | HNRNPH1 |
| ENSG00000128512 | -1.08719 | 0.021875 | DOCK4 |
| ENSG00000225972 | -0.79259 | 0.021882 | MTND1P23 |
| ENSG00000164654 | -0.64324 | 0.021901 | MIOS |
| ENSG00000133641 | -0.63934 | 0.02194 | C12orf29 |
| ENSG00000159055 | -0.74134 | 0.021967 | MIS18A |
| ENSG00000005100 | -0.5908 | 0.022011 | DHX33 |
| ENSG00000204406 | 0.673934 | 0.022028 | MBD5 |
| ENSG00000177000 | 0.783337 | 0.022064 | MTHFR |
| ENSG00000101489 | 1.97975 | 0.022081 | CELF4 |
| ENSG00000112511 | 0.818512 | 0.022084 | PHF1 |
| ENSG00000125818 | -0.54666 | 0.022108 | PSMF1 |


| ENSG00000136153 | 0.925043 | 0.02211 | LMO7 |
| :---: | :---: | :---: | :---: |
| ENSG00000172766 | -0.65157 | 0.022113 | NAA16 |
| ENSG00000176845 | 1.690372 | 0.022126 | METRNL |
| ENSG00000146530 | 0.787762 | 0.022135 | VWDE |
| ENSG00000188566 | -0.72803 | 0.022163 | NDOR1 |
| ENSG00000110442 | -0.8669 | 0.022182 | COMMD9 |
| ENSG00000161328 | 0.758319 | 0.022208 | LRRC56 |
| ENSG00000135900 | -0.55655 | 0.02222 | MRPL44 |
| ENSG00000111199 | 1.27584 | 0.022276 | TRPV4 |
| ENSG00000177570 | 0.75638 | 0.022307 | SAMD12 |
| ENSG00000101911 | -0.62891 | 0.022337 | PRPS2 |
| ENSG00000136868 | 0.888781 | 0.022365 | SLC31A1 |
| ENSG00000101236 | 0.718087 | 0.022405 | RNF24 |
| ENSG00000213889 | 0.771418 | 0.022442 | PPM1N |
| ENSG00000183019 | 1.743293 | 0.022452 | MCEMP1 |
| ENSG00000173418 | -0.64282 | 0.022456 | NAA20 |
| ENSG00000104998 | 0.745621 | 0.022478 | IL27RA |
| ENSG00000174950 | 1.392201 | 0.022498 | CD164L2 |
| ENSG00000124766 | 2.544515 | 0.022503 | SOX4 |
| ENSG00000164074 | 0.519245 | 0.022512 | ABHD18 |
| ENSG00000078674 | 0.738581 | 0.02252 | PCM1 |
| ENSG00000139636 | 0.582626 | 0.022523 | LMBR1L |
| ENSG00000104140 | -0.64831 | 0.022536 | RHOV |
| ENSG00000030304 | 1.00959 | 0.022562 | MUSK |
| ENSG00000145293 | -0.52469 | 0.022594 | ENOPH1 |
| ENSG00000146409 | 0.606302 | 0.022601 | SLC18B1 |
| ENSG00000126749 | -0.61281 | 0.022618 | EMG1 |
| ENSG00000261026 | 2.69551 | 0.022619 | AC105046.1 |
| ENSG00000149599 | 1.365248 | 0.022628 | DUSP15 |
| ENSG00000114686 | -0.66794 | 0.022631 | MRPL3 |
| ENSG00000170653 | 0.563789 | 0.022702 | ATF7 |
| ENSG00000115541 | -0.90682 | 0.02278 | HSPE1 |
| ENSG00000136279 | -0.72639 | 0.022794 | DBNL |
| ENSG00000114841 | 1.087943 | 0.022798 | DNAH1 |
| ENSG00000282965 | 1.031164 | 0.022808 | AP001005.3 |
| ENSG00000146834 | -0.49586 | 0.022812 | MEPCE |
| ENSG00000130382 | -0.56902 | 0.022847 | MLLT1 |
| ENSG00000132341 | -0.80878 | 0.02285 | RAN |
| ENSG00000183479 | -1.47856 | 0.02286 | TREX2 |
| ENSG00000096063 | -0.46117 | 0.02289 | SRPK1 |
| ENSG00000113649 | -0.63059 | 0.0229 | TCERG1 |


| ENSG00000080824 | -0.74704 | 0.022926 | HSP90AA1 |
| :---: | :---: | :---: | :---: |
| ENSG00000164163 | -0.49427 | 0.022944 | ABCE1 |
| ENSG00000091527 | -0.43828 | 0.022997 | CDV3 |
| ENSG00000068400 | 0.543902 | 0.023006 | GRIPAP1 |
| ENSG00000138032 | 0.672287 | 0.023009 | PPM1B |
| ENSG00000183763 | -0.8601 | 0.023036 | TRAIP |
| ENSG00000118242 | -0.70005 | 0.023041 | MREG |
| ENSG00000283667 | 2.260119 | 0.023045 | AC009802.1 |
| ENSG00000166451 | -0.53564 | 0.023054 | CENPN |
| ENSG00000112096 | -0.48245 | 0.02311 | SOD2 |
| ENSG00000128346 | 1.210387 | 0.023165 | C22orf23 |
| ENSG00000146090 | 0.948468 | 0.02318 | RASGEF1C |
| ENSG00000173213 | 0.803698 | 0.023194 | TUBB8P12 |
| ENSG00000214655 | 0.59613 | 0.023198 | ZSWIM8 |
| ENSG00000166689 | 0.773217 | 0.02322 | PLEKHA7 |
| ENSG00000095539 | 0.571074 | 0.023228 | SEMA4G |
| ENSG00000172915 | 0.663486 | 0.023232 | NBEA |
| ENSG00000165312 | 1.376569 | 0.023302 | OTUD1 |
| ENSG00000167676 | 1.097066 | 0.023309 | PLIN4 |
| ENSG00000168140 | -0.99457 | 0.023362 | VASN |
| ENSG00000197275 | -0.75212 | 0.023362 | RAD54B |
| ENSG00000175416 | -0.62399 | 0.023441 | CLTB |
| ENSG00000161204 | -0.52737 | 0.023515 | ABCF3 |
| ENSG00000279414 | 2.0868 | 0.023542 | CR392039.2 |
| ENSG00000255652 | 2.184135 | 0.02356 | AC140847.2 |
| ENSG00000171262 | -0.56346 | 0.023573 | FAM98B |
| ENSG00000106479 | 0.77775 | 0.023573 | ZNF862 |
| ENSG00000231431 | 1.045401 | 0.02358 | FAR2P4 |
| ENSG00000144935 | 0.840489 | 0.02361 | TRPC1 |
| ENSG00000013306 | -0.59061 | 0.023663 | SLC25A39 |
| ENSG00000146147 | 0.594308 | 0.0237 | MLIP |
| ENSG00000162729 | 0.738833 | 0.023705 | IGSF8 |
| ENSG00000067533 | -0.56615 | 0.023731 | RRP15 |
| ENSG00000118939 | -0.82622 | 0.02375 | UCHL3 |
| ENSG00000001461 | 0.661209 | 0.023769 | NIPAL3 |
| ENSG00000100600 | 0.786153 | 0.023792 | LGMN |
| ENSG00000115268 | -0.64595 | 0.023794 | RPS15 |
| ENSG00000166920 | 2.135623 | 0.023826 | C15orf48 |
| ENSG00000274911 | -0.69796 | 0.023826 | AL627230.2 |
| ENSG00000196295 | 0.596244 | 0.023873 | AC005154.1 |
| ENSG00000136048 | 0.819915 | 0.023925 | DRAM1 |


| ENSG00000135624 | -0.5633 | 0.023955 | CCT7 |
| :---: | :---: | :---: | :---: |
| ENSG00000146143 | -0.65387 | 0.023957 | PRIM2 |
| ENSG00000149532 | -0.44894 | 0.023974 | CPSF7 |
| ENSG00000187961 | -0.66843 | 0.02398 | KLHL17 |
| ENSG00000105618 | -0.62512 | 0.023982 | PRPF31 |
| ENSG00000169248 | 0.92082 | 0.02401 | CXCL11 |
| ENSG00000167766 | 0.669651 | 0.024023 | ZNF83 |
| ENSG00000187531 | -0.6684 | 0.024024 | SIRT7 |
| ENSG00000272031 | 0.573473 | 0.024059 | ANKRD34A |
| ENSG00000226037 | 1.596064 | 0.024064 | LINC01040 |
| ENSG00000160161 | 1.213448 | 0.024083 | CILP2 |
| ENSG00000167925 | 0.621301 | 0.024084 | GHDC |
| ENSG00000259781 | -0.91026 | 0.024087 | HMGB1P6 |
| ENSG00000119285 | -0.53622 | 0.024088 | HEATR1 |
| ENSG00000148019 | -0.80689 | 0.0241 | CEP78 |
| ENSG00000105298 | -0.55814 | 0.024124 | CACTIN |
| ENSG00000141385 | -0.47675 | 0.024124 | AFG3L2 |
| ENSG00000197937 | 0.82115 | 0.024148 | ZNF347 |
| ENSG00000259448 | 2.043348 | 0.024188 | LINC02352 |
| ENSG00000117411 | -0.56637 | 0.024203 | B4GALT2 |
| ENSG00000170876 | -0.572 | 0.024232 | TMEM43 |
| ENSG00000063180 | 0.540618 | 0.02427 | CA11 |
| ENSG00000118257 | 2.158898 | 0.024277 | NRP2 |
| ENSG00000162512 | 0.721237 | 0.02432 | SDC3 |
| ENSG00000132436 | -0.85795 | 0.024342 | FIGNL1 |
| ENSG00000211460 | -0.44131 | 0.024397 | TSN |
| ENSG00000163794 | 1.766374 | 0.024441 | UCN |
| ENSG00000183770 | 1.948954 | 0.024485 | FOXL2 |
| ENSG00000196584 | -0.97159 | 0.024509 | XRCC2 |
| ENSG00000085117 | 1.201393 | 0.024541 | CD82 |
| ENSG00000188825 | 1.071802 | 0.024548 | LINC00910 |
| ENSG00000100416 | -0.71809 | 0.024562 | TRMU |
| ENSG00000174004 | 1.250972 | 0.024604 | NRROS |
| ENSG00000092853 | -1.07208 | 0.024608 | CLSPN |
| ENSG00000079337 | 1.273741 | 0.024633 | RAPGEF3 |
| ENSG00000183647 | -0.80064 | 0.024702 | ZNF530 |
| ENSG00000260942 | -0.97495 | 0.024816 | CAPN10-AS1 |
| ENSG00000053900 | -0.65295 | 0.024829 | ANAPC4 |
| ENSG00000109794 | 1.257404 | 0.024853 | FAM149A |
| ENSG00000071462 | -0.55622 | 0.024879 | BUD23 |
| ENSG00000204060 | 1.131514 | 0.024887 | FOXO6 |


| ENSG00000079785 | -0.46541 | 0.024893 | DDX1 |
| :---: | :---: | :---: | :---: |
| ENSG00000253626 | -1.00106 | 0.024899 | EIF5AL1 |
| ENSG00000021355 | 0.855908 | 0.024905 | SERPINB1 |
| ENSG00000105136 | 0.70128 | 0.024948 | ZNF419 |
| ENSG00000139044 | 1.157778 | 0.024969 | B4GALNT3 |
| ENSG00000265458 | -1.17239 | 0.024981 | AC132938.3 |
| ENSG00000153234 | 2.166373 | 0.025058 | NR4A2 |
| ENSG00000143621 | -0.61871 | 0.02507 | ILF2 |
| ENSG00000095370 | 1.527857 | 0.025089 | SH2D3C |
| ENSG00000163075 | -0.87608 | 0.025096 | CFAP221 |
| ENSG00000023734 | -0.46211 | 0.025125 | STRAP |
| ENSG00000258102 | 1.327757 | 0.025181 | MAP1LC3B2 |
| ENSG00000198901 | -0.70915 | 0.025189 | PRC1 |
| ENSG00000123983 | 0.651991 | 0.025196 | ACSL3 |
| ENSG00000128050 | -0.70794 | 0.025208 | PAICS |
| ENSG00000108799 | 0.645601 | 0.025221 | EZH1 |
| ENSG00000186056 | 0.937537 | 0.025253 | MATN1-AS1 |
| ENSG00000181104 | 0.787921 | 0.025256 | F2R |
| ENSG00000101695 | 1.133495 | 0.025256 | RNF125 |
| ENSG00000088280 | 0.667027 | 0.025263 | ASAP3 |
| ENSG00000100897 | 0.507606 | 0.025268 | DCAF11 |
| ENSG00000181035 | 0.633676 | 0.025307 | SLC25A42 |
| ENSG00000196422 | 0.59241 | 0.025454 | PPP1R26 |
| ENSG00000158604 | 0.642868 | 0.025473 | TMED4 |
| ENSG00000203485 | -0.65198 | 0.025494 | INF2 |
| ENSG00000142528 | -0.50851 | 0.025544 | ZNF473 |
| ENSG00000105251 | 2.000697 | 0.025545 | SHD |
| ENSG00000145817 | 0.604858 | 0.025579 | YIPF5 |
| ENSG00000260912 | 0.727113 | 0.02558 | AL158206.1 |
| ENSG00000172780 | 1.115316 | 0.025587 | RAB43 |
| ENSG00000138821 | -2.27262 | 0.025598 | SLC39A8 |
| ENSG00000150510 | -1.1377 | 0.025606 | FAM124A |
| ENSG00000119865 | -1.84542 | 0.025646 | CNRIP1 |
| ENSG00000116560 | -0.74269 | 0.025722 | SFPQ |
| ENSG00000273802 | 1.242303 | 0.025759 | HIST1H2BG |
| ENSG00000173064 | 0.826781 | 0.02578 | HECTD4 |
| ENSG00000187583 | -0.76984 | 0.02578 | PLEKHN1 |
| ENSG00000143799 | -0.60358 | 0.025801 | PARP1 |
| ENSG00000236107 | 2.139859 | 0.025815 | AC010127.1 |
| ENSG00000101365 | -0.57853 | 0.025885 | IDH3B |
| ENSG00000204632 | 1.536632 | 0.025901 | HLA-G |


| ENSG00000173273 | 0.68474 | 0.025913 | TNKS |
| :---: | :---: | :---: | :---: |
| ENSG00000155099 | 0.669779 | 0.025917 | PIP4P2 |
| ENSG00000259585 | 1.010988 | 0.026013 | RBM17P4 |
| ENSG00000170191 | -0.5406 | 0.026026 | NANP |
| ENSG00000127863 | 0.720001 | 0.02604 | TNFRSF19 |
| ENSG00000174796 | 0.506999 | 0.026087 | THAP6 |
| ENSG00000254860 | 1.131256 | 0.026109 | TMEM9B-AS1 |
| ENSG00000255112 | 0.672846 | 0.026116 | CHMP1B |
| ENSG00000108176 | 0.941011 | 0.026123 | DNAJC12 |
| ENSG00000177426 | 0.611536 | 0.026124 | TGIF1 |
| ENSG00000257923 | 0.535136 | 0.026125 | CUX1 |
| ENSG00000011304 | -0.53796 | 0.026149 | PTBP1 |
| ENSG00000233098 | 0.624584 | 0.026176 | CCDC144NL-AS1 |
| ENSG00000138621 | -0.71321 | 0.026181 | PPCDC |
| ENSG00000108344 | -0.62224 | 0.026277 | PSMD3 |
| ENSG00000165732 | -0.59394 | 0.026294 | DDX21 |
| ENSG00000215190 | -0.9606 | 0.026322 | LINC00680 |
| ENSG00000122861 | 0.942639 | 0.026337 | PLAU |
| ENSG00000106686 | 1.330515 | 0.0264 | SPATA6L |
| ENSG00000118420 | -0.73062 | 0.026401 | UBE3D |
| ENSG00000160194 | -0.62884 | 0.026438 | NDUFV3 |
| ENSG00000062485 | -0.55575 | 0.026454 | CS |
| ENSG00000094804 | -0.91351 | 0.026516 | CDC6 |
| ENSG00000181873 | -0.69515 | 0.026532 | IBA57 |
| ENSG00000237154 | 2.574669 | 0.026542 | MCFD2P1 |
| ENSG00000145632 | 2.311472 | 0.026577 | PLK2 |
| ENSG00000197037 | -0.56341 | 0.026597 | ZSCAN25 |
| ENSG00000186017 | 0.687505 | 0.026601 | ZNF566 |
| ENSG00000004487 | -0.45752 | 0.026632 | KDM1A |
| ENSG00000007080 | -0.65051 | 0.026654 | CCDC124 |
| ENSG00000197841 | 0.584538 | 0.026656 | ZNF181 |
| ENSG00000086967 | 1.99592 | 0.026707 | MYBPC2 |
| ENSG00000214114 | -0.67346 | 0.026721 | MYCBP |
| ENSG00000121871 | 1.932821 | 0.026737 | SLITRK3 |
| ENSG00000253846 | 1.540391 | 0.026748 | PCDHGA10 |
| ENSG00000113643 | -0.41454 | 0.026801 | RARS |
| ENSG00000124575 | 1.682951 | 0.026861 | HIST1H1D |
| ENSG00000115596 | 2.795112 | 0.026923 | WNT6 |
| ENSG00000197170 | -0.60087 | 0.02695 | PSMD12 |
| ENSG00000119844 | 0.577174 | 0.027012 | AFTPH |
| ENSG00000280968 | -1.48922 | 0.02707 | MIR3653 |


| ENSG00000083093 | -0.49235 | 0.027097 | PALB2 |
| :---: | :---: | :---: | :---: |
| ENSG00000005075 | -0.66159 | 0.027119 | POLR2J |
| ENSG00000100084 | -0.62198 | 0.027146 | HIRA |
| ENSG00000112237 | -0.54979 | 0.027174 | CCNC |
| ENSG00000276390 | -1.20514 | 0.027193 | AC004241.3 |
| ENSG00000272108 | 1.894253 | 0.027295 | AC244517.1 |
| ENSG00000173193 | 1.865971 | 0.02731 | PARP14 |
| ENSG00000106028 | -0.90209 | 0.027337 | SSBP1 |
| ENSG00000143476 | -0.62672 | 0.02734 | DTL |
| ENSG00000167986 | -0.50779 | 0.027348 | DDB1 |
| ENSG00000225178 | -0.72561 | 0.027353 | RPSAP58 |
| ENSG00000182175 | 1.13817 | 0.027396 | RGMA |
| ENSG00000064393 | 0.935545 | 0.027406 | HIPK2 |
| ENSG00000137831 | 0.54887 | 0.027416 | UACA |
| ENSG00000276644 | 2.716767 | 0.027423 | DACH1 |
| ENSG00000079435 | 1.286373 | 0.027502 | LIPE |
| ENSG00000070371 | 0.570178 | 0.027524 | CLTCL1 |
| ENSG00000128581 | -0.75191 | 0.027526 | IFT22 |
| ENSG00000178104 | 0.480422 | 0.027557 | PDE4DIP |
| ENSG00000088325 | -0.61747 | 0.027566 | TPX2 |
| ENSG00000143748 | -0.51415 | 0.02759 | NVL |
| ENSG00000171497 | -0.65623 | 0.0276 | PPID |
| ENSG00000175582 | 0.738108 | 0.027624 | RAB6A |
| ENSG00000170619 | -0.59527 | 0.027714 | COMMD5 |
| ENSG00000261762 | -1.17982 | 0.027717 | AC027228.2 |
| ENSG00000204519 | -0.62813 | 0.027742 | ZNF551 |
| ENSG00000165527 | -0.49014 | 0.02775 | ARF6 |
| ENSG00000254480 | -1.30579 | 0.027756 | AC015689.1 |
| ENSG00000280987 | -0.70653 | 0.027771 | MATR3 |
| ENSG00000183625 | 1.435828 | 0.027791 | CCR3 |
| ENSG00000205269 | 1.169229 | 0.027837 | TMEM170B |
| ENSG00000160233 | 0.936461 | 0.027841 | LRRC3 |
| ENSG00000239322 | -1.16632 | 0.027874 | ATP6V1B1-AS1 |
| ENSG00000163521 | 0.635322 | 0.027875 | GLB1L |
| ENSG00000079246 | -0.54487 | 0.027883 | XRCC5 |
| ENSG00000129991 | 0.707951 | 0.027894 | TNNI3 |
| ENSG00000147459 | 0.716716 | 0.027895 | DOCK5 |
| ENSG00000273674 | 1.028263 | 0.027902 | AC021752.1 |
| ENSG00000161800 | -0.5571 | 0.027907 | RACGAP1 |
| ENSG00000128245 | -0.59089 | 0.027913 | YWHAH |
| ENSG00000162458 | 0.667502 | 0.027979 | FBLIM1 |


| ENSG00000106266 | -0.54095 | 0.027988 | SNX8 |
| :---: | :---: | :---: | :---: |
| ENSG00000127054 | -0.46241 | 0.027994 | INTS11 |
| ENSG00000083223 | 0.691442 | 0.027999 | ZCCHC6 |
| ENSG00000075223 | 2.117765 | 0.028148 | SEMA3C |
| ENSG00000085563 | 1.001651 | 0.028168 | ABCB1 |
| ENSG00000164951 | 0.617155 | 0.028168 | PDP1 |
| ENSG00000163702 | 0.483124 | 0.028206 | IL17RC |
| ENSG00000129460 | -0.54749 | 0.02822 | NGDN |
| ENSG00000099810 | -0.45104 | 0.028234 | MTAP |
| ENSG00000271395 | 2.581269 | 0.028249 | LINC02336 |
| ENSG00000065361 | 0.814037 | 0.028277 | ERBB3 |
| ENSG00000100764 | -0.51057 | 0.028294 | PSMC1 |
| ENSG00000254221 | 1.316169 | 0.028328 | PCDHGB1 |
| ENSG00000177455 | 2.017585 | 0.028378 | CD19 |
| ENSG00000161970 | -0.57173 | 0.028381 | RPL26 |
| ENSG00000270084 | 1.319778 | 0.028463 | GAS5-AS1 |
| ENSG00000125651 | -0.42489 | 0.028465 | GTF2F1 |
| ENSG00000158270 | 6.824146 | 0.028469 | COLEC12 |
| ENSG00000141934 | 1.152945 | 0.028527 | PLPP2 |
| ENSG00000139192 | 0.692799 | 0.02854 | TAPBPL |
| ENSG00000177082 | -0.78215 | 0.028599 | WDR73 |
| ENSG00000108639 | -0.71454 | 0.028634 | SYNGR2 |
| ENSG00000205560 | 0.88751 | 0.028664 | CPT1B |
| ENSG00000008283 | -0.55263 | 0.028696 | CYB561 |
| ENSG00000146733 | 0.874974 | 0.028706 | PSPH |
| ENSG00000087365 | -0.43987 | 0.028718 | SF3B2 |
| ENSG00000100485 | 0.719595 | 0.02874 | SOS2 |
| ENSG00000156869 | 0.678188 | 0.028757 | FRRS1 |
| ENSG00000106628 | -0.63525 | 0.028788 | POLD2 |
| ENSG00000161526 | -0.4729 | 0.028846 | SAP30BP |
| ENSG00000215784 | -0.73286 | 0.028856 | FAM72D |
| ENSG00000065154 | -0.61925 | 0.028857 | OAT |
| ENSG00000135622 | 0.653591 | 0.02888 | SEMA4F |
| ENSG00000147118 | 0.688103 | 0.02894 | ZNF182 |
| ENSG00000071073 | 0.653418 | 0.02898 | MGAT4A |
| ENSG00000175764 | -1.15281 | 0.029115 | TTLL11 |
| ENSG00000047346 | 0.70657 | 0.029116 | FAM214A |
| ENSG00000166147 | 0.671261 | 0.029125 | FBN1 |
| ENSG00000108559 | -0.48926 | 0.029132 | NUP88 |
| ENSG00000131462 | -0.68033 | 0.029187 | TUBG1 |
| ENSG00000135185 | -0.58992 | 0.029199 | TMEM243 |


| ENSG00000147180 | 0.643066 | 0.029226 | ZNF711 |
| :---: | :---: | :---: | :---: |
| ENSG00000162736 | 0.521853 | 0.029276 | NCSTN |
| ENSG00000106459 | -0.51164 | 0.029329 | NRF1 |
| ENSG00000115840 | -0.64803 | 0.029347 | SLC25A12 |
| ENSG00000164124 | 0.620929 | 0.029388 | TMEM144 |
| ENSG00000164002 | -0.81835 | 0.029389 | EXO5 |
| ENSG00000067248 | -0.55385 | 0.029391 | DHX29 |
| ENSG00000115641 | -0.65254 | 0.029414 | FHL2 |
| ENSG00000170464 | 0.656205 | 0.029446 | DNAJC18 |
| ENSG00000198515 | -2.18202 | 0.02947 | CNGA1 |
| ENSG00000198055 | -0.44329 | 0.029491 | GRK6 |
| ENSG00000072182 | 2.177772 | 0.029514 | ASIC4 |
| ENSG00000151304 | -0.62118 | 0.02952 | SRFBP1 |
| ENSG00000104213 | 1.03488 | 0.029609 | PDGFRL |
| ENSG00000257108 | 1.510962 | 0.029609 | NHLRC4 |
| ENSG00000120948 | -0.66854 | 0.029611 | TARDBP |
| ENSG00000184117 | 0.590762 | 0.02962 | NIPSNAP1 |
| ENSG00000136527 | -0.64838 | 0.029664 | TRA2B |
| ENSG00000223764 | 0.66138 | 0.029671 | AL645608.1 |
| ENSG00000162433 | -0.45244 | 0.029695 | AK4 |
| ENSG00000185436 | 0.636984 | 0.029717 | IFNLR1 |
| ENSG00000111602 | -0.7424 | 0.029786 | TIMELESS |
| ENSG00000134308 | -0.57799 | 0.029815 | YWHAQ |
| ENSG00000135406 | 1.163962 | 0.02989 | PRPH |
| ENSG00000135476 | -0.82114 | 0.02992 | ESPL1 |
| ENSG00000029363 | -0.71652 | 0.029961 | BCLAF1 |
| ENSG00000162927 | 0.55704 | 0.029981 | PUS10 |
| ENSG00000084463 | -0.53241 | 0.030001 | WBP11 |
| ENSG00000119772 | 0.502036 | 0.030015 | DNMT3A |
| ENSG00000064195 | -2.05293 | 0.03004 | DLX3 |
| ENSG00000157873 | 1.02872 | 0.030052 | TNFRSF14 |
| ENSG00000159885 | 0.839873 | 0.030052 | ZNF222 |
| ENSG00000259425 | 0.763476 | 0.03009 | AC011767.1 |
| ENSG00000092621 | 1.126545 | 0.03016 | PHGDH |
| ENSG00000122591 | -0.47706 | 0.030187 | FAM126A |
| ENSG00000104823 | 0.498517 | 0.030189 | ECH1 |
| ENSG00000248278 | -0.8182 | 0.030205 | SUMO2P17 |
| ENSG00000270647 | -0.49054 | 0.030246 | TAF15 |
| ENSG00000205937 | -0.42574 | 0.030246 | RNPS1 |
| ENSG00000139722 | -0.4617 | 0.030249 | VPS37B |
| ENSG00000083750 | 0.603951 | 0.030251 | RRAGB |


| ENSG00000141569 | -0.50399 | 0.0303 | TRIM65 |
| :---: | :---: | :---: | :---: |
| ENSG00000159640 | 0.989206 | 0.030358 | ACE |
| ENSG00000272933 | 0.755056 | 0.030383 | AL391121.1 |
| ENSG00000075702 | -0.80794 | 0.030395 | WDR62 |
| ENSG00000091664 | 1.796146 | 0.030397 | SLC17A6 |
| ENSG00000162614 | -0.63001 | 0.030404 | NEXN |
| ENSG00000136010 | 1.839527 | 0.030413 | ALDH1L2 |
| ENSG00000184428 | -0.55377 | 0.030418 | TOP1MT |
| ENSG00000167325 | -0.80311 | 0.030434 | RRM1 |
| ENSG00000158417 | -0.63043 | 0.030457 | EIF5B |
| ENSG00000163131 | 1.914559 | 0.030493 | CTSS |
| ENSG00000166833 | 2.025323 | 0.030525 | NAV2 |
| ENSG00000173848 | -0.53376 | 0.030536 | NET1 |
| ENSG00000136950 | -0.55513 | 0.030552 | ARPC5L |
| ENSG00000197808 | 0.735263 | 0.030574 | ZNF461 |
| ENSG00000004838 | -1.18657 | 0.030588 | ZMYND10 |
| ENSG00000115042 | 0.52829 | 0.030651 | FAHD2A |
| ENSG00000106367 | -0.71108 | 0.030678 | AP1S1 |
| ENSG00000283696 | 1.139888 | 0.030765 | AL592295.4 |
| ENSG00000237438 | -0.60347 | 0.030765 | CECR7 |
| ENSG00000177464 | 1.558408 | 0.030833 | GPR4 |
| ENSG00000124222 | 0.732523 | 0.030833 | STX16 |
| ENSG00000179476 | 0.715358 | 0.030855 | C14orf28 |
| ENSG00000170190 | 0.673776 | 0.030904 | SLC16A5 |
| ENSG00000167701 | 1.385588 | 0.030943 | GPT |
| ENSG00000215492 | -0.80038 | 0.030965 | HNRNPA1P7 |
| ENSG00000011426 | -0.77365 | 0.031037 | ANLN |
| ENSG00000227755 | 1.177077 | 0.03105 | AP000344.1 |
| ENSG00000037965 | 0.645863 | 0.031125 | HOXC8 |
| ENSG00000144848 | -0.5548 | 0.031139 | ATG3 |
| ENSG00000078579 | 2.313254 | 0.031154 | FGF20 |
| ENSG00000111911 | 0.66375 | 0.03118 | HINT3 |
| ENSG00000085721 | -0.46943 | 0.031241 | RRN3 |
| ENSG00000151468 | 0.803075 | 0.031255 | CCDC3 |
| ENSG00000164109 | -0.91842 | 0.031278 | MAD2L1 |
| ENSG00000119326 | -0.46778 | 0.031328 | CTNNAL1 |
| ENSG00000231259 | 0.999491 | 0.031331 | AC125232.1 |
| ENSG00000146083 | 0.813189 | 0.031346 | RNF44 |
| ENSG00000060656 | 0.668848 | 0.031349 | PTPRU |
| ENSG00000136379 | -0.58563 | 0.031391 | ABHD17C |
| ENSG00000139915 | 1.603321 | 0.031393 | MDGA2 |


| ENSG00000174607 | -1.91168 | 0.031443 | UGT8 |
| :---: | :---: | :---: | :---: |
| ENSG00000256628 | -0.63266 | 0.031487 | ZBTB11-AS1 |
| ENSG00000185989 | -0.96914 | 0.031514 | RASA3 |
| ENSG00000132792 | -0.45752 | 0.031521 | CTNNBL1 |
| ENSG00000073849 | 0.630997 | 0.03155 | ST6GAL1 |
| ENSG00000124641 | -0.5469 | 0.03166 | MED20 |
| ENSG00000281398 | -0.95242 | 0.031721 | SNHG4 |
| ENSG00000139132 | 0.958926 | 0.031738 | FSGF |


| ENSG00000109572 | 0.687785 | 0.032629 | CLCN3 |
| :---: | :---: | :---: | :---: |
| ENSG00000066697 | -0.53602 | 0.032638 | MSANTD3 |
| ENSG00000168439 | -0.57187 | 0.03275 | STIP1 |
| ENSG00000109272 | 0.872243 | 0.032766 | PF4V1 |
| ENSG00000100028 | -0.73476 | 0.032784 | SNRPD3 |
| ENSG00000169071 | 1.150325 | 0.032788 | ROR2 |
| ENSG00000167311 | 1.38727 | 0.032792 | ART5 |
| ENSG00000115211 | -0.54869 | 0.032807 | EIF2B4 |
| ENSG00000167930 | 0.51357 | 0.032824 | FAM234A |
| ENSG00000130021 | -0.62182 | 0.032828 | PUDP |
| ENSG00000105829 | 0.538968 | 0.032838 | BET1 |
| ENSG00000102312 | 0.490787 | 0.032865 | PORCN |
| ENSG00000140391 | -0.51294 | 0.032882 | TSPAN3 |
| ENSG00000170909 | 1.058076 | 0.032884 | OSCAR |
| ENSG00000198431 | -0.46858 | 0.032893 | TXNRD1 |
| ENSG00000141401 | -0.68839 | 0.032908 | IMPA2 |
| ENSG00000244300 | -0.71105 | 0.032917 | GATA2-AS1 |
| ENSG00000117751 | -0.44015 | 0.03292 | PPP1R8 |
| ENSG00000125734 | 0.57721 | 0.032935 | GPR108 |
| ENSG00000232838 | -0.54991 | 0.032957 | PET117 |
| ENSG00000225173 | 0.71853 | 0.032991 | AL662890.1 |
| ENSG00000175189 | 1.944918 | 0.032996 | INHBC |
| ENSG00000133103 | 0.69661 | 0.033035 | COG6 |
| ENSG00000226415 | -1.02217 | 0.033046 | TPI1P1 |
| ENSG00000225975 | -1.07416 | 0.033072 | LINC01534 |
| ENSG00000102053 | 0.687436 | 0.033089 | ZC3H12B |
| ENSG00000137726 | 1.544876 | 0.033099 | FXYD6 |
| ENSG00000256862 | -1.07372 | 0.033179 | AC005842.1 |
| ENSG00000171824 | -0.56313 | 0.033259 | EXOSC10 |
| ENSG00000123146 | 0.63448 | 0.033357 | ADGRE5 |
| ENSG00000119632 | 0.708565 | 0.033373 | IFI27L2 |
| ENSG00000164902 | -0.43459 | 0.033431 | PHAX |
| ENSG00000101447 | -0.82884 | 0.033515 | FAM83D |
| ENSG00000150768 | -0.64168 | 0.033535 | DLAT |
| ENSG00000116209 | 0.62029 | 0.033557 | TMEM59 |
| ENSG00000216331 | 1.893573 | 0.033592 | HIST1H1PS1 |
| ENSG00000259577 | 1.03634 | 0.033635 | CERNA1 |
| ENSG00000085185 | 0.568055 | 0.033667 | BCORL1 |
| ENSG00000109339 | 1.312506 | 0.033674 | MAPK10 |
| ENSG00000106049 | 0.570895 | 0.033686 | HIBADH |
| ENSG00000113758 | -0.52764 | 0.033745 | DBN1 |


| ENSG00000138411 | 0.924179 | 0.033765 | HECW2 |
| :---: | :---: | :---: | :---: |
| ENSG00000169519 | 0.551364 | 0.033772 | METTL15 |
| ENSG00000078668 | -0.80839 | 0.033825 | VDAC3 |
| ENSG00000162878 | -1.24653 | 0.033872 | PKDCC |
| ENSG00000164181 | 0.95952 | 0.0339 | ELOVL7 |
| ENSG00000270060 | 1.410543 | 0.0339 | AC090589.3 |
| ENSG00000205559 | -1.1417 | 0.033935 | CHKB-AS1 |
| ENSG00000074582 | -0.60452 | 0.033952 | BCS1L |
| ENSG00000163633 | 0.582996 | 0.033953 | C4orf36 |
| ENSG00000132004 | -0.62265 | 0.033964 | FBXW9 |
| ENSG00000261189 | 1.797823 | 0.034005 | AL031058.1 |
| ENSG00000083444 | 0.831626 | 0.034035 | PLOD1 |
| ENSG00000110200 | -0.7993 | 0.03415 | ANAPC15 |
| ENSG00000130311 | -0.55806 | 0.034167 | DDA1 |
| ENSG00000130332 | -0.726 | 0.034174 | LSM7.00 |
| ENSG00000175193 | -0.52957 | 0.034301 | PARL |
| ENSG00000156011 | 0.684328 | 0.034328 | PSD3 |
| ENSG00000184154 | 0.706409 | 0.034328 | LRTOMT |
| ENSG00000200879 | -1.15893 | 0.034356 | SNORD14E |
| ENSG00000183032 | 0.541955 | 0.034366 | SLC25A21 |
| ENSG00000173141 | -0.58273 | 0.034374 | MRPL57 |
| ENSG00000147650 | 0.726489 | 0.034401 | LRP12 |
| ENSG00000118518 | 0.453079 | 0.034513 | RNF146 |
| ENSG00000163882 | -0.64289 | 0.034514 | POLR2H |
| ENSG00000180900 | -0.6051 | 0.03456 | SCRIB |
| ENSG00000172889 | 0.838939 | 0.034621 | EGFL7 |
| ENSG00000205309 | 0.966662 | 0.034673 | NT5M |
| ENSG00000172250 | 1.16024 | 0.034712 | SERHL |
| ENSG00000157227 | 0.959817 | 0.034714 | MMP14 |
| ENSG00000267395 | 0.950703 | 0.034722 | DM1-AS |
| ENSG00000154065 | 1.742496 | 0.034749 | ANKRD29 |
| ENSG00000166278 | 1.355545 | 0.034752 | C2 |
| ENSG00000147649 | -0.47525 | 0.034753 | MTDH |
| ENSG00000260329 | 0.693791 | 0.03476 | AC007541.1 |
| ENSG00000103356 | -0.45123 | 0.034865 | EARS2 |
| ENSG00000204314 | 0.533816 | 0.034868 | PRRT1 |
| ENSG00000012223 | 1.425483 | 0.03489 | LTF |
| ENSG00000183978 | -0.6835 | 0.034897 | COA3 |
| ENSG00000119125 | 3.235166 | 0.034952 | GDA |
| ENSG00000081721 | -0.50389 | 0.034953 | DUSP12 |
| ENSG00000100290 | 1.062906 | 0.034993 | BIK |


| ENSG00000121766 | -0.56769 | 0.035 | ZCCHC17 |
| :---: | :---: | :---: | :---: |
| ENSG00000142233 | 1.742244 | 0.035009 | NTN5 |
| ENSG00000164031 | 0.637035 | 0.035025 | DNAJB14 |
| ENSG00000126067 | -0.58326 | 0.035034 | PSMB2 |
| ENSG00000156504 | -0.55039 | 0.035062 | FAM122B |
| ENSG00000152642 | -0.46484 | 0.035107 | GPD1L |
| ENSG00000272405 | -0.82804 | 0.035167 | AL365181.3 |
| ENSG00000132906 | 0.475718 | 0.035181 | CASP9 |
| ENSG00000167699 | -0.50083 | 0.035194 | GLOD4 |
| ENSG00000267698 | -0.95682 | 0.035201 | AC002116.2 |
| ENSG00000182552 | -0.48063 | 0.03521 | RWDD4 |
| ENSG00000184939 | 0.702497 | 0.035233 | ZFP90 |
| ENSG00000104833 | 0.586184 | 0.035262 | TUBB4A |
| ENSG00000115486 | 0.611889 | 0.035362 | GGCX |
| ENSG00000055950 | -0.6232 | 0.035399 | MRPL43 |
| ENSG00000182134 | 0.439567 | 0.03546 | TDRKH |
| ENSG00000133997 | -0.51919 | 0.035489 | MED6 |
| ENSG00000134986 | 0.50032 | 0.035601 | NREP |
| ENSG00000031698 | 0.804644 | 0.035647 | SARS |
| ENSG00000085872 | -0.51417 | 0.035675 | CHERP |
| ENSG00000257950 | -1.09305 | 0.035753 | P2RX5-TAX1BP3 |
| ENSG00000162526 | 1.210709 | 0.035761 | TSSK3 |
| ENSG00000156970 | -0.87055 | 0.035766 | BUB1B |
| ENSG00000260448 | -0.84645 | 0.035805 | LCMT1-AS1 |
| ENSG00000132383 | -0.53238 | 0.03582 | RPA1 |
| ENSG00000105088 | 0.633005 | 0.035846 | OLFM2 |
| ENSG00000177721 | 0.82993 | 0.035886 | ANXA2R |
| ENSG00000177084 | -0.63153 | 0.035915 | POLE |
| ENSG00000126457 | -0.66426 | 0.035923 | PRMT1 |
| ENSG00000228549 | 0.946765 | 0.035952 | BX284668.2 |
| ENSG00000255108 | 1.408891 | 0.035963 | AP006621.1 |
| ENSG00000182759 | 1.357977 | 0.035978 | MAFA |
| ENSG00000205356 | 0.548809 | 0.036001 | TECPR1 |
| ENSG00000167110 | 0.656449 | 0.036038 | GOLGA2 |
| ENSG00000238105 | 0.674459 | 0.03606 | GOLGA2P5 |
| ENSG00000067606 | 0.476868 | 0.036102 | PRKCZ |
| ENSG00000228013 | 1.876125 | 0.036126 | IL6R-AS 1 |
| ENSG00000240489 | -0.7567 | 0.036175 | SETP14 |
| ENSG00000154319 | 1.423385 | 0.036185 | FAM167A |
| ENSG00000160124 | -0.7127 | 0.036201 | CCDC58 |
| ENSG00000176749 | -0.6985 | 0.03621 | CDK5R1 |


| ENSG00000166262 | 0.593495 | 0.03621 | FAM227B |
| :---: | :---: | :---: | :---: |
| ENSG00000102384 | -0.79408 | 0.036224 | CENPI |
| ENSG00000196504 | -0.41119 | 0.036279 | PRPF40A |
| ENSG00000119820 | 0.547771 | 0.036338 | YIPF4 |
| ENSG00000112081 | -0.70988 | 0.036339 | SRSF3 |
| ENSG00000132967 | -0.94581 | 0.036373 | HMGB1P5 |
| ENSG00000197312 | -0.51541 | 0.036396 | DDI2 |
| ENSG00000143294 | -0.45232 | 0.036408 | PRCC |
| ENSG00000042753 | -0.66242 | 0.036455 | AP2S1 |
| ENSG00000147439 | -0.54412 | 0.036482 | BIN3 |
| ENSG00000105339 | 0.775436 | 0.036504 | DENND3 |
| ENSG00000134905 | -0.67993 | 0.036529 | CARS2 |
| ENSG00000175482 | 0.665531 | 0.036532 | POLD4 |
| ENSG00000167733 | 0.656975 | 0.036537 | HSD11B1L |
| ENSG00000110013 | 0.587899 | 0.036583 | SIAE |
| ENSG00000124201 | 1.046596 | 0.036662 | ZNFX1 |
| ENSG00000171574 | -0.46866 | 0.036701 | ZNF584 |
| ENSG00000165792 | -0.58032 | 0.036706 | METTL17 |
| ENSG00000271936 | -0.84863 | 0.03671 | AC012073.1 |
| ENSG00000168811 | -1.18628 | 0.03671 | IL12A |
| ENSG00000138801 | 0.6029 | 0.036737 | PAPSS1 |
| ENSG00000119227 | 0.640724 | 0.03676 | PIGZ |
| ENSG00000115415 | 2.068253 | 0.036864 | STAT1 |
| ENSG00000266904 | 0.733875 | 0.036867 | LINC00663 |
| ENSG00000116161 | -0.7732 | 0.03691 | CACYBP |
| ENSG00000244045 | -0.55616 | 0.036918 | TMEM199 |
| ENSG00000116062 | -0.45871 | 0.03692 | MSH6 |
| ENSG00000213064 | -0.5502 | 0.036984 | SFT2D2 |
| ENSG00000164756 | 1.132209 | 0.03701 | SLC30A8 |
| ENSG00000111328 | -0.61981 | 0.037014 | CDK2AP1 |
| ENSG00000145335 | 1.464457 | 0.037028 | SNCA |
| ENSG00000224861 | -0.68274 | 0.037119 | YBX1P1 |
| ENSG00000137804 | -0.65845 | 0.03715 | NUSAP1 |
| ENSG00000157653 | -1.20718 | 0.037157 | C9orf43 |
| ENSG00000101605 | 0.947901 | 0.037158 | MYOM1 |
| ENSG00000203772 | -0.8764 | 0.037158 | SPRN |
| ENSG00000144895 | -0.52307 | 0.0372 | EIF2A |
| ENSG00000085415 | -0.49612 | 0.037221 | SEH1L |
| ENSG00000176438 | 1.77757 | 0.037235 | SYNE3 |
| ENSG00000151503 | -0.57416 | 0.037348 | NCAPD3 |
| ENSG00000065060 | 0.881515 | 0.037367 | UHRF1BP1 |


| ENSG00000176024 | 0.563363 | 0.037384 | ZNF613 |
| :---: | :---: | :---: | :---: |
| ENSG00000111348 | -2.4183 | 0.037456 | ARHGDIB |
| ENSG00000112624 | 0.671848 | 0.037507 | BICRAL |
| ENSG00000170364 | -0.70304 | 0.037542 | SETMAR |
| ENSG00000269952 | 1.196946 | 0.037593 | AL117336.2 |
| ENSG00000163918 | -0.74106 | 0.037614 | RFC4 |
| ENSG00000182263 | 0.894426 | 0.037616 | FIGN |
| ENSG00000257524 | 1.105069 | 0.03762 | AL157935.2 |
| ENSG00000187122 | 1.54427 | 0.037648 | SLIT1 |
| ENSG00000204580 | 0.525204 | 0.037713 | DDR1 |
| ENSG00000225963 | 2.326577 | 0.037719 | AC009950.1 |
| ENSG00000158467 | 0.593607 | 0.037724 | AHCYL2 |
| ENSG00000112130 | -0.46878 | 0.037777 | RNF8 |
| ENSG00000205002 | 0.982437 | 0.037802 | AARD |
| ENSG00000164933 | -0.39614 | 0.037806 | SLC25A32 |
| ENSG00000153207 | -0.55413 | 0.037856 | AHCTF1 |
| ENSG00000153029 | 0.500393 | 0.037883 | MR1 |
| ENSG00000278948 | 0.995116 | 0.037897 | AL031587.5 |
| ENSG00000132153 | -0.42091 | 0.037901 | DHX30 |
| ENSG00000115998 | 0.580669 | 0.037921 | C2orf42 |
| ENSG00000258727 | 0.752491 | 0.037928 | AL135999.1 |
| ENSG00000112029 | -0.77218 | 0.037928 | FBXO5 |
| ENSG00000176386 | -0.58332 | 0.037929 | CDC26 |
| ENSG00000170854 | -0.51854 | 0.037935 | RIOX2 |
| ENSG00000145494 | -0.70311 | 0.038032 | NDUFS6 |
| ENSG00000116977 | 0.586237 | 0.038059 | LGALS8 |
| ENSG00000108774 | -0.57166 | 0.038064 | RAB5C |
| ENSG00000170638 | -0.53153 | 0.038082 | TRABD |
| ENSG00000135506 | 0.563795 | 0.038118 | OS9 |
| ENSG00000151790 | -1.42975 | 0.03812 | TDO2 |
| ENSG00000272760 | 0.995874 | 0.038149 | AC093726.1 |
| ENSG00000123609 | 0.708561 | 0.038174 | NMI |
| ENSG00000132591 | -0.50349 | 0.038174 | ERAL1 |
| ENSG00000126016 | 0.871347 | 0.038199 | AMOT |
| ENSG00000135519 | 0.76023 | 0.038255 | KCNH3 |
| ENSG00000105357 | 0.578316 | 0.038285 | MYH14 |
| ENSG00000103174 | -0.67278 | 0.038288 | NAGPA |
| ENSG00000272221 | -1.0361 | 0.038338 | AL645933.2 |
| ENSG00000125870 | -0.5683 | 0.038422 | SNRPB2 |
| ENSG00000113575 | -0.41642 | 0.038448 | PPP2CA |
| ENSG00000163481 | -0.52351 | 0.038469 | RNF25 |


| ENSG00000198569 | 1.970515 | 0.038484 | SLC34A3 |
| :---: | :---: | :---: | :---: |
| ENSG00000248918 | 0.991966 | 0.038492 | AC008808.1 |
| ENSG00000186185 | -0.87912 | 0.038519 | KIF18B |
| ENSG00000159217 | -0.79448 | 0.038544 | IGF2BP1 |
| ENSG00000100092 | -0.5182 | 0.038561 | SH3BP1 |
| ENSG00000185267 | 1.066547 | 0.038562 | CDNF |
| ENSG00000189060 | 0.797046 | 0.038565 | H1F0 |
| ENSG00000108813 | 1.154338 | 0.03857 | DLX4 |
| ENSG00000213585 | -0.50948 | 0.038582 | VDAC1 |
| ENSG00000160131 | -0.43098 | 0.038633 | VMA21 |
| ENSG00000070785 | -0.58512 | 0.038648 | EIF2B3 |
| ENSG00000174915 | -0.5261 | 0.038752 | PTDSS2 |
| ENSG00000138193 | -0.67979 | 0.03876 | PLCE1 |
| ENSG00000012963 | -0.45413 | 0.038773 | UBR7 |
| ENSG00000136560 | 0.523442 | 0.038778 | TANK |
| ENSG00000139832 | 1.238931 | 0.038851 | RAB20 |
| ENSG00000247746 | 0.748637 | 0.038851 | USP51 |
| ENSG00000116459 | -0.637 | 0.038896 | ATP5PB |
| ENSG00000156261 | -0.50538 | 0.038901 | CCT8 |
| ENSG00000138081 | 0.753465 | 0.038947 | FBXO11 |
| ENSG00000137460 | 1.037285 | 0.038979 | FHDC1 |
| ENSG00000178038 | 1.007789 | 0.039003 | ALS2CL |
| ENSG00000134531 | 0.712689 | 0.039054 | EMP1 |
| ENSG00000147852 | 2.249868 | 0.03906 | VLDLR |
| ENSG00000179387 | 0.569506 | 0.039114 | ELMOD2 |
| ENSG00000129173 | -0.9018 | 0.039153 | E2F8 |
| ENSG00000185664 | 0.858579 | 0.039166 | PMEL |
| ENSG00000214756 | -0.68439 | 0.039315 | CSKMT |
| ENSG00000117245 | 0.693453 | 0.039375 | KIF17 |
| ENSG00000079308 | 1.110295 | 0.039382 | TNS1 |
| ENSG00000167380 | 0.58567 | 0.039391 | ZNF226 |
| ENSG00000137807 | -0.6621 | 0.039455 | KIF23 |
| ENSG00000019485 | 0.77808 | 0.039485 | PRDM11 |
| ENSG00000183576 | -0.39407 | 0.039508 | SETD3 |
| ENSG00000143321 | -0.44575 | 0.039514 | HDGF |
| ENSG00000164929 | 1.789806 | 0.039518 | BAALC |
| ENSG00000234072 | 0.560885 | 0.039522 | AC074117.1 |
| ENSG00000221968 | 0.592506 | 0.039559 | FADS3 |
| ENSG00000275549 | 1.024919 | 0.039561 | STPG3-AS1 |
| ENSG00000119537 | 0.608828 | 0.03963 | KDSR |
| ENSG00000188785 | 0.721106 | 0.039634 | ZNF548 |


| ENSG00000171763 | -0.44779 | 0.039651 | SPATA5L1 |
| :---: | :---: | :---: | :---: |
| ENSG00000197969 | 0.461725 | 0.039659 | VPS13A |
| ENSG00000243323 | 1.744083 | 0.03969 | PTPRVP |
| ENSG00000213341 | -0.42916 | 0.039696 | CHUK |
| ENSG00000163607 | -0.50999 | 0.039733 | GTPBP8 |
| ENSG00000082458 | 0.540878 | 0.039764 | DLG3 |
| ENSG00000174327 | 0.644849 | 0.039805 | SLC16A13 |
| ENSG00000229953 | -1.07508 | 0.03982 | AL590666.2 |
| ENSG00000172922 | -0.97451 | 0.039871 | RNASEH2C |
| ENSG00000260917 | 0.925159 | 0.039899 | AL158212.3 |
| ENSG00000154920 | -0.84974 | 0.039964 | EME1 |
| ENSG00000198355 | -0.46973 | 0.039969 | PIM3 |
| ENSG00000149929 | -0.80781 | 0.039992 | HIRIP3 |
| ENSG00000125629 | 0.536829 | 0.039995 | INSIG2 |
| ENSG00000111206 | -0.68253 | 0.040031 | FOXM1 |
| ENSG00000241685 | -0.52321 | 0.040037 | ARPC1A |
| ENSG00000180769 | 0.69888 | 0.040073 | WDFY3-AS2 |
| ENSG00000134283 | -0.50711 | 0.040082 | PPHLN1 |
| ENSG00000116016 | 1.826556 | 0.040085 | EPAS1 |
| ENSG00000263818 | 1.389436 | 0.040091 | AC091178.1 |
| ENSG00000250644 | 1.737505 | 0.040095 | AC068580.4 |
| ENSG00000144893 | -0.71516 | 0.040102 | MED12L |
| ENSG00000137575 | 0.441987 | 0.040153 | SDCBP |
| ENSG00000089053 | -0.53449 | 0.040215 | ANAPC5 |
| ENSG00000159147 | -0.53096 | 0.040216 | DONSON |
| ENSG00000163293 | -1.34036 | 0.040243 | NIPAL1 |
| ENSG00000223482 | -0.51738 | 0.040258 | NUTM2A-AS1 |
| ENSG00000160325 | 0.802589 | 0.040264 | CACFD1 |
| ENSG00000068383 | -0.44513 | 0.040267 | INPP5A |
| ENSG00000139514 | 0.928073 | 0.040336 | SLC7A1 |
| ENSG00000204564 | -0.56926 | 0.040337 | C6orf136 |
| ENSG00000007255 | 0.659404 | 0.040354 | TRAPPC6A |
| ENSG00000086506 | -0.70281 | 0.040439 | HBQ1 |
| ENSG00000049449 | 0.609327 | 0.040444 | RCN1 |
| ENSG00000250510 | 0.657109 | 0.040456 | GPR162 |
| ENSG00000143303 | 0.522667 | 0.040459 | RRNAD1 |
| ENSG00000129347 | -0.49195 | 0.040483 | KRI1 |
| ENSG00000164647 | -0.78919 | 0.040537 | STEAP1 |
| ENSG00000269899 | 1.77208 | 0.040566 | AC025857.2 |
| ENSG00000150787 | -0.59768 | 0.040663 | PTS |
| ENSG00000104904 | -0.56729 | 0.040719 | OAZ1 |


| ENSG00000183765 | -0.57676 | 0.04077 | CHEK2 |
| :---: | :---: | :---: | :---: |
| ENSG00000168411 | -0.59657 | 0.040781 | RFWD3 |
| ENSG00000069020 | 1.610969 | 0.040783 | MAST4 |
| ENSG00000187555 | -0.43066 | 0.040791 | USP7 |
| ENSG00000112167 | -0.69068 | 0.040845 | SAYSD1 |
| ENSG00000168056 | 0.532506 | 0.040984 | LTBP3 |
| ENSG00000249565 | -0.90521 | 0.040992 | SERBP1P5 |
| ENSG00000131584 | -0.71275 | 0.04101 | ACAP3 |
| ENSG00000157216 | -0.5515 | 0.041056 | SSBP3 |
| ENSG00000171067 | -0.51169 | 0.041067 | C11orf24 |
| ENSG00000110172 | -0.69821 | 0.041087 | CHORDC1 |
| ENSG00000068878 | -0.52335 | 0.04113 | PSME4 |
| ENSG00000269918 | 0.949751 | 0.041246 | AF131215.6 |
| ENSG00000188033 | 1.260681 | 0.041307 | ZNF490 |
| ENSG00000153006 | -0.52396 | 0.041313 | SREK1IP1 |
| ENSG00000055130 | -0.46796 | 0.041337 | CUL1 |
| ENSG00000204272 | 0.619968 | 0.041343 | NBDY |
| ENSG00000106682 | -0.48873 | 0.041353 | EIF4H |
| ENSG00000105223 | 0.660915 | 0.041354 | PLD3 |
| ENSG00000139865 | 1.355026 | 0.041374 | TTC6 |
| ENSG00000104290 | 0.62384 | 0.041405 | FZD3 |
| ENSG00000280194 | 1.004994 | 0.041405 | AD000864.1 |
| ENSG00000125944 | -0.43762 | 0.041432 | HNRNPR |
| ENSG00000272968 | 1.680627 | 0.041497 | RBAK-RBAKDN |
| ENSG00000262668 | 1.048335 | 0.041509 | AJ003147.2 |
| ENSG00000140830 | -0.45684 | 0.041539 | TXNL4B |
| ENSG00000102904 | 0.704473 | 0.041545 | TSNAXIP1 |
| ENSG00000128274 | 0.910477 | 0.041577 | A4GALT |
| ENSG00000179899 | 0.811893 | 0.041584 | PHC1P1 |
| ENSG00000064995 | -0.47522 | 0.041602 | TAF11 |
| ENSG00000077238 | 0.550194 | 0.041618 | IL4R |
| ENSG00000167723 | 0.853142 | 0.041639 | TRPV3 |
| ENSG00000146966 | 2.224907 | 0.041729 | DENND2A |
| ENSG00000224424 | 0.885669 | 0.041743 | PRKAR2A-AS1 |
| ENSG00000151967 | -1.15777 | 0.04177 | SCHIP1 |
| ENSG00000277534 | -0.92913 | 0.041853 | AC007996.1 |
| ENSG00000145794 | 2.365694 | 0.041988 | MEGF10 |
| ENSG00000148773 | -0.83099 | 0.042004 | MKI67 |
| ENSG00000243244 | 1.014328 | 0.042012 | STON1 |
| ENSG00000182600 | 0.933213 | 0.04204 | SNORC |
| ENSG00000133069 | 0.904735 | 0.042059 | TMCC2 |


| ENSG00000143028 | 0.938597 | 0.042155 | SYPL2 |
| :---: | :---: | :---: | :---: |
| ENSG00000182180 | -0.49854 | 0.042179 | MRPS16 |
| ENSG00000079313 | -0.41739 | 0.042184 | REXO1 |
| ENSG00000179833 | 0.531069 | 0.042186 | SERTAD2 |
| ENSG00000269473 | -0.7798 | 0.0422 | AC012313.8 |
| ENSG00000088832 | -0.55264 | 0.042209 | FKBP1A |
| ENSG00000187601 | 0.751669 | 0.042218 | MAGEH1 |
| ENSG00000188610 | -0.56923 | 0.042298 | FAM72B |
| ENSG00000116032 | 1.87579 | 0.042355 | GRIN3B |
| ENSG00000116874 | -0.4816 | 0.042377 | WARS2 |
| ENSG00000144285 | 2.637162 | 0.042385 | SCN1A |
| ENSG00000159176 | 0.812582 | 0.042424 | CSRP1 |
| ENSG00000170089 | -0.77318 | 0.042455 | AC106795.1 |
| ENSG00000261474 | 1.853583 | 0.042488 | AC026471.4 |
| ENSG00000125484 | -0.4303 | 0.04254 | GTF3C4 |
| ENSG00000132275 | -0.47658 | 0.042545 | RRP8 |
| ENSG00000102265 | 0.96297 | 0.042551 | TIMP1 |
| ENSG00000173334 | 0.872495 | 0.042556 | TRIB1 |
| ENSG00000137404 | -0.91404 | 0.042571 | NRM |
| ENSG00000062822 | -0.64358 | 0.042604 | POLD1 |
| ENSG00000224157 | 1.621164 | 0.042609 | HCG14 |
| ENSG00000101294 | -0.53237 | 0.042626 | HM13 |
| ENSG00000263874 | 1.709318 | 0.042643 | LINC00672 |
| ENSG00000171202 | -0.71679 | 0.042681 | TMEM126A |
| ENSG00000249115 | -0.69707 | 0.042683 | HAUS5 |
| ENSG00000142544 | -0.58786 | 0.042699 | CTU1 |
| ENSG00000152208 | 0.905238 | 0.042735 | GRID2 |
| ENSG00000279453 | 0.767965 | 0.04286 | Z99129.4 |
| ENSG00000113231 | 0.780161 | 0.042873 | PDE8B |
| ENSG00000196756 | -0.46828 | 0.042887 | SNHG17 |
| ENSG00000222041 | -0.57817 | 0.042909 | CYTOR |
| ENSG00000082153 | -0.52481 | 0.042914 | BZW1 |
| ENSG00000131368 | -0.66325 | 0.042934 | MRPS25 |
| ENSG00000143384 | 0.55478 | 0.042957 | MCL1 |
| ENSG00000170385 | -0.60395 | 0.043004 | SLC30A1 |
| ENSG00000031823 | -0.52635 | 0.043063 | RANBP3 |
| ENSG00000132849 | 0.876406 | 0.043098 | PATJ |
| ENSG00000131558 | 0.501209 | 0.043099 | EXOC4 |
| ENSG00000018408 | 0.555391 | 0.043299 | WWTR1 |
| ENSG00000130707 | 2.105313 | 0.043318 | ASS1 |
| ENSG00000142065 | 0.543242 | 0.043329 | ZFP14 |


| ENSG00000149328 | -0.60897 | 0.04336 | GLB1L2 |
| :---: | :---: | :---: | :---: |
| ENSG00000123179 | -0.55127 | 0.043376 | EBPL |
| ENSG00000119950 | 0.630935 | 0.04346 | MXI1 |
| ENSG00000230453 | -0.50051 | 0.04346 | ANKRD18B |
| ENSG00000138180 | -0.65754 | 0.043513 | CEP55 |
| ENSG00000147883 | 0.663584 | 0.043539 | CDKN2B |
| ENSG00000174989 | 0.552704 | 0.043599 | FBXW8 |
| ENSG00000080986 | -0.65457 | 0.043609 | NDC80 |
| ENSG00000137216 | 0.532862 | 0.043624 | TMEM63B |
| ENSG00000254413 | 0.860713 | 0.043629 | CHKB-CPT1B |
| ENSG00000110888 | 0.538081 | 0.04363 | CAPRIN2 |
| ENSG00000148688 | -0.63649 | 0.043654 | RPP30 |
| ENSG00000104818 | 1.496865 | 0.04367 | CGB2 |
| ENSG00000143436 | -0.56615 | 0.043749 | MRPL9 |
| ENSG00000115364 | -0.4797 | 0.043753 | MRPL19 |
| ENSG00000052795 | -0.49568 | 0.043754 | FNIP2 |
| ENSG00000177728 | 0.469889 | 0.043797 | TMEM94 |
| ENSG00000027869 | -0.49998 | 0.043819 | SH2D2A |
| ENSG00000198931 | -0.60391 | 0.043846 | APRT |
| ENSG00000169871 | 0.864968 | 0.043849 | TRIM56 |
| ENSG00000102003 | -0.55198 | 0.043862 | SYP |
| ENSG00000110075 | -0.49722 | 0.04396 | PPP6R3 |
| ENSG00000267696 | 7.873377 | 0.043965 | ERVK-28 |
| ENSG00000138771 | 0.773699 | 0.044004 | SHROOM3 |
| ENSG00000158186 | -0.40213 | 0.044039 | MRAS |
| ENSG00000114107 | 0.447715 | 0.044058 | CEP70 |
| ENSG00000139343 | -0.71773 | 0.044096 | SNRPF |
| ENSG00000108468 | -0.60952 | 0.044149 | CBX1 |
| ENSG00000124795 | -0.42094 | 0.044165 | DEK |
| ENSG00000213676 | 0.383935 | 0.044169 | ATF6B |
| ENSG00000135423 | 0.841874 | 0.044203 | GLS2 |
| ENSG00000135597 | -0.40988 | 0.04421 | REPS1 |
| ENSG00000138078 | 0.475067 | 0.044221 | PREPL |
| ENSG00000130433 | 1.194916 | 0.044279 | CACNG6 |
| ENSG00000197405 | 0.950795 | 0.044287 | C5AR1 |
| ENSG00000160791 | 1.023512 | 0.044287 | CCR5 |
| ENSG00000206262 | 1.251009 | 0.044338 | FOXL2NB |
| ENSG00000198205 | 0.661488 | 0.044376 | ZXDA |
| ENSG00000278053 | -0.41279 | 0.044482 | DDX52 |
| ENSG00000251322 | 0.645921 | 0.044508 | SHANK3 |
| ENSG00000212127 | 0.999828 | 0.044515 | TAS2R14 |


| ENSG00000163050 | -0.53013 | 0.044525 | COQ8A |
| :---: | :---: | :---: | :---: |
| ENSG00000196748 | 1.189911 | 0.044579 | CLPSL2 |
| ENSG00000086061 | -0.48425 | 0.044601 | DNAJA1 |
| ENSG00000117479 | -0.49985 | 0.044714 | SLC19A2 |
| ENSG00000186684 | 0.979134 | 0.044717 | CYP27C1 |
| ENSG00000155827 | -0.40703 | 0.044769 | RNF20 |
| ENSG00000214367 | -0.58953 | 0.044769 | HAUS3 |
| ENSG00000183077 | -0.55329 | 0.044801 | AFMID |
| ENSG00000167971 | 0.801135 | 0.044804 | CASKIN1 |
| ENSG00000051523 | -1.28559 | 0.044808 | CYBA |
| ENSG00000160867 | 0.613389 | 0.044848 | FGFR4 |
| ENSG00000040531 | -0.67667 | 0.04489 | CTNS |
| ENSG00000181097 | 1.03 | 0.04491 | AC105219.1 |
| ENSG00000162409 | 0.599792 | 0.044913 | PRKAA2 |
| ENSG00000171502 | 2.31048 | 0.044914 | COL24A1 |
| ENSG00000163249 | 0.514561 | 0.044967 | CCNYL1 |
| ENSG00000181781 | 0.756964 | 0.044968 | ODF3L2 |
| ENSG00000196547 | 0.568257 | 0.044974 | MAN2A2 |
| ENSG00000244151 | -0.95363 | 0.044974 | AC010973.2 |
| ENSG00000115875 | -0.55375 | 0.044976 | SRSF7 |
| ENSG00000273492 | 1.028111 | 0.045021 | AP000229.1 |
| ENSG00000065621 | 0.865047 | 0.045066 | GSTO2 |
| ENSG00000125122 | 0.909714 | 0.045093 | LRRC29 |
| ENSG00000008710 | 0.788944 | 0.045165 | PKD1 |
| ENSG00000234028 | 0.676461 | 0.04518 | AC062029.1 |
| ENSG00000011198 | -0.62975 | 0.045193 | ABHD5 |
| ENSG00000169548 | 0.629871 | 0.04524 | ZNF280A |
| ENSG00000143256 | -0.5584 | 0.04524 | PFDN2 |
| ENSG00000167779 | 0.683042 | 0.045265 | IGFBP6 |
| ENSG00000168679 | 1.77782 | 0.045312 | SLC16A4 |
| ENSG00000233369 | 0.519376 | 0.045319 | GTF2IP4 |
| ENSG00000111615 | -0.45139 | 0.045323 | KRR1 |
| ENSG00000255992 | 1.790147 | 0.045333 | AC131009.1 |
| ENSG00000088826 | 0.943126 | 0.045355 | SMOX |
| ENSG00000153395 | -0.55377 | 0.04536 | LPCAT1 |
| ENSG00000188322 | 0.72772 | 0.045384 | SBK1 |
| ENSG00000182327 | 0.930989 | 0.045445 | GLTPD2 |
| ENSG00000137872 | 0.667897 | 0.04546 | SEMA6D |
| ENSG00000105520 | -0.61712 | 0.04549 | PLPPR2 |
| ENSG00000248456 | 7.815316 | 0.04555 | LINC02485 |
| ENSG00000119953 | -0.47043 | 0.045605 | SMNDC1 |


| ENSG00000091262 | 0.547332 | 0.045609 | ABCC6 |
| :---: | :---: | :---: | :---: |
| ENSG00000123485 | -0.65205 | 0.045655 | HJURP |
| ENSG00000157613 | 1.082982 | 0.045657 | CREB3L1 |
| ENSG00000115307 | -0.55242 | 0.045669 | AUP1 |
| ENSG00000243927 | -0.70048 | 0.045695 | MRPS6 |
| ENSG00000229474 | 1.166961 | 0.045699 | PATL2 |
| ENSG00000156256 | -0.49855 | 0.045706 | USP16 |
| ENSG00000197417 | -0.78443 | 0.045727 | SHPK |
| ENSG00000057608 | -0.47564 | 0.045802 | GDI2 |
| ENSG00000110925 | 0.566487 | 0.045863 | CSRNP2 |
| ENSG00000244026 | -0.481 | 0.045891 | FAM86DP |
| ENSG00000157916 | -0.44482 | 0.045914 | RER1 |
| ENSG00000277475 | 1.25109 | 0.04597 | AC213203.1 |
| ENSG00000237187 | 0.628135 | 0.046126 | NR2F1-AS1 |
| ENSG00000213047 | 0.620838 | 0.046133 | DENND1B |
| ENSG00000267278 | 0.648082 | 0.046151 | MAP3K14-AS1 |
| ENSG00000139372 | -0.48042 | 0.046163 | TDG |
| ENSG00000228109 | 0.574865 | 0.046175 | MELTF-AS1 |
| ENSG00000183579 | -0.44032 | 0.04622 | ZNRF3 |
| ENSG00000152455 | -0.57763 | 0.046298 | SUV39H2 |
| ENSG00000132837 | 1.766317 | 0.046466 | DMGDH |
| ENSG00000132535 | 0.592654 | 0.0465 | DLG4 |
| ENSG00000214455 | 0.95013 | 0.046513 | RCN1P2 |
| ENSG00000258732 | 0.772441 | 0.046528 | AC025884.1 |
| ENSG00000143633 | -0.52421 | 0.046646 | C1orf131 |
| ENSG00000122696 | -0.54529 | 0.046657 | SLC25A51 |
| ENSG00000108370 | -0.52726 | 0.046798 | RGS9 |
| ENSG00000132313 | -0.63434 | 0.0468 | MRPL35 |
| ENSG00000197106 | -1.81882 | 0.046802 | SLC6A17 |
| ENSG00000156876 | -0.64199 | 0.046824 | SASS6 |
| ENSG00000174885 | 1.83643 | 0.046902 | NLRP6 |
| ENSG00000108439 | -0.58601 | 0.046962 | PNPO |
| ENSG00000261578 | 1.310923 | 0.046963 | AP003119.3 |
| ENSG00000130640 | -0.47303 | 0.046972 | TUBGCP2 |
| ENSG00000187051 | -0.59127 | 0.046993 | RPS19BP1 |
| ENSG00000156500 | 0.595389 | 0.047038 | FAM122C |
| ENSG00000135916 | 0.606204 | 0.047043 | ITM2C |
| ENSG00000244627 | 0.673712 | 0.047049 | Z98749.2 |
| ENSG00000141574 | 1.23338 | 0.047084 | SECTM1 |
| ENSG00000182379 | 1.271106 | 0.047175 | NXPH4 |
| ENSG00000164733 | 0.569888 | 0.047184 | CTSB |


| ENSG00000105497 | 0.498786 | 0.047206 | ZNF175 |
| :---: | :---: | :---: | :---: |
| ENSG00000149575 | 1.402673 | 0.047235 | SCN2B |
| ENSG00000248592 | 1.164356 | 0.047258 | TMEM110-MUSTN1 |
| ENSG00000149930 | -0.60281 | 0.047318 | TAOK2 |
| ENSG00000168135 | 1.447439 | 0.047354 | KCNJ4 |
| ENSG00000154839 | -0.58017 | 0.04737 | SKA1 |
| ENSG00000233822 | 1.066371 | 0.047405 | HIST1H2BN |
| ENSG00000128272 | 0.714168 | 0.047414 | ATF4 |
| ENSG00000153291 | 2.282465 | 0.047422 | SLC25A27 |
| ENSG00000131591 | -0.45533 | 0.047424 | C1orf159 |
| ENSG00000157823 | 0.542383 | 0.047438 | AP3S2 |
| ENSG00000227398 | 0.798554 | 0.047613 | KIF9-AS1 |
| ENSG00000245552 | 1.38206 | 0.047635 | AP000787.1 |
| ENSG00000115252 | 1.690583 | 0.04767 | PDE1A |
| ENSG00000197670 | 1.784665 | 0.047678 | AL157838.1 |
| ENSG00000135144 | 1.478746 | 0.047681 | DTX1 |
| ENSG00000137822 | -0.49637 | 0.047741 | TUBGCP4 |
| ENSG00000127586 | -0.66157 | 0.047746 | CHTF18 |
| ENSG00000136811 | -0.58041 | 0.047791 | ODF2 |
| ENSG00000273261 | 1.029635 | 0.047802 | AC092953.2 |
| ENSG00000168310 | 0.537799 | 0.04783 | IRF2 |
| ENSG00000119574 | -0.51261 | 0.047837 | ZBTB45 |
| ENSG00000091622 | 1.493216 | 0.047852 | PITPNM3 |
| ENSG00000204618 | 1.202153 | 0.047853 | RNF39 |
| ENSG00000154229 | 0.543684 | 0.047907 | PRKCA |
| ENSG00000146701 | -0.50156 | 0.047946 | MDH2 |
| ENSG00000141524 | 0.716258 | 0.047982 | TMC6 |
| ENSG00000234545 | -0.41869 | 0.048013 | FAM133B |
| ENSG00000176928 | 1.306405 | 0.048024 | GCNT4 |
| ENSG00000112110 | -0.66185 | 0.048026 | MRPL18 |
| ENSG00000153558 | 0.538979 | 0.048055 | FBXL2 |
| ENSG00000103365 | -0.50517 | 0.04809 | GGA2 |
| ENSG00000122566 | -0.64573 | 0.048112 | HNRNPA2B1 |
| ENSG00000280099 | 0.826706 | 0.048118 | AL603750.1 |
| ENSG00000154639 | 0.4379 | 0.048163 | CXADR |
| ENSG00000213593 | -0.47173 | 0.048201 | TMX2 |
| ENSG00000141582 | 0.680984 | 0.048233 | CBX4 |
| ENSG00000151465 | -0.54557 | 0.048251 | CDC123 |
| ENSG00000271380 | 1.157913 | 0.048271 | AL451085.2 |
| ENSG00000111846 | 0.639853 | 0.048302 | GCNT2 |
| ENSG00000145362 | 1.106771 | 0.04832 | ANK2 |


| ENSG00000228343 | -0.94108 | 0.04833 | AC115618.2 |
| :---: | :---: | :---: | :---: |
| ENSG00000204540 | 1.059208 | 0.048374 | PSORS1C1 |
| ENSG00000119421 | -0.60199 | 0.048472 | NDUFA8 |
| ENSG00000086159 | 1.245768 | 0.04853 | AQP6 |
| ENSG00000076685 | -0.76715 | 0.048564 | NT5C2 |
| ENSG00000104427 | 0.602312 | 0.048612 | ZC2HC1A |
| ENSG00000138376 | -0.59075 | 0.048629 | BARD1 |
| ENSG00000260176 | 1.742723 | 0.048645 | AC141586.2 |
| ENSG00000163714 | -0.45549 | 0.048672 | U2SURP |
| ENSG00000174514 | 0.644796 | 0.048674 | MFSD4A |
| ENSG00000082996 | 0.545939 | 0.048676 | RNF13 |
| ENSG00000250067 | 0.596565 | 0.048752 | YJEFN3 |
| ENSG00000174840 | -0.38056 | 0.048758 | PDE12 |
| ENSG00000161203 | -0.58978 | 0.048809 | AP2M1 |
| ENSG00000151726 | -0.39008 | 0.04885 | ACSL1 |
| ENSG00000055332 | 0.913394 | 0.048876 | EIF2AK2 |
| ENSG00000089597 | 0.484259 | 0.048931 | GANAB |
| ENSG00000168124 | 1.106584 | 0.04895 | OR1F1 |
| ENSG00000175166 | -0.58358 | 0.04896 | PSMD2 |
| ENSG00000188313 | 1.852786 | 0.049031 | PLSCR1 |
| ENSG00000139445 | 0.908228 | 0.049079 | FOXN4 |
| ENSG00000261663 | -0.65362 | 0.049082 | AC009065.8 |
| ENSG00000256340 | 0.65064 | 0.049108 | ABCC6P1 |
| ENSG00000167566 | 0.543701 | 0.049166 | NCKAP5L |
| ENSG00000130827 | 0.486992 | 0.049172 | PLXNA3 |
| ENSG00000100490 | -0.68919 | 0.049203 | CDKL1 |
| ENSG00000110955 | -0.47183 | 0.049251 | ATP5F1B |
| ENSG00000167657 | -0.57069 | 0.049334 | DAPK3 |
| ENSG00000134470 | 0.693131 | 0.049353 | IL15RA |
| ENSG00000143924 | -1.02373 | 0.049362 | EML4 |
| ENSG00000140259 | -0.42666 | 0.04939 | MFAP1 |
| ENSG00000114346 | -0.58409 | 0.049422 | ECT2 |
| ENSG00000214922 | 0.553898 | 0.049483 | HLA-F-AS 1 |
| ENSG00000131697 | -0.56571 | 0.04949 | NPHP4 |
| ENSG00000144504 | -0.49546 | 0.049541 | ANKMY1 |
| ENSG00000064547 | 0.503817 | 0.049549 | LPAR2 |
| ENSG00000203995 | -0.52479 | 0.049591 | ZYG11A |
| ENSG00000130175 | 0.467412 | 0.049625 | PRKCSH |
| ENSG00000133961 | 0.520108 | 0.049669 | NUMB |
| ENSG00000113272 | -0.4596 | 0.049681 | THG1L |
| ENSG00000157259 | 0.502785 | 0.049692 | GATAD1 |


| ENSG00000260552 | 0.965846 | 0.049813 | AC023043.1 |
| :---: | :---: | :---: | :---: |
| ENSG00000113719 | -0.44669 | 0.049898 | ERGIC1 |
| ENSG00000004779 | -0.57705 | 0.049968 | NDUFAB1 |
| ENSG00000162623 | -0.51029 | 0.049999 | TYW3 |
| ENSG00000112763 | 0.581937 | 0.050073 | BTN2A1 |
| ENSG00000234290 | 1.865678 | 0.050091 | AC116366.1 |
| ENSG00000164674 | 0.934928 | 0.050106 | SYTL3 |
| ENSG00000213949 | -1.2745 | 0.05016 | ITGA1 |
| ENSG00000160446 | -0.91784 | 0.050232 | ZDHHC12 |
| ENSG00000233966 | -0.88613 | 0.050249 | UBE2SP1 |
| ENSG00000204920 | 0.709058 | 0.050303 | ZNF155 |
| ENSG00000259943 | 0.533769 | 0.050307 | AL050341.2 |
| ENSG00000163923 | -0.60778 | 0.050327 | RPL39L |
| ENSG00000136492 | -0.70258 | 0.050331 | BRIP1 |
| ENSG00000132017 | -0.51973 | 0.050383 | DCAF15 |
| ENSG00000171320 | -0.80142 | 0.050469 | ESCO2 |
| ENSG00000092020 | -0.48221 | 0.050543 | PPP2R3C |
| ENSG00000103154 | 1.964635 | 0.050577 | NECAB2 |
| ENSG00000115266 | 0.765093 | 0.050582 | APC2 |
| ENSG00000236088 | -0.62765 | 0.050628 | COX10-AS1 |
| ENSG00000128596 | 0.835483 | 0.05069 | CCDC136 |
| ENSG00000075275 | 0.510704 | 0.050722 | CELSR1 |
| ENSG00000143106 | -0.59625 | 0.050784 | PSMA5 |
| ENSG00000099625 | 0.748784 | 0.050801 | CBARP |
| ENSG00000239523 | -0.85744 | 0.050869 | MYLK-AS1 |
| ENSG00000235706 | 0.796541 | 0.050917 | DICER1-AS1 |
| ENSG00000106105 | 0.795012 | 0.050931 | GARS |
| ENSG00000160716 | -1.63798 | 0.051056 | CHRNB2 |
| ENSG00000134317 | 0.978475 | 0.051067 | GRHL1 |
| ENSG00000186812 | 0.77039 | 0.051147 | ZNF397 |
| ENSG00000245017 | 0.85721 | 0.051186 | LINC02453 |
| ENSG00000154359 | 0.666623 | 0.051198 | LONRF1 |
| ENSG00000142945 | -0.54011 | 0.051207 | KIF2C |
| ENSG00000182107 | 0.577398 | 0.051217 | TMEM30B |
| ENSG00000135070 | -0.44831 | 0.051226 | ISCA1 |
| ENSG00000275601 | 1.357967 | 0.051234 | AC011330.2 |
| ENSG00000100344 | 0.720329 | 0.051236 | PNPLA3 |
| ENSG00000152270 | -0.56828 | 0.051297 | PDE3B |
| ENSG00000274523 | -0.45536 | 0.051334 | RCC1L |
| ENSG00000185504 | -0.39826 | 0.051338 | FAAP100 |
| ENSG00000169372 | -0.79889 | 0.051355 | CRADD |


| ENSG00000258659 | 1.737518 | 0.051454 | TRIM34 |
| :---: | :---: | :---: | :---: |
| ENSG00000187801 | 0.724028 | 0.051454 | ZFP69B |
| ENSG00000109321 | 1.987033 | 0.051523 | AREG |
| ENSG00000135966 | -0.47692 | 0.051528 | TGFBRAP1 |
| ENSG00000185022 | 2.126989 | 0.051544 | MAFF |
| ENSG00000100109 | -0.41831 | 0.051602 | TFIP11 |
| ENSG00000261645 | 1.254827 | 0.051622 | DISC1FP1 |
| ENSG00000253910 | 1.59681 | 0.051693 | PCDHGB2 |
| ENSG00000169288 | -0.9241 | 0.051744 | MRPL1 |
| ENSG00000197114 | -0.50578 | 0.051761 | ZGPAT |
| ENSG00000140743 | -0.43027 | 0.051774 | CDR2 |
| ENSG00000140326 | -0.54397 | 0.051789 | CDAN1 |
| ENSG00000165752 | -0.60744 | 0.051792 | STK32C |
| ENSG00000214300 | -0.76481 | 0.051801 | SPDYE3 |
| ENSG00000232450 | 1.332945 | 0.051825 | AL133517.1 |
| ENSG00000164638 | 0.627198 | 0.051853 | SLC29A4 |
| ENSG00000167136 | -0.72127 | 0.05186 | ENDOG |
| ENSG00000172757 | -0.67999 | 0.051888 | CFL1 |
| ENSG00000261150 | -1.79096 | 0.051892 | EPPK1 |
| ENSG00000091428 | 1.076891 | 0.051901 | RAPGEF4 |
| ENSG00000197121 | 0.522125 | 0.051907 | PGAP1 |
| ENSG00000214402 | 1.301836 | 0.05191 | LCNL1 |
| ENSG00000115290 | 1.050264 | 0.051928 | GRB14 |
| ENSG00000173110 | 0.785542 | 0.051935 | HSPA6 |
| ENSG00000174482 | 0.577691 | 0.051953 | LINGO2 |
| ENSG00000131848 | -0.64881 | 0.051967 | ZSCAN5A |
| ENSG00000100601 | -0.39546 | 0.052012 | ALKBH1 |
| ENSG00000236609 | 0.666497 | 0.052031 | ZNF853 |
| ENSG00000109881 | -0.80339 | 0.052101 | CCDC34 |
| ENSG00000053524 | 1.363086 | 0.05218 | MCF2L2 |
| ENSG00000204334 | 1.893241 | 0.05223 | ERICH2 |
| ENSG00000143702 | 0.558147 | 0.052243 | CEP170 |
| ENSG00000113812 | -0.38696 | 0.052247 | ACTR8 |
| ENSG00000189403 | -0.76111 | 0.052282 | HMGB1 |
| ENSG00000245614 | -0.99437 | 0.0523 | DDX11-AS1 |
| ENSG00000119121 | 1.21333 | 0.052302 | TRPM6 |
| ENSG00000105137 | -0.52647 | 0.052378 | SYDE1 |
| ENSG00000226690 | 1.72258 | 0.052408 | AC013470.2 |
| ENSG00000171813 | -0.45211 | 0.052424 | PWWP2B |
| ENSG00000109046 | 0.606305 | 0.05245 | WSB1 |
| ENSG00000137414 | 0.561976 | 0.052487 | FAM8A1 |


| ENSG00000228526 | 0.925537 | 0.052496 | MIR34AHG |
| :---: | :---: | :---: | :---: |
| ENSG00000109917 | -0.40582 | 0.052537 | ZPR1 |
| ENSG00000197217 | 0.467939 | 0.05257 | ENTPD4 |
| ENSG00000178952 | -0.56312 | 0.052573 | TUFM |
| ENSG00000135541 | 0.625308 | 0.052576 | AHI1 |
| ENSG00000127445 | -0.66241 | 0.052599 | PIN1 |
| ENSG00000258302 | 1.58047 | 0.052606 | AC025034.1 |
| ENSG00000250802 | 0.887503 | 0.052644 | ZBED3-AS1 |
| ENSG00000102172 | -0.51338 | 0.052662 | SMS |
| ENSG00000100519 | -0.56232 | 0.052672 | PSMC6 |
| ENSG00000162997 | 1.080999 | 0.05268 | PRORSD1P |
| ENSG00000037241 | -0.59979 | 0.052703 | RPL26L1 |
| ENSG00000113456 | -0.42176 | 0.052747 | RAD1 |
| ENSG00000276291 | 0.623342 | 0.052755 | FRG1HP |
| ENSG00000070961 | 0.497868 | 0.052757 | ATP2B1 |
| ENSG00000127616 | -0.38952 | 0.052785 | SMARCA4 |
| ENSG00000100441 | 0.623035 | 0.052802 | KHNYN |
| ENSG00000142684 | -0.83188 | 0.052873 | ZNF593 |
| ENSG00000144840 | -0.44978 | 0.052977 | RABL3 |
| ENSG00000176894 | -0.82172 | 0.052998 | PXMP2 |
| ENSG00000214485 | -0.63059 | 0.053013 | RPL7P1 |
| ENSG00000241472 | -1.17192 | 0.05303 | PTPRG-AS1 |
| ENSG00000109805 | -0.54434 | 0.053155 | NCAPG |
| ENSG00000174276 | -0.52784 | 0.05318 | ZNHIT2 |
| ENSG00000166819 | 2.02556 | 0.053193 | PLIN1 |
| ENSG00000121413 | 0.800724 | 0.053231 | ZSCAN18 |
| ENSG00000103978 | 0.53049 | 0.053239 | TMEM87A |
| ENSG00000113648 | -0.4759 | 0.053241 | H2AFY |
| ENSG00000076043 | -0.52598 | 0.053259 | REXO2 |
| ENSG00000137055 | -0.38888 | 0.053286 | PLAA |
| ENSG00000054118 | -0.47578 | 0.0533 | THRAP3 |
| ENSG00000109606 | -0.41755 | 0.053343 | DHX15 |
| ENSG00000141570 | 0.46032 | 0.053355 | CBX8 |
| ENSG00000101161 | -0.4279 | 0.053373 | PRPF6 |
| ENSG00000037757 | -0.47385 | 0.053374 | MRI1 |
| ENSG00000118600 | -0.51868 | 0.053396 | RXYLT1 |
| ENSG00000131480 | 1.234835 | 0.053407 | AOC2 |
| ENSG00000125351 | -0.50979 | 0.053434 | UPF3B |
| ENSG00000275880 | 1.978053 | 0.053462 | AL139385.1 |
| ENSG00000104980 | -0.46323 | 0.053494 | TIMM44 |
| ENSG00000151725 | -0.58477 | 0.053574 | CENPU |


| ENSG00000149100 | -0.4796 | 0.053643 | EIF3M |
| :---: | :---: | :---: | :---: |
| ENSG00000092010 | 0.646849 | 0.053777 | PSME1 |
| ENSG00000177150 | -0.50796 | 0.053806 | FAM210A |
| ENSG00000257086 | 0.612978 | 0.05394 | AP001453.4 |
| ENSG00000083454 | 1.454448 | 0.053981 | P2RX5 |
| ENSG00000196092 | -1.57317 | 0.054003 | PAX5 |
| ENSG00000204427 | 0.459133 | 0.054039 | ABHD16A |
| ENSG00000261693 | 1.230096 | 0.054158 | AC134682.1 |
| ENSG00000162032 | 0.71675 | 0.054222 | SPSB3 |
| ENSG00000279494 | 1.587206 | 0.054233 | AL117328.2 |
| ENSG00000006611 | 1.307788 | 0.054264 | USH1C |
| ENSG00000100744 | 0.472106 | 0.054267 | GSKIP |
| ENSG00000226067 | 0.562838 | 0.054332 | LINC00623 |
| ENSG00000186862 | 0.670671 | 0.054416 | PDZD7 |
| ENSG00000115020 | 0.679454 | 0.054491 | PIKFYVE |
| ENSG00000156162 | 0.491161 | 0.054532 | DPY19L4 |
| ENSG00000121274 | -0.41403 | 0.054546 | PAPD5 |
| ENSG00000178809 | 1.656714 | 0.054577 | TRIM73 |
| ENSG00000010292 | -0.61802 | 0.054585 | NCAPD2 |
| ENSG00000167522 | 0.665573 | 0.054674 | ANKRD11 |
| ENSG00000032444 | 0.409556 | 0.054762 | PNPLA6 |
| ENSG00000181045 | 0.557103 | 0.05489 | SLC26A11 |
| ENSG00000113749 | 1.90473 | 0.054906 | HRH2 |
| ENSG00000107833 | -0.57709 | 0.054916 | NPM3 |
| ENSG00000235912 | -1.35337 | 0.054944 | AL031729.1 |
| ENSG00000137038 | -0.55598 | 0.05496 | DMAC1 |
| ENSG00000126870 | -0.48547 | 0.054973 | WDR60 |
| ENSG00000108823 | 1.972819 | 0.054996 | SGCA |
| ENSG00000196116 | 0.877152 | 0.055009 | TDRD7 |
| ENSG00000121966 | 1.795283 | 0.055016 | CXCR4 |
| ENSG00000183814 | -0.61583 | 0.055025 | LIN9 |
| ENSG00000263847 | 1.503512 | 0.055133 | AP005899.1 |
| ENSG00000129675 | 0.889316 | 0.055162 | ARHGEF6 |
| ENSG00000136930 | -0.65804 | 0.055184 | PSMB7 |
| ENSG00000140044 | 1.904883 | 0.055187 | JDP2 |
| ENSG00000108518 | -0.66209 | 0.055207 | PFN1 |
| ENSG00000164054 | 0.771713 | 0.055213 | SHISA5 |
| ENSG00000100714 | -0.47405 | 0.055303 | MTHFD1 |
| ENSG00000076067 | 0.489833 | 0.055361 | RBMS2 |
| ENSG00000143942 | -0.80685 | 0.055379 | CHAC2 |
| ENSG00000185238 | -0.46023 | 0.055382 | PRMT3 |


| ENSG00000265241 | -0.52939 | 0.055421 | RBM8A |
| :---: | :---: | :---: | :---: |
| ENSG00000188739 | -0.61504 | 0.055438 | RBM34 |
| ENSG00000262223 | 1.595179 | 0.055487 | AC110285.1 |
| ENSG00000241553 | -0.54576 | 0.0555 | ARPC4 |
| ENSG00000101049 | 2.155612 | 0.055536 | SGK2 |
| ENSG00000163655 | -0.38556 | 0.05557 | GMPS |
| ENSG00000018510 | -0.41345 | 0.055597 | AGPS |
| ENSG00000122335 | 0.52352 | 0.055627 | SERAC1 |
| ENSG00000226853 | 0.73624 | 0.055628 | AC010894.2 |
| ENSG00000165632 | -0.407 | 0.055628 | TAF3 |
| ENSG00000058668 | 0.551329 | 0.055741 | ATP2B4 |
| ENSG00000080298 | 0.56917 | 0.055849 | RFX3 |
| ENSG00000169813 | -0.44379 | 0.055851 | HNRNPF |
| ENSG00000142188 | 0.414588 | 0.056004 | TMEM50B |
| ENSG00000243147 | -0.57395 | 0.056035 | MRPL33 |
| ENSG00000096401 | -0.41527 | 0.056037 | CDC5L |
| ENSG00000175920 | 1.416494 | 0.056086 | DOK7 |
| ENSG00000163472 | -0.581 | 0.056088 | TMEM79 |
| ENSG00000187778 | -0.52237 | 0.056093 | MCRS1 |
| ENSG00000203645 | -0.44135 | 0.056111 | LINC00501 |
| ENSG00000113391 | 0.422657 | 0.05612 | FAM172A |
| ENSG00000248275 | -0.55556 | 0.056188 | TRIM52-AS1 |
| ENSG00000102096 | -0.49835 | 0.056232 | PIM2 |
| ENSG00000244754 | 0.534259 | 0.056408 | N4BP2L2 |
| ENSG00000102753 | -0.37759 | 0.056424 | KPNA3 |
| ENSG00000177479 | -0.39337 | 0.056442 | ARIH2 |
| ENSG00000081870 | -0.66194 | 0.056474 | HSPB11 |
| ENSG00000253958 | 0.769769 | 0.056504 | CLDN23 |
| ENSG00000182004 | -0.70331 | 0.056505 | SNRPE |
| ENSG00000108958 | -1.17867 | 0.056521 | AC130689.1 |
| ENSG00000188760 | -0.59211 | 0.056529 | TMEM198 |
| ENSG00000023041 | -0.65417 | 0.056573 | ZDHHC6 |
| ENSG00000138028 | 0.568351 | 0.056638 | CGREF1 |
| ENSG00000100629 | -0.70921 | 0.056656 | CEP128 |
| ENSG00000177045 | 0.499736 | 0.056671 | SIX5 |
| ENSG00000142731 | -0.65156 | 0.056674 | PLK4 |
| ENSG00000164253 | 0.525294 | 0.056683 | WDR41 |
| ENSG00000171681 | 0.530124 | 0.056751 | ATF7IP |
| ENSG00000183569 | -0.63478 | 0.056828 | SERHL2 |
| ENSG00000166788 | -0.68298 | 0.05683 | SAAL1 |
| ENSG00000217555 | -0.6459 | 0.056913 | CKLF |


| ENSG00000174238 | -0.39346 | 0.056934 | PITPNA |
| :---: | :---: | :---: | :---: |
| ENSG00000160075 | -0.486 | 0.056993 | SSU72 |
| ENSG00000176248 | -0.47073 | 0.057031 | ANAPC2 |
| ENSG00000260778 | -1.08008 | 0.057081 | AC009065.4 |
| ENSG00000166170 | -0.39226 | 0.057088 | BAG5 |
| ENSG00000198554 | -0.59302 | 0.057102 | WDHD1 |
| ENSG00000167384 | -0.62173 | 0.057142 | ZNF180 |
| ENSG00000104808 | 0.881419 | 0.057178 | DHDH |
| ENSG00000177106 | 0.869835 | 0.057188 | EPS8L2 |
| ENSG00000186594 | 0.710328 | 0.057208 | MIR22HG |
| ENSG00000164815 | -0.46073 | 0.057244 | ORC5 |
| ENSG00000077312 | -0.56101 | 0.057267 | SNRPA |
| ENSG00000140463 | 0.474238 | 0.057307 | BBS4 |
| ENSG00000124191 | 2.029589 | 0.057311 | TOX2 |
| ENSG00000136942 | -0.61431 | 0.057316 | RPL35 |
| ENSG00000134046 | -0.47648 | 0.05737 | MBD2 |
| ENSG00000159733 | 1.069027 | 0.057386 | ZFYVE28 |
| ENSG00000176209 | 0.594969 | 0.057401 | SMIM19 |
| ENSG00000171450 | 1.000662 | 0.057401 | CDK5R2 |
| ENSG00000213300 | -0.77252 | 0.057452 | HNRNPA3P6 |
| ENSG00000261373 | -0.49087 | 0.057547 | VPS9D1-AS1 |
| ENSG00000170266 | 0.659773 | 0.057669 | GLB1 |
| ENSG00000169902 | 0.452215 | 0.057683 | TPST1 |
| ENSG00000169299 | -0.54153 | 0.05773 | PGM2 |
| ENSG00000170579 | 0.601215 | 0.05784 | DLGAP1 |
| ENSG00000162520 | 0.922307 | 0.057899 | SYNC |
| ENSG00000167535 | 0.575075 | 0.057918 | CACNB3 |
| ENSG00000280374 | 0.870239 | 0.05793 | AC019080.5 |
| ENSG00000165280 | -0.50684 | 0.057962 | VCP |
| ENSG00000131471 | 1.261736 | 0.057964 | AOC3 |
| ENSG00000163328 | 0.657015 | 0.057969 | GPR155 |
| ENSG00000172974 | -0.55799 | 0.058021 | AC007318.1 |
| ENSG00000170832 | 0.524848 | 0.058024 | USP32 |
| ENSG00000178935 | -0.63448 | 0.058068 | ZNF552 |
| ENSG00000064102 | -0.43093 | 0.058122 | INTS13 |
| ENSG00000064666 | -0.47579 | 0.058161 | CNN2 |
| ENSG00000174231 | -0.50149 | 0.058169 | PRPF8 |
| ENSG00000188290 | 1.047064 | 0.058216 | HES4 |
| ENSG00000130182 | -2.41388 | 0.058247 | ZSCAN10 |
| ENSG00000146263 | -0.56767 | 0.058251 | MMS22L |
| ENSG00000103275 | -0.48768 | 0.058275 | UBE2I |


| ENSG00000091536 | 1.158512 | 0.058451 | MYO15A |
| :---: | :---: | :---: | :---: |
| ENSG00000139618 | -0.59021 | 0.05853 | BRCA2 |
| ENSG00000131969 | 0.914268 | 0.058602 | ABHD12B |
| ENSG00000165555 | 1.489653 | 0.058608 | NOXRED1 |
| ENSG00000140350 | -0.50315 | 0.058618 | ANP32A |
| ENSG00000104953 | 0.576928 | 0.058636 | TLE6 |
| ENSG00000123416 | -0.52705 | 0.058677 | TUBA1B |
| ENSG00000105220 | -0.61429 | 0.058688 | GPI |
| ENSG00000050405 | 0.579921 | 0.058724 | LIMA1 |
| ENSG00000196656 | -0.56843 | 0.058731 | AC004057.1 |
| ENSG00000242173 | 0.737149 | 0.05879 | ARHGDIG |
| ENSG00000006607 | -0.53121 | 0.058794 | FARP2 |
| ENSG00000134748 | -0.43827 | 0.058829 | PRPF38A |
| ENSG00000267106 | 0.548829 | 0.058909 | ZNF561-AS1 |
| ENSG00000198189 | 0.434363 | 0.058921 | HSD17B11 |
| ENSG00000166704 | 0.485939 | 0.058966 | ZNF606 |
| ENSG00000135912 | -0.49526 | 0.059012 | TTLL4 |
| ENSG00000125166 | -0.45483 | 0.059022 | GOT2 |
| ENSG00000241506 | -0.65369 | 0.059053 | PSMC1P1 |
| ENSG00000229619 | -0.6404 | 0.059058 | MBNL1-AS1 |
| ENSG00000079101 | 1.092342 | 0.05913 | CLUL1 |
| ENSG00000246877 | -1.24346 | 0.059137 | DNM1P35 |
| ENSG00000149923 | -0.40295 | 0.059221 | PPP4C |
| ENSG00000223573 | 1.434359 | 0.059232 | TINCR |
| ENSG00000273568 | -1.2496 | 0.059272 | AC131009.3 |
| ENSG00000206052 | 0.549801 | 0.059309 | DOK6 |
| ENSG00000157107 | 0.573557 | 0.059316 | FCHO2 |
| ENSG00000204370 | -0.52343 | 0.059326 | SDHD |
| ENSG00000140284 | 0.491037 | 0.059336 | SLC27A2 |
| ENSG00000132394 | -0.51379 | 0.059379 | EEFSEC |
| ENSG00000178498 | 0.406315 | 0.059383 | DTX3 |
| ENSG00000103018 | -0.4476 | 0.05945 | CYB5B |
| ENSG00000204560 | -0.43838 | 0.059463 | DHX16 |
| ENSG00000185305 | 0.476878 | 0.059523 | ARL15.00 |
| ENSG00000234616 | -0.54614 | 0.059571 | JRK |
| ENSG00000160282 | 2.048091 | 0.059597 | FTCD |
| ENSG00000018189 | 0.560953 | 0.059608 | RUFY3 |
| ENSG00000168268 | -0.85009 | 0.059638 | NT5DC2 |
| ENSG00000170312 | -0.70382 | 0.059683 | CDK1 |
| ENSG00000169976 | -0.62429 | 0.059694 | SF3B5 |
| ENSG00000139437 | -0.53847 | 0.05971 | TCHP |


| ENSG00000155256 | 0.438593 | 0.059714 | ZFYVE27 |
| :---: | :---: | :---: | :---: |
| ENSG00000164346 | -0.57154 | 0.059783 | NSA2 |
| ENSG00000149948 | 0.474042 | 0.059786 | HMGA2 |
| ENSG00000112996 | -0.38316 | 0.05988 | MRPS30 |
| ENSG00000178773 | -0.47393 | 0.059943 | CPNE7 |

## List of Transcripts in A2780CP20-RBPMSC

| ID | log2FoldChange | pvalue | Gene.name |
| :---: | :---: | :---: | :---: |
| ENSG00000113389 | 2.783245 | 3.55E-09 | NPR 3.00 |
| ENSG00000023445 | 1.591552 | $2.39 \mathrm{E}-08$ | BIRC3 |
| ENSG00000153071 | 7.153801 | 4.72E-07 | DAB2 |
| ENSG00000106546 | 2.746899 | 7.91E-07 | AHR |
| ENSG00000172137 | 6.574845 | 4.66E-06 | CALB2 |
| ENSG00000019186 | 6.041288 | $5.67 \mathrm{E}-06$ | CYP24A1 |
| ENSG00000112964 | 2.304923 | 8.10E-06 | GHR |
| ENSG00000163393 | 3.586108 | $1.02 \mathrm{E}-05$ | SLC22A15 |
| ENSG00000153253 | -4.43726 | $1.32 \mathrm{E}-05$ | SCN3A |
| ENSG00000154162 | 3.078959 | $1.44 \mathrm{E}-05$ | CDH12 |
| ENSG00000205765 | 0.859605 | $1.65 \mathrm{E}-05$ | C5orf51 |
| ENSG00000164187 | 1.0316 | $1.95 \mathrm{E}-05$ | LMBRD2 |
| ENSG00000172716 | 3.827804 | $2.00 \mathrm{E}-05$ | SLFN11 |
| ENSG00000169862 | 6.484328 | $2.34 \mathrm{E}-05$ | CTNND2 |
| ENSG00000145495 | 1.067094 | $3.47 \mathrm{E}-05$ | 6-Mar |
| ENSG00000164171 | 1.931533 | $4.70 \mathrm{E}-05$ | ITGA2 |
| ENSG00000164287 | 3.278587 | $5.82 \mathrm{E}-05$ | CDC20B |
| ENSG00000137801 | 2.308267 | $7.20 \mathrm{E}-05$ | THBS1 |
| ENSG00000162545 | 2.716242 | $7.39 \mathrm{E}-05$ | CAMK2N1 |
| ENSG00000171522 | 3.770525 | 0.000133 | PTGER4 |
| ENSG00000073282 | -2.22616 | 0.000151 | TP63 |
| ENSG00000164089 | 3.819828 | 0.000199 | ETNPPL |
| ENSG00000178031 | 5.367058 | 0.0002 | ADAMTSL1 |
| ENSG00000183783 | 3.348869 | 0.000241 | KCTD8 |
| ENSG00000271119 | 1.959753 | 0.000276 | AC026412.3 |
| ENSG00000157551 | 5.153211 | 0.000285 | KCNJ15 |
| ENSG00000151881 | 0.761324 | 0.000291 | TMEM267 |
| ENSG00000179406 | 1.105676 | 0.000303 | LINC00174 |
| ENSG00000151692 | -0.82366 | 0.000313 | RNF144A |
| ENSG00000150457 | 0.758304 | 0.000353 | LATS2 |
| ENSG00000188818 | 1.79003 | 0.000382 | ZDHHC11 |
| ENSG00000232615 | 2.63732 | 0.000632 | AC026412.2 |


| ENSG00000079931 | 2.120307 | 0.000651 | MOXD1 |
| :---: | :---: | :---: | :---: |
| ENSG00000115616 | -2.91411 | 0.000665 | SLC9A2 |
| ENSG00000177685 | -1.06978 | 0.000689 | CRACR2B |
| ENSG00000169126 | 3.093428 | 0.000758 | ARMC4 |
| ENSG00000145390 | 1.301715 | 0.000761 | USP53 |
| ENSG00000102038 | 0.779624 | 0.000761 | SMARCA1 |
| ENSG00000164190 | 0.894261 | 0.000884 | NIPBL |
| ENSG00000158966 | 1.239405 | 0.001134 | CACHD1 |
| ENSG00000151917 | 1.406978 | 0.001276 | BEND6 |
| ENSG00000145569 | 1.990233 | 0.001303 | FAM105A |
| ENSG00000164659 | 1.828396 | 0.001303 | KIAA1324L |
| ENSG00000125931 | -1.87105 | 0.001392 | CITED1 |
| ENSG00000226287 | -1.10586 | 0.001393 | TMEM191A |
| ENSG00000134871 | -3.69041 | 0.001424 | COL4A2 |
| ENSG00000196154 | -2.35126 | 0.001473 | S100A4 |
| ENSG00000273142 | 1.010119 | 0.001495 | AC073335.2 |
| ENSG00000038382 | 1.142257 | 0.001537 | TRIO |
| ENSG00000197603 | 0.971466 | 0.001572 | C5orf42 |
| ENSG00000106069 | 3.803778 | 0.001698 | CHN2 |
| ENSG00000118523 | 1.332166 | 0.001773 | CTGF |
| ENSG00000168542 | 0.940977 | 0.001795 | COL3A1 |
| ENSG00000173559 | 1.04206 | 0.001919 | NABP1 |
| ENSG00000182022 | 1.742452 | 0.001951 | CHST15 |
| ENSG00000087085 | 1.106222 | 0.00198 | ACHE |
| ENSG00000135114 | 1.652627 | 0.002333 | OASL |
| ENSG00000228486 | 1.242058 | 0.00241 | C2orf92 |
| ENSG00000165102 | 0.575522 | 0.002452 | HGSNAT |
| ENSG00000117600 | 4.16894 | 0.002466 | PLPPR4 |
| ENSG00000220804 | 1.430837 | 0.002556 | LINC01881 |
| ENSG00000180178 | 0.820252 | 0.002628 | FAR2P1 |
| ENSG00000185986 | 1.107204 | 0.002814 | SDHAP3 |
| ENSG00000138600 | 0.558895 | 0.002861 | SPPL2A |
| ENSG00000091844 | 2.333668 | 0.003135 | RGS17 |
| ENSG00000139278 | -2.03729 | 0.00322 | GLIPR1 |
| ENSG00000175793 | -3.15224 | 0.003305 | SFN |
| ENSG00000260708 | -0.76873 | 0.003382 | AL118516.1 |
| ENSG00000117598 | 3.774318 | 0.00346 | PLPPR5 |
| ENSG00000169884 | -0.60721 | 0.003517 | WNT10B |
| ENSG00000187498 | -3.56534 | 0.003824 | COL4A1 |
| ENSG00000157168 | 0.662715 | 0.003909 | NRG1 |
| ENSG00000112378 | 1.287187 | 0.003916 | PERP |


| ENSG00000110330 | 0.519987 | 0.003961 | BIRC2 |
| :---: | :---: | :---: | :---: |
| ENSG00000164841 | -5.03697 | 0.004075 | TMEM74 |
| ENSG00000153064 | 1.10721 | 0.004086 | BANK1 |
| ENSG00000232931 | 0.839167 | 0.004185 | LINC00342 |
| ENSG00000104447 | 0.896056 | 0.004231 | TRPS1 |
| ENSG00000251141 | 1.251071 | 0.004303 | MRPS30-DT |
| ENSG00000132846 | 0.714303 | 0.004304 | ZBED3 |
| ENSG00000076716 | -4.27033 | 0.004374 | GPC4 |
| ENSG00000134508 | -1.11969 | 0.004811 | CABLES1 |
| ENSG00000082196 | 1.830601 | 0.004989 | C1QTNF3 |
| ENSG00000124275 | 0.868147 | 0.004993 | MTRR |
| ENSG00000121879 | 0.666953 | 0.004993 | PIK3CA |
| ENSG00000154122 | 1.12547 | 0.005092 | ANKH |
| ENSG00000105974 | -2.19343 | 0.005132 | CAV1 |
| ENSG00000112333 | 2.140955 | 0.005142 | NR2E1 |
| ENSG00000215158 | 0.957167 | 0.005203 | AC138409.2 |
| ENSG00000185813 | -0.94543 | 0.005381 | PCYT2 |
| ENSG00000176542 | 0.629577 | 0.005481 | USF3 |
| ENSG00000153012 | 4.147914 | 0.00552 | LGI2 |
| ENSG00000187534 | -0.81276 | 0.005576 | PRR13P5 |
| ENSG00000188185 | 0.839943 | 0.005709 | LINC00265 |
| ENSG00000164151 | 1.018981 | 0.005783 | ICE1 |
| ENSG00000103381 | -0.9636 | 0.005827 | CPPED1 |
| ENSG00000142949 | 1.075365 | 0.005959 | PTPRF |
| ENSG00000248092 | 0.552651 | 0.006085 | NNT-AS1 |
| ENSG00000276805 | 0.675195 | 0.006318 | AL133216.2 |
| ENSG00000128000 | 0.675602 | 0.006442 | ZNF780B |
| ENSG00000125148 | -0.63554 | 0.006493 | MT2A |
| ENSG00000186523 | -0.66952 | 0.006547 | FAM86B1 |
| ENSG00000112977 | 0.758885 | 0.006632 | DAP |
| ENSG00000173376 | 1.932308 | 0.006852 | NDNF |
| ENSG00000185621 | 0.775527 | 0.00689 | LMLN |
| ENSG00000006062 | 0.787543 | 0.00708 | MAP3K14 |
| ENSG00000112941 | 0.836348 | 0.007151 | PAPD7 |
| ENSG00000249915 | -0.56377 | 0.007241 | PDCD6 |
| ENSG00000185909 | -0.55037 | 0.007402 | KLHDC8B |
| ENSG00000107130 | -0.52302 | 0.007416 | NCS1 |
| ENSG00000215252 | 0.487726 | 0.007438 | GOLGA8B |
| ENSG00000167705 | -0.54973 | 0.007531 | RILP |
| ENSG00000188002 | 0.90293 | 0.007638 | AC026412.1 |
| ENSG00000145545 | 0.752203 | 0.007722 | SRD5A1 |


| ENSG00000174473 | 1.299176 | 0.00776 | GALNTL6 |
| :---: | :---: | :---: | :---: |
| ENSG00000164692 | -3.93924 | 0.0079 | COL1A2 |
| ENSG00000112379 | 1.397839 | 0.0083 | ARFGEF3 |
| ENSG00000261236 | -0.79553 | 0.008319 | BOP 1.00 |
| ENSG00000152620 | 0.475755 | 0.008336 | NADK2 |
| ENSG00000196782 | 2.711723 | 0.00848 | MAML3 |
| ENSG00000188242 | -0.61408 | 0.008605 | AC010442.1 |
| ENSG00000175318 | 3.415685 | 0.008908 | GRAMD2A |
| ENSG00000154930 | 2.163568 | 0.009076 | ACSS1 |
| ENSG00000137868 | -3.3343 | 0.009505 | STRA6 |
| ENSG00000123119 | 2.609091 | 0.009543 | NECAB1 |
| ENSG00000142686 | -0.5893 | 0.009739 | C1orf216 |
| ENSG00000165272 | -1.20973 | 0.009864 | AQP3 |
| ENSG00000282508 | 0.738745 | 0.009988 | LINC01002 |
| ENSG00000083844 | 0.630702 | 0.01004 | ZNF264 |
| ENSG00000177738 | 0.63918 | 0.010047 | AC025171.1 |
| ENSG00000227719 | 2.538454 | 0.010126 | AC006042.1 |
| ENSG00000146112 | -0.53279 | 0.01018 | PPP1R18 |
| ENSG00000175806 | -1.00321 | 0.010264 | MSRA |
| ENSG00000196352 | 0.70836 | 0.010269 | CD55 |
| ENSG00000178718 | -0.66972 | 0.010405 | RPP25 |
| ENSG00000114331 | 0.638443 | 0.010547 | ACAP2 |
| ENSG00000205220 | -0.79603 | 0.010569 | PSMB10 |
| ENSG00000163739 | 0.776449 | 0.01057 | CXCL1 |
| ENSG00000118162 | -0.57844 | 0.010602 | KPTN |
| ENSG00000197779 | 0.803177 | 0.010883 | ZNF81 |
| ENSG00000163012 | 0.650363 | 0.011086 | ZSWIM2 |
| ENSG00000083720 | 0.508898 | 0.011273 | OXCT1 |
| ENSG00000081014 | 0.604392 | 0.011337 | AP4E1 |
| ENSG00000163659 | 0.508817 | 0.011491 | TIPARP |
| ENSG00000136830 | -0.63581 | 0.011499 | FAM129B |
| ENSG00000263327 | 1.268851 | 0.011618 | TAPT1-AS1 |
| ENSG00000239887 | 2.295262 | 0.01164 | C1orf226 |
| ENSG00000198947 | 0.652443 | 0.011751 | DMD |
| ENSG00000147155 | -0.65757 | 0.011752 | EBP |
| ENSG00000128309 | -0.75205 | 0.011771 | MPST |
| ENSG00000146674 | 1.284674 | 0.011867 | IGFBP3 |
| ENSG00000154124 | 0.811413 | 0.011887 | OTULIN |
| ENSG00000272556 | 0.833528 | 0.01192 | GTF2IP13 |
| ENSG00000168724 | 0.476577 | 0.012027 | DNAJC21 |
| ENSG00000261526 | -0.92383 | 0.012252 | AC012615.1 |


| ENSG00000181690 | 1.176128 | 0.012861 | PLAG1 |
| :---: | :---: | :---: | :---: |
| ENSG00000108852 | -0.50478 | 0.012883 | MPP2 |
| ENSG00000272432 | -2.11459 | 0.013223 | AL031432.3 |
| ENSG00000264112 | 0.594207 | 0.013517 | AC015813.1 |
| ENSG00000114127 | 0.6483 | 0.013589 | XRN1 |
| ENSG00000171621 | -0.60442 | 0.013851 | SPSB1 |
| ENSG00000181333 | -1.71315 | 0.01401 | HEPHL1 |
| ENSG00000198546 | -0.7018 | 0.014069 | ZNF511 |
| ENSG00000196549 | -3.02591 | 0.014079 | MME |
| ENSG00000130511 | -0.59144 | 0.014091 | SSBP4 |
| ENSG00000107201 | 0.580643 | 0.014136 | DDX58 |
| ENSG00000272398 | 2.861334 | 0.014143 | CD24 |
| ENSG00000112992 | 0.483052 | 0.014172 | NNT |
| ENSG00000164237 | 0.695611 | 0.014285 | CMBL |
| ENSG00000182050 | 2.140858 | 0.014399 | MGAT4C |
| ENSG00000133739 | 0.447179 | 0.014454 | LRRCC1 |
| ENSG00000237594 | -0.93579 | 0.014529 | AP000251.1 |
| ENSG00000110400 | -0.84427 | 0.014639 | NECTIN1 |
| ENSG00000189410 | -0.45585 | 0.014659 | SH2D5 |
| ENSG00000135164 | 0.637601 | 0.014697 | DMTF1 |
| ENSG00000188816 | -0.70475 | 0.014799 | HMX2 |
| ENSG00000145506 | 1.041352 | 0.01484 | NKD2 |
| ENSG00000143178 | 0.84346 | 0.014996 | TBX19 |
| ENSG00000227230 | 2.041541 | 0.015128 | AL606534.1 |
| ENSG00000196781 | -0.48034 | 0.015147 | TLE1 |
| ENSG00000125170 | -0.45958 | 0.015411 | DOK4 |
| ENSG00000149968 | 0.423185 | 0.015754 | MMP3 |
| ENSG00000116691 | -0.52653 | 0.015779 | MIIP |
| ENSG00000282885 | 1.175127 | 0.015814 | AL627171.2 |
| ENSG00000137825 | -0.74331 | 0.015874 | ITPKA |
| ENSG00000138814 | 0.672064 | 0.015887 | PPP3CA |
| ENSG00000179886 | -0.67418 | 0.015953 | TIGD5 |
| ENSG00000213445 | -0.58378 | 0.01604 | SIPA1 |
| ENSG00000142546 | -0.61452 | 0.016089 | NOSIP |
| ENSG00000169621 | 1.103196 | 0.016103 | APLF |
| ENSG00000114646 | -0.64435 | 0.016109 | CSPG5 |
| ENSG00000182158 | 0.570363 | 0.016271 | CREB3L2 |
| ENSG00000155744 | 0.66843 | 0.016334 | FAM126B |
| ENSG00000132356 | 0.549521 | 0.016416 | PRKAA1 |
| ENSG00000266094 | -0.78406 | 0.016817 | RASSF5 |
| ENSG00000129911 | -0.4815 | 0.016961 | KLF16 |


| ENSG00000281468 | -1.09684 | 0.016998 | AC006504.8 |
| :---: | :---: | :---: | :---: |
| ENSG00000099624 | -0.71945 | 0.017172 | ATP5F1D |
| ENSG00000163536 | 0.560918 | 0.017205 | SERPINI1 |
| ENSG00000262406 | 1.343361 | 0.017209 | MMP12 |
| ENSG00000005108 | 2.288368 | 0.017215 | THSD7A |
| ENSG00000113407 | 0.436901 | 0.017308 | TARS |
| ENSG00000102981 | -0.84917 | 0.017311 | PARD6A |
| ENSG00000167011 | 3.17859 | 0.017374 | NAT16 |
| ENSG00000171004 | 0.472973 | 0.01742 | HS6ST2 |
| ENSG00000217128 | 0.545344 | 0.01747 | FNIP1 |
| ENSG00000110318 | 0.822416 | 0.017947 | CEP126 |
| ENSG00000138735 | 1.202581 | 0.018112 | PDE5A |
| ENSG00000198162 | 0.518479 | 0.018119 | MAN1A2 |
| ENSG00000260924 | -0.95168 | 0.018214 | LINC01311 |
| ENSG00000172262 | 0.495163 | 0.018274 | ZNF131 |
| ENSG00000246089 | -0.5729 | 0.01828 | AC016065.1 |
| ENSG00000156381 | -0.49665 | 0.018654 | ANKRD9 |
| ENSG00000170892 | -0.5696 | 0.018708 | TSEN34 |
| ENSG00000177352 | -0.54794 | 0.018724 | CCDC71 |
| ENSG00000157570 | 1.016116 | 0.019294 | TSPAN18 |
| ENSG00000165233 | -0.60833 | 0.019306 | CARD19 |
| ENSG00000155368 | -0.67461 | 0.019419 | DBI |
| ENSG00000203709 | 1.267492 | 0.019424 | MIR29B2CHG |
| ENSG00000134202 | -0.79113 | 0.019614 | GSTM3 |
| ENSG00000156931 | 0.410796 | 0.02025 | VPS8 |
| ENSG00000173153 | -0.43448 | 0.020331 | ESRRA |
| ENSG00000168280 | 0.981058 | 0.020347 | KIF5C |
| ENSG00000108107 | -0.6368 | 0.020365 | RPL28 |
| ENSG00000130054 | -0.75177 | 0.020393 | FAM155B |
| ENSG00000204262 | 0.643808 | 0.020573 | COL5A2 |
| ENSG00000145348 | 0.463038 | 0.020798 | TBCK |
| ENSG00000165795 | -0.57412 | 0.020828 | NDRG2 |
| ENSG00000257167 | -0.75255 | 0.020959 | TMPO-AS1 |
| ENSG00000165804 | -0.50836 | 0.021144 | ZNF219 |
| ENSG00000263002 | 0.623621 | 0.021157 | ZNF234 |
| ENSG00000167034 | 1.003816 | 0.021244 | NKX3-1 |
| ENSG00000186472 | 0.521982 | 0.021298 | PCLO |
| ENSG00000135441 | -0.7261 | 0.021303 | BLOC1S1 |
| ENSG00000280927 | 1.062099 | 0.021628 | CTBP1-AS |
| ENSG00000172667 | 0.6756 | 0.021935 | ZMAT3 |
| ENSG00000168286 | -0.46348 | 0.021996 | THAP11 |


| ENSG00000127914 | 0.708397 | 0.022002 | AKAP9 |
| :---: | :---: | :---: | :---: |
| ENSG00000268030 | 0.750915 | 0.022068 | AC005253.1 |
| ENSG00000137561 | -1.24208 | 0.022103 | TTPA |
| ENSG00000240204 | -0.60436 | 0.022359 | SMKR1 |
| ENSG00000117148 | -1.35449 | 0.022373 | ACTL8 |
| ENSG00000080947 | 1.032293 | 0.022404 | CROCCP3 |
| ENSG00000177427 | -0.52863 | 0.022495 | MIEF2 |
| ENSG00000060491 | -0.52822 | 0.561248 | 0.022613 |


| ENSG00000131446 | -0.37002 | 0.025897 | MGAT1 |
| :---: | :---: | :---: | :---: |
| ENSG00000105649 | -0.70204 | 0.025932 | RAB3A |
| ENSG00000114738 | -0.67108 | 0.025959 | MAPKAPK3 |
| ENSG00000147383 | -0.47005 | 0.026057 | NSDHL |
| ENSG00000106066 | 3.194587 | 0.026068 | CPVL |
| ENSG00000147257 | -0.68528 | 0.026111 | GPC3 |
| ENSG00000203581 | 1.739141 | 0.026113 | OR1F2P |
| ENSG00000160113 | -0.51003 | 0.026172 | NR2F6 |
| ENSG00000165392 | 0.598411 | 0.026303 | WRN |
| ENSG00000158528 | 0.565981 | 0.026317 | PPP1R9A |
| ENSG00000222046 | 2.107791 | 0.026385 | DCDC2B |
| ENSG00000234684 | 0.578551 | 0.026486 | SDCBP2-AS1 |
| ENSG00000223760 | 0.715517 | 0.02651 | MED15P9 |
| ENSG00000172731 | -0.52943 | 0.026686 | LRRC20 |
| ENSG00000187164 | 0.636754 | 0.026696 | SHTN1 |
| ENSG00000148677 | 0.509399 | 0.026849 | ANKRD1 |
| ENSG00000160999 | -0.62095 | 0.026851 | SH2B2 |
| ENSG00000140323 | -0.67524 | 0.026888 | DISP2 |
| ENSG00000152240 | -0.45752 | 0.02707 | HAUS1 |
| ENSG00000172869 | 0.513733 | 0.027172 | DMXL1 |
| ENSG00000168386 | 1.201131 | 0.027474 | FILIP1L |
| ENSG00000149231 | 0.524666 | 0.027503 | CCDC82 |
| ENSG00000240291 | 1.139103 | 0.027522 | AL450384.2 |
| ENSG00000160799 | -0.53296 | 0.027556 | CCDC12 |
| ENSG00000164081 | -0.5432 | 0.027578 | TEX264 |
| ENSG00000103876 | -0.63054 | 0.027595 | FAH |
| ENSG00000150756 | 0.771787 | 0.027715 | FAM173B |
| ENSG00000116667 | 1.47727 | 0.02772 | C1orf21 |
| ENSG00000167524 | 0.817835 | 0.02773 | SGK494 |
| ENSG00000152082 | -0.66266 | 0.027736 | MZT2B |
| ENSG00000163960 | 0.550755 | 0.028032 | UBXN7 |
| ENSG00000180185 | -0.55484 | 0.028065 | FAHD1 |
| ENSG00000229119 | -1.23826 | 0.028107 | AC026403.1 |
| ENSG00000154102 | -0.7904 | 0.028108 | C16orf74 |
| ENSG00000256223 | 0.538682 | 0.028144 | ZNF10 |
| ENSG00000273604 | -0.36029 | 0.028196 | EPOP |
| ENSG00000126709 | -1.92376 | 0.028212 | IFI6 |
| ENSG00000129195 | -0.4205 | 0.028428 | PIMREG |
| ENSG00000139117 | 0.480564 | 0.028586 | CPNE8 |
| ENSG00000197782 | 0.435157 | 0.02861 | ZNF780A |
| ENSG00000247157 | 1.710835 | 0.028659 | LINC01252 |


| ENSG00000135127 | -0.42101 | 0.028678 | BICDL1 |
| :---: | :---: | :---: | :---: |
| ENSG00000073578 | -0.46672 | 0.028744 | SDHA |
| ENSG00000105486 | -0.40689 | 0.02876 | LIG1 |
| ENSG00000187984 | 1.266159 | 0.028874 | ANKRD19P |
| ENSG00000198915 | -0.43432 | 0.029124 | RASGEF1A |
| ENSG00000154978 | -0.46691 | 0.029341 | VOPP1 |
| ENSG00000112183 | -0.63237 | 0.029532 | RBM24 |
| ENSG00000014824 | 0.380114 | 0.029643 | SLC30A9 |
| ENSG00000182575 | -0.7535 | 0.029678 | NXPH3 |
| ENSG00000083799 | 0.508049 | 0.029727 | CYLD |
| ENSG00000259802 | 0.805167 | 0.029915 | AC012640.2 |
| ENSG00000008324 | -0.57952 | 0.029932 | SS18L2 |
| ENSG00000118985 | 0.815125 | 0.029984 | ELL2 |
| ENSG00000213222 | 0.881107 | 0.030021 | AC093724.1 |
| ENSG00000147804 | -0.54976 | 0.030095 | SLC39A4 |
| ENSG00000130332 | -0.644 | 0.030257 | LSM 7.00 |
| ENSG00000162076 | -0.52216 | 0.030369 | FLYWCH2 |
| ENSG00000178662 | -2.02078 | 0.030413 | CSRNP3 |
| ENSG00000099364 | -0.44146 | 0.030509 | FBXL19 |
| ENSG00000090932 | -0.59388 | 0.030598 | DLL3 |
| ENSG00000100347 | -0.51659 | 0.030667 | SAMM50 |
| ENSG00000119139 | -0.76704 | 0.030674 | TJP2 |
| ENSG00000276045 | -0.57228 | 0.030853 | ORAI1 |
| ENSG00000085224 | 0.507552 | 0.030888 | ATRX |
| ENSG00000231918 | 1.221 | 0.030954 | AC007402.1 |
| ENSG00000116685 | -0.51283 | 0.031005 | KIAA2013 |
| ENSG00000256673 | 1.200406 | 0.031027 | AC141557.1 |
| ENSG00000283674 | -0.51137 | 0.031116 | AC068587.4 |
| ENSG00000177556 | -0.74095 | 0.031148 | ATOX1 |
| ENSG00000139324 | 0.440003 | 0.031195 | TMTC3 |
| ENSG00000161714 | -0.46962 | 0.031588 | PLCD3 |
| ENSG00000274292 | 1.561795 | 0.031601 | AC084018.2 |
| ENSG00000198718 | 0.558219 | 0.031851 | TOGARAM1 |
| ENSG00000152582 | 0.573994 | 0.031882 | SPEF2 |
| ENSG00000204248 | 0.732405 | 0.031902 | COL11A2 |
| ENSG00000163888 | -0.84417 | 0.031938 | CAMK2N2 |
| ENSG00000160326 | -0.79923 | 0.031938 | SLC2A6 |
| ENSG00000130193 | -0.61936 | 0.031965 | THEM6 |
| ENSG00000075420 | 0.559256 | 0.03202 | FNDC3B |
| ENSG00000131018 | 1.08786 | 0.032085 | SYNE1 |
| ENSG00000149311 | 0.564339 | 0.032101 | ATM |


| ENSG00000111669 | -0.49153 | 0.032254 | TPI1 |
| :---: | :---: | :---: | :---: |
| ENSG00000115317 | -0.53502 | 0.032325 | HTRA2 |
| ENSG00000099977 | -0.59719 | 0.032421 | DDT |
| ENSG00000069998 | -0.44644 | 0.032502 | HDHD5 |
| ENSG00000107099 | 0.991769 | 0.032542 | DOCK8 |
| ENSG00000121989 | 0.429125 | 0.032912 | ACVR2A |
| ENSG00000176697 | -2.31865 | 0.032918 | BDNF |
| ENSG00000204356 | -0.50267 | 0.033104 | NELFE |
| ENSG00000065054 | -0.62582 | 0.033361 | SLC9A3R2 |
| ENSG00000214022 | -0.34271 | 0.03343 | REPIN1 |
| ENSG00000117394 | -0.47116 | 0.033436 | SLC2A1 |
| ENSG00000174516 | -0.71669 | 0.033601 | PELI3 |
| ENSG00000227212 | 1.586922 | 0.033936 | PFN1P6 |
| ENSG00000123810 | -0.61377 | 0.033993 | B9D2 |
| ENSG00000233461 | -0.67771 | 0.034052 | AL445524.1 |
| ENSG00000243056 | 0.756557 | 0.034192 | EIF4EBP3 |
| ENSG00000248126 | 1.171661 | 0.034347 | AC091849.1 |
| ENSG00000221869 | -0.50028 | 0.034501 | CEBPD |
| ENSG00000102109 | -0.74886 | 0.034503 | PCSK1N |
| ENSG00000233913 | -0.67023 | 0.034532 | RPL10P9 |
| ENSG00000220749 | -1.62111 | 0.034803 | RPL21P28 |
| ENSG00000169515 | -0.34716 | 0.034927 | CCDC8 |
| ENSG00000146587 | 0.522051 | 0.034946 | RBAK |
| ENSG00000271855 | -0.9114 | 0.035091 | AC073195.1 |
| ENSG00000225465 | 0.870308 | 0.035348 | RFPL1S |
| ENSG00000236914 | 0.774696 | 0.035604 | LINC01852 |
| ENSG00000204590 | -0.37113 | 0.035609 | GNL1 |
| ENSG00000123992 | -0.41505 | 0.03568 | DNPEP |
| ENSG00000107404 | -0.38511 | 0.035724 | DVL1 |
| ENSG00000140280 | -0.44936 | 0.035729 | LYSMD2 |
| ENSG00000183570 | 1.207721 | 0.03581 | PCBP3 |
| ENSG00000237125 | 1.011632 | 0.035901 | HAND2-AS1 |
| ENSG00000174485 | 0.591483 | 0.036039 | DENND4A |
| ENSG00000223960 | 0.504779 | 0.036052 | AC009948.1 |
| ENSG00000161149 | -0.84784 | 0.036185 | TUBA3FP |
| ENSG00000100138 | -0.51356 | 0.036195 | SNU13 |
| ENSG00000114631 | -0.57732 | 0.036252 | PODXL2 |
| ENSG00000151065 | -0.41291 | 0.036532 | DCP1B |
| ENSG00000106804 | 0.870556 | 0.036741 | C5 |
| ENSG00000173786 | -0.52062 | 0.03675 | CNP |
| ENSG00000140199 | 0.570873 | 0.036887 | SLC12A6 |


| ENSG00000258998 | -1.91702 | 0.036925 | LINC02302 |
| :---: | :---: | :---: | :---: |
| ENSG00000166171 | -0.50232 | 0.037136 | DPCD |
| ENSG00000092439 | 0.54133 | 0.037149 | TRPM7 |
| ENSG00000150093 | 0.590657 | 0.037394 | ITGB1 |
| ENSG00000204410 | 0.683807 | 0.037521 | MSH5 |
| ENSG00000156103 | 0.508334 | 0.037686 | MMP16 |
| ENSG00000083097 | 0.517386 | 0.037921 | DOPEY1 |
| ENSG00000144724 | 0.453095 | 0.037943 | PTPRG |
| ENSG00000107672 | -0.41723 | 0.038178 | NSMCE4A |
| ENSG00000263956 | 0.550797 | 0.038179 | NBPF11 |
| ENSG00000124171 | 0.456354 | 0.038251 | PARD6B |
| ENSG00000253741 | 0.991283 | 0.038457 | AC108002.1 |
| ENSG00000164128 | 1.837712 | 0.0385 | NPY1R |
| ENSG00000143469 | 1.313425 | 0.038538 | SYT14 |
| ENSG00000181284 | -0.39253 | 0.038591 | TMEM102 |
| ENSG00000150347 | 2.775363 | 0.038664 | ARID5B |
| ENSG00000164620 | -0.54039 | 0.038769 | RELL2 |
| ENSG00000244274 | -0.4211 | 0.038823 | DBNDD2 |
| ENSG00000237094 | 1.537881 | 0.038855 | AL732372.2 |
| ENSG00000196712 | 0.567613 | 0.038916 | NF1 |
| ENSG00000115318 | -0.55502 | 0.038931 | LOXL3 |
| ENSG00000170860 | -0.60817 | 0.039001 | LSM 3.00 |
| ENSG00000130005 | -0.65904 | 0.039075 | GAMT |
| ENSG00000106268 | -0.59231 | 0.039099 | NUDT1 |
| ENSG00000125637 | -0.90761 | 0.039159 | PSD4 |
| ENSG00000100300 | -0.53303 | 0.039318 | TSPO |
| ENSG00000186205 | -0.64488 | 0.03933 | 1-Mar |
| ENSG00000134184 | -0.52313 | 0.039433 | GSTM1 |
| ENSG00000224660 | 0.566842 | 0.039569 | SH3BP5-AS1 |
| ENSG00000169738 | -0.58869 | 0.03971 | DCXR |
| ENSG00000099385 | -0.55949 | 0.039804 | BCL7C |
| ENSG00000100364 | -0.48006 | 0.039886 | KIAA0930 |
| ENSG00000131652 | -0.58282 | 0.040025 | THOC6 |
| ENSG00000130787 | -0.39353 | 0.040043 | HIP1R |
| ENSG00000112773 | 0.528928 | 0.040108 | FAM46A |
| ENSG00000016391 | -0.51875 | 0.040111 | CHDH |
| ENSG00000110841 | 0.572977 | 0.04033 | PPFIBP1 |
| ENSG00000164125 | 1.71252 | 0.040355 | FAM198B |
| ENSG00000167792 | -0.40987 | 0.040421 | NDUFV1 |
| ENSG00000242028 | -0.64889 | 0.040425 | HYPK |
| ENSG00000196696 | 0.738687 | 0.040567 | AC009022.1 |


| ENSG00000245146 | 1.036009 | 0.040699 | MALINC1 |
| :---: | :---: | :---: | :---: |
| ENSG00000203993 | -0.42509 | 0.040714 | ARRDC1-AS1 |
| ENSG00000125378 | -1.95635 | 0.040731 | BMP4 |
| ENSG00000186376 | 0.467451 | 0.040853 | ZNF75D |
| ENSG00000119431 | -0.44439 | 0.040963 | HDHD3 |
| ENSG00000154760 | 1.295182 | 0.040977 | SLFN13 |
| ENSG00000173530 | 0.617966 | 0.041083 | TNFRSF10D |
| ENSG00000103024 | -0.53579 | 0.041174 | NME3 |
| ENSG00000124486 | 0.523689 | 0.04119 | USP9X |
| ENSG00000145284 | -0.52833 | 0.041207 | SCD5 |
| ENSG00000171858 | -0.56163 | 0.04125 | RPS21 |
| ENSG00000083807 | -0.47967 | 0.041331 | SLC27A5 |
| ENSG00000149925 | -0.5377 | 0.041348 | ALDOA |
| ENSG00000279035 | -1.68679 | 0.041381 | AC022211.4 |
| ENSG00000235823 | -0.45058 | 0.041391 | OLMALINC |
| ENSG00000126952 | 0.861359 | 0.041455 | NXF5 |
| ENSG00000279312 | 2.807805 | 0.041666 | AL136164.4 |
| ENSG00000005483 | 0.543986 | 0.04179 | KMT2E |
| ENSG00000079215 | 1.499769 | 0.041837 | SLC1A3 |
| ENSG00000151006 | 0.640282 | 0.041854 | PRSS53 |
| ENSG00000174021 | -0.55087 | 0.041965 | GNG5 |
| ENSG00000147586 | -0.4709 | 0.04198 | MRPS28 |
| ENSG00000188763 | -0.59955 | 0.042082 | FZD9 |
| ENSG00000261971 | 0.59311 | 0.042105 | MMP25-AS1 |
| ENSG00000135862 | 0.458071 | 0.042163 | LAMC1 |
| ENSG00000157764 | 0.448786 | 0.042264 | BRAF |
| ENSG00000185803 | -0.50785 | 0.042269 | SLC52A2 |
| ENSG00000085788 | 0.465547 | 0.042308 | DDHD2 |
| ENSG00000184857 | -0.46877 | 0.042369 | TMEM186 |
| ENSG00000214837 | 0.963237 | 0.042507 | LINC01347 |
| ENSG00000122035 | -0.74137 | 0.042532 | RASL11A |
| ENSG00000136717 | -0.44133 | 0.042673 | BIN1 |
| ENSG00000240990 | 1.69626 | 0.042752 | HOXA11-AS |
| ENSG00000268204 | 1.567168 | 0.042888 | AC008763.1 |
| ENSG00000283429 | -1.33358 | 0.043031 | MIR1244-3 |
| ENSG00000133398 | 0.628547 | 0.043052 | MED10 |
| ENSG00000272980 | 1.666086 | 0.043155 | Z94721.2 |
| ENSG00000123505 | -0.41074 | 0.043203 | AMD 1.00 |
| ENSG00000178605 | -0.50445 | 0.043305 | GTPBP6 |
| ENSG00000188368 | -0.76777 | 0.043359 | PRR19 |
| ENSG00000139637 | -0.57295 | 0.043416 | C12orf10 |


| ENSG00000280355 | 0.985603 | 0.043417 | AL132656.4 |
| :---: | :---: | :---: | :---: |
| ENSG00000157741 | 0.550451 | 0.043462 | UBN2 |
| ENSG00000183155 | -0.54908 | 0.043548 | RABIF |
| ENSG00000151148 | 0.379103 | 0.043623 | UBE3B |
| ENSG00000155366 | -0.51315 | 0.043647 | RHOC |
| ENSG00000240972 | -0.53733 | 0.043683 | MIF |
| ENSG00000197483 | -0.5457 | 0.043775 | ZNF628 |
| ENSG00000125656 | -0.45898 | 0.043813 | CLPP |
| ENSG00000164066 | 0.429673 | 0.043854 | INTU |
| ENSG00000249572 | 0.73867 | 0.043854 | AC034231.1 |
| ENSG00000197013 | 0.525616 | 0.044086 | ZNF429 |
| ENSG00000254337 | 0.578839 | 0.04421 | AC083967.1 |
| ENSG00000129595 | 0.972929 | 0.044238 | EPB41L4A |
| ENSG00000204837 | 0.721992 | 0.044434 | FGF7P3 |
| ENSG00000197016 | 0.580695 | 0.044444 | ZNF470 |
| ENSG00000138100 | -1.88709 | 0.044452 | TRIM54 |
| ENSG00000140650 | -0.41083 | 0.04446 | PMM2 |
| ENSG00000134548 | 1.106537 | 0.044466 | SPX |
| ENSG00000213139 | 1.266441 | 0.044655 | CRYGS |
| ENSG00000100911 | -0.53563 | 0.044661 | PSME2 |
| ENSG00000070214 | 0.370124 | 0.044727 | SLC44A1 |
| ENSG00000172409 | -0.50254 | 0.044858 | CLP 1 |
| ENSG00000116544 | 1.098117 | 0.044931 | DLGAP3 |
| ENSG00000130829 | -0.39961 | 0.045164 | DUSP9 |
| ENSG00000123612 | 2.082726 | 0.045228 | ACVR1C |
| ENSG00000107872 | -0.50776 | 0.045474 | FBXL15 |
| ENSG00000126246 | -1.09252 | 0.045656 | IGFLR1 |
| ENSG00000167771 | -0.51734 | 0.045765 | RCOR2 |
| ENSG00000124406 | 0.692318 | 0.045847 | ATP8A1 |
| ENSG00000273036 | 0.751362 | 0.045878 | AL390726.5 |
| ENSG00000261377 | -0.54553 | 0.045912 | PDCD6IPP2 |
| ENSG00000169221 | -0.45761 | 0.045961 | TBC1D10B |
| ENSG00000185220 | 0.502579 | 0.045972 | PGBD2 |
| ENSG00000257727 | -0.61012 | 0.045985 | CNPY2 |
| ENSG00000023287 | 0.481265 | 0.046242 | RB1CC1 |
| ENSG00000185043 | -0.49374 | 0.046278 | CIB1 |
| ENSG00000182872 | -0.35569 | 0.0463 | RBM10 |
| ENSG00000261360 | 1.014125 | 0.046327 | AC010491.1 |
| ENSG00000128294 | -0.49397 | 0.046328 | TPST2 |
| ENSG00000160917 | -0.35169 | 0.046336 | CPSF4 |
| ENSG00000147642 | 1.249336 | 0.046543 | SYBU |


| ENSG00000198466 | 0.42716 | 0.046612 | ZNF587 |
| :---: | :---: | :---: | :---: |
| ENSG00000250794 | -0.88518 | 0.046624 | ALG1L12P |
| ENSG00000106635 | -0.42946 | 0.046681 | BCL7B |
| ENSG00000121211 | -0.48594 | 0.046735 | MND1 |
| ENSG00000198258 | -0.53177 | 0.046797 | UBL5 |
| ENSG00000108590 | -0.56609 | 0.046983 | MED31 |
| ENSG00000168152 | 0.532495 | 0.047174 | THAP9 |
| ENSG00000104866 | -0.3896 | 0.047208 | PPP1R37 |
| ENSG00000075711 | 0.390816 | 0.047518 | DLG1 |
| ENSG00000204681 | 0.494944 | 0.047622 | GABBR1 |
| ENSG00000187187 | 0.589724 | 0.047688 | ZNF546 |
| ENSG00000089057 | 0.642723 | 0.047705 | SLC23A2 |
| ENSG00000096093 | 0.404878 | 0.047719 | EFHC1 |
| ENSG00000173581 | -0.47153 | 0.047785 | CCDC106 |
| ENSG00000169836 | 1.555847 | 0.047871 | TACR3 |
| ENSG00000164114 | 0.43428 | 0.047887 | MAP9 |
| ENSG00000169604 | 1.336159 | 0.047935 | ANTXR1 |
| ENSG00000266962 | -0.34859 | 0.04799 | AC067852.2 |
| ENSG00000231305 | 1.042392 | 0.048055 | AC112484.1 |
| ENSG00000230641 | -1.35128 | 0.048081 | USP12-AS2 |
| ENSG00000006015 | -0.4828 | 0.048191 | REX1BD |
| ENSG00000178531 | -0.68281 | 0.048314 | CTXN1 |
| ENSG00000108479 | -0.42101 | 0.048398 | GALK1 |
| ENSG00000065268 | -0.48207 | 0.048403 | WDR18 |
| ENSG00000213347 | -0.60591 | 0.048473 | MXD3 |
| ENSG00000177283 | 1.288931 | 0.048492 | FZD8 |
| ENSG00000178449 | -0.54879 | 0.048573 | COX14 |
| ENSG00000256436 | 1.509265 | 0.048583 | TAS2R31 |
| ENSG00000136807 | -0.41664 | 0.048613 | CDK9 |
| ENSG00000183828 | -0.53558 | 0.048666 | NUDT14 |
| ENSG00000144589 | -0.36368 | 0.048761 | STK11IP |
| ENSG00000145088 | -0.56796 | 0.048794 | EAF2 |
| ENSG00000233927 | -0.53113 | 0.048852 | RPS28 |
| ENSG00000103274 | -0.38198 | 0.048864 | NUBP1 |
| ENSG00000136280 | -0.44646 | 0.048884 | CCM2 |
| ENSG00000158246 | -0.68675 | 0.048906 | FAM46B |
| ENSG00000168569 | -0.46153 | 0.048918 | TMEM223 |
| ENSG00000135940 | -0.50003 | 0.048952 | COX5B |
| ENSG00000137135 | -0.39828 | 0.049391 | ARHGEF39 |
| ENSG00000049618 | 0.457852 | 0.049462 | ARID1B |
| ENSG00000127084 | -0.49939 | 0.049492 | FGD3 |


| ENSG00000273162 | -0.59719 | 0.049502 | AL133215.2 |
| :---: | :---: | :---: | :---: |
| ENSG00000141098 | -0.38975 | 0.04954 | GFOD2 |
| ENSG00000230551 | 0.615557 | 0.049576 | AC021078.1 |
| ENSG00000177990 | 0.542738 | 0.049605 | DPY19L2 |
| ENSG00000151914 | 0.545415 | 0.04961 | DST |
| ENSG00000181817 | -0.48611 | 0.049665 | LSM 10.00 |
| ENSG00000100056 | -0.49588 | 0.049694 | ESS2 |
| ENSG00000064763 | 1.124421 | 0.049702 | FAR2 |
| ENSG00000173511 | -0.69577 | 0.049712 | VEGFB |
| ENSG00000188243 | -0.54911 | 0.049827 | COMMD6 |
| ENSG00000170689 | 0.441197 | 0.050029 | HOXB9 |
| ENSG00000182544 | -0.46326 | 0.050119 | MFSD5 |
| ENSG00000168884 | -0.46979 | 0.050124 | TNIP2 |
| ENSG00000149577 | 0.352379 | 0.050248 | SIDT2 |
| ENSG00000127824 | -0.75247 | 0.050407 | TUBA4A |
| ENSG00000003987 | -1.13755 | 0.050525 | MTMR7 |
| ENSG00000145982 | -0.47546 | 0.050552 | FARS2 |
| ENSG00000278200 | -1.48268 | 0.050601 | LINC01971 |
| ENSG00000209082 | 0.462511 | 0.050726 | MT-TL1 |
| ENSG00000232177 | 0.648329 | 0.050805 | MTND4P24 |
| ENSG00000245848 | -0.39506 | 0.050808 | CEBPA |
| ENSG00000122873 | -0.4612 | 0.050844 | CISD1 |
| ENSG00000265749 | 0.847356 | 0.05088 | AC135178.3 |
| ENSG00000272140 | 1.179544 | 0.050905 | AC022400.5 |
| ENSG00000067225 | -0.41552 | 0.051028 | PKM |
| ENSG00000166762 | 0.686199 | 0.051059 | CATSPER2 |
| ENSG00000128656 | -0.47531 | 0.051138 | CHN1 |
| ENSG00000169826 | 0.392512 | 0.051145 | CSGALNACT2 |
| ENSG00000178107 | -1.87283 | 0.051161 | AL161668.1 |
| ENSG00000198873 | -0.52644 | 0.051163 | GRK5 |
| ENSG00000177105 | -0.60443 | 0.051258 | RHOG |
| ENSG00000154832 | -0.45987 | 0.051312 | CXXC1 |
| ENSG00000138036 | 0.364279 | 0.051372 | DYNC2LI1 |
| ENSG00000145147 | 0.484422 | 0.051466 | SLIT2 |
| ENSG00000111961 | 0.612585 | 0.051616 | SASH1 |
| ENSG00000157625 | 0.436267 | 0.051904 | TAB3 |
| ENSG00000186184 | -0.40488 | 0.051945 | POLR1D |
| ENSG00000244187 | -0.47122 | 0.051954 | TMEM141 |
| ENSG00000248334 | 0.560719 | 0.052038 | WHAMMP2 |
| ENSG00000144677 | -0.40691 | 0.052253 | CTDSPL |
| ENSG00000072778 | 0.344293 | 0.052323 | ACADVL |


| ENSG00000203667 | -0.54622 | 0.052352 | COX20 |
| :---: | :---: | :---: | :---: |
| ENSG00000100418 | -0.44092 | 0.052408 | DESI1 |
| ENSG00000244879 | 0.577833 | 0.052555 | GABPB1-AS1 |
| ENSG00000221978 | 0.339034 | 0.052657 | CCNL2 |
| ENSG00000163660 | 0.37475 | 0.052672 | CCNL1 |
| ENSG00000272853 | -0.84503 | 0.05289 | AC069544.1 |
| ENSG00000188986 | -0.39599 | 0.052921 | NELFB |
| ENSG00000116525 | -0.45773 | 0.052943 | TRIM62 |
| ENSG00000131127 | 0.518072 | 0.053042 | ZNF141 |
| ENSG00000135749 | 0.854127 | 0.053051 | PCNX2 |
| ENSG00000009413 | 0.477274 | 0.053065 | REV3L |
| ENSG00000229358 | 0.599934 | 0.053322 | DPY19L1P1 |
| ENSG00000250138 | 1.391328 | 0.053399 | AC139495.3 |
| ENSG00000154642 | 0.535995 | 0.053419 | C21orf91 |
| ENSG00000062370 | 0.522004 | 0.053419 | ZNF112 |
| ENSG00000130748 | -0.59575 | 0.053514 | TMEM160 |
| ENSG00000186908 | 0.398002 | 0.05354 | ZDHHC17 |
| ENSG00000038219 | 0.52581 | 0.053801 | BOD1L1 |
| ENSG00000114857 | 0.451805 | 0.053854 | NKTR |
| ENSG00000260528 | 0.915204 | 0.053861 | FAM157C |
| ENSG00000116871 | -0.45138 | 0.053861 | MAP7D1 |
| ENSG00000075826 | 0.439069 | 0.053876 | SEC31B |
| ENSG00000238083 | 0.619602 | 0.053925 | LRRC37A2 |
| ENSG00000184924 | -0.48582 | 0.054069 | PTRHD1 |
| ENSG00000186468 | -0.42935 | 0.05429 | RPS23 |
| ENSG00000164694 | 1.830881 | 0.054503 | FNDC1 |
| ENSG00000172403 | 2.745037 | 0.054539 | SYNPO2 |
| ENSG00000101856 | -0.36853 | 0.054561 | PGRMC1 |
| ENSG00000136908 | -0.48102 | 0.05472 | DPM2 |
| ENSG00000184508 | -0.51552 | 0.054797 | HDDC3 |
| ENSG00000174405 | 0.50608 | 0.05499 | LIG4 |
| ENSG00000283050 | 0.741014 | 0.055056 | GTF2IP12 |
| ENSG00000179399 | 1.366443 | 0.055193 | GPC5 |
| ENSG00000198356 | -0.48771 | 0.055204 | ASNA1 |
| ENSG00000256940 | -0.88374 | 0.055268 | AP001453.2 |
| ENSG00000119397 | 0.578353 | 0.05527 | CNTRL |
| ENSG00000275367 | 1.620608 | 0.055383 | AC092111.1 |
| ENSG00000135870 | 0.408884 | 0.055479 | RC3H1 |
| ENSG00000260404 | 0.692523 | 0.055483 | AC110079.1 |
| ENSG00000163156 | -0.39986 | 0.055485 | SCNM1 |
| ENSG00000177954 | -0.46167 | 0.055602 | RPS27 |


| ENSG00000111057 | -0.46386 | 0.055607 | KRT18 |
| :---: | :---: | :---: | :---: |
| ENSG00000140988 | -0.46007 | 0.05586 | RPS2 |
| ENSG00000225439 | -0.36269 | 0.055886 | BOLA3-AS1 |
| ENSG00000270728 | 1.021014 | 0.055905 | AL035413.2 |
| ENSG00000205363 | -0.55059 | 0.055915 | C15orf59 |
| ENSG00000166783 | 0.558638 | 0.056165 | MARF1 |
| ENSG00000181885 | 1.176785 | 0.056171 | CLDN7 |
| ENSG00000173681 | 0.473102 | 0.05621 | BCLAF3 |
| ENSG00000170989 | 0.855282 | 0.056211 | S1PR1 |
| ENSG00000161920 | -0.45728 | 0.056295 | MED11 |
| ENSG00000123131 | -0.4334 | 0.05638 | PRDX4 |
| ENSG00000243232 | 1.065039 | 0.056401 | PCDHAC2 |
| ENSG00000153936 | 0.41294 | 0.056413 | HS2ST1 |
| ENSG00000124172 | -0.558 | 0.056422 | ATP5F1E |
| ENSG00000283312 | 0.880047 | 0.056441 | AC017104.4 |
| ENSG00000182108 | -0.61503 | 0.056527 | DEXI |
| ENSG00000154537 | -0.68978 | 0.056535 | FAM27C |
| ENSG00000165194 | -2.214 | 0.056587 | PCDH19 |
| ENSG00000224837 | -1.05846 | 0.056588 | GCSHP5 |
| ENSG00000187608 | -0.71475 | 0.056632 | ISG15 |
| ENSG00000100815 | 0.385594 | 0.05667 | TRIP11 |
| ENSG00000060762 | -0.55433 | 0.05684 | MPC1 |
| ENSG00000260589 | -1.39849 | 0.056889 | STAM-AS1 |
| ENSG00000095951 | 0.552127 | 0.056916 | HIVEP1 |
| ENSG00000163125 | 0.411635 | 0.057019 | RPRD2 |
| ENSG00000259378 | 1.825347 | 0.057162 | DCAF13P3 |
| ENSG00000243176 | 0.640449 | 0.057252 | AC092944.1 |
| ENSG00000032219 | 0.460585 | 0.057329 | ARID4A |
| ENSG00000087116 | 1.375646 | 0.057578 | ADAMTS2 |
| ENSG00000173540 | -0.53995 | 0.057585 | GMPPB |
| ENSG00000169100 | -0.36294 | 0.05769 | SLC25A6 |
| ENSG00000116176 | 1.46673 | 0.05772 | TPSG1 |
| ENSG00000151552 | -0.47654 | 0.05799 | QDPR |
| ENSG00000236438 | 0.589091 | 0.058011 | FAM157A |
| ENSG00000111058 | 0.625287 | 0.058054 | ACSS3 |
| ENSG00000259330 | -0.40253 | 0.058102 | INAFM2 |
| ENSG00000120519 | 0.490846 | 0.0582 | SLC10A7 |
| ENSG00000137845 | 0.384434 | 0.058259 | ADAM10 |
| ENSG00000213903 | 0.599406 | 0.058591 | LTB4R |
| ENSG00000167508 | -0.50345 | 0.058803 | MVD |
| ENSG00000113384 | 0.447681 | 0.058846 | GOLPH3 |


| ENSG00000160753 | -0.41907 | 0.058921 | RUSC1 |
| :---: | :---: | :---: | :---: |
| ENSG00000075340 | 0.795439 | 0.059148 | ADD2 |
| ENSG00000103145 | -0.67055 | 0.059265 | HCFC1R1 |
| ENSG00000249626 | 0.815574 | 0.05939 | AC024560.2 |
| ENSG00000204371 | -0.38904 | 0.059453 | EHMT2 |
| ENSG00000107338 | -0.56523 | 0.059456 | SHB |
| ENSG00000144036 | 0.414796 | 0.059472 | EXOC6B |
| ENSG00000231784 | 0.810298 | 0.059486 | DBIL5P |
| ENSG00000147548 | 0.334942 | 0.05954 | NSD3 |
| ENSG00000101400 | -0.53818 | 0.059649 | SNTA1 |
| ENSG00000171227 | -0.96914 | 0.059786 | TMEM37 |
| ENSG00000151876 | 0.506019 | 0.059802 | FBXO4 |
| ENSG00000274897 | -0.51706 | 0.059935 | PANO1 |
| ENSG00000206538 | 0.56689 | 0.059944 | VGLL3 |
| ENSG00000124588 | -0.49105 | 0.059976 | NQO2 |

List of Shared Transcripts between A2780CP20-RBPMSA and A2780CP20-RBPMSC

| ID | log2FoldChange | pvalue | Gene.name |
| :---: | :---: | :---: | :---: |
| ENSG00000276953 | -6.91254142 | 0.027800278 | TRBV12-4 |
| ENSG00000101384 | -4.330511817 | 0.020588056 | JAG1 |
| ENSG00000178965 | -3.951576843 | 0.000300472 | ERICH3 |
| ENSG00000099250 | -3.454159744 | 0.001731179 | NRP1 |
| ENSG00000147481 | -3.228723507 | 0.008223846 | SNTG1 |
| ENSG00000196730 | -3.221475672 | 0.004702865 | DAPK1 |
| ENSG00000128709 | -2.800133712 | 0.004705564 | HOXD9 |
| ENSG00000125046 | -2.71336991 | 0.01549182 | SSUH2 |
| ENSG00000106631 | -2.677248207 | 0.025483795 | MYL7 |
| ENSG00000175879 | -2.593778164 | 0.015883262 | HOXD8 |
| ENSG00000134769 | -2.582128781 | 6.81E-06 | DTNA |
| ENSG00000156113 | -2.559606256 | 0.001963339 | KCNMA1 |
| ENSG00000108691 | -2.492618661 | 0.004180812 | CCL2 |
| ENSG00000169403 | -2.363732454 | 0.004317176 | PTAFR |
| ENSG00000176697 | -2.318649475 | 0.032918323 | BDNF |
| ENSG00000165194 | -2.21400394 | 0.056586644 | PCDH19 |
| ENSG00000229140 | -2.170494718 | 0.004604894 | CCDC26 |
| ENSG00000151150 | -2.031678566 | 0.024312339 | ANK3 |
| ENSG00000125378 | -1.956346285 | 0.040730812 | BMP4 |
| ENSG00000126709 | -1.923756964 | 0.028211854 | IFI6 |
| ENSG00000258998 | -1.917024488 | 0.036925242 | LINC02302 |
| ENSG00000177098 | -1.897216786 | 0.002776602 | SCN4B |
| ENSG00000196754 | -1.747167305 | 0.000877016 | S100A2 |


| ENSG00000164076 | -1.745071635 | 0.002015404 | CAMKV |
| :---: | :---: | :---: | :---: |
| ENSG00000279035 | -1.686787075 | 0.041381165 | AC022211.4 |
| ENSG00000185614 | -1.530634621 | 0.011227782 | FAM212A |
| ENSG00000283498 | -1.49198065 | 0.000717745 | MIR1244-2 |
| ENSG00000089558 | -1.460050653 | 0.022103622 | KCNH4 |
| ENSG00000089101 | -1.439892214 | 0.027860655 | CFAP61 |
| ENSG00000260589 | -1.398488937 | 0.056888974 | STAM-AS1 |
| ENSG00000230641 | -1.351278924 | 0.048080593 | USP12-AS2 |
| ENSG00000283429 | -1.333579121 | 0.043031205 | MIR1244-3 |
| ENSG00000276529 | -1.328376685 | 0.001638667 | AP001505.1 |
| ENSG00000203724 | -1.32159214 | 0.000723491 | C1orf53 |
| ENSG00000263020 | -1.269534609 | 0.011121047 | AL662899.2 |
| ENSG00000279528 | -1.224019589 | 0.002973937 | AC115618.3 |
| ENSG00000248375 | -1.213220241 | 0.018546004 | AC104066.1 |
| ENSG00000265185 | -1.166058908 | 0.011948836 | SNORD3B-1 |
| ENSG00000003987 | -1.137551525 | 0.050524826 | MTMR7 |
| ENSG00000226950 | -1.116833043 | 0.000800023 | DANCR |
| ENSG00000260018 | -1.104655996 | 0.02520255 | AC040169.1 |
| ENSG00000092964 | -1.093145219 | 0.019373151 | DPYSL2 |
| ENSG00000126246 | -1.092518722 | 0.04565581 | IGFLR1 |
| ENSG00000107859 | -1.087496874 | 0.01455767 | PITX3 |
| ENSG00000255198 | -1.067834117 | 0.005761886 | SNHG9 |
| ENSG00000272455 | -1.064933451 | 0.001486175 | AL391244.3 |
| ENSG00000111424 | -1.044136999 | 0.000469702 | VDR |
| ENSG00000168061 | -1.035008668 | 0.001739821 | SAC3D1 |
| ENSG00000175602 | -1.025738245 | 0.003617853 | CCDC85B |
| ENSG00000260442 | -1.017804496 | 0.001338104 | ATP2A1-AS1 |
| ENSG00000107262 | -1.006786448 | 0.000690437 | BAG1 |
| ENSG00000007376 | -1.005266224 | 0.002377709 | RPUSD1 |
| ENSG00000213881 | -0.996036108 | 0.046654148 | NPM1P6 |
| ENSG00000254093 | -0.993932763 | 0.001661886 | PINX1 |
| ENSG00000260260 | -0.978434882 | 0.002970337 | SNHG19 |
| ENSG00000131153 | -0.972814099 | 0.002290589 | GINS2 |
| ENSG00000171227 | -0.969137418 | 0.059786461 | TMEM37 |
| ENSG00000071282 | -0.95023938 | 0.00274006 | LMCD1 |
| ENSG00000213397 | -0.931950638 | 0.013301532 | HAUS7 |
| ENSG00000129354 | -0.928249251 | 0.002500347 | AP1M2 |
| ENSG00000130489 | -0.923704762 | 0.009983089 | SCO2 |
| ENSG00000227496 | -0.914374095 | 0.025488142 | AC099066.2 |
| ENSG00000271855 | -0.911397536 | 0.035090616 | AC073195.1 |
| ENSG00000125637 | -0.907605036 | 0.039159417 | PSD4 |


| ENSG00000167900 | -0.907343384 | 0.003891341 | TK1 |
| :---: | :---: | :---: | :---: |
| ENSG00000099849 | -0.903681467 | 0.0085233 | RASSF7 |
| ENSG00000182154 | -0.903429323 | 0.003236082 | MRPL41 |
| ENSG00000266402 | -0.903076218 | 0.026883102 | SNHG25 |
| ENSG00000160345 | -0.900931694 | 0.011819059 | C9orf116 |
| ENSG00000184207 | -0.889665975 | 0.001176796 | PGP |
| ENSG00000179958 | -0.889068919 | 0.00374895 | DCTPP1 |
| ENSG00000132646 | -0.887384487 | 0.001417506 | PCNA |
| ENSG00000093009 | -0.88499003 | $9.98 \mathrm{E}-06$ | CDC45 |
| ENSG00000250479 | -0.878027031 | 0.00878476 | CHCHD10 |
| ENSG00000116649 | -0.872742505 | 0.01163949 | SRM |
| ENSG00000233016 | -0.870546804 | 0.002876245 | SNHG7 |
| ENSG00000101220 | -0.86852835 | 0.010667523 | C20orf27 |
| ENSG00000178821 | -0.864450926 | 0.026007304 | TMEM52 |
| ENSG00000101412 | -0.862541332 | 0.002427816 | E2F1 |
| ENSG00000183048 | -0.861294994 | 0.005679633 | SLC25A10 |
| ENSG00000114767 | -0.859169646 | 0.008907774 | RRP9 |
| ENSG00000169683 | -0.858633813 | 0.002907362 | LRRC45 |
| ENSG00000169689 | -0.857594203 | 0.014505668 | CENPX |
| ENSG00000115884 | -0.855264101 | 0.003415473 | SDC1 |
| ENSG00000125898 | -0.852340209 | 0.008517562 | FAM110A |
| ENSG00000161149 | -0.847836581 | 0.036185 | TUBA3FP |
| ENSG00000272853 | -0.845026325 | 0.052890445 | AC069544.1 |
| ENSG00000163888 | -0.844166804 | 0.031937611 | CAMK2N2 |
| ENSG00000166803 | -0.841476511 | 0.005276091 | PCLAF |
| ENSG00000173457 | -0.841326467 | 0.018913922 | PPP1R14B |
| ENSG00000135617 | -0.839755932 | 0.013425526 | PRADC1 |
| ENSG00000161981 | -0.835821045 | 0.021940762 | SNRNP25 |
| ENSG00000065057 | -0.83131832 | 0.004053331 | NTHL1 |
| ENSG00000141933 | -0.83024483 | 0.008652408 | TPGS1 |
| ENSG00000178896 | -0.828633503 | 0.006859233 | EXOSC4 |
| ENSG00000165724 | -0.828453823 | 0.003540719 | ZMYND19 |
| ENSG00000184990 | -0.824918011 | 0.0115306 | SIVA1 |
| ENSG00000034510 | -0.823872776 | 0.024006232 | TMSB10 |
| ENSG00000262814 | -0.821019822 | 0.013768472 | MRPL12 |
| ENSG00000278763 | -0.820081286 | 0.04527096 | FAM27B |
| ENSG00000273619 | -0.818602162 | 0.020857792 | AL121832.2 |
| ENSG00000162062 | -0.818189922 | 0.008094256 | TEDC2 |
| ENSG00000160072 | -0.816792118 | 0.019834765 | ATAD3B |
| ENSG00000158042 | -0.816642341 | 0.000763943 | MRPL17 |
| ENSG00000100297 | -0.809623779 | 0.001009722 | MCM5 |


| ENSG00000230330 | -0.808915188 | 0.014054058 | HMGN2P3 |
| :---: | :---: | :---: | :---: |
| ENSG00000242114 | -0.807033075 | 0.005332288 | MTFP1 |
| ENSG00000180822 | -0.807016433 | 0.00364543 | PSMG4 |
| ENSG00000167523 | -0.801748578 | 0.011819747 | SPATA33 |
| ENSG00000065328 | -0.800898175 | 0.000530781 | MCM10 |
| ENSG00000102977 | -0.798490853 | 0.005176254 | ACD |
| ENSG00000181418 | -0.797955897 | 0.000526159 | DDN |
| ENSG00000183527 | -0.795522678 | 0.002359399 | PSMG1 |
| ENSG00000130204 | -0.795322514 | 0.019090384 | TOMM40 |
| ENSG00000111640 | -0.793469197 | 0.005192934 | GAPDH |
| ENSG00000176058 | -0.792581425 | 0.003065547 | TPRN |
| ENSG00000167513 | -0.790312039 | 0.000834778 | CDT1 |
| ENSG00000100228 | -0.788288063 | 0.017531058 | RAB36 |
| ENSG00000103260 | -0.783472445 | 0.013906495 | METRN |
| ENSG00000100294 | -0.780926487 | 0.006055518 | MCAT |
| ENSG00000166166 | -0.776492056 | 0.021424732 | TRMT61A |
| ENSG00000169230 | -0.775589371 | 0.006309737 | PRELID1 |
| ENSG00000173465 | -0.772418112 | 0.016624319 | SSSCA1 |
| ENSG00000188368 | -0.76777195 | 0.043359268 | PRR19 |
| ENSG00000119139 | -0.767035058 | 0.030673895 | TJP2 |
| ENSG00000128626 | -0.762793449 | 0.028012761 | MRPS12 |
| ENSG00000102030 | -0.762446963 | 0.015301241 | NAA10 |
| ENSG00000224877 | -0.761878403 | 0.026477148 | NDUFAF8 |
| ENSG00000174744 | -0.761692111 | 0.013291585 | BRMS1 |
| ENSG00000204922 | -0.760776162 | 0.008872506 | UQCC3 |
| ENSG00000148362 | -0.759343595 | 0.02877764 | PAXX |
| ENSG00000168273 | -0.758188501 | 0.023321993 | SMIM4 |
| ENSG00000168496 | -0.75737519 | 0.021780472 | FEN1 |
| ENSG00000176124 | -0.756390108 | 0.002763899 | DLEU1 |
| ENSG00000226944 | -0.755207049 | 0.007989722 | AL031847.1 |
| ENSG00000025708 | -0.754208754 | 0.038378278 | TYMP |
| ENSG00000182575 | -0.753497059 | 0.029678473 | NXPH3 |
| ENSG00000205138 | -0.75251068 | 0.003098198 | SDHAF1 |
| ENSG00000277972 | -0.751345439 | 0.012802709 | CISD3 |
| ENSG00000247092 | -0.750891638 | 0.007059235 | SNHG10 |
| ENSG00000125520 | -0.749224548 | 0.009865902 | SLC2A4RG |
| ENSG00000102109 | -0.748860185 | 0.034503036 | PCSK1N |
| ENSG00000099795 | -0.748130448 | 0.015359168 | NDUFB7 |
| ENSG00000104524 | -0.747990998 | 0.014119677 | PYCR3 |
| ENSG00000168393 | -0.747801021 | 0.011817316 | DTYMK |
| ENSG00000105258 | -0.744335422 | 0.018063392 | POLR2I |


| ENSG00000169258 | -0.743244306 | 0.022093308 | GPRIN1 |
| :---: | :---: | :---: | :---: |
| ENSG00000122035 | -0.741369184 | 0.042531957 | RASL11A |
| ENSG00000177556 | -0.740950191 | 0.031147748 | ATOX1 |
| ENSG00000262919 | -0.740570271 | 0.016159593 | CCNQ |
| ENSG00000051180 | -0.740520039 | 0.000299021 | RAD51 |
| ENSG00000175756 | -0.740506488 | 0.010690224 | AURKAIP1 |
| ENSG00000148291 | -0.740366269 | 0.032932839 | SURF2 |
| ENSG00000112312 | -0.738297747 | 0.009611963 | GMNN |
| ENSG00000102103 | -0.738155773 | 0.019804215 | PQBP1 |
| ENSG00000085840 | -0.73805831 | 0.003879154 | ORC1 |
| ENSG00000188191 | -0.734091759 | 0.039314212 | PRKAR1B |
| ENSG00000165644 | -0.73163664 | 0.017724112 | COMTD1 |
| ENSG00000002330 | -0.729214439 | 0.020036429 | BAD |
| ENSG00000185347 | -0.728570611 | 0.009329757 | TEDC1 |
| ENSG00000079462 | -0.728311477 | 0.012919657 | PAFAH1B3 |
| ENSG00000180992 | -0.728003591 | 0.012635024 | MRPL14 |
| ENSG00000212123 | -0.723395856 | 0.049743673 | PRR22 |
| ENSG00000255650 | -0.722022435 | 0.011067284 | FAM222A-AS1 |
| ENSG00000174775 | -0.721972231 | 0.03724844 | HRAS |
| ENSG00000114395 | -0.71908769 | 0.018383692 | CYB561D2 |
| ENSG00000278619 | -0.717377856 | 0.011310652 | MRM1 |
| ENSG00000174516 | -0.71668781 | 0.0336014 | PELI3 |
| ENSG00000182809 | -0.716389011 | 0.014314321 | CRIP2 |
| ENSG00000174177 | -0.716290082 | 0.012638179 | CTU2 |
| ENSG00000187608 | -0.714752772 | 0.056632237 | ISG15 |
| ENSG00000115350 | -0.713846558 | 0.012383853 | POLE4 |
| ENSG00000130810 | -0.711463964 | 0.003891596 | PPAN |
| ENSG00000112759 | -0.711371703 | 0.017235225 | SLC29A1 |
| ENSG00000197785 | -0.710980803 | 0.009578599 | ATAD3A |
| ENSG00000112118 | -0.708030204 | 0.002220026 | MCM3 |
| ENSG00000160214 | -0.707520821 | 0.01317259 | RRP1 |
| ENSG00000169750 | -0.706031701 | 0.005650357 | RAC3 |
| ENSG00000258429 | -0.704538166 | 0.017833184 | PDF |
| ENSG00000184967 | -0.703946914 | 0.016880529 | NOC4L |
| ENSG00000130165 | -0.703725373 | 0.025602076 | ELOF1 |
| ENSG00000182173 | -0.703370325 | 0.007107115 | TSEN54 |
| ENSG00000174917 | -0.70296517 | 0.022082538 | C19orf70 |
| ENSG00000125817 | -0.702307831 | 0.003906632 | CENPB |
| ENSG00000105649 | -0.702044102 | 0.02593174 | RAB3A |
| ENSG00000197345 | -0.701331387 | 0.0156043 | MRPL21 |
| ENSG00000161888 | -0.699946252 | 0.002217131 | SPC24 |


| ENSG00000167515 | -0.699789201 | 0.016254268 | TRAPPC2L |
| :---: | :---: | :---: | :---: |
| ENSG00000105676 | -0.698028153 | 0.021869791 | ARMC6 |
| ENSG00000144354 | -0.697269357 | 0.002109187 | CDCA7 |
| ENSG00000267321 | -0.695424642 | 0.004859333 | LINC02001 |
| ENSG00000144485 | -0.69537958 | 0.008954231 | HES6 |
| ENSG00000214182 | -0.694938747 | 0.016587257 | PTMAP5 |
| ENSG00000196976 | -0.693879671 | 0.022586181 | LAGE3 |
| ENSG00000103254 | -0.690307038 | 0.030173354 | FAM173A |
| ENSG00000011332 | -0.689642932 | 0.01744827 | DPF1 |
| ENSG00000177971 | -0.687877196 | 0.014612754 | IMP3 |
| ENSG00000198618 | -0.687341866 | 0.012985039 | PPIAP22 |
| ENSG00000183011 | -0.685372501 | 0.027148612 | NAA38 |
| ENSG00000147257 | -0.685281724 | 0.026111206 | GPC3 |
| ENSG00000073111 | -0.684995471 | 0.010528115 | MCM2 |
| ENSG00000239672 | -0.680666907 | 0.024126906 | NME1 |
| ENSG00000142634 | -0.679928858 | 0.02377113 | EFHD2 |
| ENSG00000069011 | -0.675410547 | 0.023424995 | PITX1 |
| ENSG00000140323 | -0.675240691 | 0.026888219 | DISP2 |
| ENSG00000007968 | -0.674914674 | 0.000155303 | E2F2 |
| ENSG00000128951 | -0.674883737 | 0.008362428 | DUT |
| ENSG00000165502 | -0.673549645 | 0.015164963 | RPL36AL |
| ENSG00000178982 | -0.672887059 | 0.014770406 | EIF3K |
| ENSG00000150779 | -0.672865116 | 0.029717524 | TIMM8B |
| ENSG00000130159 | -0.672146773 | 0.005201174 | ECSIT |
| ENSG00000099256 | -0.671841516 | 0.003508155 | PRTFDC1 |
| ENSG00000185340 | -0.671165554 | 0.014065228 | GAS2L1 |
| ENSG00000233913 | -0.670229921 | 0.034531794 | RPL10P9 |
| ENSG00000186193 | -0.668716023 | 0.013603086 | SAPCD2 |
| ENSG00000081692 | -0.667586041 | 0.01144773 | JMJD4 |
| ENSG00000126267 | -0.667277694 | 0.025591353 | COX6B1 |
| ENSG00000127564 | -0.667260092 | 0.010188913 | PKMYT1 |
| ENSG00000117877 | -0.66725449 | 0.032851194 | CD3EAP |
| ENSG00000221983 | -0.667172615 | 0.015058385 | UBA52 |
| ENSG00000235173 | -0.666407628 | 0.032783235 | HGH1 |
| ENSG00000163584 | -0.665859181 | 0.023341744 | RPL22L1 |
| ENSG00000189159 | -0.665244402 | 0.025938021 | JPT1 |
| ENSG00000198736 | -0.665235473 | 0.036380493 | MSRB1 |
| ENSG00000172009 | -0.662816439 | 0.008932693 | THOP1 |
| ENSG00000152082 | -0.66266378 | 0.027736227 | MZT2B |
| ENSG00000137818 | -0.662533331 | 0.02569488 | RPLP1 |
| ENSG00000180198 | -0.661717869 | 0.010174793 | RCC1 |


| ENSG00000121680 | -0.660962392 | 0.021208238 | PEX16 |
| :---: | :---: | :---: | :---: |
| ENSG00000123144 | -0.659679914 | 0.015292051 | TRIR |
| ENSG00000034152 | -0.659667907 | 0.039387746 | MAP2K3 |
| ENSG00000130005 | -0.659044706 | 0.039074957 | GAMT |
| ENSG00000148399 | -0.658849237 | 0.011194786 | DPH7 |
| ENSG00000117395 | -0.657249553 | 0.025029102 | EBNA1BP2 |
| ENSG00000160949 | -0.657084217 | 0.00954031 | TONSL |
| ENSG00000166002 | -0.655926076 | 0.006874825 | SMCO4 |
| ENSG00000182512 | -0.655774907 | 0.018067962 | GLRX5 |
| ENSG00000105185 | -0.65351148 | 0.027486952 | PDCD5 |
| ENSG00000014138 | -0.652638684 | 0.011329931 | POLA2 |
| ENSG00000074071 | -0.651095618 | 0.032219012 | MRPS34 |
| ENSG00000204315 | -0.650621107 | 0.01211082 | FKBPL |
| ENSG00000161179 | -0.649715091 | 0.021987759 | YDJC |
| ENSG00000176101 | -0.647267405 | 0.023254636 | SSNA1 |
| ENSG00000163170 | -0.646790199 | 0.028640413 | BOLA3 |
| ENSG00000243364 | -0.646755165 | 0.024176418 | EFNA4 |
| ENSG00000111665 | -0.644372147 | 0.01263275 | CDCA3 |
| ENSG00000179431 | -0.643416322 | 0.009904062 | FJX1 |
| ENSG00000173272 | -0.643370636 | 0.024378931 | MZT2A |
| ENSG00000235919 | -0.642877743 | 0.028804906 | ASH1L-AS1 |
| ENSG00000275464 | -0.642549773 | 0.015058829 | FP565260.1 |
| ENSG00000106077 | -0.642061064 | 0.029712895 | ABHD11 |
| ENSG00000119333 | -0.642033055 | 0.012860247 | WDR34 |
| ENSG00000112576 | -0.641674995 | 0.040706181 | CCND3 |
| ENSG00000072506 | -0.641382528 | 0.026692786 | HSD17B10 |
| ENSG00000109062 | -0.639100209 | 0.009913887 | SLC9A3R1 |
| ENSG00000083845 | -0.638605055 | 0.011906134 | RPS5 |
| ENSG00000278615 | -0.638199013 | 0.007003597 | C11orf98 |
| ENSG00000023902 | -0.634580333 | 0.024521781 | PLEKHO1 |
| ENSG00000125901 | -0.634266042 | 0.019187618 | MRPS26 |
| ENSG00000160256 | -0.63366998 | 0.025036129 | FAM207A |
| ENSG00000185298 | -0.630843174 | 0.011092991 | CCDC137 |
| ENSG00000177600 | -0.630577614 | 0.023922766 | RPLP2 |
| ENSG00000103876 | -0.630535104 | 0.027595177 | FAH |
| ENSG00000105248 | -0.628091875 | 0.021004117 | CCDC94 |
| ENSG00000106246 | -0.628063161 | 0.012737417 | PTCD1 |
| ENSG00000065054 | -0.625821913 | 0.033360977 | SLC9A3R2 |
| ENSG00000165244 | -0.625172482 | 0.001245534 | ZNF367 |
| ENSG00000157870 | -0.624886043 | 0.019626563 | FAM213B |
| ENSG00000124074 | -0.624028945 | 0.009281075 | ENKD1 |


| ENSG00000100413 | -0.62365482 | 0.02235466 | POLR3H |
| :---: | :---: | :---: | :---: |
| ENSG00000242485 | -0.622860098 | 0.038521501 | MRPL20 |
| ENSG00000174547 | -0.622144082 | 0.028400278 | MRPL11 |
| ENSG00000162910 | -0.621441212 | 0.016205026 | MRPL55 |
| ENSG00000184986 | -0.62134126 | 0.040943212 | TMEM121 |
| ENSG00000160999 | -0.620953217 | 0.026850634 | SH2B2 |
| ENSG00000088727 | -0.620849953 | 0.007729425 | KIF9 |
| ENSG00000149806 | -0.619928801 | 0.024478882 | FAU |
| ENSG00000174109 | -0.619626671 | 0.011456431 | C16orf91 |
| ENSG00000276043 | -0.618150809 | 0.00940143 | UHRF1 |
| ENSG00000004864 | -0.617943019 | 0.023419074 | SLC25A13 |
| ENSG00000163528 | -0.617593951 | 0.018576168 | CHCHD4 |
| ENSG00000140365 | -0.616968313 | 0.050559473 | COMMD4 |
| ENSG00000182108 | -0.615026152 | 0.056526612 | DEXI |
| ENSG00000154328 | -0.614597269 | 0.002875542 | NEIL2 |
| ENSG00000112877 | -0.613918535 | 0.003387892 | CEP72 |
| ENSG00000049541 | -0.613916871 | 0.00810865 | RFC2 |
| ENSG00000123810 | -0.613765182 | 0.03399297 | B9D2 |
| ENSG00000152147 | -0.613578156 | 0.039112778 | GEMIN6 |
| ENSG00000103266 | -0.613111204 | 0.014286644 | STUB1 |
| ENSG00000164045 | -0.612832005 | 0.045291591 | CDC25A |
| ENSG00000197451 | -0.612573328 | 0.034424902 | HNRNPAB |
| ENSG00000105011 | -0.612373312 | 0.016235543 | ASF1B |
| ENSG00000101442 | -0.611227621 | 0.009025796 | ACTR5 |
| ENSG00000257727 | -0.610115971 | 0.045985216 | CNPY2 |
| ENSG00000239789 | -0.608631588 | 0.019612554 | MRPS17 |
| ENSG00000176890 | -0.606795146 | 0.010350355 | TYMS |
| ENSG00000155287 | -0.60675903 | 0.009095384 | SLC25A28 |
| ENSG00000111445 | -0.604283791 | 0.012290336 | RFC5 |
| ENSG00000142252 | -0.603642821 | 0.024641807 | GEMIN7 |
| ENSG00000109084 | -0.602481577 | 0.024066824 | TMEM97 |
| ENSG00000110107 | -0.601769353 | 0.029211722 | PRPF19 |
| ENSG00000100664 | -0.598924978 | 0.009967778 | EIF5 |
| ENSG00000165060 | -0.597650348 | 0.038013194 | FXN |
| ENSG00000073536 | -0.597095494 | 0.022209047 | NLE1 |
| ENSG00000160789 | -0.596957652 | 0.007583828 | LMNA |
| ENSG00000135587 | -0.596270095 | 0.021323576 | SMPD2 |
| ENSG00000196262 | -0.595887326 | 0.021929592 | PPIA |
| ENSG00000104889 | -0.59480288 | 0.015854458 | RNASEH2A |
| ENSG00000179115 | -0.594181137 | 0.037165707 | FARSA |
| ENSG00000167074 | -0.593560192 | 0.005556437 | TEF |


| ENSG00000136261 | -0.593476611 | 0.01915267 | BZW2 |
| :---: | :---: | :---: | :---: |
| ENSG00000083635 | -0.593321182 | 0.006209951 | NUFIP1 |
| ENSG00000170779 | -0.593207151 | 0.00734115 | CDCA4 |
| ENSG00000103415 | -0.593201305 | 0.021355106 | HMOX2 |
| ENSG00000122034 | -0.592950173 | 0.037209407 | GTF3A |
| ENSG00000104529 | -0.59155964 | 0.014113901 | EEF1D |
| ENSG00000111671 | -0.590680337 | 0.020529829 | SPSB2 |
| ENSG00000247626 | -0.590220514 | 0.021293654 | MARS2 |
| ENSG00000213619 | -0.589589517 | 0.024270618 | NDUFS3 |
| ENSG00000204220 | -0.589049532 | 0.031889725 | PFDN6 |
| ENSG00000145220 | -0.588943674 | 0.023080609 | LYAR |
| ENSG00000169738 | -0.588693787 | 0.039709938 | DCXR |
| ENSG00000170515 | -0.588632591 | 0.036255566 | PA2G4 |
| ENSG00000188976 | -0.586825929 | 0.021119212 | NOC2L |
| ENSG00000076248 | -0.586666428 | 0.019480715 | UNG |
| ENSG00000108826 | -0.58622593 | 0.053297564 | MRPL27 |
| ENSG00000122547 | -0.585910291 | 0.009590107 | EEPD1 |
| ENSG00000175279 | -0.585892573 | 0.056585183 | CENPS |
| ENSG00000213337 | -0.583018437 | 0.027163395 | ANKRD39 |
| ENSG00000164967 | -0.58219579 | 0.023305554 | RPP25L |
| ENSG00000108106 | -0.581856551 | 0.029574446 | UBE2S |
| ENSG00000132661 | -0.580175808 | 0.022866657 | NXT1 |
| ENSG00000178307 | -0.580142196 | 0.030024386 | TMEM11 |
| ENSG00000008324 | -0.579524926 | 0.02993233 | SS18L2 |
| ENSG00000141873 | -0.578926694 | 0.013416971 | SLC39A3 |
| ENSG00000114631 | -0.577319537 | 0.036252377 | PODXL2 |
| ENSG00000102760 | -0.576821221 | 0.018986069 | RGCC |
| ENSG00000130811 | -0.576768574 | 0.030843791 | EIF3G |
| ENSG00000171848 | -0.576112244 | 0.039126198 | RRM2 |
| ENSG00000177380 | -0.575318519 | 0.002228044 | PPFIA3 |
| ENSG00000224631 | -0.573457932 | 0.023881658 | RPS27AP16 |
| ENSG00000090316 | -0.573085752 | 0.02167792 | MAEA |
| ENSG00000164051 | -0.572052067 | 0.01377723 | CCDC51 |
| ENSG00000100726 | -0.571157452 | 0.059997378 | TELO2 |
| ENSG00000135245 | -0.571035759 | 0.010350931 | HILPDA |
| ENSG00000143333 | -0.570697798 | 0.021890875 | RGS16 |
| ENSG00000104738 | -0.568363761 | 0.042888612 | MCM4 |
| ENSG00000123297 | -0.568237285 | 0.016247405 | TSFM |
| ENSG00000133265 | -0.568012616 | 0.023230539 | HSPBP1 |
| ENSG00000124541 | -0.567818128 | 0.036482384 | RRP36 |
| ENSG00000156928 | -0.567762431 | 0.044870886 | MALSU1 |


| ENSG00000122140 | -0.566375245 | 0.0311237 | MRPS2 |
| :---: | :---: | :---: | :---: |
| ENSG00000108590 | -0.566085101 | 0.046983032 | MED31 |
| ENSG00000157014 | -0.566071459 | 0.047076328 | TATDN2 |
| ENSG00000107338 | -0.565233218 | 0.059456384 | SHB |
| ENSG00000134333 | -0.564073211 | 0.014920811 | LDHA |
| ENSG00000105671 | -0.564038916 | 0.034587687 | DDX49 |
| ENSG00000151131 | -0.563855898 | 0.036643277 | C12orf45 |
| ENSG00000166963 | -0.562812424 | 0.02579161 | MAP1A |
| ENSG00000153406 | -0.561971223 | 0.020014334 | NMRAL1 |
| ENSG00000123064 | -0.561864927 | 0.010970108 | DDX54 |
| ENSG00000149798 | -0.5616471 | 0.023446893 | CDC42EP2 |
| ENSG00000103152 | -0.561329453 | 0.054564433 | MPG |
| ENSG00000099385 | -0.559485963 | 0.039804086 | BCL7C |
| ENSG00000159259 | -0.559087153 | 0.031501833 | CHAF1B |
| ENSG00000122687 | -0.557845574 | 0.024726478 | MRM2 |
| ENSG00000163950 | -0.55669929 | 0.021602545 | SLBP |
| ENSG00000101945 | -0.556061818 | 0.026408271 | SUV39H1 |
| ENSG00000100479 | -0.554944647 | 0.01331996 | POLE2 |
| ENSG00000135723 | -0.554782679 | 0.0329233 | FHOD1 |
| ENSG00000060762 | -0.554329175 | 0.056839814 | MPC1 |
| ENSG00000175768 | -0.553623355 | 0.036139487 | TOMM5 |
| ENSG00000148335 | -0.553544742 | 0.058292412 | NTMT1 |
| ENSG00000074800 | -0.552854664 | 0.027050801 | ENO1 |
| ENSG00000166189 | -0.552106338 | 0.018664747 | HPS6 |
| ENSG00000164405 | -0.551948973 | 0.055257057 | UQCRQ |
| ENSG00000112039 | -0.55149303 | 0.019626638 | FANCE |
| ENSG00000177192 | -0.551143079 | 0.02341411 | PUS1 |
| ENSG00000205363 | -0.5505867 | 0.055914983 | C15orf59 |
| ENSG00000184281 | -0.549810661 | 0.04078363 | TSSC4 |
| ENSG00000147804 | -0.549763542 | 0.030095216 | SLC39A4 |
| ENSG00000130475 | -0.549749071 | 0.004221867 | FCHO1 |
| ENSG00000176720 | -0.549155847 | 0.02720099 | BOK |
| ENSG00000188243 | -0.54910551 | 0.049827347 | COMMD6 |
| ENSG00000178449 | -0.548789516 | 0.048572992 | COX14 |
| ENSG00000104522 | -0.546954109 | 0.050127749 | TSTA3 |
| ENSG00000170846 | -0.546952442 | 0.015188589 | AC093323.1 |
| ENSG00000197483 | -0.545703999 | 0.043774576 | ZNF628 |
| ENSG00000184436 | -0.545445176 | 0.019107777 | THAP7 |
| ENSG00000189046 | -0.545380303 | 0.028076552 | ALKBH2 |
| ENSG00000165912 | -0.544848614 | 0.022163059 | PACSIN3 |
| ENSG00000136463 | -0.544468402 | 0.020524249 | TACO1 |


| ENSG00000136840 | -0.544375484 | 0.037361751 | ST6GALNAC4 |
| :---: | :---: | :---: | :---: |
| ENSG00000160957 | -0.544257405 | 0.049896358 | RECQL4 |
| ENSG00000176410 | -0.543836042 | 0.012325983 | DNAJC30 |
| ENSG00000164081 | -0.543199598 | 0.027578416 | TEX264 |
| ENSG00000105202 | -0.541156312 | 0.014574656 | FBL |
| ENSG00000131148 | -0.540552395 | 0.054654407 | EMC8 |
| ENSG00000167114 | -0.540460001 | 0.043930357 | SLC27A4 |
| ENSG00000119185 | -0.53931524 | 0.047011643 | ITGB1BP1 |
| ENSG00000062582 | -0.538677491 | 0.02511184 | MRPS24 |
| ENSG00000115758 | -0.538663823 | 0.058695205 | ODC1 |
| ENSG00000101400 | -0.538177939 | 0.059648896 | SNTA1 |
| ENSG00000149925 | -0.537695154 | 0.041347541 | ALDOA |
| ENSG00000240972 | -0.537326537 | 0.043683004 | MIF |
| ENSG00000100911 | -0.535627636 | 0.044660952 | PSME2 |
| ENSG00000126215 | -0.535491995 | 0.043108583 | XRCC3 |
| ENSG00000115317 | -0.535020161 | 0.03232476 | HTRA2 |
| ENSG00000131351 | -0.534848366 | 0.016691752 | HAUS8 |
| ENSG00000105085 | -0.533764925 | 0.041622053 | MED26 |
| ENSG00000132323 | -0.533406024 | 0.044912226 | ILKAP |
| ENSG00000100300 | -0.533034695 | 0.039317994 | TSPO |
| ENSG00000160799 | -0.532961715 | 0.027555537 | CCDC12 |
| ENSG00000198258 | -0.531768301 | 0.046796661 | UBL5 |
| ENSG00000090971 | -0.531606968 | 0.020944177 | NAT14 |
| ENSG00000176014 | -0.531167419 | 0.051593575 | TUBB6 |
| ENSG00000137124 | -0.530058231 | 0.031827931 | ALDH1B1 |
| ENSG00000167747 | -0.52962834 | 0.021696619 | C19orf48 |
| ENSG00000125454 | -0.52952329 | 0.029673245 | SLC25A19 |
| ENSG00000172731 | -0.529430227 | 0.026685977 | LRRC20 |
| ENSG00000145284 | -0.528327675 | 0.041207468 | SCD5 |
| ENSG00000115539 | -0.527570376 | 0.045535754 | PDCL3 |
| ENSG00000162783 | -0.526660111 | 0.010771626 | IER5 |
| ENSG00000198873 | -0.526437962 | 0.051162811 | GRK5 |
| ENSG00000186283 | -0.525544349 | 0.023816411 | TOR3A |
| ENSG00000165916 | -0.52503017 | 0.05470075 | PSMC3 |
| ENSG00000114026 | -0.524909951 | 0.034723601 | OGG1 |
| ENSG00000217930 | -0.524486086 | 0.029684242 | PAM16 |
| ENSG00000130305 | -0.524296466 | 0.034392408 | NSUN5 |
| ENSG00000169598 | -0.523720627 | 0.024956382 | DFFB |
| ENSG00000163319 | -0.523720482 | 0.040210801 | MRPS18C |
| ENSG00000162076 | -0.522157214 | 0.030368905 | FLYWCH2 |
| ENSG00000173786 | -0.520619108 | 0.036750442 | CNP |


| ENSG00000016391 | -0.518749267 | 0.040111204 | CHDH |
| :---: | :---: | :---: | :---: |
| ENSG00000148187 | -0.518588727 | 0.021543931 | MRRF |
| ENSG00000108010 | -0.518562125 | 0.05953186 | GLRX3 |
| ENSG00000092470 | -0.518379803 | 0.002985787 | WDR76 |
| ENSG00000274897 | -0.517063593 | 0.059935287 | PANO1 |
| ENSG00000100605 | -0.516697301 | 0.014273898 | ITPK1 |
| ENSG00000100347 | -0.516588407 | 0.030666718 | SAMM50 |
| ENSG00000187514 | -0.516261272 | 0.040259138 | PTMA |
| ENSG00000117748 | -0.51543637 | 0.019933251 | RPA2 |
| ENSG00000111361 | -0.51491233 | 0.036244472 | EIF2B1 |
| ENSG00000109519 | -0.51477873 | 0.029253331 | GRPEL1 |
| ENSG00000141858 | -0.514459466 | 0.055590646 | SAMD1 |
| ENSG00000174371 | -0.513740724 | 0.017226749 | EXO1 |
| ENSG00000100138 | -0.513556348 | 0.036195065 | SNU13 |
| ENSG00000155366 | -0.513146181 | 0.043646979 | RHOC |
| ENSG00000165526 | -0.512991243 | 0.014501888 | RPUSD4 |
| ENSG00000272763 | -0.512561519 | 0.025185403 | AC103702.2 |
| ENSG00000155189 | -0.512099746 | 0.00722138 | AGPAT5 |
| ENSG00000125445 | -0.511567007 | 0.037149733 | MRPS7 |
| ENSG00000165609 | -0.510493276 | 0.024759756 | NUDT5 |
| ENSG00000183751 | -0.510435081 | 0.04056172 | TBL3 |
| ENSG00000160113 | -0.510029103 | 0.026171519 | NR2F6 |
| ENSG00000174173 | -0.508725125 | 0.027069902 | TRMT10C |
| ENSG00000185803 | -0.50785302 | 0.042268872 | SLC52A2 |
| ENSG00000107872 | -0.507761526 | 0.045473624 | FBXL15 |
| ENSG00000164032 | -0.507386578 | 0.034559401 | H2AFZ |
| ENSG00000127554 | -0.506451741 | 0.033160916 | GFER |
| ENSG00000103037 | -0.505647527 | 0.031110453 | SETD6 |
| ENSG00000171960 | -0.5039846 | 0.05198966 | PPIH |
| ENSG00000076003 | -0.503571362 | 0.004251833 | MCM6 |
| ENSG00000167508 | -0.503451578 | 0.058802998 | MVD |
| ENSG00000145912 | -0.502976255 | 0.038654275 | NHP2 |
| ENSG00000204356 | -0.502669793 | 0.03310398 | NELFE |
| ENSG00000172409 | -0.502537267 | 0.044857935 | CLP 1 |
| ENSG00000166171 | -0.502322567 | 0.037135848 | DPCD |
| ENSG00000164897 | -0.502201113 | 0.050442353 | TMUB1 |
| ENSG00000132434 | -0.501205825 | 0.04214379 | LANCL2 |
| ENSG00000152253 | -0.501006678 | 0.016880022 | SPC25 |
| ENSG00000135940 | -0.500032876 | 0.04895197 | COX5B |
| ENSG00000126088 | -0.499667788 | 0.030247347 | UROD |
| ENSG00000100401 | -0.498384592 | 0.036340151 | RANGAP1 |


| ENSG00000173914 | -0.498276699 | 0.025124256 | RBM4B |
| :---: | :---: | :---: | :---: |
| ENSG00000106009 | -0.497833284 | 0.030704737 | BRAT1 |
| ENSG00000164611 | -0.497542538 | 0.022857624 | PTTG1 |
| ENSG00000198056 | -0.496150294 | 0.015111984 | PRIM1 |
| ENSG00000160972 | -0.496127311 | 0.018411146 | PPP1R16A |
| ENSG00000100056 | -0.49588286 | 0.04969406 | ESS2 |
| ENSG00000006744 | -0.494720832 | 0.017534889 | ELAC2 |
| ENSG00000176946 | -0.494054567 | 0.041449056 | THAP4 |
| ENSG00000128294 | -0.493974517 | 0.046327826 | TPST2 |
| ENSG00000181026 | -0.493665416 | 0.030451572 | AEN |
| ENSG00000243678 | -0.493200464 | 0.03380673 | NME2 |
| ENSG00000241360 | -0.491881627 | 0.032562363 | PDXP |
| ENSG00000111669 | -0.491532148 | 0.032253739 | TPI1 |
| ENSG00000102178 | -0.491224254 | 0.011141253 | UBL4A |
| ENSG00000124588 | -0.491050646 | 0.059976405 | NQO2 |
| ENSG00000141076 | -0.49067742 | 0.045347087 | UTP4 |
| ENSG00000171861 | -0.488483748 | 0.015876099 | MRM3 |
| ENSG00000065427 | -0.486247241 | 0.025353163 | KARS |
| ENSG00000121211 | -0.48594216 | 0.046735219 | MND1 |
| ENSG00000184924 | -0.485822326 | 0.054069312 | PTRHD1 |
| ENSG00000280789 | -0.485818464 | 0.034112629 | PAGR1 |
| ENSG00000105364 | -0.484640364 | 0.058830711 | MRPL4 |
| ENSG00000111737 | -0.483698218 | 0.019358766 | RAB35 |
| ENSG00000205476 | -0.483001362 | 0.030528457 | CCDC85C |
| ENSG00000166133 | -0.482958553 | 0.054619972 | RPUSD2 |
| ENSG00000166851 | -0.482945128 | 0.053429599 | PLK1 |
| ENSG00000065268 | -0.482069837 | 0.048403342 | WDR18 |
| ENSG00000136908 | -0.481019171 | 0.054720347 | DPM2 |
| ENSG00000085999 | -0.480224858 | 0.02339609 | RAD54L |
| ENSG00000100364 | -0.480061378 | 0.039885786 | KIAA0930 |
| ENSG00000196372 | -0.479130544 | 0.019965233 | ASB13 |
| ENSG00000251669 | -0.479118583 | 0.02873467 | FAM86EP |
| ENSG00000165688 | -0.478836756 | 0.045180128 | PMPCA |
| ENSG00000146109 | -0.477208742 | 0.036373561 | ABT1 |
| ENSG00000005022 | -0.475459049 | 0.040392208 | SLC25A5 |
| ENSG00000077152 | -0.475159094 | 0.02385373 | UBE2T |
| ENSG00000198805 | -0.474167345 | 0.048381279 | PNP |
| ENSG00000147684 | -0.472215145 | 0.039209249 | NDUFB9 |
| ENSG00000173581 | -0.471526411 | 0.0477854 | CCDC106 |
| ENSG00000244187 | -0.471223864 | 0.051953703 | TMEM141 |
| ENSG00000117394 | -0.471159333 | 0.033435893 | SLC2A1 |


| ENSG00000147586 | -0.470897764 | 0.041980163 | MRPS28 |
| :---: | :---: | :---: | :---: |
| ENSG00000182541 | -0.470337018 | 0.050598703 | LIMK2 |
| ENSG00000168884 | -0.46979455 | 0.050123564 | TNIP2 |
| ENSG00000161714 | -0.469617692 | 0.031588375 | PLCD3 |
| ENSG00000165283 | -0.469610552 | 0.038989533 | STOML2 |
| ENSG00000129255 | -0.468945072 | 0.041204911 | MPDU1 |
| ENSG00000184857 | -0.468769669 | 0.042368664 | TMEM186 |
| ENSG00000119559 | -0.468162724 | 0.045694684 | C19orf25 |
| ENSG00000141698 | -0.468100914 | 0.050068349 | NT5C3B |
| ENSG00000175376 | -0.467724268 | 0.043952594 | EIF1AD |
| ENSG00000154978 | -0.466912192 | 0.029340559 | VOPP1 |
| ENSG00000196642 | -0.46684808 | 0.020594778 | RABL6 |
| ENSG00000073578 | -0.466721851 | 0.028744262 | SDHA |
| ENSG00000137656 | -0.46502709 | 0.032416314 | BUD13 |
| ENSG00000136270 | -0.46459973 | 0.026659046 | TBRG4 |
| ENSG00000164087 | -0.464545717 | 0.033667138 | POC1A |
| ENSG00000170855 | -0.464128461 | 0.057052751 | TRIAP1 |
| ENSG00000111057 | -0.463856828 | 0.055607189 | KRT18 |
| ENSG00000137054 | -0.463562461 | 0.008442949 | POLR1E |
| ENSG00000197562 | -0.463396923 | 0.026727919 | RAB40C |
| ENSG00000100749 | -0.462404289 | 0.055901416 | VRK1 |
| ENSG00000126453 | -0.461980983 | 0.045285839 | BCL2L12 |
| ENSG00000249353 | -0.461809611 | 0.057479307 | NPM1P27 |
| ENSG00000177954 | -0.461667613 | 0.05560185 | RPS27 |
| ENSG00000168569 | -0.461528717 | 0.048917965 | TMEM223 |
| ENSG00000169592 | -0.461378347 | 0.057179136 | INO80E |
| ENSG00000122873 | -0.461196938 | 0.050844117 | CISD1 |
| ENSG00000204209 | -0.460957045 | 0.025097234 | DAXX |
| ENSG00000154832 | -0.459871573 | 0.051312193 | CXXC1 |
| ENSG00000090621 | -0.459612692 | 0.010424067 | PABPC4 |
| ENSG00000116525 | -0.457728983 | 0.052942673 | TRIM62 |
| ENSG00000169221 | -0.457612266 | 0.045960794 | TBC1D10B |
| ENSG00000160439 | -0.457578418 | 0.023669413 | RDH13 |
| ENSG00000152240 | -0.457518901 | 0.027070253 | HAUS1 |
| ENSG00000132423 | -0.456600132 | 0.057519259 | COQ3 |
| ENSG00000165501 | -0.454703297 | 0.046924242 | LRR1 |
| ENSG00000171314 | -0.454397563 | 0.032845627 | PGAM1 |
| ENSG00000157927 | -0.453571132 | 0.020517044 | RADIL |
| ENSG00000145386 | -0.451780889 | 0.016784269 | CCNA2 |
| ENSG00000097021 | -0.451686269 | 0.057514658 | ACOT7 |
| ENSG00000116871 | -0.451377879 | 0.05386111 | MAP7D1 |


| ENSG00000235823 | -0.450582535 | 0.04139102 | OLMALINC |
| :---: | :---: | :---: | :---: |
| ENSG00000140280 | -0.449359297 | 0.035728738 | LYSMD2 |
| ENSG00000167625 | -0.449189621 | 0.050615487 | ZNF526 |
| ENSG00000161956 | -0.449000206 | 0.01790284 | SENP3 |
| ENSG00000104731 | -0.448542163 | 0.032168038 | KLHDC4 |
| ENSG00000198682 | -0.448189346 | 0.059179396 | PAPSS2 |
| ENSG00000089685 | -0.448050292 | 0.056072195 | BIRC5 |
| ENSG00000108384 | -0.447627466 | 0.052559833 | RAD51C |
| ENSG00000128944 | -0.447518904 | 0.055820802 | KNSTRN |
| ENSG00000136280 | -0.44646488 | 0.04888373 | CCM2 |
| ENSG00000069998 | -0.446439187 | 0.032501642 | HDHD5 |
| ENSG00000149636 | -0.445601277 | 0.029089335 | DSN1 |
| ENSG00000215021 | -0.444791981 | 0.043706718 | PHB2 |
| ENSG00000018699 | -0.443883627 | 0.006433328 | TTC27 |
| ENSG00000099364 | -0.441463803 | 0.030509361 | FBXL19 |
| ENSG00000100418 | -0.440918232 | 0.052407911 | DESI1 |
| ENSG00000163931 | -0.440642471 | 0.027314019 | TKT |
| ENSG00000077514 | -0.438486882 | 0.016695382 | POLD3 |
| ENSG00000004142 | -0.436460856 | 0.054633989 | POLDIP2 |
| ENSG00000127423 | -0.435875196 | 0.045063693 | AUNIP |
| ENSG00000198915 | -0.434315767 | 0.029123517 | RASGEF1A |
| ENSG00000087586 | -0.43347264 | 0.050766095 | AURKA |
| ENSG00000029993 | -0.433389032 | 0.046374128 | HMGB3 |
| ENSG00000167112 | -0.431005726 | 0.058236511 | TRUB2 |
| ENSG00000169021 | -0.430163752 | 0.05507416 | UQCRFS1 |
| ENSG00000122085 | -0.427527197 | 0.049324008 | MTERF4 |
| ENSG00000203993 | -0.425085809 | 0.040713926 | ARRDC1-AS1 |
| ENSG00000079999 | -0.422249783 | 0.040310717 | KEAP1 |
| ENSG00000074266 | -0.421793608 | 0.058446236 | EED |
| ENSG00000176490 | -0.421275931 | 0.037852258 | DIRAS1 |
| ENSG00000160753 | -0.419074389 | 0.058920676 | RUSC1 |
| ENSG00000141499 | -0.418576406 | 0.053317592 | WRAP53 |
| ENSG00000107672 | -0.417230902 | 0.038178378 | NSMCE4A |
| ENSG00000136807 | -0.416638462 | 0.048613282 | CDK9 |
| ENSG00000204568 | -0.415549064 | 0.030100716 | MRPS18B |
| ENSG00000067225 | -0.415516606 | 0.051027784 | PKM |
| ENSG00000071655 | -0.414887924 | 0.046770462 | MBD3 |
| ENSG00000151065 | -0.412912496 | 0.036531658 | DCP1B |
| ENSG00000124688 | -0.412169136 | 0.051225924 | MAD2L1BP |
| ENSG00000167792 | -0.409865183 | 0.040420627 | NDUFV1 |
| ENSG00000177733 | -0.409031362 | 0.022897807 | HNRNPA0 |


| ENSG00000141480 | -0.406282097 | 0.034517643 | ARRB2 |
| :---: | :---: | :---: | :---: |
| ENSG00000130713 | -0.404991013 | 0.056016203 | EXOSC2 |
| ENSG00000205208 | -0.404532602 | 0.054102312 | C4orf46 |
| ENSG00000147274 | -0.401844913 | 0.049530244 | RBMX |
| ENSG00000163156 | -0.399862147 | 0.055484673 | SCNM1 |
| ENSG00000130829 | -0.399613389 | 0.045163529 | DUSP9 |
| ENSG00000182307 | -0.399189031 | 0.035639519 | C8orf33 |
| ENSG00000188986 | -0.395987938 | 0.05292132 | NELFB |
| ENSG00000245848 | -0.395058672 | 0.050807582 | CEBPA |
| ENSG00000131470 | -0.394301025 | 0.051278666 | PSMC3IP |
| ENSG00000130787 | -0.393530594 | 0.04004313 | HIP1R |
| ENSG00000101181 | -0.391001274 | 0.038072448 | MTG2 |
| ENSG00000143179 | -0.390135028 | 0.019645567 | UCK2 |
| ENSG00000141098 | -0.389748595 | 0.049540071 | GFOD2 |
| ENSG00000204316 | -0.388501043 | 0.053384741 | MRPL38 |
| ENSG00000122783 | -0.388287602 | 0.056590641 | C7orf49 |
| ENSG00000178035 | -0.387643557 | 0.051419333 | IMPDH2 |
| ENSG00000173674 | -0.379246597 | 0.056032908 | EIF1AX |
| ENSG00000130299 | -0.374123666 | 0.03643089 | GTPBP3 |
| ENSG00000204590 | -0.371125655 | 0.035608949 | GNL1 |
| ENSG00000101856 | -0.368533506 | 0.054560515 | PGRMC1 |
| ENSG00000141560 | -0.367970721 | 0.056947312 | FN3KRP |
| ENSG00000154473 | -0.367509518 | 0.056010169 | BUB3 |
| ENSG00000144589 | -0.363683189 | 0.048761111 | STK11IP |
| ENSG00000169100 | -0.362941917 | 0.05768985 | SLC25A6 |
| ENSG00000273604 | -0.360287907 | 0.028195617 | EPOP |
| ENSG00000160917 | -0.351688395 | 0.046335822 | CPSF4 |
| ENSG00000266962 | -0.348591457 | 0.047989653 | AC067852.2 |
| ENSG00000169515 | -0.347160566 | 0.034927327 | CCDC8 |
| ENSG00000214022 | -0.342713257 | 0.03343029 | REPIN1 |
| ENSG00000147548 | 0.334941625 | 0.059540483 | NSD3 |
| ENSG00000221978 | 0.339033577 | 0.052657146 | CCNL2 |
| ENSG00000072778 | 0.344292865 | 0.05232331 | ACADVL |
| ENSG00000149577 | 0.352379381 | 0.0502476 | SIDT2 |
| ENSG00000162298 | 0.366110125 | 0.041277629 | SYVN1 |
| ENSG00000070214 | 0.370123996 | 0.044726892 | SLC44A1 |
| ENSG00000163660 | 0.374749867 | 0.052671788 | CCNL1 |
| ENSG00000151148 | 0.379102953 | 0.043623462 | UBE3B |
| ENSG00000014824 | 0.380114434 | 0.029642849 | SLC30A9 |
| ENSG00000122218 | 0.382342203 | 0.058906221 | COPA |
| ENSG00000137845 | 0.384433906 | 0.058259324 | ADAM10 |


| ENSG00000166532 | 0.388654959 | 0.052682227 | RIMKLB |
| :---: | :---: | :---: | :---: |
| ENSG00000169826 | 0.392512326 | 0.051144615 | CSGALNACT2 |
| ENSG00000096093 | 0.404877908 | 0.047719342 | EFHC1 |
| ENSG00000135870 | 0.408883893 | 0.055478541 | RC3H1 |
| ENSG00000164056 | 0.409410902 | 0.051532571 | SPRY1 |
| ENSG00000163125 | 0.411635296 | 0.057019122 | RPRD2 |
| ENSG00000153936 | 0.41293996 | 0.056413165 | HS2ST1 |
| ENSG00000144036 | 0.414795961 | 0.059472204 | EXOC6B |
| ENSG00000068912 | 0.420199415 | 0.050308194 | ERLEC1 |
| ENSG00000025796 | 0.421567505 | 0.047866446 | SEC63 |
| ENSG00000150630 | 0.423823095 | 0.03765834 | VEGFC |
| ENSG00000144115 | 0.423847625 | 0.045379093 | THNSL2 |
| ENSG00000121989 | 0.429124834 | 0.032912138 | ACVR2A |
| ENSG00000164066 | 0.429673263 | 0.043853596 | INTU |
| ENSG00000214050 | 0.433882068 | 0.046965322 | FBXO16 |
| ENSG00000164114 | 0.43428049 | 0.047886973 | MAP9 |
| ENSG00000157625 | 0.436266809 | 0.051903678 | TAB3 |
| ENSG00000166435 | 0.437382103 | 0.053061626 | XRRA1 |
| ENSG00000135596 | 0.438203133 | 0.020626008 | MICAL1 |
| ENSG00000075826 | 0.439068856 | 0.053875956 | SEC31B |
| ENSG00000139324 | 0.440003293 | 0.03119533 | TMTC3 |
| ENSG00000111897 | 0.441945769 | 0.051561884 | SERINC1 |
| ENSG00000052841 | 0.441964775 | 0.039518591 | TTC17 |
| ENSG00000091986 | 0.442926082 | 0.053036967 | CCDC80 |
| ENSG00000108509 | 0.44887468 | 0.054908086 | CAMTA2 |
| ENSG00000144724 | 0.453095058 | 0.037942842 | PTPRG |
| ENSG00000124171 | 0.456353512 | 0.038251254 | PARD6B |
| ENSG00000049618 | 0.457852451 | 0.049462117 | ARID1B |
| ENSG00000135862 | 0.458071013 | 0.04216287 | LAMC1 |
| ENSG00000156140 | 0.459191387 | 0.04237787 | ADAMTS3 |
| ENSG00000032219 | 0.460584697 | 0.057329492 | ARID4A |
| ENSG00000075151 | 0.462952915 | 0.046890477 | EIF4G3 |
| ENSG00000085788 | 0.465547103 | 0.042307893 | DDHD2 |
| ENSG00000000971 | 0.46711537 | 0.041416647 | CFH |
| ENSG00000135677 | 0.468971614 | 0.030662719 | GNS |
| ENSG00000154654 | 0.469015455 | 0.043839312 | NCAM2 |
| ENSG00000095397 | 0.469270804 | 0.019135453 | WHRN |
| ENSG00000164307 | 0.470328727 | 0.0229597 | ERAP1 |
| ENSG00000160445 | 0.474105726 | 0.043734588 | ZER1 |
| ENSG00000072135 | 0.475633108 | 0.033877164 | PTPN18 |
| ENSG00000009413 | 0.477274229 | 0.053065297 | REV3L |


| ENSG00000145246 | 0.478996636 | 0.03708296 | ATP10D |
| :---: | :---: | :---: | :---: |
| ENSG00000113369 | 0.479851821 | 0.019629152 | ARRDC3 |
| ENSG00000139117 | 0.480564042 | 0.028585741 | CPNE8 |
| ENSG00000174749 | 0.483371907 | 0.056466537 | FAM241A |
| ENSG00000168172 | 0.484128873 | 0.025434913 | HOOK3 |
| ENSG00000145147 | 0.484422229 | 0.051465793 | SLIT2 |
| ENSG00000091136 | 0.489102297 | 0.045399806 | LAMB1 |
| ENSG00000154265 | 0.489453045 | 0.031605515 | ABCA5 |
| ENSG00000120519 | 0.490845669 | 0.058200295 | SLC10A7 |
| ENSG00000166340 | 0.50006034 | 0.002752532 | TPP1 |
| ENSG00000140398 | 0.502293705 | 0.034286659 | NEIL1 |
| ENSG00000068305 | 0.506649496 | 0.048279303 | MEF2A |
| ENSG00000112246 | 0.506847457 | 0.035066894 | SIM1 |
| ENSG00000085224 | 0.507552084 | 0.030887739 | ATRX |
| ENSG00000083799 | 0.508048632 | 0.029726866 | CYLD |
| ENSG00000156103 | 0.508334003 | 0.037685637 | MMP16 |
| ENSG00000169760 | 0.509659077 | 0.018124862 | NLGN1 |
| ENSG00000054983 | 0.512772713 | 0.059537404 | GALC |
| ENSG00000167785 | 0.513083245 | 0.028557667 | ZNF558 |
| ENSG00000172869 | 0.513732615 | 0.027171931 | DMXL1 |
| ENSG00000164603 | 0.514052097 | 0.045154831 | BMT2 |
| ENSG00000234745 | 0.517271609 | 0.003440703 | HLA-B |
| ENSG00000083097 | 0.51738587 | 0.037921495 | DOPEY1 |
| ENSG00000168772 | 0.517810887 | 0.033063498 | CXXC4 |
| ENSG00000131374 | 0.521205884 | 0.020035981 | TBC1D5 |
| ENSG00000146587 | 0.522051419 | 0.034945666 | RBAK |
| ENSG00000198380 | 0.523661422 | 0.029371436 | GFPT1 |
| ENSG00000149231 | 0.524665742 | 0.027502657 | CCDC82 |
| ENSG00000136021 | 0.527808048 | 0.028347983 | SCYL2 |
| ENSG00000055609 | 0.528542492 | 0.057019001 | KMT2C |
| ENSG00000112773 | 0.528927948 | 0.040107503 | FAM46A |
| ENSG00000117228 | 0.529863925 | 0.033079157 | GBP1 |
| ENSG00000104133 | 0.531682624 | 0.015260111 | SPG11 |
| ENSG00000168152 | 0.53249455 | 0.047173565 | THAP9 |
| ENSG00000154642 | 0.53599453 | 0.053418549 | C21orf91 |
| ENSG00000256223 | 0.538681837 | 0.028144445 | ZNF10 |
| ENSG00000138834 | 0.539294411 | 0.04627229 | MAPK8IP3 |
| ENSG00000087074 | 0.540691521 | 0.034735885 | PPP1R15A |
| ENSG00000092439 | 0.541329501 | 0.037149447 | TRPM7 |
| ENSG00000181192 | 0.545238734 | 0.042532506 | DHTKD1 |
| ENSG00000263956 | 0.550796935 | 0.038178792 | NBPF11 |


| ENSG00000113638 | 0.551079894 | 0.024534257 | TTC33 |
| :---: | :---: | :---: | :---: |
| ENSG00000105426 | 0.551355599 | 0.0217375 | PTPRS |
| ENSG00000106460 | 0.552547799 | 0.017235085 | TMEM106B |
| ENSG00000088340 | 0.556357453 | 0.050889553 | FER1L4 |
| ENSG00000157796 | 0.556882589 | 0.021655764 | WDR19 |
| ENSG00000129003 | 0.558312201 | 0.024986682 | VPS13C |
| ENSG00000075420 | 0.559256333 | 0.032020035 | FNDC3B |
| ENSG00000137103 | 0.560059024 | 0.019193816 | TMEM8B |
| ENSG00000115137 | 0.560373534 | 0.026398186 | DNAJC27 |
| ENSG00000248334 | 0.560718723 | 0.05203814 | WHAMMP2 |
| ENSG00000256043 | 0.56233841 | 0.054054081 | CTSO |
| ENSG00000276141 | 0.563666045 | 0.057614313 | WHAMMP3 |
| ENSG00000149311 | 0.564339496 | 0.032100794 | ATM |
| ENSG00000123636 | 0.56443286 | 0.042811455 | BAZ2B |
| ENSG00000274349 | 0.564563285 | 0.043004756 | ZNF658 |
| ENSG00000158528 | 0.565981123 | 0.026317399 | PPP1R9A |
| ENSG00000224660 | 0.56684227 | 0.039568896 | SH3BP5-AS1 |
| ENSG00000206538 | 0.566889791 | 0.059943767 | VGLL3 |
| ENSG00000172638 | 0.567596119 | 0.002326972 | EFEMP2 |
| ENSG00000196712 | 0.567612907 | 0.03891584 | NF1 |
| ENSG00000188554 | 0.570162073 | 0.032634448 | NBR1 |
| ENSG00000140199 | 0.57087321 | 0.036886798 | SLC12A6 |
| ENSG00000124508 | 0.572196145 | 0.026939956 | BTN2A2 |
| ENSG00000110841 | 0.572976777 | 0.040330206 | PPFIBP1 |
| ENSG00000152582 | 0.573993968 | 0.031881618 | SPEF2 |
| ENSG00000128881 | 0.576252318 | 0.038094708 | TTBK2 |
| ENSG00000179912 | 0.57638654 | 0.025684088 | R3HDM2 |
| ENSG00000075213 | 0.57789991 | 0.024652866 | SEMA3A |
| ENSG00000119397 | 0.57835339 | 0.055270072 | CNTRL |
| ENSG00000234684 | 0.578550616 | 0.026486111 | SDCBP2-AS1 |
| ENSG00000254337 | 0.578839019 | 0.044209505 | AC083967.1 |
| ENSG00000185650 | 0.579503636 | 0.016818684 | ZFP36L1 |
| ENSG00000051108 | 0.579917419 | 0.002784872 | HERPUD1 |
| ENSG00000111653 | 0.580450729 | 0.054040604 | ING4 |
| ENSG00000186951 | 0.58113139 | 0.052684361 | PPARA |
| ENSG00000130751 | 0.581195024 | 0.0526768 | NPAS1 |
| ENSG00000139318 | 0.587314556 | 0.004832973 | DUSP6 |
| ENSG00000150093 | 0.590656876 | 0.037393642 | ITGB1 |
| ENSG00000174485 | 0.591482684 | 0.036038604 | DENND4A |
| ENSG00000117139 | 0.592175162 | 0.04495651 | KDM5B |
| ENSG00000261971 | 0.593109761 | 0.04210545 | MMP25-AS1 |


| ENSG00000185761 | 0.594820923 | 0.032910576 | ADAMTSL5 |
| :---: | :---: | :---: | :---: |
| ENSG00000154237 | 0.595759712 | 0.020178928 | LRRK1 |
| ENSG00000240024 | 0.597000352 | 0.025528365 | LINC00888 |
| ENSG00000165392 | 0.598411075 | 0.026302866 | WRN |
| ENSG00000213903 | 0.599405965 | 0.058590694 | LTB4R |
| ENSG00000229358 | 0.599933528 | 0.053322214 | DPY19L1P1 |
| ENSG00000141376 | 0.601912512 | 0.033723506 | BCAS3 |
| ENSG00000116668 | 0.604163957 | 0.023388868 | SWT1 |
| ENSG00000196967 | 0.605044354 | 0.014494335 | ZNF585A |
| ENSG00000166165 | 0.60626396 | 0.008442954 | CKB |
| ENSG00000149428 | 0.606995183 | 0.011437388 | HYOU1 |
| ENSG00000139182 | 0.612106006 | 0.024611018 | CLSTN3 |
| ENSG00000111961 | 0.612585482 | 0.051615834 | SASH1 |
| ENSG00000135828 | 0.612819244 | 0.013478516 | RNASEL |
| ENSG00000152409 | 0.613021196 | 0.038076892 | JMY |
| ENSG00000138468 | 0.613269118 | 0.032504037 | SENP7 |
| ENSG00000010704 | 0.615507638 | 0.030969117 | HFE |
| ENSG00000230551 | 0.61555699 | 0.049575883 | AC021078.1 |
| ENSG00000114270 | 0.6185724 | 0.044224544 | COL7A1 |
| ENSG00000238083 | 0.619602023 | 0.053924705 | LRRC37A2 |
| ENSG00000014123 | 0.620357687 | 0.018170809 | UFL1 |
| ENSG00000183571 | 0.620706838 | 0.044825744 | PGPEP1L |
| ENSG00000019991 | 0.622115623 | 0.023585252 | HGF |
| ENSG00000173209 | 0.623406134 | 0.016396276 | AHSA2P |
| ENSG00000111058 | 0.625287183 | 0.05805407 | ACSS3 |
| ENSG00000112972 | 0.633014256 | 0.004490273 | HMGCS1 |
| ENSG00000112812 | 0.635468042 | 0.051434982 | PRSS16 |
| ENSG00000187164 | 0.636753546 | 0.026696182 | SHTN1 |
| ENSG00000214021 | 0.63709534 | 0.018464167 | TTLL3 |
| ENSG00000114439 | 0.6393681 | 0.002961133 | BBX |
| ENSG00000243176 | 0.64044944 | 0.05725219 | AC092944.1 |
| ENSG00000089057 | 0.642722739 | 0.047704698 | SLC23A2 |
| ENSG00000026950 | 0.643838744 | 0.028972317 | BTN3A1 |
| ENSG00000133812 | 0.64625629 | 0.031334812 | SBF2 |
| ENSG00000177888 | 0.647839128 | 0.015293058 | ZBTB41 |
| ENSG00000147421 | 0.64935404 | 0.005726512 | HMBOX1 |
| ENSG00000151320 | 0.650445014 | 0.036266194 | AKAP6 |
| ENSG00000128342 | 0.654621469 | 0.029479829 | LIF |
| ENSG00000179979 | 0.655036143 | 0.005361578 | NA |
| ENSG00000189127 | 0.656542408 | 0.043960562 | ANKRD34B |
| ENSG00000134243 | 0.663268086 | 0.016482728 | SORT1 |


| ENSG00000114933 | 0.664713336 | 0.019930116 | INO80D |
| :---: | :---: | :---: | :---: |
| ENSG00000123836 | 0.66529037 | 0.022508142 | PFKFB2 |
| ENSG00000096654 | 0.665332028 | 0.035722206 | ZNF184 |
| ENSG00000123240 | 0.667104841 | 0.007805112 | OPTN |
| ENSG00000096872 | 0.667900538 | 0.017494492 | IFT74 |
| ENSG00000133110 | 0.672704648 | 0.045259269 | POSTN |
| ENSG00000160961 | 0.674298107 | 0.028231296 | ZNF333 |
| ENSG00000074181 | 0.674353382 | 0.008764011 | NOTCH3 |
| ENSG00000090530 | 0.674946003 | 0.00012468 | P3H2 |
| ENSG00000128016 | 0.675284804 | 0.018749477 | ZFP36 |
| ENSG00000138449 | 0.678313426 | 0.006063728 | SLC40A1 |
| ENSG00000153214 | 0.678711882 | 0.042262701 | TMEM87B |
| ENSG00000134698 | 0.681321756 | 0.017793678 | AGO4 |
| ENSG00000205517 | 0.681347799 | 0.00357781 | RGL3 |
| ENSG00000197959 | 0.683281152 | 0.017814518 | DNM3 |
| ENSG00000204410 | 0.68380727 | 0.037521228 | MSH5 |
| ENSG00000134294 | 0.684306227 | 0.01097861 | SLC38A2 |
| ENSG00000065809 | 0.684532296 | 0.041169728 | FAM107B |
| ENSG00000064989 | 0.686116717 | 0.013890053 | CALCRL |
| ENSG00000166762 | 0.686198611 | 0.051059434 | CATSPER2 |
| ENSG00000107864 | 0.686746717 | 0.048949126 | CPEB3 |
| ENSG00000152926 | 0.687830109 | 0.022286653 | ZNF117 |
| ENSG00000124406 | 0.692318067 | 0.045847117 | ATP8A1 |
| ENSG00000260404 | 0.692522505 | 0.055482738 | AC110079.1 |
| ENSG00000204084 | 0.694950231 | 0.022532623 | INPP5B |
| ENSG00000173230 | 0.696141673 | 0.012223725 | GOLGB1 |
| ENSG00000171988 | 0.696146995 | 0.021983276 | JMJD1C |
| ENSG00000135298 | 0.697044218 | 0.014554371 | ADGRB3 |
| ENSG00000267121 | 0.700434749 | 0.049047058 | AC008105.3 |
| ENSG00000113448 | 0.702090739 | 0.012677078 | PDE4D |
| ENSG00000067141 | 0.70433407 | 0.033846431 | NEO1 |
| ENSG00000219626 | 0.708438315 | 0.04872145 | FAM228B |
| ENSG00000255282 | 0.710488114 | 0.025310231 | WTAPP1 |
| ENSG00000188153 | 0.714277478 | 0.001366437 | COL4A5 |
| ENSG00000267002 | 0.714622406 | 0.005370777 | AC060780.1 |
| ENSG00000223760 | 0.715517094 | 0.026509883 | MED15P9 |
| ENSG00000130150 | 0.718890243 | 0.025765244 | MOSPD2 |
| ENSG00000153993 | 0.728821845 | 0.013804471 | SEMA3D |
| ENSG00000138688 | 0.729315961 | 0.022625403 | KIAA1109 |
| ENSG00000204248 | 0.732405414 | 0.031901653 | COL11A2 |
| ENSG00000168671 | 0.737646313 | 0.022462029 | UGT3A2 |


| ENSG00000249572 | 0.73866966 | 0.04385393 | AC034231.1 |
| :---: | :---: | :---: | :---: |
| ENSG00000267750 | 0.741898691 | 0.02186769 | RUNDC3A-AS1 |
| ENSG00000103599 | 0.743836643 | 0.016092817 | IQCH |
| ENSG00000178385 | 0.746172667 | 0.034803505 | PLEKHM3 |
| ENSG00000180318 | 0.747088317 | 0.043899475 | ALX1 |
| ENSG00000162687 | 0.747668977 | 0.013768972 | KCNT2 |
| ENSG00000147162 | 0.749390095 | 0.015839933 | OGT |
| ENSG00000168917 | 0.760286003 | 0.003209441 | SLC35G2 |
| ENSG00000143387 | 0.760334007 | 0.010885235 | CTSK |
| ENSG00000141068 | 0.760737404 | 0.015055692 | KSR1 |
| ENSG00000138448 | 0.764696939 | 0.013772323 | ITGAV |
| ENSG00000101104 | 0.765492118 | 0.007350375 | PABPC1L |
| ENSG00000198398 | 0.769848821 | 0.000927041 | TMEM207 |
| ENSG00000113916 | 0.772651768 | 0.013043381 | BCL6 |
| ENSG00000056558 | 0.772980592 | 0.05897388 | TRAF1 |
| ENSG00000150672 | 0.773176065 | 0.00205094 | DLG2 |
| ENSG00000221947 | 0.775019627 | 0.013576882 | XKR9 |
| ENSG00000173575 | 0.776604195 | 0.015192364 | CHD2 |
| ENSG00000179454 | 0.778708672 | 0.008287622 | KLHL28 |
| ENSG00000124613 | 0.7799677 | 0.031400029 | ZNF391 |
| ENSG00000134343 | 0.781191745 | 0.013637065 | ANO3 |
| ENSG00000198315 | 0.781857724 | 0.009393119 | ZKSCAN8 |
| ENSG00000155304 | 0.78324501 | 0.011839794 | HSPA13 |
| ENSG00000133794 | 0.787093003 | 0.045229606 | ARNTL |
| ENSG00000108797 | 0.794165875 | 0.003725513 | CNTNAP1 |
| ENSG00000058063 | 0.795789907 | 0.0061462 | ATP11B |
| ENSG00000071537 | 0.797012898 | 0.001290337 | SEL1L |
| ENSG00000073605 | 0.80179946 | 0.014961862 | GSDMB |
| ENSG00000055732 | 0.804058814 | 0.0117467 | MCOLN3 |
| ENSG00000167861 | 0.805288005 | 0.009501466 | HID1 |
| ENSG00000163703 | 0.814839613 | 0.005193125 | CRELD1 |
| ENSG00000118985 | 0.815125088 | 0.029984205 | ELL2 |
| ENSG00000167524 | 0.81783547 | 0.02772963 | SGK494 |
| ENSG00000171551 | 0.818683852 | 0.018506275 | ECEL1 |
| ENSG00000106261 | 0.819558193 | 0.000877249 | ZKSCAN1 |
| ENSG00000145476 | 0.820321572 | 0.015092748 | CYP4V2 |
| ENSG00000143248 | 0.822116442 | 0.02693845 | RGS5 |
| ENSG00000170381 | 0.825786543 | 0.00272721 | SEMA3E |
| ENSG00000137474 | 0.829301308 | 0.029765305 | MYO7A |
| ENSG00000144642 | 0.829734609 | 0.01414255 | RBMS3 |
| ENSG00000164331 | 0.833732291 | 0.022835431 | ANKRA2 |


| ENSG00000154310 | 0.834397874 | 0.024514885 | TNIK |
| :---: | :---: | :---: | :---: |
| ENSG00000167554 | 0.84208024 | 0.022017083 | ZNF610 |
| ENSG00000162738 | 0.842139946 | 0.001300263 | VANGL2 |
| ENSG00000230630 | 0.848128198 | 0.01302393 | DNM3OS |
| ENSG00000183044 | 0.849936798 | 0.048198477 | ABAT |
| ENSG00000164099 | 0.851292313 | 0.029392436 | PRSS12 |
| ENSG00000135749 | 0.85412703 | 0.053051435 | PCNX2 |
| ENSG00000170989 | 0.855281917 | 0.056211346 | S1PR1 |
| ENSG00000164938 | 0.855781673 | 0.018026609 | TP53INP1 |
| ENSG00000012822 | 0.856962001 | 0.015083428 | CALCOCO1 |
| ENSG00000146350 | 0.858268475 | 0.010222196 | TBC1D32 |
| ENSG00000126952 | 0.861359083 | 0.041455471 | NXF5 |
| ENSG00000204186 | 0.863306167 | 0.036871151 | ZDBF2 |
| ENSG00000179915 | 0.864897001 | 0.019254428 | NRXN1 |
| ENSG00000112414 | 0.866234384 | 0.003922542 | ADGRG6 |
| ENSG00000225465 | 0.870307543 | 0.035348331 | RFPL1S |
| ENSG00000106804 | 0.870555538 | 0.036740837 | C5 |
| ENSG00000186814 | 0.873500582 | 0.007226246 | ZSCAN30 |
| ENSG00000153822 | 0.879017068 | 0.018818771 | KCNJ16 |
| ENSG00000215068 | 0.880314585 | 0.015733955 | AC025171.2 |
| ENSG00000213222 | 0.881106558 | 0.03002092 | AC093724.1 |
| ENSG00000010310 | 0.881758952 | 0.031377186 | GIPR |
| ENSG00000187017 | 0.882423348 | 0.05207732 | ESPN |
| ENSG00000197565 | 0.885338297 | 0.049159123 | COL4A6 |
| ENSG00000168994 | 0.885528343 | 0.002635274 | PXDC1 |
| ENSG00000132003 | 0.885747782 | 0.034988071 | ZSWIM4 |
| ENSG00000163430 | 0.886275195 | 0.002050308 | FSTL1 |
| ENSG00000163975 | 0.898498424 | 0.001549747 | MELTF |
| ENSG00000254815 | 0.898981898 | 0.022809583 | AP006284.1 |
| ENSG00000188338 | 0.902105917 | 0.004277834 | SLC38A3 |
| ENSG00000158079 | 0.904338685 | 0.014544249 | PTPDC1 |
| ENSG00000198932 | 0.90557166 | 0.05103303 | GPRASP1 |
| ENSG00000186301 | 0.906207437 | 0.009193867 | MST1P2 |
| ENSG00000184925 | 0.911466898 | 0.033680167 | LCN12 |
| ENSG00000130768 | 0.912285117 | 0.04409817 | SMPDL3B |
| ENSG00000230258 | 0.913163454 | 0.026841321 | AC005208.1 |
| ENSG00000165028 | 0.914042974 | 0.041053455 | NIPSNAP3B |
| ENSG00000173531 | 0.917040065 | 0.031526618 | MST1 |
| ENSG00000182796 | 0.920672443 | 0.007466911 | TMEM198B |
| ENSG00000011028 | 0.922210966 | 0.009980083 | MRC2 |
| ENSG00000251562 | 0.931013333 | 0.005211097 | MALAT1 |


| ENSG00000088538 | 0.939565918 | 0.010464588 | DOCK3 |
| :---: | :---: | :---: | :---: |
| ENSG00000142798 | 0.940120404 | 0.023929613 | HSPG2 |
| ENSG00000260916 | 0.942358573 | 0.01273826 | CCPG1 |
| ENSG00000020181 | 0.943587239 | 0.019639572 | ADGRA2 |
| ENSG00000246859 | 0.944505666 | 0.030216847 | STARD4-AS1 |
| ENSG00000157657 | 0.944770415 | 0.011988924 | ZNF618 |
| ENSG00000132510 | 0.945028143 | 0.01288611 | KDM6B |
| ENSG00000251192 | 0.946174171 | 0.045156773 | ZNF674 |
| ENSG00000120899 | 0.947207905 | 0.01127593 | PTK2B |
| ENSG00000175161 | 0.951346614 | 0.006901308 | CADM2 |
| ENSG00000049656 | 0.951538223 | 0.017523032 | CLPTM1L |
| ENSG00000163431 | 0.95170649 | 0.016749241 | LMOD1 |
| ENSG00000145012 | 0.957823169 | 0.000119916 | LPP |
| ENSG00000104967 | 0.963616641 | 0.014088668 | NOVA2 |
| ENSG00000130653 | 0.972672673 | 0.031245347 | PNPLA7 |
| ENSG00000129595 | 0.972929494 | 0.044238008 | EPB41L4A |
| ENSG00000102908 | 0.972949336 | 0.022501188 | NFAT5 |
| ENSG00000144821 | 0.974486904 | 0.011350127 | MYH15 |
| ENSG00000116962 | 0.975270005 | 0.024414721 | NID1 |
| ENSG00000214456 | 0.976285852 | 0.056026728 | PLIN5 |
| ENSG00000056487 | 0.980250373 | 0.000764624 | PHF21B |
| ENSG00000188177 | 0.982774725 | 0.034166072 | ZC3H6 |
| ENSG00000273033 | 0.983237686 | 0.031935115 | LINC02035 |
| ENSG00000280355 | 0.985602738 | 0.043416577 | AL132656.4 |
| ENSG00000198939 | 0.988979679 | 0.039406678 | ZFP2 |
| ENSG00000253741 | 0.991283344 | 0.038457176 | AC108002.1 |
| ENSG00000107099 | 0.991768618 | 0.032542021 | DOCK8 |
| ENSG00000099365 | 0.995344683 | 0.015602655 | STX1B |
| ENSG00000138434 | 0.999500641 | 0.006363184 | SSFA2 |
| ENSG00000239467 | 1.010288846 | 0.022829112 | AC007405.3 |
| ENSG00000164342 | 1.011497222 | 0.004671047 | TLR3 |
| ENSG00000237125 | 1.011632413 | 0.035901002 | HAND2-AS1 |
| ENSG00000170345 | 1.012154918 | 0.008032985 | FOS |
| ENSG00000261360 | 1.014125347 | 0.046326727 | AC010491.1 |
| ENSG00000130147 | 1.018669562 | 0.021279387 | SH3BP4 |
| ENSG00000181804 | 1.018919104 | 0.007100628 | SLC9A9 |
| ENSG00000270728 | 1.02101433 | 0.055904674 | AL035413.2 |
| ENSG00000117525 | 1.021753202 | 0.038788134 | F3 |
| ENSG00000245532 | 1.02874106 | 0.014808961 | NEAT1 |
| ENSG00000197892 | 1.031785798 | 0.002723254 | KIF13B |
| ENSG00000204789 | 1.04221806 | 0.007020524 | ZNF204P |


| ENSG00000105856 | 1.042382081 | 0.013820449 | HBP1 |
| :---: | :---: | :---: | :---: |
| ENSG00000049239 | 1.043348496 | 0.013016197 | H6PD |
| ENSG00000230724 | 1.045692066 | 0.013677626 | LINC01001 |
| ENSG00000142173 | 1.053815393 | $9.60 \mathrm{E}-05$ | COL6A2 |
| ENSG00000226696 | 1.055568689 | 0.049248355 | LENG8-AS1 |
| ENSG00000166432 | 1.060777387 | 0.005919788 | ZMAT1 |
| ENSG00000135439 | 1.062407328 | 0.020140011 | AGAP2 |
| ENSG00000141505 | 1.063361439 | 0.008229012 | ASGR1 |
| ENSG00000250091 | 1.072609358 | 0.034325747 | DNAH10OS |
| ENSG00000225764 | 1.072869811 | 0.015891751 | P3H2-AS1 |
| ENSG00000028310 | 1.075552112 | 0.003208527 | BRD9 |
| ENSG00000251026 | 1.07573683 | 0.033535367 | LINC02163 |
| ENSG00000105696 | 1.083445607 | 0.000799053 | TMEM59L |
| ENSG00000131018 | 1.087860384 | 0.032084538 | SYNE1 |
| ENSG00000182257 | 1.088714075 | 0.050607317 | PRR34 |
| ENSG00000049192 | 1.08882399 | 0.053412334 | ADAMTS6 |
| ENSG00000175197 | 1.089877111 | 0.004451921 | DDIT3 |
| ENSG00000116544 | 1.098117187 | 0.044930656 | DLGAP3 |
| ENSG00000153157 | 1.100321017 | 0.021508132 | SYCP2L |
| ENSG00000006459 | 1.10083023 | 0.008870138 | KDM7A |
| ENSG00000178947 | 1.102645864 | 0.045224727 | SMIM10L2A |
| ENSG00000134548 | 1.106536585 | 0.044466376 | SPX |
| ENSG00000176244 | 1.10818141 | 0.042696584 | ACBD7 |
| ENSG00000141497 | 1.108601703 | 0.033594587 | ZMYND15 |
| ENSG00000132702 | 1.116408685 | 0.011316123 | HAPLN2 |
| ENSG00000204257 | 1.116483092 | 0.030259316 | HLA-DMA |
| ENSG00000274750 | 1.117693683 | 0.011737323 | HIST1H3E |
| ENSG00000258768 | 1.123214814 | 0.003881051 | AL356019.2 |
| ENSG00000064763 | 1.124420769 | 0.049701924 | FAR2 |
| ENSG00000074370 | 1.128927261 | 0.007342375 | ATP2A3 |
| ENSG00000167608 | 1.130094353 | 0.01466995 | TMC4 |
| ENSG00000259065 | 1.141480043 | 0.033161055 | AC005520.2 |
| ENSG00000104419 | 1.14226916 | 0.049726278 | NDRG1 |
| ENSG00000275395 | 1.146336267 | 0.00266357 | FCGBP |
| ENSG00000251136 | 1.151076682 | 0.003917247 | AF117829.1 |
| ENSG00000166323 | 1.152209772 | 0.013375057 | C11orf65 |
| ENSG00000248126 | 1.171661003 | 0.034346847 | AC091849.1 |
| ENSG00000163346 | 1.173609615 | 0.01099122 | PBXIP1 |
| ENSG00000181885 | 1.176784704 | 0.056170719 | CLDN7 |
| ENSG00000272140 | 1.179544097 | 0.050904724 | AC022400.5 |
| ENSG00000123384 | 1.184872196 | 0.006350287 | LRP1 |


| ENSG00000159208 | 1.187414212 | 0.020853302 | CIART |
| :---: | :---: | :---: | :---: |
| ENSG00000256673 | 1.200405738 | 0.031027204 | AC141557.1 |
| ENSG00000243224 | 1.202396246 | 0.045012313 | AC006252.1 |
| ENSG00000169894 | 1.203829212 | 0.024578805 | MUC3A |
| ENSG00000123870 | 1.206591614 | 0.025228389 | ZNF137P |
| ENSG00000115935 | 1.208549038 | 0.006685987 | WIPF1 |
| ENSG00000012171 | 1.213119934 | 0.015327328 | SEMA3B |
| ENSG00000076770 | 1.214678522 | 0.019767031 | MBNL3 |
| ENSG00000164088 | 1.219118297 | 0.014268903 | PPM1M |
| ENSG00000164327 | 1.222255892 | $2.08 \mathrm{E}-06$ | RICTOR |
| ENSG00000167103 | 1.225558734 | 0.049270259 | PIP5KL1 |
| ENSG00000196083 | 1.235493256 | $2.01 \mathrm{E}-06$ | IL1RAP |
| ENSG00000231551 | 1.237613134 | 0.030682044 | AC245100.4 |
| ENSG00000147642 | 1.249335729 | 0.046543299 | SYBU |
| ENSG00000135525 | 1.253501605 | 0.020805143 | MAP7 |
| ENSG00000133134 | 1.254386314 | 0.016229545 | BEX2 |
| ENSG00000246982 | 1.255814155 | 0.058580874 | Z84485.1 |
| ENSG00000174469 | 1.257621815 | 0.002969786 | CNTNAP2 |
| ENSG00000187984 | 1.266158529 | 0.028874354 | ANKRD19P |
| ENSG00000258334 | 1.278051481 | 0.038269367 | AC125611.4 |
| ENSG00000073331 | 1.283348547 | 0.017558763 | ALPK1 |
| ENSG00000226985 | 1.28949876 | 0.000613272 | LINC01203 |
| ENSG00000114796 | 1.293069522 | 0.004038015 | KLHL24 |
| ENSG00000119681 | 1.294598064 | 0.008072641 | LTBP2 |
| ENSG00000154760 | 1.295181966 | 0.040977128 | SLFN13 |
| ENSG00000164463 | 1.296171878 | 0.003937891 | CREBRF |
| ENSG00000175274 | 1.299944661 | 8.53E-06 | TP53I11 |
| ENSG00000163347 | 1.30647872 | $3.06 \mathrm{E}-06$ | CLDN1 |
| ENSG00000268812 | 1.306515008 | 0.012563673 | AC004264.1 |
| ENSG00000179855 | 1.307831325 | 0.004971011 | GIPC3 |
| ENSG00000253305 | 1.311403814 | 0.034936667 | PCDHGB6 |
| ENSG00000143469 | 1.313425098 | 0.038537503 | SYT14 |
| ENSG00000116191 | 1.316633348 | 0.000288062 | RALGPS2 |
| ENSG00000273333 | 1.320625508 | 0.053177843 | AL662884.1 |
| ENSG00000090539 | 1.321341376 | 0.015962343 | CHRD |
| ENSG00000170153 | 1.32502913 | 0.010021978 | RNF150 |
| ENSG00000113946 | 1.325209375 | $3.03 \mathrm{E}-07$ | CLDN16 |
| ENSG00000266714 | 1.325375392 | 0.013883868 | MYO15B |
| ENSG00000104848 | 1.333908095 | 0.021590947 | KCNA7 |
| ENSG00000105289 | 1.335340223 | 0.016958328 | TJP3 |
| ENSG00000102401 | 1.343422967 | 0.016948767 | ARMCX3 |


| ENSG00000170485 | 1.352937485 | 0.001808015 | NPAS2 |
| :---: | :---: | :---: | :---: |
| ENSG00000071242 | 1.354709406 | 0.014679859 | RPS6KA2 |
| ENSG00000139269 | 1.356328306 | 0.018677235 | INHBE |
| ENSG00000258183 | 1.363794306 | 0.011105074 | LINC02392 |
| ENSG00000179399 | 1.366442644 | 0.055193068 | GPC5 |
| ENSG00000177694 | 1.368977553 | 0.004966248 | NAALADL2 |
| ENSG00000087116 | 1.375646413 | 0.057578161 | ADAMTS2 |
| ENSG00000175155 | 1.393846458 | 0.012865719 | YPEL2 |
| ENSG00000105499 | 1.394129023 | 0.002128476 | PLA2G4C |
| ENSG00000196668 | 1.402389114 | 0.049182341 | LINC00173 |
| ENSG00000161381 | 1.402741799 | 0.045258128 | PLXDC1 |
| ENSG00000179388 | 1.412684385 | 0.00332184 | EGR3 |
| ENSG00000129757 | 1.412724332 | 0.010126247 | CDKN1C |
| ENSG00000189184 | 1.416556783 | 0.01127008 | PCDH18 |
| ENSG00000208024 | 1.420363599 | 0.032321482 | MIR199A2 |
| ENSG00000174567 | 1.420793789 | 0.020242725 | GOLT1A |
| ENSG00000236516 | 1.421121358 | 0.022461461 | KLF2P4 |
| ENSG00000210077 | 1.431655631 | $2.57 \mathrm{E}-05$ | MT-TV |
| ENSG00000210049 | 1.435961947 | 0.000406744 | MT-TF |
| ENSG00000225783 | 1.441228011 | 0.016232926 | MIAT |
| ENSG00000235703 | 1.445673724 | 0.016501703 | LINC00894 |
| ENSG00000268575 | 1.45890285 | 0.000561586 | AL031282.2 |
| ENSG00000187260 | 1.462617634 | 0.016180061 | WDR86 |
| ENSG00000116176 | 1.466730388 | 0.057719753 | TPSG1 |
| ENSG00000185291 | 1.467703274 | 0.042328003 | IL3RA |
| ENSG00000197594 | 1.468894718 | 0.011998192 | ENPP1 |
| ENSG00000166046 | 1.473206895 | 0.053352313 | TCP11L2 |
| ENSG00000116667 | 1.477270165 | 0.02772031 | C1orf21 |
| ENSG00000231196 | 1.489357627 | 0.015422114 | NA |
| ENSG00000010810 | 1.490321396 | 0.031167925 | FYN |
| ENSG00000136404 | 1.504275723 | 0.009199782 | TM6SF1 |
| ENSG00000226434 | 1.505904064 | $8.73 \mathrm{E}-05$ | AC135371.1 |
| ENSG00000226314 | 1.509093909 | 0.008492128 | ZNF192P1 |
| ENSG00000237094 | 1.537881479 | 0.038854678 | AL732372.2 |
| ENSG00000113504 | 1.546961033 | $3.88 \mathrm{E}-05$ | SLC12A7 |
| ENSG00000169836 | 1.55584733 | 0.047870673 | TACR3 |
| ENSG00000129946 | 1.56173328 | 0.010951352 | SHC2 |
| ENSG00000274292 | 1.561795051 | 0.03160132 | AC084018.2 |
| ENSG00000268204 | 1.567167631 | 0.042888355 | AC008763.1 |
| ENSG00000157601 | 1.578964338 | 0.00920965 | MX1 |
| ENSG00000227212 | 1.58692156 | 0.033935739 | PFN1P6 |


| ENSG00000231216 | 1.598055073 | 0.045037519 | AC004674.1 |
| :---: | :---: | :---: | :---: |
| ENSG00000169885 | 1.615371961 | 0.023561864 | CALML6 |
| ENSG00000178977 | 1.626364552 | 0.018140063 | LINC00324 |
| ENSG00000133246 | 1.626774608 | 0.023641088 | PRAM1 |
| ENSG00000135919 | 1.64557312 | 0.002543453 | SERPINE2 |
| ENSG00000224066 | 1.646839592 | 0.025022905 | AL049795.1 |
| ENSG00000254064 | 1.665016976 | 0.048143699 | AC105206.2 |
| ENSG00000272980 | 1.666085666 | 0.043155126 | Z94721.2 |
| ENSG00000172264 | 1.685531958 | 0.005228293 | MACROD2 |
| ENSG00000240990 | 1.696259864 | 0.042751663 | HOXA11-AS |
| ENSG00000071539 | 1.699022377 | 0.025868565 | TRIP13 |
| ENSG00000165731 | 1.702170844 | 0.030383657 | RET |
| ENSG00000224081 | 1.736454122 | 0.030113673 | SLC44A3-AS1 |
| ENSG00000262583 | 1.73807073 | 0.03049653 | AC009163.5 |
| ENSG00000246763 | 1.73891829 | 0.000251863 | RGMB-AS1 |
| ENSG00000203581 | 1.739140751 | 0.026112735 | OR1F2P |
| ENSG00000120327 | 1.766638996 | 0.003025222 | PCDHB14 |
| ENSG00000147003 | 1.766782496 | 0.000847594 | CLTRN |
| ENSG00000275778 | 1.767440294 | 0.04243603 | AC018630.2 |
| ENSG00000273018 | 1.798494062 | 0.044864317 | AC107983.2 |
| ENSG00000214279 | 1.803856886 | 0.004504476 | SCART1 |
| ENSG00000275832 | 1.825407498 | 0.026239918 | ARHGAP23 |
| ENSG00000164694 | 1.830880726 | 0.054503085 | FNDC1 |
| ENSG00000077264 | 1.855963981 | 0.014898748 | PAK3 |
| ENSG00000005187 | 1.872952928 | 0.030699239 | ACSM3 |
| ENSG00000170006 | 1.910131425 | 0.039088976 | TMEM154 |
| ENSG00000172232 | 1.927742275 | 0.01403867 | AZU1 |
| ENSG00000271755 | 1.936372319 | 0.009894464 | AL031118.1 |
| ENSG00000139515 | 1.959797571 | 0.007547559 | PDX1 |
| ENSG00000137285 | 1.962581914 | 0.007396532 | TUBB2B |
| ENSG00000111981 | 1.973097898 | 0.003771393 | ULBP1 |
| ENSG00000213999 | 1.974580236 | 0.024787379 | MEF2B |
| ENSG00000228626 | 1.976301475 | 0.01228753 | AC245100.3 |
| ENSG00000133401 | 1.984796775 | 0.000299548 | PDZD2 |
| ENSG00000197558 | 2.023012736 | 0.005029939 | SSPO |
| ENSG00000126733 | 2.049385406 | $1.22 \mathrm{E}-05$ | DACH2 |
| ENSG00000123612 | 2.082726114 | 0.045228053 | ACVR1C |
| ENSG00000196139 | 2.104002764 | 0.017476926 | AKR1C3 |
| ENSG00000222046 | 2.107791463 | 0.026384601 | DCDC2B |
| ENSG00000115339 | 2.109736621 | 0.011231217 | GALNT3 |
| ENSG00000106688 | 2.13669733 | $5.75 \mathrm{E}-07$ | SLC1A1 |


| ENSG00000182179 | 2.138134275 | 0.006129274 | UBA7 |
| :---: | :---: | :---: | :---: |
| ENSG00000277406 | 2.155976053 | 0.024609354 | AC245407.1 |
| ENSG00000266824 | 2.165014587 | 0.020678312 | AC129492.4 |
| ENSG00000188848 | 2.166448085 | $3.46 \mathrm{E}-11$ | BEND4 |
| ENSG00000231105 | 2.207867104 | 0.034400282 | AL031728.1 |
| ENSG00000138622 | 2.21078486 | 0.014122142 | HCN4 |
| ENSG00000130518 | 2.227089775 | 0.01815248 | IQCN |
| ENSG00000225148 | 2.234147338 | 0.011629325 | AL050338.1 |
| ENSG00000270935 | 2.297484553 | 0.020385229 | AL021808.1 |
| ENSG00000122574 | 2.37130455 | $6.02 \mathrm{E}-07$ | WIPF3 |
| ENSG00000053747 | 2.375107264 | 0.000762034 | LAMA3 |
| ENSG00000162344 | 2.425191007 | 0.049283565 | FGF19 |
| ENSG00000117226 | 2.433432366 | $5.05 \mathrm{E}-05$ | GBP3 |
| ENSG00000205890 | 2.517193079 | 0.026716282 | AC108134.1 |
| ENSG00000124126 | 2.538878694 | 8.10E-13 | PREX1 |
| ENSG00000145287 | 2.591642493 | 0.000124368 | PLAC8 |
| ENSG00000146592 | 2.633842496 | 0.01375421 | CREB5 |
| ENSG00000112175 | 2.713897228 | 0.000640323 | BMP5 |
| ENSG00000064042 | 2.733476906 | $1.99 \mathrm{E}-13$ | LIMCH1 |
| ENSG00000172403 | 2.745036698 | 0.054539439 | SYNPO2 |
| ENSG00000139910 | 2.757956951 | $4.46 \mathrm{E}-08$ | NOVA1 |
| ENSG00000113594 | 2.762157244 | $1.40 \mathrm{E}-07$ | LIFR |
| ENSG00000115232 | 2.773697717 | 0.005151233 | ITGA4 |
| ENSG00000150347 | 2.775363372 | 0.038663534 | ARID5B |
| ENSG00000279312 | 2.807805452 | 0.041666214 | AL136164.4 |
| ENSG00000154118 | 2.887139234 | $7.40 \mathrm{E}-07$ | JPH3 |
| ENSG00000085276 | 2.916175167 | 0.000347763 | MECOM |
| ENSG00000174640 | 3.051499285 | 5.08E-05 | SLCO2A1 |
| ENSG00000135116 | 3.081023117 | 0.008801698 | HRK |
| ENSG00000268869 | 3.087006691 | 0.029321578 | ESPNP |
| ENSG00000113361 | 3.421265843 | $3.55 \mathrm{E}-06$ | CDH6 |
| ENSG00000185008 | 3.448549593 | 0.000544494 | ROBO2 |
| ENSG00000131196 | 3.620469318 | 0.000673515 | NFATC1 |
| ENSG00000230798 | 3.654548595 | $5.57 \mathrm{E}-05$ | FOXD3-AS1 |
| ENSG00000151834 | 3.844344607 | 0.011552663 | GABRA2 |
| ENSG00000114279 | 3.920423579 | 0.000203465 | FGF12 |
| ENSG00000150722 | 4.253043369 | $7.15 \mathrm{E}-05$ | PPP1R1C |
| ENSG00000164236 | 4.556503793 | $9.70 \mathrm{E}-15$ | ANKRD33B |
| ENSG00000157110 | 4.920050075 | $1.54 \mathrm{E}-27$ | RBPMS |
| ENSG00000178162 | 5.29742507 | $9.62 \mathrm{E}-05$ | FAR2P2 |

Appendix D

Top canonical pathways generated with the unique and common deregulated RNAs in A2780CP20- RBPMSA and A2780CP20-RBPMSC.

| Canonical Pathways for A2780CP20-RBPMSA |  |  |  |
| :---: | :---: | :---: | :---: |
| Ingenuity Canonical Pathways | $\begin{gathered} \log 10 \\ (p \text {-Value }) \end{gathered}$ | Number of Genes | Genes |
| Cancer, Cardiovascular System Development and Function Organismal Development | $1.24 \times 10^{-03}$ | 31 | ADAM17, ANXA3, ARHGDIB, ATP5MC1, AXL, C3, CDH2, CLDN7, CXCL8, DDR2, E2F3, EGFR, GAS6, IFI44, IRF1, ITGB1, LGALS3, LOXL2, MMP1, MMP2, MMP9, MRPL36, NCOA7, PHGDH, PRSS8, PTGS2, SNAI1, SPINT1, TIMP2, TWIST1, UBE2L2 |
| Cell Cycle, Cellular Development, Cellular Growth, and Proliferation | $4.30 \times 10^{-03}$ | 25 | ARID1A, BMI1, BTG2, CAMKK2, CCND1, CCNE1, CCNE2, CDK2, CDK4, CDK6, CDKN1A, CDKN18, COL6A1, CYFIP2, DHRS3, GDF15, GGT7, HDAC5, ITGB4, PTPRR, RB1, SALL2, SIN3A, TERT, TP53 |
| Antimicrobial Response, Inflammatory Response, and Organismal Injury and Abnormality | $3.54 \times 10^{-02}$ | 35 | BBC3, CASP1, CCL26, CD70, CD83, CHIT1, COLEC12, <br> DDX58, DLX4, DUSP4, EPAS1, FGF2, HLA-A, ICAM1, <br> IFI27, IFI35, IFIH1, IFIT1, IFIT2, IL18, IL23A, IRAK2, IRF7, <br> ISG20, MAVS, NOS2, PMAIP1, RELB, SERPING1, <br> STING1, THBS1, TNFRSF11B, TP73, TXNIP, VEGFA |
| Cell Cycle, Gene expression, Cellular Growth, and Proliferation | $4.64 \times 10^{-02}$ | 18 | ATF3, BRCA1, CCNG2, CLSPN, CPM, ETV6, FOS, FOXL2, FOXO3, GNRHR, HERC2, JUN, JUNB, MAFF, NODAL, RAF1, SMAD4, SOX4 |
| Cellular Function and Maintenance | $4.64 \times 10^{-02}$ | 4 | AR, MAP2K6, MYOF, PGK1 |
| Canonical Pathways for A2780CP20-RBPMSC |  |  |  |
| Ingenuity Canonical Pathways | $\begin{gathered} \log 10 \\ (p \text {-Value }) \end{gathered}$ | Number of Genes | Genes |
| Cardiovascular System <br> Development and Function, Cell to Cell Signaling and Interaction, Cellular Movement | $6.64 \times 10^{-03}$ | 2 | CCN2, CLDN7 |
| Organ Morphology, <br> Reproductive System <br> Development and <br> Function, Tissue <br> Development | $4.56 \times 10^{-02}$ | 3 | CAV1, EGFR, ITGA2 |
| Antimicrobial Response, Cell Cycle and Survival | $3.15 \times 10^{-02}$ | 2 | BIRC3, PPKAR2B |
| Cancer, Cellular <br> Movement, Organismal Injury and Abnormality | $2.68 \times 10^{-03}$ | 2 | BDNF, TUG1 |
| Cell Morphology, Cell to Cell Signaling and Interaction, Cellular Development | $2.68 \times 10^{-03}$ | 2 | AKT1, TP63 |
| Common Canonical Pathways Between RBPMSA and RBPMSC |  |  |  |
| Ingenuity Canonical Pathways | $\begin{gathered} \log 10 \\ (p-\text { Value }) \end{gathered}$ | Number of Genes | Genes |
| Cancer, Cardiovascular <br> Disease Hematological System Development and Function | $4.67 \times 10^{-03}$ | 2 | CLDN7, F3 |
| Cell to Cell Signaling and Interaction, Cellular Development, Cellular growth, and Proliferation | $4.38 \times 10^{-03}$ | 2 | FOS, MECOM |
| Cancer, Cellular <br> Movement, Organismal Injury and Abnormality | $3.44 \times 10^{-02}$ | 2 | BDNF, TUG1 |
| Cell Death and Survival, Molecular Transport, Protein Trafficking | $2.82 \times 10^{-02}$ | 2 | ANKRD1, DDIT3 |
| Cancer, Cell to Cell Signaling and Interaction, Dermatological Disease and Conditions | $1.73 \times 10^{-03}$ | 2 | LRP1, PTPRR |

Appendix E

Proteins identified by IP/MS assay in A2780CP20-RBPMSA

| Gene Symbol | Ensembl Gene ID | Description |
| :---: | :---: | :---: |
| ACTB | ENSG00000075624 | Actin, cytoplasmic 1 [OS=Homo sapiens] |
| HSPA8 | ENSG00000109971 | Heat shock cognate 71 kDa protein [OS=Homo sapiens] |
| HSPA1B | ENSG00000204388; | Heat shock 70 kDa protein 1B [OS=Homo sapiens] |
| ALDOA | ENSG00000149925 | Fructose-bisphosphate aldolase A [OS=Homo sapiens] |
| MDH2 | ENSG00000146701 | Malate dehydrogenase, mitochondrial [OS=Homo sapiens] |
| TPI1 | ENSG00000111669 | Triosephosphate isomerase [OS=Homo sapiens] |
| GAPDH | ENSG00000111640 | Glyceraldehyde-3-phosphate dehydrogenase [OS=Homo sapiens] |
| ENO1 | ENSG00000074800 | Alpha-enolase [OS=Homo sapiens] |
| YWHAZ | ENSG00000164924 | 14-3-3 protein zeta/delta [OS=Homo sapiens] |
| PRDX2 | ENSG00000167815 | Peroxiredoxin-2 [OS=Homo sapiens] |
| EEF1A1 | ENSG00000156508 | Elongation factor 1-alpha 1 [OS=Homo sapiens] |
| HSPD1 | ENSG00000144381 | 60 kDa heat shock protein, mitochondrial [OS=Homo sapiens] |
| TKT | ENSG00000163931 | Transketolase [OS=Homo sapiens] |
| HSPA5 | ENSG00000044574 | Endoplasmic reticulum chaperone BiP [ $\mathrm{OS}=$ Homo sapiens] |
| RBPMS | ENSG00000157110 | RNA-binding protein with multiple splicing [OS=Homo sapiens] |
| PRDX1 | ENSG00000117450 | Peroxiredoxin-1 [OS=Homo sapiens] |
| PKM | ENSG00000067225 | Pyruvate kinase PKM [OS=Homo sapiens] |
| PGAM1 | ENSG00000171314 | Phosphoglycerate mutase 1 [OS=Homo sapiens] |
| ASS1 | ENSG00000130707 | Argininosuccinate synthase [OS=Homo sapiens] |
| FBP1 | ENSG00000165140 | Fructose-1,6-bisphosphatase 1 [OS=Homo sapiens] |
| HSPA9 | ENSG00000113013 | Stress-70 protein, mitochondrial [OS=Homo sapiens] |
| PPIB | ENSG00000166794 | Peptidyl-prolyl cis-trans isomerase B [OS=Homo sapiens] |
| ANXA2 | ENSG00000182718 | Annexin A2 [OS=Homo sapiens] |
| P4HB | ENSG00000185624 | Protein disulfide-isomerase [OS=Homo sapiens] |
| PDIA4 | ENSG00000155660 | Protein disulfide-isomerase A4 [OS=Homo sapiens] |
| RPSA | ENSG00000168028 | 40S ribosomal protein SA [OS=Homo sapiens] |
| NCL | ENSG00000115053 | Nucleolin [OS=Homo sapiens] |
| PDIA6 | ENSG00000143870 | Protein disulfide-isomerase A6 [OS=Homo sapiens] |
| NME1 | ENSG00000239672 | Nucleoside diphosphate kinase A [OS=Homo sapiens] |
| HRNR | ENSG00000197915 | Hornerin [OS=Homo sapiens] |
| HMGB1 | ENSG00000189403 | High mobility group protein B1 [OS=Homo sapiens] |
| IGKV2-29 | ENSG00000075624 | Immunoglobulin kappa variable 2-29 [OS=Homo sapiens] |
| MYH9 | ENSG00000100345 | Myosin-9 [OS=Homo sapiens] |
| GAPDH | ENSG00000111640 | Glyceraldehyde-3-phosphate dehydrogenase [OS=Homo sapiens] |
| ALDOA | ENSG00000149925 | Fructose-bisphosphate aldolase A [OS=Homo sapiens] |

## Proteins identified by IP/MS assay in A2780CP20-RBPMSC

| Gene Symbol | Ensembl Gene ID | Description |
| :---: | :---: | :---: |
| ACTB | ENSG00000075624 | Actin, cytoplasmic 1 [OS=Homo sapiens] |
| HSPA8 | ENSG00000109971 | Heat shock cognate 71 kDa protein [OS=Homo |
| sapiens] |  |  |

Proteins identified by IP/MS assay in A2780CP20-RBPMS-EV

| Gene Symbol | Ensembl Gene ID | Description |
| :---: | :---: | :---: |
| ACTB | ENSG00000075624 | Actin, cytoplasmic 1 [OS=Homo sapiens] |
| ACTA1 | ENSG00000143632 | Actin, alpha skeletal muscle [OS=Homo sapiens] |
| HSPA1B | ENSG00000204388; | Heat shock 70 kDa protein 1B [OS=Homo sapiens] |
| HSPA8 | ENSG00000109971 | Heat shock cognate 71 kDa protein [OS=Homo sapiens] |
| ENO1 | ENSG00000074800 | Alpha-enolase [OS=Homo sapiens] |
| MDH2 | ENSG00000146701 | Malate dehydrogenase, mitochondrial [OS=Homo sapiens] |
| ALDOA | ENSG00000149925 | Fructose-bisphosphate aldolase A [OS=Homo sapiens] |
| TPI1 | ENSG00000111669 | Triosephosphate isomerase [OS=Homo sapiens] |
| GAPDH | ENSG00000111640 | Glyceraldehyde-3-phosphate dehydrogenase [OS=Homo sapiens] |
| HSPD1 | ENSG00000144381 | 60 kDa heat shock protein, mitochondrial [OS=Homo sapiens] |
| PKM | ENSG00000067225 | Pyruvate kinase PKM [OS=Homo sapiens] |
| TKT | ENSG00000163931 | Transketolase [OS=Homo sapiens] |
| EEF1A1 | ENSG00000156508 | Elongation factor 1-alpha 1 [OS=Homo sapiens] |
| ACTN4 | ENSG00000130402; | Alpha-actinin-4 [OS=Homo sapiens] |
| HSPA5 | ENSG00000044574 | Endoplasmic reticulum chaperone BiP [OS=Homo sapiens] |
| EEF1A2 | ENSG00000101210 | Elongation factor 1-alpha 2 [OS=Homo sapiens] |
| YWHAZ | ENSG00000164924 | 14-3-3 protein zeta/delta [OS=Homo sapiens] |
| PRDX2 | ENSG00000167815 | Peroxiredoxin-2 [OS=Homo sapiens] |
| ASS1 | ENSG00000130707 | Argininosuccinate synthase [OS=Homo sapiens] |
| ACTN1 | ENSG00000072110 | Alpha-actinin-1 [OS=Homo sapiens] |
| ATP5F1B | ENSG00000110955 | ATP synthase subunit beta, mitochondrial [OS=Homo sapiens] |
| HSPA9 | ENSG00000113013 | Stress-70 protein, mitochondrial [OS=Homo sapiens] |
| NCL | ENSG00000115053 | Nucleolin [OS=Homo sapiens] |
| RPSA | ENSG00000168028 | 40S ribosomal protein SA [OS=Homo sapiens] |
| HMGB1 | ENSG00000189403 | High mobility group protein B1 [OS=Homo sapiens] |
| FBP1 | ENSG00000165140 | Fructose-1,6-bisphosphatase 1 [OS=Homo sapiens] |
| PRDX1 | ENSG00000117450 | Peroxiredoxin-1 [OS=Homo sapiens] |
| PDIA6 | ENSG00000143870 | Protein disulfide-isomerase A6 [OS=Homo sapiens] |
| ANXA2 | ENSG00000182718 | Annexin A2 [OS=Homo sapiens] |
| PGK1 | ENSG00000102144 | Phosphoglycerate kinase 1 [OS=Homo sapiens] |
| NME2 | ENSG00000243678 | Nucleoside diphosphate kinase B [OS=Homo sapiens] |
| PGAM1 | ENSG00000171314 | Phosphoglycerate mutase 1 [OS=Homo sapiens] |
| HNRNPA2B1 | ENSG00000122566 | Heterogeneous nuclear ribonucleoproteins A2/B1 <br> [OS=Homo sapiens] |
| PPIB | ENSG00000166794 | Peptidyl-prolyl cis-trans isomerase B [OS=Homo sapiens] |
| CFL1 | ENSG00000172757 | Cofilin-1 [OS=Homo sapiens] |
| PDIA4 | ENSG00000155660 | Protein disulfide-isomerase A4 [OS=Homo sapiens] |
| PFN1 | ENSG00000108518 | Profilin-1 [OS=Homo sapiens] |
| P4HB | ENSG00000185624 | Protein disulfide-isomerase [OS=Homo sapiens] |
| GANAB | ENSG00000089597 | Neutral alpha-glucosidase AB [OS=Homo sapiens] |
| AHCY | ENSG00000101444 | Adenosylhomocysteinase [OS=Homo sapiens] |


| LCP1 | ENSG00000136167 | Plastin-2 [OS=Homo sapiens] |
| :---: | :---: | :---: |
| NPM1 | ENSG00000181163 | Nucleophosmin [OS=Homo sapiens] |
| PLS3 | ENSG00000102024 | Plastin-3 [OS=Homo sapiens] |
| PEBP1 | ENSG000000089220 | Phosphatidylethanolamine-binding protein 1 [OS=Homo sapiens] |
| ECHS1 | ENSG00000127884 | Enoyl-CoA hydratase, mitochondrial [OS=Homo sapiens] |
| SFPQ | ENSG00000116560 | Splicing factor, proline- and glutamine-rich [OS=Homo sapiens] |
| PAICS | ENSG00000128050 | Multifunctional protein ADE2 [OS=Homo sapiens] |
| HRNR | ENSG00000197915 | Hornerin [OS=Homo sapiens] |
| ANXA5 | ENSG00000164111 | Annexin A5 [OS=Homo sapiens] |
| EFHD2 | ENSG00000142634 | EF-hand domain-containing protein D2 [OS=Homo sapiens] |
| LDHA | ENSG00000134333; | L-lactate dehydrogenase A chain [OS=Homo sapiens] |
| PLS1 | ENSG00000120756 | Plastin-1 [OS=Homo sapiens] |
| TALDO1 | ENSG00000177156 | Transaldolase [OS=Homo sapiens] |
| PDIA3 | ENSG00000167004 | Protein disulfide-isomerase A3 [OS=Homo sapiens] |
| DLD | ENSG00000091140 | Dihydrolipoyl dehydrogenase, mitochondrial [OS=Homo sapiens] |
| EIF5A | ENSG00000132507; ENSG00000288145 | Eukaryotic translation initiation factor 5A-1 <br> [OS=Homo sapiens] |
| IMPDH2 | ENSG00000178035 | Inosine-5'-monophosphate dehydrogenase 2 [OS=Homo sapiens] |
| EEF2 | ENSG00000167658 | Elongation factor 2 [OS=Homo sapiens] |
| BLVRB | ENSG000000900013 | Flavin reductase (NADPH) [OS=Homo sapiens] |
| GOT2 | ENSG00000125166 | Aspartate aminotransferase, mitochondrial [OS=Homo sapiens] |
| PA2G4 | ENSG00000170515 | Proliferation-associated protein 2G4 [OS=Homo sapiens] |
| PRDX6 | ENSG00000117592 | Peroxiredoxin-6 [OS=Homo sapiens] |
| CALR | ENSG00000179218 | Calreticulin [OS=Homo sapiens] |
| FLNA | ENSG00000196924 | Filamin-A [OS=Homo sapiens] |
| ACTB | ENSG00000075624 | Actin, cytoplasmic 1 [OS=Homo sapiens] |
| ACTA1 | ENSG00000143632 | Actin, alpha skeletal muscle [OS=Homo sapiens] |
| HSPA1B | ENSG00000204388; | Heat shock 70 kDa protein 1B [OS=Homo sapiens] |
| HSPA8 | ENSG00000109971 | Heat shock cognate 71 kDa protein [OS=Homo sapiens] |
| ENO1 | ENSG00000074800 | Alpha-enolase [OS=Homo sapiens] |
| MDH2 | ENSG00000146701 | Malate dehydrogenase, mitochondrial [OS=Homo sapiens] |
| ALDOA | ENSG00000149925 | Fructose-bisphosphate aldolase A [OS=Homo sapiens] |
| TPI1 | ENSG00000111669 | Triosephosphate isomerase [OS=Homo sapiens] |
| GAPDH | ENSG00000111640 | Glyceraldehyde-3-phosphate dehydrogenase [OS=Homo sapiens] |
| HSPD1 | ENSG00000144381 | 60 kDa heat shock protein, mitochondrial [OS=Homo sapiens] |
| PKM | ENSG00000067225 | Pyruvate kinase PKM [OS=Homo sapiens] |
| TKT | ENSG00000163931 | Transketolase [OS=Homo sapiens] |
| EEF1A1 | ENSG00000156508 | Elongation factor 1-alpha 1 [OS=Homo sapiens] |
| ACTN4 | ENSG00000130402; ENSG00000282844 | Alpha-actinin-4 [OS=Homo sapiens] |


| HSPA5 | ENSG000000044574 | Endoplasmic reticulum chaperone BiP [OS=Homo sapiens] |
| :---: | :---: | :---: |
| EEF1A2 | ENSG00000101210 | Elongation factor 1-alpha 2 [OS=Homo sapiens] |
| YWHAZ | ENSG00000164924 | 14-3-3 protein zeta/delta [OS=Homo sapiens] |
| PRDX2 | ENSG00000167815 | Peroxiredoxin-2 [OS=Homo sapiens] |
| ASS1 | ENSG00000130707 | Argininosuccinate synthase [OS=Homo sapiens] |
| ACTN1 | ENSG00000072110 | Alpha-actinin-1 [OS=Homo sapiens] |
| ATP5F1B | ENSG00000110955 | ATP synthase subunit beta, mitochondrial [OS=Homo sapiens] |
| HSPA9 | ENSG00000113013 | Stress-70 protein, mitochondrial [OS=Homo sapiens] |
| NCL | ENSG00000115053 | Nucleolin [OS=Homo sapiens] |
| RPSA | ENSG00000168028 | 40S ribosomal protein SA [OS=Homo sapiens] |
| HMGB1 | ENSG00000189403 | High mobility group protein B1 [OS=Homo sapiens] |
| FBP1 | ENSG00000165140 | Fructose-1,6-bisphosphatase 1 [OS=Homo sapiens] |
| PRDX1 | ENSG00000117450 | Peroxiredoxin-1 [OS=Homo sapiens] |
| PDIA6 | ENSG00000143870 | Protein disulfide-isomerase A6 [OS=Homo sapiens] |
| ANXA2 | ENSG00000182718 | Annexin A2 [OS=Homo sapiens] |
| PGK1 | ENSG00000102144 | Phosphoglycerate kinase 1 [OS=Homo sapiens] |
| NME2 | ENSG00000243678 | Nucleoside diphosphate kinase B [OS=Homo sapiens] |
| PGAM1 | ENSG00000171314 | Phosphoglycerate mutase 1 [OS=Homo sapiens] |
| HNRNPA2B1 | ENSG00000122566 | Heterogeneous nuclear ribonucleoproteins A2/B1 [OS=Homo sapiens] |
| PPIB | ENSG00000166794 | Peptidyl-prolyl cis-trans isomerase B [ $\mathrm{OS}=\mathrm{Homo}$ sapiens $]$ |
| CFL1 | ENSG00000172757 | Cofilin-1 [OS=Homo sapiens] |
| PDIA4 | ENSG00000155660 | Protein disulfide-isomerase A4 [OS=Homo sapiens] |
| PFN1 | ENSG00000108518 | Profilin-1 [OS=Homo sapiens] |
| P4HB | ENSG00000185624 | Protein disulfide-isomerase [OS=Homo sapiens] |
| GANAB | ENSG00000089597 | Neutral alpha-glucosidase AB [OS=Homo sapiens] |
| AHCY | ENSG00000101444 | Adenosylhomocysteinase [OS=Homo sapiens] |
| LCP1 | ENSG00000136167 | Plastin-2 [OS=Homo sapiens] |
| NPM1 | ENSG00000181163 | Nucleophosmin [OS=Homo sapiens] |
| PLS3 | ENSG00000102024 | Plastin-3 [OS=Homo sapiens] |
| PEBP1 | ENSG00000089220 | Phosphatidylethanolamine-binding protein 1 [OS=Homo sapiens] |
| ECHS1 | ENSG00000127884 | Enoyl-CoA hydratase, mitochondrial [OS=Homo sapiens] |
| SFPQ | ENSG00000116560 | Splicing factor, proline- and glutamine-rich [OS=Homo sapiens] |
| PAICS | ENSG00000128050 | Multifunctional protein ADE2 [OS=Homo sapiens] |
| HRNR | ENSG00000197915 | Hornerin [OS=Homo sapiens] |
| ANXA5 | ENSG00000164111 | Annexin A5 [OS=Homo sapiens] |
| EFHD2 | ENSG00000142634 | EF-hand domain-containing protein D2 [OS=Homo sapiens] |
| LDHA | ENSG00000134333 | L-lactate dehydrogenase A chain [OS=Homo sapiens] |
| PLS1 | ENSG00000120756 | Plastin-1 [OS=Homo sapiens] |
| TALDO1 | ENSG00000177156 | Transaldolase [OS=Homo sapiens] |
| PDIA3 | ENSG00000167004 | Protein disulfide-isomerase A3 [OS=Homo sapiens] |
| DLD | ENSG00000091140 | Dihydrolipoyl dehydrogenase, mitochondrial [OS=Homo sapiens] |
| EIF5A | ENSG00000132507; ENSG00000288145 | Eukaryotic translation initiation factor 5A-1 [OS=Homo sapiens] |
| IMPDH2 | ENSG00000178035 | Inosine-5'-monophosphate dehydrogenase 2 [OS=Homo sapiens] |


| EEF2 | ENSG00000167658 | Elongation factor 2 [OS=Homo sapiens] |
| :---: | :---: | :---: |
| BLVRB | ENSG00000090013 | Flavin reductase (NADPH) [OS=Homo sapiens] |
|  |  | Aspartate aminotransferase, mitochondrial [OS=Homo <br> sapiens] |
| GOT2 | ENSG00000125166 | Proliferation-associated protein 2G4 [OS=Homo <br> sapiens] |
| PA2G4 | ENSG00000170515 | Peroxiredoxin-6 [OS=Homo sapiens] |
| PRDX6 | ENSG00000117592 | Calreticulin [OS=Homo sapiens] |
| CALR | ENSG00000179218 | Filamin-A [OS=Homo sapiens] |
| FLNA | ENSG00000196924 | Actin, aortic smooth muscle [OS=Homo sapiens] |
| ACTA2 | ENSG00000107796 | Myosin-4 [OS=Homo sapiens] |
| MYH4 | ENSG00000264424 | Myosin-1 [OS=Homo sapiens] |
| MYH1 | ENSG00000109061 | Immunoglobulin kappa variable 2-40 [OS=Homo |
| sapiens] |  |  |

Appendix F

## Appendix G

## References

1. Torre, L.A., et al., Global Cancer Incidence and Mortality Rates and Trends--An Update. Cancer Epidemiol Biomarkers Prev, 2016. 25(1): p. 16-27.
2. Siegel, R.L., et al., Cancer statistics, 2022. CA Cancer J Clin, 2022. 72(1): p. 7-33.
3. Dutta, D.K. and I. Dutta, Origin of ovarian cancer: molecular profiling. J Obstet Gynaecol India, 2013. 63(3): p. 152-7.
4. Kurman, R.J. and M. Shih Ie, The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. Am J Pathol, 2016. 186(4): p. 733-47.
5. Prat, J., Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch, 2012. 460(3): p. 237-49.
6. van der Burg, M.E., Advanced ovarian cancer. Curr Treat Options Oncol, 2001. 2(2): p. 109-18.
7. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90.
8. team, T.A.C.S.m.a.e.c., Cancer Facts \& Figures 2022. American Cancer Society , 2022.
9. Matulonis, U.A., et al., Ovarian cancer. Nat Rev Dis Primers, 2016. 2: p. 16061.
10. Torre, L.A., et al., Ovarian cancer statistics, 2018. CA Cancer J Clin, 2018. 68(4): p. 284-296.
11. Institute, N.c., SEER statistics fact sheets: ovarian cancer. 2016.
12. Karst, A.M. and R. Drapkin, Ovarian cancer pathogenesis: a model in evolution. J Oncol, 2010. 2010: p. 932371.
13. Pearce, C.L., et al., Combined and interactive effects of environmental and GWASidentified risk factors in ovarian cancer. Cancer Epidemiol Biomarkers Prev, 2013. 22(5): p. 880-90.
14. Oswald, A.J. and C. Gourley, Low-grade epithelial ovarian cancer: a number of distinct clinical entities? Curr Opin Oncol, 2015. 27(5): p. 412-9.
15. Marchini, S., et al., Analysis of gene expression in early-stage ovarian cancer. Clin Cancer Res, 2008. 14(23): p. 7850-60.
16. Hart, W.R. and H.J. Norris, Borderline and malignant mucinous tumors of the ovary. Histologic criteria and clinical behavior. Cancer, 1973. 31(5): p. 1031-45.
17. Lack, E.E., R.H. Young, and R.E. Scully, Pathology of ovarian neoplasms in childhood and adolescence. Pathol Annu, 1992. 27 Pt 2: p. 281-356.
18. Seidman, J.D., et al., The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. Int J Gynecol Pathol, 2004. 23(1): p. 41-4.
19. Tonin, P.N., et al., A review of histopathological subtypes of ovarian cancer in BRCArelated French Canadian cancer families. Fam Cancer, 2007. 6(4): p. 491-7.
20. Mok, S.C., et al., Mutation of K-ras protooncogene in human ovarian epithelial tumors of borderline malignancy. Cancer Res, 1993. 53(7): p. 1489-92.
21. Schuijer, M. and E.M. Berns, TP53 and ovarian cancer. Hum Mutat, 2003. 21(3): p. 28591.
22. Olawaiye, A.B., et al., Utility of pre-operative serum CA-125 in the management of uterine papillary serous carcinoma. Gynecol Oncol, 2008. 110(3): p. 293-8.
23. O'Brien, M.E., et al., Clear cell epithelial ovarian cancer (mesonephroid): bad prognosis only in early stages. Gynecol Oncol, 1993. 49(2): p. 250-4.
24. Jenison, E.L., et al., Clear cell adenocarcinoma of the ovary: a clinical analysis and comparison with serous carcinoma. Gynecol Oncol, 1989. 32(1): p. 65-71.
25. Kennedy, A.W., et al., Survival probability in ovarian clear cell adenocarcinoma. Gynecol Oncol, 1999. 74(1): p. 108-14.
26. Ohkawa, K., et al., Clear cell carcinoma of the ovary: light and electron microscopic studies. Cancer, 1977. 40(6): p. 3019-29.
27. Recio, F.O., et al., Lack of improved survival plus increase in thromboembolic complications in patients with clear cell carcinoma of the ovary treated with platinum versus nonplatinum-based chemotherapy. Cancer, 1996. 78(10): p. 2157-63.
28. Zorn, K.K., et al., Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res, 2005. 11(18): p. 6422-30.
29. Fadare, O., et al., Precursors of endometrial clear cell carcinoma. Am J Surg Pathol, 2006. 30(12): p. 1519-30.
30. Creasman, W.T., et al., Prognosis of papillary serous, clear cell, and grade 3 stage I carcinoma of the endometrium. Gynecol Oncol, 2004. 95(3): p. 593-6.
31. Jones, M.R., et al., Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol Oncol, 2017. 147(3): p. 705-713.
32. Lauby-Secretan, B., et al., Body Fatness and Cancer--Viewpoint of the IARC Working Group. N Engl J Med, 2016. 375(8): p. 794-8.
33. Frezza, M., et al., Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des, 2010. 16(16): p. 1813-25.
34. Rosenberg, B., et al., Platinum compounds: a new class of potent antitumour agents. Nature, 1969. 222(5191): p. 385-6.
35. Kelland, L., The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer, 2007. 7(8): p. 573-84.
36. Shen, Y., et al., Mitochondrial localization of P-glycoprotein in the human breast cancer cell line MCF-7/ADM and its functional characterization. Oncol Rep, 2012. 27(5): p. 1535-40.
37. Lee, J., et al., Biochemical characterization of the human copper transporter Ctr1. J Biol Chem, 2002. 277(6): p. 4380-7.
38. Holzer, A.K., G.H. Manorek, and S.B. Howell, Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Mol Pharmacol, 2006. 70(4): p. 1390-4.
39. Dasari, S. and P.B. Tchounwou, Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol, 2014. 740: p. 364-78.
40. Ober, M. and S.J. Lippard, A 1,2-d $(G p G)$ cisplatin intrastrand cross-link influences the rotational and translational setting of DNA in nucleosomes. J Am Chem Soc, 2008. 130(9): p. 2851-61.
41. Kunkel, T.A. and D.A. Erie, DNA mismatch repair. Annu Rev Biochem, 2005. 74: p. 681-710.
42. Vitale, I., et al., Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol, 2011. 12(6): p. 385-92.
43. Damia, G., et al., Cisplatinum and taxol induce different patterns of p53 phosphorylation. Neoplasia, 2001. 3(1): p. 10-6.
44. Galluzzi, L., et al., Mitochondrial liaisons of p53. Antioxid Redox Signal, 2011. 15(6): p. 1691-714.
45. Yeh, P.Y., et al., Increase of the resistance of human cervical carcinoma cells to cisplatin by inhibition of the MEK to ERK signaling pathway partly via enhancement of anticancer drug-induced NF kappa B activation. Biochem Pharmacol, 2002. 63(8): p. 1423-30.
46. Wang, J., et al., Caspase-mediated cleavage of ATM during cisplatin-induced tubular cell apoptosis: inactivation of its kinase activity toward p53. Am J Physiol Renal Physiol, 2006. 291(6): p. F1300-7.
47. Pabla, N., et al., ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem, 2008. 283(10): p. 6572-83.
48. Meads, M.B., R.A. Gatenby, and W.S. Dalton, Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer, 2009. 9(9): p. 665-74.
49. Lippert, T.H., H.J. Ruoff, and M. Volm, Current status of methods to assess cancer drug resistance. Int J Med Sci, 2011. 8(3): p. 245-53.
50. O'Connor, D., et al., Infection-related mortality in children with acute lymphoblastic leukemia: an analysis of infectious deaths on UKALL2003. Blood, 2014. 124(7): p. 105661.
51. Dingemans, A.M., H.M. Pinedo, and G. Giaccone, Clinical resistance to topoisomerasetargeted drugs. Biochim Biophys Acta, 1998. 1400(1-3): p. 275-88.
52. Ellis, L.M. and D.J. Hicklin, Resistance to Targeted Therapies: Refining Anticancer Therapy in the Era of Molecular Oncology. Clin Cancer Res, 2009. 15(24): p. 7471-7478.
53. Mansoori, B., et al., The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull, 2017. 7(3): p. 339-348.
54. Kumar, M.S., et al., The GATA2 transcriptional network is requisite for RAS oncogenedriven non-small cell lung cancer. Cell, 2012. 149(3): p. 642-55.
55. Rosell, R., et al., Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med, 2009. 361(10): p. 958-67.
56. Yun, C.H., et al., The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A, 2008. 105(6): p. 2070-5.
57. Sasaki, T., et al., A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res, 2011. 71(18): p. 6051-60.
58. Engelman, J.A., et al., MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007. 316(5827): p. 1039-43.
59. Sos, M.L., et al., PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res, 2009. 69(8): p. 3256-61.
60. Chang, J.H., et al., The impact of a multidisciplinary breast cancer center on recommendations for patient management: the University of Pennsylvania experience. Cancer, 2001. 91(7): p. 1231-7.
61. Szakacs, G., et al., Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell, 2004. 6(2): p. 129-37.
62. Gottesman, M.M., T. Fojo, and S.E. Bates, Multidrug resistance in cancer: role of ATPdependent transporters. Nat Rev Cancer, 2002. 2(1): p. 48-58.
63. Longley, D.B. and P.G. Johnston, Molecular mechanisms of drug resistance. J Pathol, 2005. 205(2): p. 275-92.
64. Dean, M., A. Rzhetsky, and R. Allikmets, The human ATP-binding cassette (ABC) transporter superfamily. Genome Res, 2001. 11(7): p. 1156-66.
65. Yu, T., et al., MetaLnc9 Facilitates Lung Cancer Metastasis via a PGK1-Activated AKT/mTOR Pathway. Cancer Res, 2017. 77(21): p. 5782-5794.
66. Goldsmith, D.F., R.P. Ruble, and C.O. Klein, Comparative cancer potency for silica from extrapolations of human and animal findings. Scand J Work Environ Health, 1995. 21 Suppl 2: p. 104-7.
67. Seelig, A., P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Front Oncol, 2020. 10: p. 576559.
68. Man, R.J., et al., A patent review of RAF kinase inhibitors (2010-2018). Expert Opin Ther Pat, 2019. 29(9): p. 675-688.
69. Schinkel, A.H., P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev, 1999. 36(2-3): p. 179-194.
70. Ferreira, L.M. and M.A. Mostajo-Radji, How induced pluripotent stem cells are redefining personalized medicine. Gene, 2013. 520(1): p. 1-6.
71. Kuhn, E., R.J. Kurman, and I.M. Shih, Ovarian Cancer Is an Imported Disease: Fact or Fiction? Curr Obstet Gynecol Rep, 2012. 1(1): p. 1-9.
72. Kuhn, E., et al., Ovarian Brenner tumour: a morphologic and immunohistochemical analysis suggesting an origin from fallopian tube epithelium. Eur J Cancer, 2013. 49(18): p. 3839-49.
73. Domcke, S., et al., Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun, 2013. 4: p. 2126.
74. Indraccolo, S., et al., Establishment and characterization of xenografts and cancer cell cultures derived from BRCA1 -/- epithelial ovarian cancers. Eur J Cancer, 2006. 42(10): p. 1475-83.
75. Barretina, J., et al., The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012. 483(7391): p. 603-7.
76. Abaan, O.D., et al., The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res, 2013. 73(14): p. 4372-82.
77. Shepherd, T.G., et al., Primary culture of ovarian surface epithelial cells and ascitesderived ovarian cancer cells from patients. Nat Protoc, 2006. 1(6): p. 2643-9.
78. Theriault, B.L., et al., Establishment of primary cultures from ovarian tumor tissue and ascites fluid. Methods Mol Biol, 2013. 1049: p. 323-36.
79. Barua, A., et al., Histopathology of ovarian tumors in laying hens: a preclinical model of human ovarian cancer. Int J Gynecol Cancer, 2009. 19(4): p. 531-9.
80. Tillmann, T., K. Kamino, and U. Mohr, Incidence and spectrum of spontaneous neoplasms in male and female CBA/J mice. Exp Toxicol Pathol, 2000. 52(3): p. 221-5.
81. Cooper, T.K. and K.L. Gabrielson, Spontaneous lesions in the reproductive tract and mammary gland of female non-human primates. Birth Defects Res B Dev Reprod Toxicol, 2007. 80(2): p. 149-70.
82. Walsh, K.M. and J. Poteracki, Spontaneous neoplasms in control Wistar rats. Fundam Appl Toxicol, 1994. 22(1): p. 65-72.
83. Perets, R., et al., Transformation of the fallopian tube secretory epithelium leads to highgrade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell, 2013. 24(6): p. 751-65.
84. Sherman-Baust, C.A., et al., A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human high-grade serous carcinoma development. J Pathol, 2014. 233(3): p. 228-37.
85. Kim, J., et al., High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci U S A, 2012. 109(10): p. 3921-6.
86. Kuhn, E., et al., Current preclinical models of ovarian cancer. J Carcinog Mutagen, 2015. 6(2): p. 220.
87. Connolly, D.C. and H.H. Hensley, Xenograft and Transgenic Mouse Models of Epithelial Ovarian Cancer and Non Invasive Imaging Modalities to Monitor Ovarian Tumor Growth In situ -Applications in Evaluating Novel Therapeutic Agents. Curr Protoc Pharmacol, 2009. 45: p. 14 12 1-14 1226.
88. Fu, X. and R.M. Hoffman, Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res, 1993. 13(2): p. 283-6.
89. Verschraegen, C.F., et al., Establishment and characterization of cancer cell cultures and xenografts derived from primary or metastatic Mullerian cancers. Clin Cancer Res, 2003. 9(2): p. 845-52.
90. Burger, R.A., et al., Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J Clin Oncol, 2007. 25(33): p. 5165-71.
91. Shaw, T.J., et al., Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol Ther, 2004. 10(6): p. 1032-42.
92. Chen, K., Y.H. Huang, and J.L. Chen, Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin, 2013. 34(6): p. 732-40.
93. Garcia, A.A., et al., Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol, 2008. 26(1): p. 76-82.
94. Hirte, H., et al., A phase 2 study of cediranib in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: a trial of the Princess Margaret, Chicago and California Phase II Consortia. Gynecol Oncol, 2015. 138(1): p. 55-61.
95. Matulonis, U.A., et al., Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. J Clin Oncol, 2009. 27(33): p. 5601-6.
96. Ciardiello, F., Epidermal growth factor receptor inhibitors in cancer treatment. Future Oncol, 2005. 1(2): p. 221-34.
97. Salomon, D.S., et al., Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol, 1995. 19(3): p. 183-232.
98. Gordon, A.N., et al., Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int J Gynecol Cancer, 2005. 15(5): p. 785-92.
99. Schilder, R.J., et al., Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res, 2005. 11(15): p. 5539-48.
100. Konner, J., et al., A phase II study of cetuximab/paclitaxel/carboplatin for the initial treatment of advanced-stage ovarian, primary peritoneal, or fallopian tube cancer. Gynecol Oncol, 2008. 110(2): p. 140-5.
101. McPhillips, F., et al., Raf-1 is the predominant Raf isoform that mediates growth factorstimulated growth in ovarian cancer cells. Carcinogenesis, 2006. 27(4): p. 729-39.
102. Han, E.S., P. Lin, and M. Wakabayashi, Current status on biologic therapies in the treatment of epithelial ovarian cancer. Curr Treat Options Oncol, 2009. 10(1-2): p. 5466.
103. Altomare, D.A., et al., AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene, 2004. 23(34): p. 5853-7.
104. Huang, S., et al., Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res, 2000. 60(19): p. 5334-9.
105. Mabuchi, S., et al., Inhibition of inhibitor of nuclear factor-kappaB phosphorylation increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Clin Cancer Res, 2004. 10(22): p. 7645-54.
106. Liu, G.H., et al., Inhibition of nuclear factor-kappaB by an antioxidant enhances paclitaxel sensitivity in ovarian carcinoma cell line. Int J Gynecol Cancer, 2006. 16(5): p. 1777-82.
107. Glisovic, T., et al., RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett, 2008. 582(14): p. 1977-86.
108. Hogan, D.J., et al., Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol, 2008. 6(10): p. e255.
109. Pereira, B., M. Billaud, and R. Almeida, RNA-Binding Proteins in Cancer: Old Players and New Actors. Trends Cancer, 2017. 3(7): p. 506-528.
110. Lee, M.H. and T. Schedl, RNA-binding proteins. WormBook, 2006: p. 1-13.
111. Stefl, R., L. Skrisovska, and F.H. Allain, RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep, 2005. 6(1): p. 338.
112. Hafner, M., et al., Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 2010. 141(1): p. 129-41.
113. Jolma, A., et al., Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences. Genome Res, 2020. 30(7): p. 962-973.
114. Urnov, F.D., et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010. 11(9): p. 636-46.
115. Nakashima, K., et al., The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002. 108(1): p. 17-29.
116. Burd, C.G. and G. Dreyfuss, Conserved structures and diversity of functions of RNAbinding proteins. Science, 1994. 265(5172): p. 615-21.
117. Appasani, K., RNA interference a technology platform for target validation, drug discovery and therapeutic development. Drug Discovery World, 2003: p. 61-68.
118. Bandziulis, R.J., M.S. Swanson, and G. Dreyfuss, RNA-binding proteins as developmental regulators. Genes Dev, 1989. 3(4): p. 431-7.
119. Wang, Z.L., et al., Comprehensive Genomic Characterization of RNA-Binding Proteins across Human Cancers. Cell Rep, 2018. 22(1): p. 286-298.
120. Frisone, P., et al., SAM68: Signal Transduction and RNA Metabolism in Human Cancer. Biomed Res Int, 2015. 2015: p. 528954.
121. Wang, J., et al., Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci, 2013. 14(5): p. 10015-41.
122. Qian, J., et al., The RNA binding protein FXR1 is a new driver in the 3q26-29 amplicon and predicts poor prognosis in human cancers. Proc Natl Acad Sci U S A, 2015.
112(11): p. 3469-74.
123. Clower, C.V., et al., The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci U S A, 2010. 107(5): p. 1894-9.
124. David, C.J., et al., HnRNP proteins controlled by c-Myc deregulate pyruvate kinase $m R N A$ splicing in cancer. Nature, 2010. 463(7279): p. 364-8.
125. Kang, M.J., et al., NF-kappaB activates transcription of the RNA-binding factor HuR, via PI3K-AKT signaling, to promote gastric tumorigenesis. Gastroenterology, 2008. 135(6): p. 2030-42, 2042 e1-3.
126. Larsen, J.E., et al., ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest, 2016. 126(9): p. 3219-35.
127. Preca, B.T., et al., A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int J Cancer, 2015. 137(11): p. 2566-77.
128. Zhang, J., et al., Mice deficient in Rbm38, a target of the p53 family, are susceptible to accelerated aging and spontaneous tumors. Proc Natl Acad Sci U S A, 2014. 111(52): p. 18637-42.
129. Shu, L., W. Yan, and X. Chen, RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev, 2006. 20(21): p. 2961-72.
130. Fu, J., et al., The RNA-binding protein RBPMS1 represses AP-1 signaling and regulates breast cancer cell proliferation and migration. Biochim Biophys Acta, 2015. 1853(1): p. 1-13.
131. Wilmore, H.P., et al., Expression profile of the RNA-binding protein gene hermes during chicken embryonic development. Dev Dyn, 2005. 233(3): p. 1045-51.
132. Kwong, J.M., J. Caprioli, and N. Piri, RNA binding protein with multiple splicing: a new marker for retinal ganglion cells. Invest Ophthalmol Vis Sci, 2010. 51(2): p. 1052-8.
133. Farazi, T.A., et al., Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. RNA, 2014. 20(7): p . 1090-102.
134. Gerber, W.V., et al., A role for the RNA-binding protein, hermes, in the regulation of heart development. Dev Biol, 2002. 247(1): p. 116-26.
135. Rodriguez, A.R., L.P. de Sevilla Muller, and N.C. Brecha, The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol, 2014. 522(6): p. 1411-43.
136. Rambout, X., et al., The transcription factor ERG recruits CCR4-NOT to control mRNA decay and mitotic progression. Nat Struct Mol Biol, 2016. 23(7): p. 663-72.
137. Hornberg, H., et al., RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo. J Neurosci, 2013. 33(25): p. 10384-95.
138. Notarnicola, C., et al., The RNA-binding protein RBPMS2 regulates development of gastrointestinal smooth muscle. Gastroenterology, 2012. 143(3): p. 687-697 e9.
139. Hapkova, I., et al., High expression of the RNA-binding protein RBPMS2 in gastrointestinal stromal tumors. Exp Mol Pathol, 2013. 94(2): p. 314-21.
140. Shimamoto, A., et al., A unique human gene that spans over 230 kb in the human chromosome 8p11-12 and codes multiple family proteins sharing RNA-binding motifs. Proc Natl Acad Sci U S A, 1996. 93(20): p. 10913-7.
141. Maris, C., C. Dominguez, and F.H. Allain, The RNA recognition motif, a plastic RNAbinding platform to regulate post-transcriptional gene expression. FEBS J, 2005. 272(9): p. 2118-31.
142. Teplova, M., et al., Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS. Q Rev Biophys, 2016. 49: p. e1.
143. Sagnol, S., et al., Homodimerization of RBPMS2 through a new RRM-interaction motif is necessary to control smooth muscle plasticity. Nucleic Acids Res, 2014. 42(15): p. 10173-84.
144. Skawran, B., et al., Loss of $13 q$ is associated with genes involved in cell cycle and proliferation in dedifferentiated hepatocellular carcinoma. Mod Pathol, 2008. 21(12): p. 1479-89.
145. Zearfoss, N.R., et al., Hermes is a localized factor regulating cleavage of vegetal blastomeres in Xenopus laevis. Dev Biol, 2004. 267(1): p. 60-71.
146. Zearfoss, N.R., et al., Identification of new Xlsirt family members in the Xenopus laevis oocyte. Mech Dev, 2003. 120(4): p. 503-9.
147. Rabelo-Fernandez, R.J., et al., Reduced RBPMS Levels Promote Cell Proliferation and Decrease Cisplatin Sensitivity in Ovarian Cancer Cells. Int J Mol Sci, 2022. 23(1).
148. Nakagaki-Silva, E.E., et al., Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. Elife, 2019. 8.
149. Shanmugaapriya, S., et al., Expression of TGF-beta Signaling Regulator RBPMS (RNABinding Protein With Multiple Splicing) Is Regulated by IL-1beta and TGF-beta Superfamily Members, and Decreased in Aged and Osteoarthritic Cartilage. Cartilage, 2016. 7(4): p. 333-45.
150. Aguero, T., et al., Hermes (Rbpms) is a Critical Component of RNP Complexes that Sequester Germline RNAs during Oogenesis. J Dev Biol, 2016. 4(1).
151. Akerberg, A.A., C.E. Burns, and C.G. Burns, Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol, 2019. 40(7): p. 1410-1418.
152. Fisher, S.A., Vascular smooth muscle phenotypic diversity and function. Physiol Genomics, 2010. 42A(3): p. 169-87.
153. Nakagaki-Silva, E.E., et al., Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. Elife, 2019. 8.
154. Gan, P., et al., RBPMS is an RNA-binding protein that mediates cardiomyocyte binucleation and cardiovascular development. Dev Cell, 2022. 57(8): p. 959-973 e7.
155. Ye, L., et al., RNA-binding protein Rbpms is represented in human retinas by isoforms $A$ and $C$ and its transcriptional regulation involves Spl-binding site. Mol Genet Genomics, 2018. 293(4): p. 819-830.
156. Song, H.W., et al., Hermes RNA-binding protein targets RNAs-encoding proteins involved in meiotic maturation, early cleavage, and germline development. Differentiation, 2007. 75(6): p. 519-28.
157. Nijjar, S. and H.R. Woodland, Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes. PLoS One, 2013. 8(4): p. e61847.
158. Miller, B.G. and J.A. Stamatoyannopoulos, Integrative meta-analysis of differential gene expression in acute myeloid leukemia. PLoS One, 2010. 5(3): p. e9466.
159. Rastgoo, N., et al., Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS. Leukemia, 2018. 32(11): p. 2471-2482.
160. Drozdov, I., et al., Functional and topological properties in hepatocellular carcinoma transcriptome. PLoS One, 2012. 7(4): p. e35510.
161. Yang, C., et al., Circular RNA RBPMS inhibits bladder cancer progression via miR-3303p/RAI2 regulation. Mol Ther Nucleic Acids, 2021. 23: p. 872-886.
162. Baez-Vega, P.M., et al., Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells. Oncotarget, 2016. 7(24): p. 36321-36337.
163. Wang, X., et al., Prediction of candidate RNA signatures for recurrent ovarian cancer prognosis by the construction of an integrated competing endogenous RNA network. Oncol Rep, 2018. 40(5): p. 2659-2673.
164. Jiao, W., et al., Different miR-21-3p isoforms and their different features in colorectal cancer. Int J Cancer, 2017. 141(10): p. 2103-2111.
165. Fortner, R.T., et al., Ovarian cancer risk factors by tumor aggressiveness: An analysis from the Ovarian Cancer Cohort Consortium. Int J Cancer, 2019. 145(1): p. 58-69.
166. Pokhriyal, R., et al., Chemotherapy Resistance in Advanced Ovarian Cancer Patients. Biomark Cancer, 2019. 11: p. 1179299X19860815.
167. Zhang, C., et al., Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics, 2022. 12(5): p. 2115-2132.
168. Echevarria-Vargas, I.M., F. Valiyeva, and P.E. Vivas-Mejia, Upregulation of miR-21 in cisplatin resistant ovarian cancer via JNK-1/c-Jun pathway. PLoS One, 2014. 9(5): p. e97094.
169. Wang, F., et al., MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS Lett, 2013. 587(5): p. 488-95.
170. Reyes-Gonzalez, J.M., et al., Downstream Effectors of ILK in Cisplatin-Resistant Ovarian Cancer. Cancers (Basel), 2020. 12(4).
171. Vivas-Mejia, P.E., et al., Silencing survivin splice variant $2 B$ leads to antitumor activity in taxane--resistant ovarian cancer. Clin Cancer Res, 2011. 17(11): p. 3716-26.
172. Reyes-Gonzalez, J.M. and P.E. Vivas-Mejia, $c-$ MYC and Epithelial Ovarian Cancer. Front Oncol, 2021. 11: p. 601512.
173. Quinones-Diaz, B.I., et al., MicroRNA-18a-5p Suppresses Tumor Growth via Targeting Matrix Metalloproteinase-3 in Cisplatin-Resistant Ovarian Cancer. Front Oncol, 2020. 10: p. 602670.
174. Santana-Rivera, Y., et al., Reduced expression of enolase-1 correlates with high intracellular glucose levels and increased senescence in cisplatin-resistant ovarian cancer cells. Am J Transl Res, 2020. 12(4): p. 1275-1292.
175. Bahar, E. and H. Yoon, Modeling and Predicting the Cell Migration Properties from Scratch Wound Healing Assay on Cisplatin-Resistant Ovarian Cancer Cell Lines Using Artificial Neural Network. Healthcare (Basel), 2021. 9(7).
176. Chan, P.P. and T.M. Lowe, GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res, 2016. 44(D1): p. D184-9.
177. Langmead, B. and S.L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012. 9(4): p. 357-9.
178. Dobin, A., et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013. 29(1): p. 15-21.
179. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014. 15(12): p. 550.
180. Gerace, E. and D. Moazed, Affinity Pull-Down of Proteins Using Anti-FLAG M2 Agarose Beads. Methods Enzymol, 2015. 559: p. 99-110.
181. Chen, J., et al., ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res, 2009. 37(Web Server issue): p. W305-11.
182. Zhou, Y., et al., Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun, 2019. 10(1): p. 1523.
183. Gyorffy, B., Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J, 2021. 19: p. 4101-4109.
184. Xu, J.H., et al., Tumor suppressor genes and their underlying interactions in paclitaxel resistance in cancer therapy. Cancer Cell Int, 2016. 16: p. 13.
185. Huang, J., et al., XAF1 as a prognostic biomarker and therapeutic target in pancreatic cancer. Cancer Sci, 2010. 101(2): p. 559-67.
186. Chowdhury, U.R., et al., Emerging role of nuclear protein 1 (NUPR1) in cancer biology. Cancer Metastasis Rev, 2009. 28(1-2): p. 225-32.
187. Flores, E.R., The roles of p63 in cancer. Cell Cycle, 2007. 6(3): p. 300-4.
188. Hallen, L.C., et al., Antiproliferative activity of the human IFN-alpha-inducible protein IFI44. J Interferon Cytokine Res, 2007. 27(8): p. 675-80.
189. Pan, H., et al., Interferon-Induced Protein 44 Correlated With Immune Infiltration Serves as a Potential Prognostic Indicator in Head and Neck Squamous Cell Carcinoma. Front Oncol, 2020. 10: p. 557157.
190. Kramer, A., et al., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 2014. 30(4): p. 523-30.
191. Langevin, S.M., et al., Comprehensive mapping of the methylation landscape of 16 CpG dense regions in oral and pharyngeal squamous cell carcinoma. Epigenomics, 2019. 11(9): p. 987-1002.
192. Zhang, X., et al., RAD51 is a potential marker for prognosis and regulates cell proliferation in pancreatic cancer. Cancer Cell Int, 2019. 19: p. 356.
193. Huang, W.C., et al., IFI44L is a novel tumor suppressor in human hepatocellular carcinoma affecting cancer stemness, metastasis, and drug resistance via regulating met/Src signaling pathway. BMC Cancer, 2018. 18(1): p. 609.
194. Wang, Q., et al., Distinct prognostic value of $m R N A$ expression of guanylate-binding protein genes in skin cutaneous melanoma. Oncol Lett, 2018. 15(5): p. 7914-7922.
195. Song, F., et al., Regulation and biological role of the peptide/histidine transporter SLC15A3 in Toll-like receptor-mediated inflammatory responses in macrophage. Cell Death Dis, 2018. 9(7): p. 770.
196. Chen, R., et al., Systematic Transcriptome Analysis Reveals the Inhibitory Function of Cinnamaldehyde in Non-Small Cell Lung Cancer. Front Pharmacol, 2020. 11: p. 611060.
197. Mukai, S., et al., Overexpression of Transmembrane Protein BST2 is Associated with Poor Survival of Patients with Esophageal, Gastric, or Colorectal Cancer. Ann Surg Oncol, 2017. 24(2): p. 594-602.
198. Dai, H., et al., FGF21 facilitates autophagy in prostate cancer cells by inhibiting the PI3K-Akt-mTOR signaling pathway. Cell Death Dis, 2021. 12(4): p. 303.
199. Herrin, B.R., A.L. Groeger, and L.B. Justement, The adaptor protein HSH2 attenuates apoptosis in response to ligation of the $B$ cell antigen receptor complex on the $B$ lymphoma cell line, WEHI-231. J Biol Chem, 2005. 280(5): p. 3507-15.
200. Masuda, T., et al., Overexpression of the S100A2 protein as a prognostic marker for patients with stage II and III colorectal cancer. Int J Oncol, 2016. 48(3): p. 975-82.
201. Zou, A., et al., Distribution and functional properties of human KCNH8 (Elk1) potassium channels. Am J Physiol Cell Physiol, 2003. 285(6): p. C1356-66.
202. Dieci, G., M. Preti, and B. Montanini, Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics, 2009. 94(2): p. 83-8.
203. Voss, F.K., et al., Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science, 2014. 344(6184): p. 634-8.
204. Suzuki, N., K. Nara, and T. Suzuki, Skewed Thl responses caused by excessive expression of Txk, a member of the Tec family of tyrosine kinases, in patients with Behcet's disease. Clin Med Res, 2006. 4(2): p. 147-51.
205. Piovani, G., et al., De novo $1 M b$ interstitial deletion of 8 p 22 in a patient with slight mental retardation and speech delay. Mol Cytogenet, 2014. 7: p. 25.
206. Li, X., et al., Identification of a histone family gene signature for predicting the prognosis of cervical cancer patients. Sci Rep, 2017. 7(1): p. 16495.
207. Li, Y., et al., Bioinformatics analysis identified MMP14 and COL12A1 as immunerelated biomarkers associated with pancreatic adenocarcinoma prognosis. Math Biosci Eng, 2021. 18(5): p. 5921-5942.
208. Yang, M.H., et al., Somatic mutations of PREX2 gene in patients with hepatocellular carcinoma. Sci Rep, 2019. 9(1): p. 2552.
209. Craig, M.J. and R.D. Loberg, CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer Metastasis Rev, 2006. 25(4): p. 611-9.
210. Xie, Y., et al., Disabled homolog 2 is required for migration and invasion of prostate cancer cells. Front Med, 2015. 9(3): p. 312-21.
211. Stevenson, L., et al., Calbindin 2 (CALB2) regulates 5-fluorouracil sensitivity in colorectal cancer by modulating the intrinsic apoptotic pathway. PLoS One, 2011. 6(5): p. e20276.
212. Wang, T., et al., Increased nucleotide polymorphic changes in the 5'-untranslated region of delta-catenin (CTNND2) gene in prostate cancer. Oncogene, 2009. 28(4): p. 555-64.
213. Sakaki, T., et al., CYP24A1 as a potential target for cancer therapy. Anticancer Agents Med Chem, 2014. 14(1): p. 97-108.
214. Brandenberger, R., et al., Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol, 2004. 22(6): p. 707-16.
215. Liu, L., et al., MicroRNA-182 targets protein phosphatase 1 regulatory inhibitor subunit 1C in glioblastoma. Oncotarget, 2017. 8(70): p. 114677-114684.
216. Luan, J., et al., SLFN11 is a general target for enhancing the sensitivity of cancer to chemotherapy (DNA-damaging agents). J Drug Target, 2020. 28(1): p. 33-40.
217. Murn, J., et al., Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4. J Exp Med, 2008. 205(13): p. 3091-103.
218. Wan, N., et al., FOXD3-ASl Contributes to the Progression of Melanoma Via miR-1273p/FJXI Axis. Cancer Biother Radiopharm, 2020. 35(8): p. 596-604.
219. Requena, T., et al., Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere's disease. Hum Mol Genet, 2015. 24(4): p. 1119-26.
220. Tan, N.N., et al., Epigenetic Downregulation of Scn3a Expression by Valproate: a Possible Role in Its Anticonvulsant Activity. Mol Neurobiol, 2017. 54(4): p. 2831-2842.
221. Sanuki, R., et al., Panky, a novel photoreceptor-specific ankyrin repeat protein, is a transcriptional cofactor that suppresses CRX-regulated photoreceptor genes. FEBS Lett, 2010. 584(4): p. 753-8.
222. Bhushan, A., et al., Identification and Validation of Fibroblast Growth Factor 12 Gene as a Novel Potential Biomarker in Esophageal Cancer Using Cancer Genomic Datasets. OMICS, 2017. 21(10): p. 616-631.
223. Yan, L., et al., Distinct diagnostic and prognostic values of gamma-aminobutyric acid type A receptor family genes in patients with colon adenocarcinoma. Oncol Lett, 2020. 20(1): p. 275-291.
224. Guan, Y., et al., IncRNA FOXD3-AS1 is associated with clinical progression and regulates cell migration and invasion in breast cancer. Cell Biochem Funct, 2019. 37(4): p. 239-244.
225. Northrop, J.P., et al., NF-AT components define a family of transcription factors targeted in T-cell activation. Nature, 1994. 369(6480): p. 497-502.
226. Dickinson, R.E., M. Myers, and W.C. Duncan, Novel regulated expression of the SLIT/ROBO pathway in the ovary: possible role during luteolysis in women. Endocrinology, 2008. 149(10): p. 5024-34.
227. Shimoyama, Y., et al., Isolation and sequence analysis of human cadherin-6 complementary DNA for the full coding sequence and its expression in human carcinoma cells. Cancer Res, 1995. 55(10): p. 2206-11.
228. Zhang, Y., et al., HOXD8 inhibits the proliferation and migration of triple-negative breast cancer cells and induces apoptosis in them through regulation of AKT/mTOR pathway. Reprod Biol, 2021. 21(4): p. 100544.
229. Rudnicki, M.A., et al., Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells. Dev Biol, 1990. 138(2): p. 348-58.
230. Niwa, R., et al., Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 2002. 108(2): p. 233-46.
231. Liu, D.B., et al., Immunocytochemical detection of HoxD9 and Pbxl homeodomain protein expression in Chinese esophageal squamous cell carcinomas. World J Gastroenterol, 2005. 11(10): p. 1562-6.
232. Lee, Y.R., et al., The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. EMBO J, 2010. 29(10): p. 1748-61.
233. Hogan, A., et al., Interaction of gamma 1-syntrophin with diacylglycerol kinase-zeta. Regulation of nuclear localization by PDZ interactions. J Biol Chem, 2001. 276(28): p. 26526-33.
234. Gagnon, M.L., et al., Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity. Proc Natl Acad Sci U S A, 2000. 97(6): p. 2573-8.
235. Liu, D., et al., ERICH3: vesicular association and antidepressant treatment response. Mol Psychiatry, 2021. 26(6): p. 2415-2428.
236. Liu, Z., et al., GATA1-regulated JAG1 promotes ovarian cancer progression by activating Notch signal pathway. Protoplasma, 2020. 257(3): p. 901-910.
237. Rossjohn, J., et al., T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol, 2015. 33: p. 169-200.
238. Lanczky, A. and B. Gyorffy, Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J Med Internet Res, 2021. 23(7): p. e27633.
239. Sun, Y., et al., Potentiation of Smad-mediated transcriptional activation by the RNAbinding protein RBPMS. Nucleic Acids Res, 2006. 34(21): p. 6314-26.
240. Gordon, R.R. and P.S. Nelson, Cellular senescence and cancer chemotherapy resistance. Drug Resist Updat, 2012. 15(1-2): p. 123-31.
241. Guo, X., et al., Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells. BMC Cancer, 2008. 8: p. 375.
242. Guillon, J., et al., Chemotherapy-induced senescence, an adaptive mechanism driving resistance and tumor heterogeneity. Cell Cycle, 2019. 18(19): p. 2385-2397.
243. Bavik, C., et al., The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res, 2006. 66(2): p. 794-802.
244. Krtolica, A., et al., Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A, 2001. 98(21): p. 12072-7.
245. Coppe, J.P., et al., Senescence-associated secretory phenotypes reveal cellnonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 2008. 6(12): p. 2853-68.
246. McConkey, D.J., et al., Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev, 2009. 28(3-4): p. 335-44.
247. Sundqvist, A., et al., TGF $\beta$ and EGF signaling orchestrates the $A P-1$ - and p63 transcriptional regulation of breast cancer invasiveness. Oncogene, 2020.39(22): p. 4436-4449.
248. Wong, C., et al., Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol Cell Biol, 1999. 19(3): p. 1821-30.
249. Selcuklu, S.D., M.T. Donoghue, and C. Spillane, miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans, 2009. 37(Pt 4): p. 918-25.
250. Asangani, I.A., et al., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008. 27(15): p. 2128-36.
251. Qu, K., et al., Extracellular miRNA-21 as a novel biomarker in glioma: Evidence from meta-analysis, clinical validation and experimental investigations. Oncotarget, 2016. 7(23): p. 33994-4010.
252. Medimegh, I., et al., MicroRNAs expression in triple negative vs non triple negative breast cancer in Tunisia: interaction with clinical outcome. PLoS One, 2014. 9(11): p. e111877.
253. Zhao, W., et al., Serum miR-21 level: a potential diagnostic and prognostic biomarker for non-small cell lung cancer. Int J Clin Exp Med, 2015. 8(9): p. 14759-63.
254. Jackson, B.L., A. Grabowska, and H.L. Ratan, MicroRNA in prostate cancer: functional importance and potential as circulating biomarkers. BMC Cancer, 2014. 14: p. 930.
255. Del Mar Diaz-Gonzalez, S., et al., Transregulation of microRNA miR-21 promoter by AP-1 transcription factor in cervical cancer cells. Cancer Cell Int, 2019. 19: p. 214.
256. Jiang, W.G., et al., Com-1/p8 acts as a putative tumour suppressor in prostate cancer. Int J Mol Med, 2006. 18(5): p. 981-6.
257. Zhou, H.H., et al., Smad3 Sensitizes Hepatocelluar Carcinoma Cells to Cisplatin by Repressing Phosphorylation of AKT. Int J Mol Sci, 2016. 17(4).
258. Clark, D.W., et al., NUPR1 interacts with p53, transcriptionally regulates p21 and rescues breast epithelial cells from doxorubicin-induced genotoxic stress. Curr Cancer Drug Targets, 2008. 8(5): p. 421-30.
259. Jiang, W.G., et al., Expression of Com-1/P8 in human breast cancer and its relevance to clinical outcome and ER status. Int J Cancer, 2005. 117(5): p. 730-7.
260. Huang, T.C., et al., Cinnamaldehyde enhances Nrf 2 nuclear translocation to upregulate phase II detoxifying enzyme expression in HepG2 cells. J Agric Food Chem, 2011. 59(9): p. 5164-71.
261. Lan, T., et al., Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes tumorigenesis and metastasis by targeting miR-199a/b-5p in hepatocellular carcinoma. J Exp Clin Cancer Res, 2017. 36(1): p. 11.
262. Jia, Y., et al., Death associated protein 1 is correlated with the clinical outcome of patients with colorectal cancer and has a role in the regulation of cell death. Oncol Rep, 2014. 31(1): p. 175-82.
263. Winkler, C., et al., SLFN11 informs on standard of care and novel treatments in a wide range of cancer models. Br J Cancer, 2021. 124(5): p. 951-962.
264. Tseng, C.P., et al., The role of DOC-2/DAB2 protein phosphorylation in the inhibition of AP-1 activity. An underlying mechanism of its tumor-suppressive function in prostate cancer. J Biol Chem, 1999. 274(45): p. 31981-6.
265. Melino, G., p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death \& Differentiation, 2011. 18(9): p. 1487-1499.
266. Lau, C.P., et al., p63 regulates cell proliferation and cell cycle progressionassociated genes in stromal cells of giant cell tumor of the bone. Int J Oncol, 2013. 42(2): p. 437-43.
267. Senoo, M., et al., p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 2007. 129(3): p. 523-36.
268. He, Z. and M. Tessier-Lavigne, Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell, 1997. 90(4): p. 739-51.
269. Soker, S., et al., Neuropilin-1 is expressed by endothelial and tumor cells as an isoformspecific receptor for vascular endothelial growth factor. Cell, 1998. 92(6): p. 735-45.
270. Yi, C., et al., Association study between CYP24A1 gene polymorphisms and cancer risk. Pathol Res Pract, 2020. 216(1): p. 152735.
271. Lodillinsky, C., et al., Metastasis-suppressor NME1 controls the invasive switch of breast cancer by regulating MT1-MMP surface clearance. Oncogene, 2021. 40(23): p. 40194032.
272. Shi, X., et al., Association between NME 1 polymorphisms and cancer susceptibility: A meta-analysis based on 1644 cases and 2038 controls. Pathol Res Pract, 2018. 214(4): p. 467-474.
273. Yang, S.B., et al., Immunoglobulin kappa and immunoglobulin lambda are required for expression of the anti-apoptotic molecule Bcl-xL in human colorectal cancer tissue. Scand J Gastroenterol, 2009. 44(12): p. 1443-51.
274. You, G.R., et al., MYH9 Facilitates Cell Invasion and Radioresistance in Head and Neck Cancer via Modulation of Cellular ROS Levels by Activating the MAPK-Nrf2-GCLC Pathway. Cells, 2022. 11(18).
275. Wang, Y., et al., Myosin Heavy Chain 10 (MYH10) Gene Silencing Reduces Cell Migration and Invasion in the Glioma Cell Lines U251, T98G, and SHG44 by Inhibiting the Wnt/beta-Catenin Pathway. Med Sci Monit, 2018. 24: p. 9110-9119.
276. McCorkle, J.R., et al., The metastasis suppressor NME1 regulates expression of genes linked to metastasis and patient outcome in melanoma and breast carcinoma. Cancer Genomics Proteomics, 2014. 11(4): p. 175-94.
277. Postel, E.H., et al., Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science, 1993. 261(5120): p. 478-80.
278. Cervoni, L., et al., DNA sequences acting as binding sites for NM23/NDPK proteins in melanoma M14 cells. J Cell Biochem, 2006. 98(2): p. 421-8.
279. Ma, D., et al., Autocrine platelet-derived growth factor-dependent gene expression in glioblastoma cells is mediated largely by activation of the transcription factor sterol regulatory element binding protein and is associated with altered genotype and patient survival in human brain tumors. Cancer Res, 2005. 65(13): p. 5523-34.
280. Manoharan, A., et al., De novo DNA Methyltransferases Dnmt 3 a and Dnmt3b regulate the onset of Igkappa light chain rearrangement during early B-cell development. Eur J Immunol, 2015. 45(8): p. 2343-55.
281. Consortium, A.P.G., AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov, 2017. 7(8): p. 818-831.
282. Betapudi, V., Myosin II motor proteins with different functions determine the fate of lamellipodia extension during cell spreading. PLoS One, 2010. 5(1): p. e8560.
283. Kacsoh, D.B., et al., Tumor Resident, B-Cell Receptor Chemical Characteristics Associated with Better Overall Survival for Neuroblastoma. J Mol Neurosci, 2022. 72(9): p. 2011-2019.
284. Kai, J.D., et al., MYH9 is a novel cancer stem cell marker and prognostic indicator in esophageal cancer that promotes oncogenesis through the PI3K/AKT/mTOR axis. Cell Biol Int, 2022. 46(12): p. 2085-2094.

[^0]:    A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor in Philosophy for the Biology Intercampus Program of the University of Puerto Rico at Rio Piedras and University of Puerto Rico Medical Science Campus

    17 January 2023

