
© 2022 José W. Velázquez Santiago
1/136

University of Puerto Rico
Río Piedras Campus

Faculty of Natural Sciences
Department of Mathematics

On The Properties and Construction of Boolean Bent and Near-Bent
Functions, and Their Applications to Error-Correcting Codes for NASA

Deep-Space

By

José W. Velázquez Santiago

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF MASTER

OF PHILOSOPHY IN APPLIED MATHEMATICS AT THE UNIVERSITY
OF PUERTO RICO, RÍO PIEDRAS CAMPUS

May 16th, 2022

© 2022 José W. Velázquez Santiago
2/136

APPROVED BY THE MASTER THESIS
COMMITTEE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF PHILOSOPHY IN APPLIED MATHEMATICS
AT THE UNIVERSITY OF PUERTO RICO

ADVISOR:

————————————————–
Heeralal Janwa, Ph.D.
University of Puerto Rico, Río Piedras

READERS:

————————————————–
Moises Delgado, Ph.D.
University of Puerto Rico, Cayey

————————————————–
Puhua Guan, Ph.D.
University of Puerto Rico, Rio Piedras

© 2022 José W. Velázquez Santiago
3/136

Abstract of M.S. Thesis Presented to the Graduate School
of the University of Puerto Rico, Río Piedras Campus in Partial Fulfillment of the

Requirements for the Degree of Master of Philosophy in Applied Mathematics

On The Properties and Construction of Boolean Bent and Near-Bent
Functions, and Their Applications to Error-Correcting Codes for NASA

Deep-Space

By

José W. Velázquez Santiago

May, 2022

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF MASTER

OF PHILOSOPHY IN APPLIED MATHEMATICS AT THE UNIVERSITY
OF PUERTO RICO, RÍO PIEDRAS CAMPUS

Abstract

In this investigation, we research the properties of highly nonlinear vectorial Boolean func-
tions in m variables and their connections to good error-correcting codes. We focus on "bent"
and "near-bent" functions, which achieve maximum nonlinearity for m even and odd, re-
spectively. These functions f : F2m → F2k are defined via their Walsh-Hadamard spectrum
meeting certain conditions. For the Boolean function cases, Gold (1968), Kasami (1971) and
later Dillon (1999) and Dobbertin (1999) have showed properties under which near-bent
functions derived from almost-bent functions are near-bent. These are Boolean functions in
m variables of the form Tr(xd). We relate the constructed functions to corresponding error-
correcting cyclic codes as per Janwa and Wilson’s work on "Hyperplane sections of Fermat
varieties in P 3 in char. 2 and some applications to cyclic codes" in 1993. We use the defining
set of a cyclic code with "y" roots of the form {1, d1, d2, . . . , dy−1} to construct the codes
computationally. The entries of the defining set correspond to the exponents of the Boolean
power functions considered. The conditions needed for these functions to be bent and near-
bent are similar to the conditions needed to construct two-error-correcting codes through the
defining set. The main exponents considered for the construction of these functions are the
Gold and Kasami-Welch exponents (2l+1, 22l−2l+1 respectively). We use cyclotomic coset
analysis modulo 2m − 1 on the Gold and Kasami-Welch exponents used for these functions.
We identify theorems related to the distribution of the Gold and Kasami-Welch exponents
in the cyclotomic cosets. These theorems are then used to present a new proof of results by
Yoshiara on the enumeration of non CCZ-equivalent Gold and Kasami-Welch trace Boolean

© 2022 José W. Velázquez Santiago
4/136

near-bent functions. These theorems consider slightly different restrictions on the exponents
to the ones considered by Yoshiara.

Furthermore, we analyze and generalize theorems on the Gold and Kasami-Welch bent and
near-bent functions. We identify a pattern in the relationship between exponents that led
to near-bent/almost-bent (AB) functions. Various authors have studied and generalized the
conditions under which Tr(αixd) is a bent function where d is the Gold exponent . We present
a conjecture on the exponents of α that lead to non-bent functions (and consequently, those
that do). This is based on computational analysis of bent functions constructed through the
algorithms we present. Various algorithms are constructed that generate these functions, and
tables are obtained, which are used to establish our theorems and conjectures. Tables with
the Gold bent function construction exception cases for up to 24 variables as well as some
Kasami-Welch functions in six and 12 variables that support these conjectures are showed.

We also compare the developed functions and codes to well-known theorems and conjectures
presented by Ding (2016), McGuire (2004), Calderbank (1984), Goethals (1979), and others
on the weight distribution of the dual codes. Three weight dual codes are known to be
associated with two-error-correcting codes. The distribution of the weights of the dual of the
codes over F2m generated by the method above is conjectured to have the form [2m−1 − a,
2m−1, 2m−1 + a] as presented by McGuire. We generated codes for up to 13 variables, and
all codes satisfied this weight distribution. Ding compiled a list of theorems on the exact
weight distribution of these codes. We algorithmically applied these theorems to the codes
constructed and found some codes that do not meet any of the criteria. However, these
codes did meet the symmetric weight distribution criteria. An equivalence analysis was done
for these codes to identify them with codes from known theorems. We further study and
classify cyclic codes in two, three and four roots based on their weight distributions. These
are constructed by using combinations of APN/AB and bent exponents.

An LDPC Code analysis approach was implemented to codes constructed from the selected
functions/codes in the work above. Bayesian belief propagation analysis over networks pro-
duced by these codes was done via Tanner graphs constructed from these codes, and analysis
was done to determine the generated codes’ coding gain. The high code rates are ideal for
very strict bandwidth requirements. We utilize Neal’s algorithm [53] to transmit encoded
messages by utilizing our proposed codes via bent and near-bent functions. These codes are
our unique results, and they show comparable performance to protograph based codes, Quasi-
cyclic based codes, Turbo codes, and AR4JA codes. Our codes have improved or competitive
performance for the SNR values in the range [0, 0.75] and relative coding gain improvements
of over 0.50 dB.

© 2022 José W. Velázquez Santiago
5/136

Copyright © 2022

by

José W. Velázquez Santiago

© 2022 José W. Velázquez Santiago
6/136

ACKNOWLEDGMENTS

I would like to thank professor Heeralal Janwa for his guidance on this thesis and Professor
Moises Delgado for introducing me to the world of research in mathematics.

This research was supported by NASA PR Space Grant No. 80NSSC20M0052 and
NNX15AI11H

© 2022 José W. Velázquez Santiago
7/136

Contents

Abstract 3
ACKNOWLEDGMENTS 6
1. Introduction 9
1.1. Boolean Functions 9
1.2. Error-Correcting Codes 12
1.3. Cyclotomic Coset Analysis of Cyclic Codes and Boolean Functions 13
1.4. Low-Density-Parity-Check Codes 14
2. Construction of Bent and Near-Bent Functions 16
2.1. Construction of Bent Functions 16
2.2. Construction of Near-Bent functions 18
3. Error-Correcting Code Construction and Almost-Bent/APN Exponents 20
3.1. Error-Correcting Codes and Minimum Distance Computations 20
4. Cyclotomic Coset Analysis of the Gold and Kasami-Welch Exponents 25
4.1. CCZ and Cyclotomic equivalence of Boolean Functions 26
4.2. Distribution of the Gold and Kasami-Welch Exponents in a Cyclotomic Coset 27
4.3. New proof for Yoshiara’s result on the CCZ-equivalence of Gold and

Kasami-Welch Near-Bent Functions 47
5. Improvement on Dillon and Dobbertin’s Theorem on the Construction of Bent

Gold and Kasami-Welch Functions 58
5.1. Gold Bent Function Construction 58
5.2. Further Results and Conjectures for the Gold Case 61
5.3. Kasami-Welch Bent Function Construction 67
6. Weight Distribution of Dual Cyclic Codes and Some Conjectures 68
6.1. Symmetric Weight Distribution of Generated Codes 68
6.2. Ding Weight Distribution Tables 69
6.3. Weight Distribution Classes of Cyclic Codes 71
7. LDPC Code Algorithms and Next-Generation NASA Code Construction Through

Bent and Near-Bent Functions 77
7.1. Algorithms used 78
7.2. Methodology 80
7.3. SNR Performance Improvement Comparisons to Other Codes 82
References 85
8. Appendix:Tables 89
9. Appendix:Figures 118
10. Appendix:Algorithms 129

5

© 2022 José W. Velázquez Santiago
8/136

LIST OF SYMBOLS

Z , set of integers

F2m , GF (2m) field of order 2m

Fm
2 ,m-dimensional vector space of 2 elements

F∗
2m , multiplicative group (without the zero element)

C, Linear Code

[n, n−m, d(C)], binary linear code C of block length n, dimension m
and minimum distance d(C)
R, rate of the code C
GC, generator matrix of the code C
HC, parity check matrix of the code C
C(a), 2-cyclotomic coset that contains the integer a

SNR, Signal-to-noise Ratio a

BER, Bit error rate

(m,n) = e, greatest common divisor of m,n is e

Trmk (x), the trace function on x from F2m → F2k

Tr(x), the trace function on x from F2m → F2

APN , Almost Perfect-Nonlinear

AB, Almost-bent function

© 2022 José W. Velázquez Santiago
9/136

CHAPTER 1 Background

1. Introduction

1.1. Boolean Functions. A vectorial Boolean function of size k in m variables (denoted
as an (m, k) Boolean function) is defined as f : F2m → F2k [15]. The study of these func-
tions has been a central focus in the development of many mathematical branches, such
as the development of error-correcting codes and cryptographic codes. In 1993, Janwa and
Wilson [41] showed that the conditions needed to construct two-error-correcting cyclic codes
matched the conditions needed for (m,m) Boolean functions to be APN. These results were
later generalized by Rodier et al. [57]. The high nonlinearity of these functions is also impor-
tant for cryptographic applications, as they have high resistance to differential cryptanalytic
attacks [19]. Maximizing the nonlinearity property of Boolean functions has been studied
since Rothaus proposed the concept of "bent" functions in 1976 [59]. Rothaus defined a bent
function in m even number of variables f as a function from F2m to F2 where the Fourier
coefficients of (−1)f(x) are ±1. Other equivalent definitions of these functions have been
proposed, an important one being the Boolean functions in m (even) variables that achieve
maximum nonlinearity [13]. However, the Walsh-Transform definition is used in this work to
computationally verify bent-ness:

Definition 1 (Carlet [15] Boolean Bent Function). Let f be a Boolean function in m (even)
variables. Then, f is bent if and only if:

|F̂ (ω)| = 2
m
2 ∀ω ∈ F2m .

Where the Walsh-Hadamard transform is defined as:

Definition 2 (Carlet [15] Walsh-Hadamard Transform). The Walsh-Hadamard transform
of a Boolean function f in m variables at the value ω ∈ F2m is given by:

F̂ (ω) =
∑

x∈F2m

(−1)ω∗x+f(x). (1)

A similar definition is given for near-bent functions, where the number of variables m is
odd.

Definition 3 (Carlet [15] Boolean Near-Bent Function). Let f be a Boolean function in m
(odd) variables. Then, f is near-bent if:

|F̂ (ω)| ∈ = {0, 2m+1
2 } ∀ω ∈ F2m .

The nonlinearity these functions achieve is 2m−1 − 2
m
2
−1, 2m−1 − 2

m−1
2 respectively. The

concept introduced by Rothaus was then generalized to the vectorial Boolean case by Nyberg
in 1991 [55].

Vectorial bent functions are those (m, k) (m even) Boolean functions who have maximal
nonlinearity [15]. A vectorial Boolean function f is bent if for every α ∈ F∗

2m each of its
component functions Tr(αf) is also bent [16]. The component functions are defined as:

© 2022 José W. Velázquez Santiago
10/136

Definition 4 (Carlet [15] Component Function). For a vectorial Boolean function F : F2m →
F2k , 1 ≤ k ≤ m, its component functions are denoted by:

Tr(v ∗ F (x)), v ∈ F∗
2k (2)

These trace functions are defined as follows:

Definition 5 (Gong [72] Trace Function). For m and k integers such that k|m, the trace of
an element x ∈ F2m is denoted by the vectorial Boolean function

Trmk (x) : F2m → F2k

such that:

Trmk (x) = x+ xq + · · ·+ xql−1

, q = 2k, l =
m

k
(3)

When k = 1, we write Tr(x).

Nyberg proved that these functions only exist whenever k ≤ m
2

[55]. For the odd variable
case, AB functions are defined as those from F2m → F2m that have maximal nonlinearity [15].
They are directly related to the near-bent functions, as a (m,m) function is AB if and only if
each of its component functions is near-bent. This is easy to see as the nonlinearity of the AB
functions must be maximal (2m−1−2

m−1
2), which is only possible if all its component functions

have the same nonlinearity. AB functions offer optimal resistance to linear cryptanalysis,
which leads to optimal resistance to differential cryptanalysis, although the converse is not
always true. That is to say, AB functions are APN, but not all APN functions are AB [10].
Linear and differential cryptanalysis resistance are defined as follows:

Definition 6 (Canteaut [10] Measure of linear crypt-analysis resistance). For a function
f : F2m → F2m , the linear cryptanalysis resistance is measured by:
λf (a, b) = |#{x ∈ F2m , a · x+ b · f(x) = 0} − 2m−1|
· is the dot product on F2m and a, b ∈ F2m

When λf (a, b) = 2
m−1

2 f is called AB. [10]

Definition 7 (Canteaut [10] Measure of differential cryptanalysis resistance). For a func-
tion f : F2m → F2m , a, b ∈ F2m , a ̸= 0, the differential cryptanalysis resistance is measured
by:

δ(a, b) = #{x ∈ F2m|f(x+ a) + f(x) = b}.
When δ(a, b) = 2 f is APN.

Definition 8 (Nyberg [56] Differential Uniformity). For a function f : F2m → F2m , a, b ∈
F2m , a ̸= 0, the differential uniformity is defined as:

maxa̸=0,bδ(a, b)
where δ(a, b) = #{x ∈ F2m |f(x+ a) + f(x) = b}

© 2022 José W. Velázquez Santiago
11/136

Power functions Exponent Conditions Exponent Type
Gold 2l + 1 (l,m) = 1 APN/AB
Kasami-Welch 22l − 2l + 1 (l,m) = 1 APN/AB
Niho (even) 2r + 2

r
2 − 1 m odd, r even APN/AB

Niho (odd) 2r + 2
3r+1

2 − 1 m odd, r odd APN/AB
Inverse 2m − 2 m odd APN
Dobbertin 2

4m
5 + 2

3m
5 + 2

2m
5 + 2

m
5 − 1 m divisible by 5 APN

Welch 2r + 3 m odd APN/AB
Nyberg 22l + 2l − 1 4l ≡ 3 (mod m) APN
Table 1. Exponents for the power function f(x) = xd over F2m such that f is
APN or AB. When m is odd, m = 2r + 1 [28, 32, 46]

Janwa and Wilson in [41] considered the Gold and Kasami-Welch exponents and when these
led to APN functions and two-error-correcting codes. These exponents were proven to be the
only ones such that the monomial power Boolean function f(x) = xd is exceptional APN
[39]. The Gold and Kasami-Welch exponents are also used in well-known constructions for
bent and near-bent trace Boolean functions. The construction of the near-bent functions
Tr(x2l+1), T r(x22l−2l+1) was studied by various authors such as Kasami, Dillon and Dob-
bertin [44, 25, 21]. The bent functions of the form Tr(αx2l+1), T r(αx22l−2l+1), for α ∈ F∗

2m a
primitive element in the field, have been studied by various authors such as Dillon and Dob-
bertin in [22], Charpin [17], Hu [40], Khoo [45] and Ma [48]. A recurring condition needed
for these functions to be bent/near-bent is that (m, l) = 1, which is the same condition
needed for the corresponding vectorial Boolean functions to be APN and their cyclic codes
(as defined in [41]) to be two-error-correcting.

The classification of bent and near-bent functions is an important problem. The current
enumeration of bent functions is not exact, and known bounds for this could still be improved,
as suggested by Carlet in [14]. Similarly, finding a tighter lower bound is an open problem
[15]. In this work, we are interested in the nonlinearity and differential uniformity properties
of these functions, and the most general form of equivalence between Boolean functions that
preserve these properties is the CCZ-equivalence [11]. Yoshiara showed in [71] an equivalent
notion of equivalence for Boolean APN power functions:

Theorem 1 (Yoshiara [71]). Let fd(x) = xd, fe(x) = xe be power APN functions on F2m ,
with m ≥ 3. Then fd, fe are CCZ-equivalent if and only if 1) e ≡ d2a (mod 2m− 1) for some
integer a ∈ [0,m− 1] or 2) m is odd and ed ≡ 2a (mod 2m − 1) for an integer a ∈ [0,m− 1].

From this theorem, the concept of "Cyclotomic-equivalent" Boolean functions is considered.

Definition 9 (Budaghyan [5] Cyclotomic equivalence). Let f(x) = xk, and g(x) = xl,
f, g : F2m → F2m , the functions are cyclotomic-equivalent if there exists an integer 0 ≤ a < m
such that l ≡ k2a (mod 2m − 1) or kl ≡ 2a (mod 2m − 1), with (k, 2m − 1) = 1.

© 2022 José W. Velázquez Santiago
12/136

1.2. Error-Correcting Codes. In 1947, Richard Hamming constructed the first error-
correcting codes, dubbed "Hamming Codes" [34]. The purpose of error-correcting codes
is to add redundancy to the information to detect and correct errors. Linear error-correcting
codes are vector sub spaces of dimension k a field [42]. These are codes of block length n,
dimension k = n−m and a minimum distance d(C). Thus, we can construct codewords as an
element x ∈ Fn

2 . The minimum distance of a codes is related to its error-correcting capability
by the relation d = 2(t)+1, where t is the number of errors the code can correct [42]. This is
defined as the minimum number of entries in which any two codewords in the code can differ
[42]. For linear codes, this value is the same as the minimum weight of the code (minimum
number of nonzero entries a nonzero codeword in the code can have). This can be easily seen
as d(x, y) = D(C) = d(x−y, 0) = w(x−y) for x, y ∈ C. Thus, you can find a codeword with
weight the same as the minimum distance. Alternatively, if you had a codeword ”z” with
weight less than the minimum distance then you would have: w(z) = d(z, 0) < D(C) which
is a contradiction. Linear codes can be represented through a (m)xn (where m = n − k)
parity check matrix H such that x ∈ C if and only if HxT = 0 [42]. In this work, we consider
the construction of cyclic codes. These are linear codes such that if x = (a0, a1, . . . , an−1) is a
codeword, then so is y = (an−1, a0, . . . , an−2) a ∈ Fm

2 . Define α as a primitive element in the
field F2m (that is, an element of order 2m−1) and define mi(x) as the minimal polynomial of
αi over F2. We can define a cyclic code (with two roots) of length 2m−1 by constructing the
generator polynomial g(x) = m1(x)md(x). We will denote these two root codes as Cd

m [41].
We call {d0, d1, d2, . . . , dy−1} the defining set of the cyclic code with y roots whose generator
polynomial is g(x) = md0(x)md1(x)md2(x) . . .mdy−1(x). Janwa and Wilson in [41] construct
a parity check matrix for two root cyclic codes. Let α ∈ F2m be a primitive element of the
field and f some vectorial Boolean power function from F2m to F2m , then, a parity check
matrix of a two root cyclic code is:

H’ =
[

α2m−2 α2m−3 . . . α1 α0

f(α2m−2) f(α2m−3) . . . f(α1) f(α0)

]
Janwa and Wilson showed conditions for which this construction led to two-error-

correcting codes [41]. They considered the highly nonlinear functions f(x) = x2l+1, f(x) =

x22l−2l+1 (the Gold and Kasami-Welch functions respectively). To verify if this matrix corre-
sponds to a two-error-correcting code, the linear combination of any four columns of H’ must
not equal the 0 vector. This is because otherwise there is a codeword of weight four, and
hence the minimum distance is less than 5. We can consider this as a system of equations
with two equations and four variables (where a column in H’ = (αi, f(αi))T = (X, f(X))T).
Thus, we get the following system of equations:

X + Y + Z + W = 0
f(X) + f(Y) + f(Z) + f(W) = 0

We get:
X + Y + Z = W

→ f(X) + f(Y) + f(Z) + f(X + Z + Y) = 0

© 2022 José W. Velázquez Santiago
13/136

Note that for the second equation, the "trivial" solutions (X = Y, X = Z, Y = Z) are
not possible as X,Y,Z correspond to distinct columns of the matrix H. As such we can factor
out these solutions and study:

ϕf(X,Y,Z) = f(X)+f(Y)+f(Z)+f(X+Z+Y)
(X+Y)(X+Z)(Z+Y)

= 0

as per Janwa and Wilson [41] and later Ferard et al [26], the APN property of the function
f is equivalent to verifying if the rational points of the algebraic surface X in a 3-dimensional
space defined by ϕf (X, Y, Z) are all in the surface made by the planes X+Y = 0, X+Z=0,
Y+Z = 0. That is, the APN property is equivalent to verifying the existence of the two-error-
correcting code given f = xd where d is the Gold or Kasami-Welch exponent. Janwa and
Wilson showed that this is true when (m, l) = 1. Rodier later generalized this problem for a
general function f [57]. This construction can be extended for more roots. We can construct
a cyclic code corresponding to a defining set: {d0, d1, d2, . . . , dy−1} for α ∈ F2m a primitive
element in the field and fdi = xdi :

H’ =

α2m−2 α2m−3 · · · α1 α0

f1(α
2m−2) f1(α

2m−3) · · · f1(α
1) f1(α

0)
fd1(α

2m−2) fd1(α
2m−3) · · · fd1(α

1) fd1(α
0)

. . · · · . .

. . · · · . .

. . · · · . .
fdy−1(α

2m−2) fdy−1(α
2m−3) · · · fdy−1(α

1) fdy−1(α
0)

1.3. Cyclotomic Coset Analysis of Cyclic Codes and Boolean Functions. In this
work, we focus on the construction of cyclic codes. Cyclic codes are those such that if x =
(a0, a1, . . . , an−1) is a codeword, then so is y = (an−1, a0, . . . , an−2), a ∈ F2. Define ω as
a primitive element in the field F2m and define mi(x) as the minimal polynomial of ωi

over F2. We can define a cyclic code (with two roots) of length 2m − 1, dimension at least
2m − 1− 2m and minimum distance d(C) by constructing the generator polynomial g(x) =
m1(x)md(x)[41]. We denote these two root codes as Cd

m. The weight of a codeword x =
(a0, a1, . . . , an−1) is given by {#i|ai ̸= 0}.

As mentioned in the previous subsection, we denote {d0, d1, d2, . . . , dy−1} the defining set
of the cyclic code with y roots whose generator polynomial is g(x) = md0(x)md1(x)md2(x) . . .
mdy−1(x). Janwa and Wilson have shown in [41] that for a cyclic code in two roots (defining
set {1, d1}), if f(x) = xd1 satisfies (l,m) = 1 (and thus is APN), then the code is two-error-
correcting. This same condition is present for the construction of near-bent functions of the
form Tr(xd1) for d1 corresponding to the Gold or Kasami-Welch exponents [15]. It is known
that if f(x) = xd, then f(x) is AB if and only if Tr(xd) is near-bent [15]. Furthermore, if
f(x) is AB, then it is APN [10]. We note the following, based on definition 5, the Gold and
Kasami-Welch near-bent functions in m variables have the form:

Tr(xd) = xd + x2d + x4d + · · ·+ x(2m−1)d (4)

Consider the following definition for the 2-cyclotomic cosets (mod 2m − 1) from [69]:

© 2022 José W. Velázquez Santiago
14/136

Definition 10 (Wong [70] 2-Cyclotomic Coset of a). Consider a ∈ Z2m−1, the 2-cyclotomic
coset of size j (mod 2m − 1) that contains a (C(a)) is of the form:

{a, 2a, 4a, . . . , 2j−1a} (5)
where j is some divisor of m and 2ja ≡ a (mod 2m − 1).

We refer to this as the cyclotomic coset of a (C(a)) for the rest of this paper. We call
the smallest positive integer in C(a) the cyclotomic coset representative of a and denote it
by CR(a).

Tr(xd) = Tr(x2d) = · · · = Tr(x(2m−1)d). (6)
Now consider the following for the minimal polynomial of αdi of degree j2 over F2:

mdi(x) = a0 + a1x
1 + a2x

2 + . . . xj2. (7)
Since the coefficients of the polynomial are 0s or 1s, if αdi is a root, then so is any αy such

that y ∈ C(di) (say y = α2kdi , k an integer such that 0 < k < m):
mdi(α

2kdi) = a0 + a1(α
2kdi)1 + a2(α

2kdi)2 + . . . (α2kd0)j2

= a0 + a1(α
di)2

k
+ a2(α

di)2∗2
k
+ . . . (αdi)j2∗2

k

= (a0 + a1(α
di) + a2(α

di)2 + . . . (αdi)j2)2
k
= (0)2

k
= 0

From [29] we can establish a clear relationship between the cyclotomic cosets and the
roots of minimal polynomials. It is known that X2m − X over F2m is the product of all
minimal polynomials over F2 whose degree divides m. From corollary 3 in [29] we have that
X2m−1−1 =

∑
s(ms(X)) which iterates over a set of cyclotomic coset representatives. Thus,

the size of the cyclotomic cosets must be a divisor of m.
With these results, we reduce the number of exponents needed to construct the cyclic

codes and the associated functions. We choose the smallest exponent of the cyclotomic coset
(called the cyclotomic coset representative) for these purposes. We do this for the Gold and
Kasami-Welch exponents by studying the cyclotomic cosets that contain these exponents for
0 < l < m. Given this, we determine the number of non-equal Gold near-bent functions and
determine an upper bound for the number of non-equal Kasami-Welch near-bent functions
of the form Tr(xd).

1.4. Low-Density-Parity-Check Codes. Error-correction is an important concept for
NASA deep-space applications. For NASA spacecraft, information is sent through millions
of miles in space. Space behaves like an additive white Gaussian noise (AWGN) channel (and
is thus used by multiple authors to test their codes) and thus introduces noise to the infor-
mation sent [1, 9, 62]. Multiple coding schemes have been implemented to provide reliable
communications for NASA deep-space applications. McEliece in [50] discussed the imple-
mentation of Reed-Solomon (RS) codes for NASA implementations. These have been later
utilized in various NASA missions, such as the Mariner 9, Voyager, and Galileo spacecrafts
[50, 68]. However, further research has been done on the efficiency and implementation of
these codes, and newer codes that can further approach the Shannon channel capacity have
been studied. These are the Turbo codes [37]. These codes have fast decoding and good
performance for deep-space conditions. However, more recently, state of the art by NASA’s

© 2022 José W. Velázquez Santiago
15/136

Jet Propulsion Laboratory (JPL) involves the use of LDPC codes. These are constructed by
using the parity check matrix of a code as the adjacency matrix of a sparse Tanner (bipartite)
graph [60]. These graphs are such that the nodes are divided into two classes that are not
interconnected with each other. One class of nodes corresponds to the variable nodes and
the other to the check nodes. LDPC codes have fast linear-time decoding through Bayesian
belief propagation over sparse networks. Belief propagation works by passing probabilities
(beliefs) along the nodes through the edges that connect them [62]. The message passed from
a message node v to a check node c is the probability that v has a certain value given the
observed value of v and all the values communicated to v in the previous round from check
nodes other than c. On the other hand, the message passed from c to v is the probability
that v has a certain value given all the messages passed to c in the previous rounds from
message nodes other than v.

In the first round, the check node sends along the outgoing edges their log likelihoods
conditioned on the observed values. If the channel is a binary symmetric code channel with
error probability p, then the first message sent to all the check nodes adjacent to a message
node is ln(1 − p) − ln(p) if the node value is 0 , and the negative of this if it is 1. In all
subsequent rounds of the algorithm, a check node c sends to an adjacent message node v a
likelihood according to the equation ln(L(x1+x2+x3+. . . |y1, y2, . . .)) = ln((1+

∏l
i=1(tanh(

li
2
))

1−
∏l

i=1(tanh(
li
2
))
))

. A message node v sends to a check node its log likelihood conditioned on its observed value
and on the incoming log likelihoods from adjacent check nodes other than c using relationship
the relationship ln(L(x|y1, y2, . . .)) =

∑d
i=1 ln(L(x|yi)) . Denote m

(l)
vc as the message passed

from message node v to check node c at the l-th round. Define m
(l)
cv similarly. At round 0,

m
(0)
vc is the log likelihood of the message node v conditioned on its observed value, which is

independent of c. Denote this value by mv. then the updated expectation for the messages
under belief propagation are given by:

m
(l)
vc = mv if l = 0

m
(l)
vc = mv +

∑
c′∈cv−{c}m

(l−1)
c′v if l > 0

m
(l)
cv = ln(

1+
∏

v′∈vc−{v} tanh(
m

(l)

v′c
2

)

1−
∏

v′∈vc−{v} tanh(
m

(l)

v′c
2

)

) [62]

The analysis done by the algorithm traverses the edges of the graph. For small number
of edges, if we set a number for the iterations, then these edges are traversed a constant

© 2022 José W. Velázquez Santiago
16/136

number of times. The number of edges is given by the degrees of the message node. Thus,
the algorithm uses a number of operations that is linear in the number of message nodes
[62].

LDPC codes compare favorably against Turbo codes [36]. Results show that they out-
perform Turbo codes for high code rates. According to Calzolari [9] next-generation NASA
coding schemes require large coding gain, high spectral efficacy, and low complexity decod-
ing. Coding gain is the difference between the Eb

N0
(SNR) required to achieve a given BER in a

coded system and the Eb

N0
required to achieve the same BER in an uncoded system. According

to Heegard [37], by the late 1960s, an improvement of 1 dB in coding gain is the equivalent of
$1,000,000 in development and launch costs. For 2013, the value of a 1 dB improvement for
Deep Space Networks is about $80,000,000. This is a significant cost for future missions, and
as such, any improvements over current standards improve the cost-efficiency of deep-space
missions. The spectral efficiency η is the average number of information bits transmitted per
two-dimensional signaling interval of duration T. It is also measured as a ratio between the
data rate, and the available bandwidth [9]. This is measured in bits/second/hertz. For low
data rates and large available bandwidth, the spectral efficiency is not a problem, and code
rates of 1

2
, 1
6

have been considered for those parameters in traditional deep-space missions
[9]. However, for scenarios such as Mars/Lunar Missions require high data rates (hundreds
of megabits/second), while Mars exploration scenarios require medium data rates (tens of
megabits/second). These scenarios also require codes that work at very low SNR values [9].
It is known that the code rate is inversely proportional to bandwidth expansion [9]. As such,
codes with very high code rates are sought for specific bandwidth efficiency constraints [9].
In this work, we consider the application of LDPC code algorithms to codes from the parity
check matrices of cyclic codes in two roots. These codes are constructed as Janwa and Wilson
do in [41] via the utilization of highly nonlinear functions. We consider Boolean bent and
near-bent functions as our highly nonlinear functions for this construction. We propose the
following construction:

Proposition 1. Codes that meet NASA criteria for next-generation channel decoding
Consider the set of near-bent exponents S := {j|j ̸∈ C(i)∀i ∈ S, i ̸= j}, α a primitive

element in F2m , fi(x) = xsi , si ∈ S. Consider the 2m x n matrix of the form:

H’ =
[

α2m−2 α2m−3 · · · α1 α0

fi(α
2m−2) fi(α

2m−3) · · · fi(α
1) fi(α

0)

]
Then, the resulting code will be a length n = 2m − 1, k ≥ 2m − 1 − 2m and d(C) = 5.

The graph constructed by utilizing this matrix as its adjacency matrix will correspond to a
code that meets at least two of NASA criteria for the next-generation channel decoding for
m ≥ 7 and small SNR values.

Our implementation and results leading to this proposition are discussed in Section 7.

2. Construction of Bent and Near-Bent Functions

2.1. Construction of Bent Functions. In this investigation, we construct algorithms
that generate a Boolean function g : F2m → F2 in m variables of the Gold and Kasami-Welch

© 2022 José W. Velázquez Santiago
17/136

type as constructed by Dillon and Dobbertin in [22]. These exponents are known for their
corresponding APN power functions (f : F2m → F2m) of the form f(x) = xd. The exponents
are defined as d = 2l + 1, 22l − 2l + 1 respectively, with (l,m) = 1 a necessary condition for
these functions to be APN and the construction of two-error-correcting codes as per Janwa
and Wilson [41]. To generate these functions, we construct algorithms (which will be shown
in the following subsections) that define the Boolean functions and iterate over distinct Gold
and Kasami-Welch exponents over the field F2m . We utilize definitions 1, 2 and 5.

Dillon and Dobbertin in [22] analyzed the Fourier coefficients of (−1)Tr(λxd) and obtained
conditions under which the Kasami-Welch and Gold Boolean functions are bent:

Proposition 2 ([22] Dillon and Dobbertin Gold Bent Functions). Let L = F2m and let
(l,m) = 1. For:

λ ∈ L∗, sλ
2l+1

(x) = Tr(λx2l+1) and ρλ
2l+1

(x) = (−1)
sλ
2l+1

(x)

if m is even and λ ∈ L∗ is not a cube, then:
ρ̂2l+1(α) = ±1, ∀α ∈ L,

i.e sλ
2l+1

(x) is bent.

Theorem 2 ([22] Dillon and Dobbertin Kasami-Welch Bent Functions). Let L = F2m , where
m is even but not divisible by six and let K = F22 . Let d = 22l − 2l + 1, (l,m) = 1. For:

λ ∈ K∗, sλd = Tr(λxd) and let ρλd = (−1)s
λ
d = ϕ(λxd)

then:
1) If λ ̸= 1, then sλd is bent i.e ρ̂λd(β) = ±1,∀β ∈ L

2) If λ = 1, then ρ̂d takes just three values {−2, 0, 2}, and
supp ρ̂d = L \K∗{Γ(θ) : TrL/K(θ−d) ̸= 0}
where Γ(z) = T (z2

3k+1)/z2
2k(2k+1)

and T (z) = z + z2
k
+ z2

2k .

Later, this was re-stated in [15] by reducing the divisibility criteria to m not divisible by
three and λ ∈ F2m a non-cube. To study these functions, we take α as a primitive element in
F2m and consider Tr(αixd) where we iterate over i for each Gold and Kasami-Welch exponent.
We state the following lemma as an observation from this notation:

Lemma 1 (Primitive Element Representation of a k-th Power Element in F2m). Let
α ∈ F2m be a primitive in the field and β a k-th power of another element in the field. Then,
β ≡ αik (mod 2m − 1) where i, k ∈ Z .

Proof: Let β ≡ γk (mod 2m − 1) ∈ F2m . Since α is a primitive element in the field, then
one of its powers will be equivalent to γ. Let us say αi ≡ γ (mod 2m − 1). Then we have:
β ≡ γk ≡ (αi)k ≡ αik (mod 2m − 1)

Thus, if β ∈ F2m is a k-th power of another element, then you can represent it as αj

where j is a multiple of k.
□

© 2022 José W. Velázquez Santiago
18/136

This lemma is utilized in Subsections 5.1 and 5.3 for analyzing the results of our algo-
rithms and constructing our tables and conjectures.

To study these functions, we consider the following construction. Let α ∈ F2m be a
primitive element. Then we construct the function Tr(αixd) for 0 < i < 2m − 1 and d
one of the exponents under consideration. We iterate over all possible values of i for a set
exponent d. According to Carlet, αi must be a non-cube and m not divisible by three for the
Kasami-Welch case to be bent. As per Lemma 1, this would mean that whenever i is not a
multiple of three, then the function is bent (given that the other two conditions are met). This
observation leads us to divide the set of exponents of α into sets of multiples. Specifically,
multiples of a number that divide the order of the field. For multiples of 3, it is easy to see
that 3 divides the order of F2m as m is even and thus, 2m ≡ 1 (mod 3) → 2m−1 ≡ 0 (mod 3).
This significantly decreases the number of computations, as otherwise, we are considering
2m − 2 functions for every exponent d. The analysis of these functions is done in section 5.

2.2. Construction of Near-Bent functions. Near-bent functions are defined for m
(odd) number of variables. There are known constructions of near-bent functions, namely
the Gold and Kasami-Welch functions Tr(x2l+1), T r(x22l−2l+1) [31, 44, 25, 21]. As mentioned
previously, near-bent functions are related to AB functions in that the component functions
of the AB function are near-bent. For an AB function F : F2m → F2m , F (x) = xd, then
Tr(λxd) is near-bent for λ ∈ F∗

2m [15]. Specifically, for λ = 1, we have that Tr(xd) must be
near-bent. This brings the question as to which exponents lead to AB (and thus, near-bent)
functions. In Table 1 a list of known APN and AB exponents is showed. Here we observe
that while all AB functions are APN, not all APN functions are AB. In 1999, Canteaut
established a theorem that determines when an APN function is also AB [10]. First, they
define the 2l divisibility of a code:

Definition 11 (Canteaut [10] 2l divisibility of a cyclic code). A binary cyclic code C is
said to be 2l divisible if the weight of any codeword in the code is divisible by 2l. [10]

Theorem 3 (Canteaut [10] Conditions for APN function to be almost-bent). Let m be an
odd integer and f : F2m → F2m with λf ̸= 2m−1. Then f is almost-bent if and only if f is
APN and Cd⊥

m (dual code of Cd
m) is 2

m−1
2 divisible.

Janwa and Wilson considered the APN property of Boolean functions in their 1993 paper
[41]. The minimum distance of the cyclic codes depends on the APN property. However,
AB functions achieve maximum nonlinearity by definition, whereas APN function do not
necessarily. Thus, we expect some differences in the cyclic codes constructed from APN
functions that are not also AB. In Section 6 we discuss the weight distribution of the codes
generated via the application of APN/AB/Bent functions for cyclic codes with two, three
and four roots and note the impact of functions being APN but not AB.

We construct algorithms that generate a Boolean function g : F2m → F2 in m variables
of the form Tr(xd). We iterate over a pre-generated list of exponents (APN, AB, bent) and
verify if the functions are near-bent. To do this we use the following algorithm:

Algorithm 1. [67]

© 2022 José W. Velázquez Santiago
19/136

def NearBent(f):
dim = f.nvariables()
w = f.walsh_hadamard_transform(), k = (dim +1)/2
for i in range(2̂ dim):

if abs(w[i]) != 0 and abs(w[i]) != 2̂ k:
return "Not Near-Bent"

else:
i = i

return "Near-Bent"

The input is a Boolean function "f" in m variables and the algorithm determines its
Walsh-Hadamard transform spectrum. The Boolean function input is done via the Boolean-
Function(f(x)) command, where f(x) is a polynomial over F2m and the result is the Boolean
function given by Tr(f(x)) [49]. Then it verifies if the function is near-bent by iterating over
the spectrum to check if it meets the definition. Trace properties of these functions can be ex-
ploited to find equal functions. For example, for f : F23 → F23 , f(x) = Tr(x3)x3+x6+x12 =
x6+x12+x3 = Tr(x12). There is also the concept of equivalence, which we consider in Section
4. This concept is important as the enumeration of bent and near-bent functions is an open
problem [15]. Classifying these functions in equivalent classes is one way to determine this.

© 2022 José W. Velázquez Santiago
20/136

Chapter 2: Results

3. Error-Correcting Code Construction and Almost-Bent/APN Exponents

3.1. Error-Correcting Codes and Minimum Distance Computations. In [67], we
constructed an algorithm that builds cyclic codes in two roots considering all the bent,
near-bent and APN exponents studied. The length of these codes ranged from n = 24 − 1
to n = 212 − 1. We utilized this construction (and slight modifications to it) to study the
properties of cyclic-codes in two roots. One of the main properties we studied was the weight
distribution of these codes. However, note that since these codes have minimum dimension
2m− 1− 2m, then as m increases, the dimension (and hence the total number of codewords)
increases much faster, quickly approaching n. For example, in six variables, the corresponding
cyclic code has 22

6−1−2(6) = 251 codewords at minimum. Thus, it is not viable to compute
the weight distribution of these codes directly. Instead, the weight distribution of their dual
codes is computed. These will have at most 22m codewords, which for m = 12 is 224 variables,
a much smaller number than the total codewords of the code for six variables. The weight
distribution of the dual codes can be related to the weight distribution of the original code
by the MacWilliams identity [42]. For cyclic codes of length 2m − 1, the weight distribution
of a code can be represented as the vector:

(A0, A1, . . . , An)

Where Aw is the number of codewords of weight w. The weight enumerator polynomial,
as defined in [42], is given by:

Definition 12 (Justesen [42] Weight Enumerator Polynomial). The weight enumerator poly-
nomial A(x) of a linear code C is defined as:

A(x) =
∑2m−1

w=0 (Awx
w)

where the weight distribution of the code is represented by the vector (A0, A1, . . . , An)

The MacWilliams identity is given by:

Theorem 4 (Justesen [42] MacWilliams Identity). If A(x) is the weight enumerator poly-
nomial of a binary (2m − 1, k) code C, then the weight enumerator polynomial B(x) of the
dual code C⊥ is given by :

B(x) = 2−k(1 + x)2
m−1A(1−x

1+x
).

Thus, studying the weight distribution of the dual code is equivalent to studying the weight
distribution of the original code. The algorithm used to construct these codes follows:

Algorithm 2. [67] {def Ccode2r(m):
N = []
I = []
D = []
W = []
n = 2̂ m - 1
L = []

© 2022 José W. Velázquez Santiago
21/136

SLLL = []
for i in range(0,len(SecondRoot[m])):

C = codes.CyclicCode(field = GF(2), length = n, D = [1,SecondRoot[m][i][0]])
L.append(["Root is", SecondRoot[m][i][0]])
h = C.check_polynomial()
DC = codes.CyclicCode(generator_pol = h.reverse(), length = n)
sd = DC.spectrum(algorithm = "binary")
a = [y for y in sd if y != 0]
g = 0
c = 0
for w in range(0,n+1):

g = g + sd[w]x̂ w
for j in range(0,len(SLLL)):

if g == SLLL[j][0]:
SLLL[j].append([1,SecondRoot[m][i][0]])
c = c + 1
break

if c == 0:
SLLL.append([g,[1,SecondRoot[m][i][0]]])

print("\n", C , ",","Distance is", C.minimum_distance(algorithm = "guava"),
" roots are:", 1, SecondRoot[m][i][0])

if set(SecondRoot[m][i]) & set(G) != set():
print("is Gold")
L.append(", Is Gold,")

if set(SecondRoot[m][i]) & set(K) != set():
print("is Kasami-Welch")
L.append(", Is Kasami-Welch,")

if m%2 == 1:
I.append(2̂ m− 2)
W.append(2̂ ((m− 1)/2 + 3))
if set(SecondRoot[m][i]) & set(I) != set():

print("is Inverse")
L.append(", Is Inverse,")

if set(SecondRoot[m][i]) & set(W) != set():
print("is Welch")
L.append(", Is Welch,")

if m%4 == 1:
N.append(2̂ ((m-1)/2) + 2̂ ((m-1)/4) - 1)
if set(SecondRoot[m][i]) & set(N) != set():

print("is Niho even case")
L.append(", Is Niho Even Case,")

if m%4 == 3:
N.append(2̂ ((m− 1)/2) + 2̂ ((3 ∗m− 1)/4)− 1)
if set(SecondRoot[m][i]) & set(N) != set():

© 2022 José W. Velázquez Santiago
22/136

print("is Niho odd case")
L.append(", Is Niho Odd Case,")

if m% 5 ==0:
D.append(2̂ ((4 ∗m)/5) + 2̂ ((3 ∗m)/5) + 2̂ ((2 ∗m)/5) + 2̂ ((m)/5)− 1)
if set(SecondRoot[m][i]) & set(D) != set():

print("is Dobbertin")
L.append(", Is Dobbertin,")

L.append(["Number of nonzero weights is", len(a) - 1])
print("Weight Enumerator polynomial of the Dual Code is:,",g, ", Coefficients

are:,",a, ", Number of nonzero codeword weights is", len(a) - 1)
print("\n", SLLL)

The algorithms take as an input "m" the number of variables considered. The corre-
sponding code will be of length n = 2m−1. The first four lines define empty lists in which we
store the non-Gold and Kasami-Welch exponents considered. This is done as these exponents
depend directly on the value of m. The Gold and Kasami-Welch exponents are assigned to
the lists G,K that were pre-generated. Next, the algorithm defines the length of the code n,
and two additional empty lists, "L" and "SLLL.” The list L will store the second root of
the defining set, to which APN exponent it corresponds and the number of nonzero weights
of the corresponding cyclic code. The list SLLL will store defining sets of cyclic codes with
the generator polynomial of the respective dual code. This is such that all defining sets that
lead to cyclic codes with the same weight distribution will be grouped together. Line 8 of the
algorithm begins a for loop that iterated over a pre-generated list of exponents (called "Sec-
ondRoot"), which are used to construct the cyclic code. SecondRoot is a list that contains
the roots and their cyclotomic cosets as a sublist. SecondRoot[m] selects the cosets modulo,
SecondRoot[m][i] the specific cyclotomic coset and SecondRoot[m][i][0] is the representative
of that coset. The roots are appended to the list L; the check polynomial is computed and
used to construct the dual code. Then, the weight distribution (or spectrum) of the dual code
is computed. A list "a" is constructed such that it takes all nonzero entries in the weight
distribution of the code. A variable "g" is used to store the weight enumerator polynomial
and a counter variable "c" is used to help store the weight enumerator polynomial in the
following loop. Line 17 begins a for loop that stores in g the weight enumerator polynomial of
the dual code according to Definition 12. Lines 19-25 include the for loop used to construct
the list SLLL. First, the algorithm verifies if the value stored in g matches the first entry in
SLLL, if it does, then it will append the defining set of the current code as it shares a weight
enumerator polynomial with the others in the list SLLL. If it does not, then we check the
second weight enumerator polynomial entry in the list SLLL and so on. Line 24 verifies if the
counter variable is 0, if it is, then g is not in SLLL and thus is added (with its corresponding
defining set) to the list. Next, the algorithm prints the code parameters and their defining
set. This is followed by a set of if statements that verify if the current exponent considered
is in the cyclotomic coset of one of the APN/near-bent/bent exponents considered in this
work. If it is, then the exponent type is printed and appended to the list L. If not, we move
on to the next exponent. Then, the algorithm appends the number of nonzero-weights to
the list "L.” The output of the algorithm will then be the list L, which prints the considered

© 2022 José W. Velázquez Santiago
23/136

exponent, its type, and the number of nonzero weights of the corresponding dual code, and
the list SLLL, which contains a list of weight enumerator polynomials with the defining sets
of cyclic codes that lead to the polynomial. Finally, it outputs the parameters of the cyclic
code, including the weight distribution of its dual, number of nonzero weights, minimum
distance, and other properties that we modify the algorithm to display.

We utilized Algorithm 2 to construct cyclic codes with defining set of size two and com-
pute their minimum distance and weight distribution. We analyzed the weight distribution
of these codes theorems/conjectures in subsection 6.1. We further expanded this analysis.
For minimum distance computations, we utilized the GAP package "Guava" via SAGE in
the virtual online workspace for calculations, research, collaboration, and authoring docu-
ments (COCALC). Without this package, computations of the minimum distance for codes
of lengths above 255 were not done in a reasonable time. However, even with the Guava
package, we limited our computations up to m = 11. We construct Table 10 based on Al-
gorithm 2. We note that there are 66 distance five codes from this construction. There are
several functions related to these codes that are not directly identified with APN or AB
exponents. In particular, the exponent of the form 2m−3 − 1 (dubbed as the "pre-Inverse")
case is interesting, as, for an odd integer m, it is a distinct exponent that leads to distance
five codes. Equivalence analysis of the functions was performed to verify if some correspond
through some criteria to known APN functions.

It is important to note that while we consider the cyclotomic coset representative crite-
ria (as discussed at the beginning of this chapter), there are still other equivalence criteria to
consider. CCZ-equivalence (named after Carlet, Charpin, and Zinoviev) is the most general
equivalence criteria for functions that preserve the APN property [11]. In [20], it is shown that
two APN power functions are CCZ-equivalent if and only if they are cyclotomic-equivalent.
We state this definition from [5] in Definition 9. The first condition states that l and k are
in the same cyclotomic coset. We have already eliminated this possibility by taking the cy-
clotomic cosets representatives of the APN and AB exponents and verifying that they are
distinct. The second condition states that k and the inverse of l (or vice versa) share a cyclo-
tomic coset. We construct Algorithm 3 to verify this equivalence and apply it to construct a
table that verifies if the observed "new" functions that lead to two-error-correcting codes are
APN or not. Since the functions are cyclotomic-equivalent, the corresponding cyclic codes
are as well. The results are observed in Table 13. Since we choose exponents such that they
are the cyclotomic cosets representatives of cosets that contain an APN/AB/bent exponent,
then the first condition of cyclotomic equivalence is not met. We thus only focus on the
second condition.

Algorithm 3. [67]
def cycloequiv(m):

f = FindModNoncube(m)
R.<x> = GF(2̂ m,’a’, modulus = f)[]
k.<a> = GF(2**m, modulus = f)
CRL = RepCyclo(m), n = 2̂ m− 1, Cl = Cyclo(1,n)
for i in range(len(CRL)):

if w in range(len(CRL)):

© 2022 José W. Velázquez Santiago
24/136

if (CRL[i]*CRL[w])%(n) in Cl and gcd(CRL[i],n) == 1:
print(",f(x) = $x̂ {", CRL[i],"}$ is cyclotomic-equivalent to g(x) =

$x̂ {", CRL[w],"}$")

This algorithm verifies the second condition for cyclotomic equivalence between power
functions over F2m as in Definition 9 and in [5]. The algorithm takes as an input the number
of variables, then finds an irreducible polynomial of degree m (over F2m) and then constructs
a Boolean polynomial Ring over F2m such that it assigns a as the congruence class [x] modulo
f (the irreducible polynomial from the previous algorithm). This is done via the "FindMod-
NonCube" pre-defined algorithm, which uses Conway polynomials to find the corresponding
irreducible polynomial. Then, it constructs a finite field as powers of "a" where a is a prim-
itive element in the field. It then assigns a list of all the cyclotomic coset representatives
(mod 2m−1) to the variable CRL, assigns n = 2m−1 and the cyclotomic coset of 1 (mod n)
to the list CL. Then, it iterates over the list CRL and verifies for every pair of cyclotomic
coset representatives if the second condition of the cyclotomic equivalence definition is met.
The results from this algorithm were organized, and the exponents corresponding to the
list of functions that lead to two-error-correcting codes (obtained from Algorithm 2) were
compared and identified as equivalent to an APN function or not.

Note that the "pre-Inverse" case that we observed before is APN only when it is equiv-
alent to a Gold function (five and seven variables). From [41] we know that if an exponent
d leads to a two-error-correcting codes, then f(x) = xd has to be APN. Thus, we estab-
lish that the minimum-distance commands from SAGE have some errors. We propose a
new minimum distance algorithm using MacWilliams identity and derivatives of the weight
enumerator polynomial for codes with a low number of weights on their respective dual code.

Algorithm 4. [67] def MinimumDistance2r(m):
n = 2̂ m− 1
print("Code - Minimum Distance - Defining Set - Weight Coefficients - nonzero

Weights")
for i in range(0,len(CrepNB[m])):

cr = CrepNB[m][i],D = [1, cr]
C = codes.CyclicCode(field=GF(2), length=n, D=[1, cr])
h = C.check_polynomial()
DC = codes.CyclicCode(generator_pol = h.reverse(), length = n)
sd = DC.spectrum(algorithm = "binary")
a = [y for y in sd if y != 0]
g2 = 2̂ (-C.dimension())*(1+x)̂ (n),az = 0
for w2 in range(0, n+1):

az = az + sd[w2]*((1-x)/(1+x))̂ (w2)
g2 = g2*az
for i2 in range(1, degree(g2)):

g2 = sym.diff(g2)
if g2.subs(x:0) != 0:

d = i2
break

© 2022 José W. Velázquez Santiago
25/136

print(C, "-",d, "-", D, "-", len(a) - 1)

The algorithm takes as input the number of variables considered, assigns the length of
the corresponding codes to n, and prints the table headings. Then, it begins iterating over the
list of cyclotomic coset representatives of the near-bent and APN exponents and constructs
the cyclic code C with defining set D = {1, cr}. The generator polynomial for the dual code
C⊥ is obtained by taking the check polynomial of C and reversing it. The spectrum (weight
distribution) of this code is computed; we take the nonzero weights (which correspond to
the indices in the distribution) and begin construction of the weight enumerator polynomial
of C by applying the MacWilliams identity. Once this polynomial is obtained, we iterate
over the derivatives of the polynomial and evaluate them at x = 0, with the first nonzero
result meaning that the lowest (nonzero) degree term has been reduced to a constant, this
degree corresponding to the minimum weight (which is the same as the minimum distance
of a linear code [42]).

The results from this algorithm are seen in Table 11 and are verified and complemented
by the APN conjecture and its relation to two-error-correcting codes. We observe that the
weight distribution of the dual codes contains mostly three nonzero weights. Furthermore,
the dimension of the dual codes is at most 2m while the dimension of the original code is
at least 2m − 1 − 2m, which is a vastly greater number as m increases. We apply Theorem
4 to the weight enumerator polynomial of the dual code but do not expand the resulting
polynomial. We then compute the successive derivatives of the resulting polynomial and
evaluate at x = 0. The first nonzero result obtained will determine the minimum distance
of the code. Thus, a smaller number of codewords to consider, fewer computations by not
expanding these polynomials, and results that match the theory show that this algorithm
improves the current implementation in SAGE.

4. Cyclotomic Coset Analysis of the Gold and Kasami-Welch Exponents

In this section, we analyze the Gold and Kasami-Welch exponent distribution in cy-
clotomic cosets (mod 2m − 1). Some of the proofs in this section were results from our
Springer PROMS article [67]. Some of the proofs have been improved (see Subsubsection
4.2.1), while others, like the Kasami-Welch case, have been completed. As mentioned be-
fore, for the trace functions in m variables of the form Tr(xd) will be equal for all d such
that they are in the same cyclotomic coset (mod 2m − 1). Similarly, for the construction
of cyclic codes, as seen in Subsection 1.3, if you exchange entries of the defining set for
another in the same cyclotomic coset, then the resulting codes are equivalent. Finding the
distribution of Gold and Kasami-Welch exponents in these cosets would then allow further
characterization of these functions and codes. Our computational results led us to state the
theorems that follow in the subsequent subsections. We present these as a new proof for
results on known CCZ-equivalence between Gold and Kasami-Welch functions, as shown
previously by Budaghyan [4] and Yoshiara [71]. Consider the Gold and Kasami-Welch func-
tions gl = x2l+1, kl = x22l−2l+1, 0 < l < m, (l,m) = 1. Budaghyan has showed that gl1 and gl2
are CCZ-equivalent if and only if l1 = l2 or l1 + l2 = m (and thus ϕ(m)

2
equivalence classes).

Yoshiara has a proposition for the CCZ-equivalence between Gold, Kasami-Welch, Niho, and
Welch exponents. Our results are related to the first and fifth points of Proposition 2 in [71]:

© 2022 José W. Velázquez Santiago
26/136

Proposition 3 (Yoshiara [71]). For the Gold and Kasami-Welch functions gsi = x2si+1, kri =

x22ri−2ri+1, 0 < si <
m
2
, 1 < ri <

m
2
, (si,m) = 1, (2, ri) = 1, then:

(1) The Gold functions gl1 and gl2 defined on F2m are CCZ-equivalent if and only if l1 = l2.
(2) The Kasami-Welch functions kl1 and kl2 defined on F2m are CCZ-equivalent if and only

if l1 = l2.

4.1. CCZ and Cyclotomic equivalence of Boolean Functions. We focus on key
cryptographic properties of these functions as we want good codes associated with the final se-
lection of functions. One such property is the differential uniformity, which defines APN func-
tions. The most general form of equivalence that preserves this property is CCZ-equivalence
[11]. Extended Affine-equivalence (EA-equivalence) is a less general form of equivalence that
also preserves properties like the algebraic degree [10, 64]. EA-equivalence coincides with
CCZ-equivalence for Boolean functions and vectorial Boolean functions [6, 7]. As such, we
focus on CCZ-equivalence in this investigation. These equivalences are defined as follows:

Definition 13 (Canteaut [11] CCZ-equivalence). Two functions F : F2m → F2k and
G : F2m → F2k are CCZ-equivalent if there exists an affine permutation A of F2mXF2m such
that:

{(x, F (x)), x ∈ F2m} = A({(x,G(x)), x ∈ F2m})

Definition 14 (Canteaut [11] EA-equivalence). Two functions F : F2m → F2k and G :
F2m → F2k are EA-equivalent if there exist two affine permutations A : F2m → F2m , B :
F2k → F2k and an affine function C : F2m → F2k such that:

F (x) = (BoGoA)(x) + C(x))

We studied several references to obtain a proper list of important properties that are
preserved by this type of equivalence. The importance of this is that if we have multiple EA
or CCZ-equivalent functions in our list, we can reduce computational time for our algorithms
by focusing on one of these equivalent functions. The properties preserved are: Differential
Spectrum [11] (Both) , Walsh Spectrum [11] (Both), Walsh spectrum preserved means that
the bent and near-bent properties are preserved [11, 15] (Both). Differential uniformity [3, 11]
(Both) and differential uniformity = 2 =⇒ the function is APN, as such, the APN property
is also preserved [2, 5, 11] (Both). Extended Walsh spectrum [11] (Both) , Algebraic Degree
[3, 5, 11] (EA) , Nonlinearity [3, 64] (Both), Plateaued property (with single amplitude and
the value of the amplitude for Both) [64] and Minimum degree [64] (EA) .

As stated previously, for the Boolean case, EA and CCZ-equivalence coincide. The con-
cept of cyclotomic equivalence was proven to be equivalent to CCZ-equivalence for Boolean
functions by Dempwolf and Yoshiara [20, 71]. In 2016, Yoshiara proved a result on CCZ-
equivalence of Gold and Kasami-Welch functions of the form gs(x) = x2s+1, kr(x) = x22r−2r+1

in m variables (s,m) = 1, (r, 2) = 2 with 0 < s < m
2
, 1 < r < m

2
.

In Subsection 4.3, we prove a result on the multiplicative inverse of the Gold and Kasami-
Welch exponents in cyclotomic cosets that contain them. These results, in conjunction with
the results from Subsection 4.2, lead to a proof of conditions of cyclotomic equivalence (and
hence CCZ-equivalence) between Gold (and respectively, Kasami-Welch) functions. In our
case, we provide a new proof for Yoshiara’s result by taking the restriction 0 < i, x <
m, (m, l) = 1 for gigx, ki, kx and m > 3 in the Gold case, m > 5 in the Kasami-Welch case.

© 2022 José W. Velázquez Santiago
27/136

CCZ-equivalence is the most general form of equivalence between Boolean functions that
preserves the APN property [10]. Thus, the CCZ-equivalence (and cyclotomic equivalence)
properties of these functions are important to classify these functions under distinct classes
of APN functions.

Going back to Definition 9 the first condition of cyclotomic equivalence states that the
two exponents share a cyclotomic coset. For Gold and Kasami-Welch exponents of the form
2i + 1, 2j + 1 and 22i − 2i + 1, 22j − 2j + 1 respectively, we have showed that they share a
cyclotomic coset only when i+ j = m (given that (i,m) = (j,m) = 1. The second condition,
kl ≡ 2a (mod 2m − 1) → 2m−akl ≡ 1 (mod 2m − 1) → (2m−ak)l ≡ 1 (mod 2m − 1) →
(2m−al)k ≡ 1 (mod 2m − 1), means that, for k, l corresponding to two Gold or Kasami-
Welch exponents in different cyclotomic cosets, then they share a cyclotomic coset with the
multiplicative inverse of the other exponent. We prove in Subsection 4.3 that this condition
cannot be met, and as such, if i+ j ̸= m then the respective functions cannot be cyclotomic
(and thus, CCZ) equivalent.

4.2. Distribution of the Gold and Kasami-Welch Exponents in a Cyclotomic
Coset. Numeric experimentation was done to identify patterns in the distribution of the
Gold and Kasami-Welch exponents. We constructed Tables 8 and 17, for m an even integer.
We observe that the exponents are distributed such that there are two per cyclotomic coset
in the majority of cyclotomic cosets that contain them. The exceptions occur when the ex-
ponents are of the form 2

m
2 + 1, 22

m
2 − 2

m
2 + 1. For the Gold case, the size of the cyclotomic

coset for which only one exponent is found is m
2
, whereas, for the Kasami-Welch case, all

cyclotomic cosets are of size m. For the odd case, in Tables 16 and 18, all cyclotomic cosets
observed contain a pair of distinct exponents. Furthermore, all the cosets that contained the
exponents were of size m. The following lemmas are used in the proof of our results which
are derived from these observations.

Lemma 2. The sum
∑n−1

i=0 ai2
i ≤ 2n − 1, with coefficients from {0, 1}. With equality if and

only if all the coefficients are 1.

An important consequence of this lemma that we utilize in the proofs is that if you
have two sums of distinct powers of 2, if they differ in at least one term, then they sum to
different numbers. We state and prove this as follows:

Lemma 3. For two sums of distinct powers of two, if they differ in at least one term, then
they sum to different numbers.

Proof: By the unique 2-adic representation of integers, if the two sums are distinct, they
represent a different integer.

□

Since we are considering sums (mod 2m − 1), the applications of these lemmas must
consider this fact. For example, 2x + 24 + 2 ≡ 24 + 2 + 1 (mod 25 − 1) is true for x = 5. In
fact, it is true for x being any multiple of 5. In these cases, if we can show that 2x is not
equivalent (mod 25 − 1) to all powers of 2 on the right side of the equivalence, then we can
apply Lemma 3 to assert that the two sums are equivalent (mod 25− 1) to distinct integers
less than 25−1. For more unknown powers, say: 2a+2b+2c ≡ 2d+2e+2f (mod 2m−1), our

© 2022 José W. Velázquez Santiago
28/136

approach is to verify that the sums on the left and right side of the equivalence are between
non-equivalent powers of 2. Then, we verify that the equivalence does not hold if their sum
is equivalent (mod 2m − 1) to distinct integers less than 2m − 1. It is important to note
that if both sides of the equivalence are sums of less than m distinct powers of 2, then the
equivalence turns to equality. This is because, by Lemma 2, if we have the sum of less than
m distinct powers of 2, then they cannot sum to an integer greater than 2m − 1. For the
proofs we show, all powers of 2 shall be substituted by their equivalence class representative
such that we can substitute equivalence for equality in our analysis. The equivalence class
representatives of a power of 2 is necessarily another power of 2 (less than 2m). This is
because for c > m, 0 < c2 < m, c ≡ c2 (mod m) and an integer 0 < b < 2m − 1, 2c ≡ b
(mod 2m−1) → 2−cb ≡ 1 (mod 2m−1) → 2−c2b ≡ 1 (mod 2m−1) → b ≡ 2c2 (mod 2m−1).
In our proofs, we consider the "equivalence class representative" of an integer "a" as the
smallest non-negative integer that is less than 2m − 1 which is in the same equivalence class.

Theorem 5 (Velazquez, Janwa [67] The Number of Gold Exponents in The Cyclotomic
Cosets (mod 2m − 1)). Let 2l +1 be a Gold exponent. Gold exponents occur in pairs of the
form 2i+1, 2j +1 in a cyclotomic coset of size a (mod 2m− 1) where j+ i = m, and m > 2.

Proof: Let i,j,w,k,a,t and m ∈ Z
Case 1: m is an odd prime.

We know from that the size of the cyclotomic cosets (mod 2m− 1) is a non-trivial divisor
of m, and since m is prime, all the cyclotomic cosets (aside from the one composed of
only the 0 element) are of size m. Say we have the cyclotomic coset containing 2i + 1:
C(2i+1) = {2i+1, 2∗(2i+1), . . . 2m−1∗(2i+1)}. Consider j such that j+ i = m,0 < j, i < m
(if j = i then the pair of 2i + 1 is itself) then we have 2j(2i + 1) ∈ C(2i + 1) and

2j(2i+1) ≡ 2i+j+2j (mod 2m−1) ≡ 2m+2j (mod 2m−1) ≡ 1+2j (mod 2m−1). (8)
Thus, we found a "pair" of Gold exponents in the same cyclotomic coset. Now we show that
no other Gold exponent can be found in the same coset.

Consider k ̸= j, i, 0 < k,w < m, w ̸= j such that: 2w(2i+1) ≡ 2k+1 (mod 2m−1). Note
that w ̸= k or else we have (2i+k + 2k) ≡ 2k + 1 (mod 2m − 1) → 2i+k ≡ 1 (mod 2m − 1) →
k = j (since both i and k are less than m). Furthermore, w + i ̸= m (forces w to equal
j) nor w + i = k as this would mean: 2w(2i + 1) ≡ 2w+i + 2w (mod 2m − 1) ≡ 2k + 2w

(mod 2m − 1) ≡ 2k + 1 (mod 2m + 1) → 2w ≡ 1 (mod 2m − 1) → w = m or w = 0 which is
false.

With the conditions given above, we have:
2w(2i + 1) ≡ 2w+i + 2w (mod 2m − 1) ≡ 2k + 1 (mod 2m − 1). (9)

Note that if w + i > m, say w+i = e + m, then 2w+i ≡ 2e (mod 2m − 1) with 2e being a
power of 2 less than 2m. And if w + i = e < m we have the same situation. Thus, on both
sides we have the sum of two distinct powers of 2 that are less than 2m and, since m is a
prime odd integer with a minimum value of three, both sums are less than 2m − 1 (from
lemma 2). The left and right expressions are representatives of distinct congruence classes
(mod 2m − 1) and, as such, must be distinct. Thus, no such k and w exist, and we get our
result.

© 2022 José W. Velázquez Santiago
29/136

Case 2: m is an even integer.
As discussed previously, the sizes of the cyclotomic cosets divide m, so in this case, we

could have Gold exponents in a coset of length a, where a|m. For the case where the size of
the coset is m, we can apply the same argument as the previous case to find precisely two
Gold exponents in the coset whenever m > 2.

Consider the size of the coset to be 0 < a < m that is:

C(2i + 1) = {2i + 1, 2 ∗ (2i + 1) + . . . 2a−1(2i + 1)} (10)
such that a|m. The biggest value "a" can take is m

2
. Without loss of generality, we can

assume that 0 < i < j < m with i < m
2

and m
2

≤ j. First, if m
2

< j, then a < j,
say j = a + e < m for some 0 < e < m. Then we have that 2j(2i + 1) ≡ 2a+e(2i + 1)
(mod 2m − 1) ≡ 2e(2i + 1) (mod 2m − 1). Thus, we have :

2e+i + 2e ≡ 2j + 1 (mod 2m − 1) (11)
Since i < m

2
and e < j < m, then 2e+i < 2m (mod 2m − 1). Furthermore e + i ̸= e (as

otherwise i = 0, which is false). This means that 2e+i + 2e sum to an even integer less than
2m− 1. On the right side of Equivalence 11, we have that j < m → 2j +1 < 2m− 1 → 2j +1
sum to an odd integer less than 2m−1. Thus, Equivalence 11 turns into an equality between
an odd and an even integer, which is a contradiction.

The next case is when j = a = m
2
. Since i + j = m, then i = m

2
. Thus, such a pair can

exist in a cyclotomic coset of size a = m
2
. To show that his pair is unique, suppose there

exists a third Gold exponent, say 2w + 1 (0 < w < m) such that for some integer 0 < k < a
we have 2k(2i + 1) ≡ 2w + 1 (mod 2m − 1). Then:

2k+i + 2k ≡ 2w + 1 (mod 2m − 1). (12)
Since k < m

2
, then 2k+i < 2m and k ̸= k + i → 2k+i + 2k sums to an even integer less

than 2m − 1. On the other hand, 2w + 1 sums to an odd integer less than 2m − 1. Thus we
reach a contradiction as we reach an equality between an odd and an even integer.

Finally, if j = m
2

and a < j, say j = a+ e for some integer e < m, we have:

2e+i + 2e ≡ 2j + 1 (mod 2m − 1) (13)
We reach a contradiction by the same argument as the case m

2
< j.

Case 3: m a non-prime odd integer.
Once more, we appeal to the argument about the size of the cyclotomic cosets. In this

case the size will either be m or some odd integer a that divides m. In case 1, we have shown
that if the coset is of size m, then there are precisely two Gold exponents if one is found in
the coset; in case 2, we have shown that if the size is a < m, then if we find a Gold exponent
in the cyclotomic coset, the size must be m

2
, but since m is odd, no such case can happen,

thus if we find a Gold exponent in a coset, there are precisely two of them. □

Corollary 1 (Velazquez, Janwa [67] Number of Gold Near-Bent Functions Over F2m). Let
the Gold Boolean near-bent function in m variables (m > 2) be of the form Tr(x2l+1) such

© 2022 José W. Velázquez Santiago
30/136

that 1 ≤ l ≤ m− 1 and (l,m) = 1. Then, the number of non-equal Gold near-bent functions
is precisely Φ(m)

2
.

Proof: The result follows from Theorem 5. The (l,m) = 1 condition follows from [15].
For m an odd integer we have precisely two Gold exponents in each cyclotomic coset that
contains them. The possible values of l are 1, 2, 3 . . .m−1 and only those such that (l,m) = 1
lead to near-bent functions. The number of such values of l is given by Euler’s Φ function,
and we divide this total by 2. Thus, Φ(m)

2
will be the total number of Gold near-bent functions

generated.
□

Theorem 6 (Cyclotomic Cosets (mod 2m − 1) that contain Kasami-Welch Exponents for
m odd, (l,m) = 1). Let 22l − 2l +1 be a Kasami-Welch exponent and m > 3 an odd integer.
Then, the Kasami-Welch exponents occur in a unique pair of the form 22i−2i+1, 22j−2j+1,
j + i = m, (i,m) = (j,m) = 1 and the cyclotomic coset must be of size m.

Proof: Consider: C(22i − 2i +1) = {22i − 2i +1, 2(22i − 2i +1)+ · · ·+2m−1(22i − 2i +1)} as
the cyclotomic coset of size m containing a Kasami-Welch exponent. Define i, j ∈ Z+ such
that 0 < i, j < m, i+ j = m. Now, consider:

22j(22i−2i+1) = 22(i+j)−2j+(j+i)+22j = 22m−2j+m+22j ≡ 1−2j+22j (mod 2m−1), (14)
Thus, we have found a "pair" of Kasami-Welch exponents that belong to the same cyclo-

tomic coset.
We show that this pair is unique in the cyclotomic coset by contradiction. Suppose

there is a third Kasami-Welch exponent in the cyclotomic coset, say 22x − 2x + 1, with
x ̸= i, x ̸= j. By the argument in the previous paragraph, we can find some positive
integer y such that y + x = m → 22y(22x − 2x + 1) ≡ 22y − 2y + 1 (mod 2m − 1) and
22x(22y − 2y + 1) ≡ 22x − 2x + 1 (mod 2m − 1) with y ̸= j, y ̸= i. Rewrite these pairs
as follows, i = m+1

2
− e1, j = m+1

2
+ e1 − 1, x = m+1

2
− e2, y = m+1

2
+ e2 − 1, with

0 < e1, e2 < m+1
2

. Without loss of generality, we shall assume that x < i (i.e, e1 < e2).
We note that 2y = m+ 2e2 − 1 ≡ 2e2 − 1 (mod m), 2j = m+ 2e1 − 1 ≡ 2e1 − 1 (mod m),
2x = m + 1− 2e2 ≡ 1− 2e2 (mod m) and 2i = m + 1− 2e1 ≡ 1− 2e1 (mod m). For these
four distinct exponents to exist in the same coset, the size of the coset must be greater than
three, as such m > 3. Since 22x − 2x + 1 is in the same cyclotomic coset as 22i − 2i + 1, then
there exists some integer q such that 2q(22x − 2x + 1) ≡ 22i − 2i + 1 (mod 2m − 1), with
0 < q < m. We will show that such q cannot exists, and thus 22x − 2x + 1 cannot be in the
cyclotomic coset. We can separate all the possible values of q into three ranges. These are,
0 < q < 2e2 − 1, q = 2e2 − 1 and 2e2 − 1 < q < m.

First Case: 0 < q < 2e2 − 1

2q(22x − 2x + 1) = 22x+q − 2x+q + 2q = 2m+1−2e2+q − 2
m+1

2
−e2+q + 2q →

2m+1−2e2+q − 2
m+1

2
−e2+q + 2q ≡ 22i − 2i + 1 (mod 2m − 1).

© 2022 José W. Velázquez Santiago
31/136

Since q < 2e2 − 1, then q + 1 < 2e2 → m + 1 − 2e2 + q < m. Furthermore, since
e2 <

m+1
2

then 0 < q < m+1
2

− e2 + q < m + 1− 2e2 + q < m → 2m+1−2e2+q > 2
m+1

2
−e2+q →

2m+1−2e2+q − 2
m+1

2
−e2+q + 2q sums to an even integer less than 2m − 1. On the other hand,

2i = m+1−2e1, since 1 ≤ e1 <
m+1
2

, then 2 ≤ 2e1 < m+1 → 0 < i < 2i < m → 22i−2i+1
is an odd integer less than 2m − 1. Since both sides sum to integers less than 2m − 1, we can
replace the equivalence by equality, and we have an equality between an even and an odd
integer, which is a contradiction.

Second Case: q = 2e2 − 1

2q(22x−2x+1) = 22x+q−2x+q+2q = 2m+1−2e2+q−2
m+1

2
−e2+q+2q = 2m−2

m+1
2

+e2−1+22e2−1 ≡
1− 2y + 22y (mod 2m − 1)

This implies that:
22y − 2y ≡ 22i − 2i (mod 2m − 1) (15)

Since e2 < m+1
2

then 2e2−1 < m+1
2

+e2−1 < m. This means that (2y−22y) is equivalent
(mod 2m− 1) to an even integer less than 2m− 1, and thus we have 22y − 2y = −(2y − 22y) ≡
2m − 1− (2y − 22y) (mod 2m − 1) which is an odd integer less than 2m − 1. The right side of
Equivalence 15 sums to an even integer less than 2m − 1 (as discussed in the previous case)
and thus we have a contradiction as we reach an equality between an even and an odd integer.

Third Case: 2e2 − 1 < q < m

Let us call q = 2e2 − 1 + k, where 2 ≤ 2e2 ≤ m− 1, 0 < q < m → 0 < k < m− 1.

2q(22x−2x+1) = 22x+q−2x+q+2q = 2m+1−2e2+q−2
m+1

2
−e2+q+2q = 2m+k−2

m+1
2

+e2−1+k+
22e2−1+k ≡ 2k − 2y+k +22y+k (mod 2m − 1) → 2k − 2y+k +22y+k ≡ 22i − 2i +1 (mod 2m − 1)

This implies that:

22y+k + 2i + 2k ≡ 22i + 2y+k + 1 (mod 2m − 1) (16)
Our approach is to show that the left and right sides of Equivalence 16 are distinct sums

of distinct powers of 2, and thus by Lemmas 2 and 3 the equivalence cannot hold.

Left Subcase 1: 2y + k ≡ i (mod m)

→ q ≡ i (mod m) and → y + k ≡ i+ x (mod m) →

2i+1 + 2k ≡ 22i + 2i+x + 1 (mod 2m − 1). (17)
Left Side of Equivalence 17 Sub-subcase 1: i+ 1 ≡ k (mod m)

→ q + 1 ≡ k (mod m) → 2e2 − 1 + k + 1 ≡ k (mod m) → 2e2 ≡ 0 (mod m) which is a
contradiction as (2,m) = 1.

© 2022 José W. Velázquez Santiago
32/136

Right Side of Equivalence 17 Sub-subcase 1: 2i ≡ i+ x (mod m)

→ i ≡ x (mod m) → x = i which is a contradiction.

Right Side of Equivalence 17 Sub-subcase 2: 2i ≡ 0 (mod m)

This is a contradiction as (2,m) = 1.

Right Side of Equivalence 17 Sub-subcase 3: i+ x ≡ 0 (mod m)

→ i ≡ −x (mod m) → i ≡ y (mod m) → i = y which is a contradiction.

Thus, for Equivalence 17, the left side of the equivalence are two distinct powers of 2, all
of which are not equivalent to 1 (mod 2m − 1) (as both (0 < i, k < m − 1), thus summing
to an even integer less than 2m. For the right side of the equivalence, we have three distinct
powers of 2, with only one of them equivalent to 2m (mod 2m − 1), thus they sum to an
odd integer. Substituting each term for their equivalence class representative, if necessary,
we can substitute the equivalence for equality and reach that an even integer is equal to an
odd integer, which is a contradiction.

Left Subcase 2: 2y + k ≡ k (mod m)

→ 2y ≡ 0 (mod m) which is a contradiction as (2,m) = 1.

Left Subcase 3: i ≡ k (mod m)

→ 22y+i + 2i+1 ≡ 22i + 2y+i + 1 (18)
Left Side of Equivalence 18 Sub-subcase 1: 2y + i ≡ i+ 1 (mod m)

→ 2y ≡ 1 (mod m) → 2e2 − 1 ≡ 1 (mod m) → 2e2 ≡ 2 (mod m) → e2 ≡ 1 (mod m).
Since e2 < m+1

2
then e2 = 1. This is a contradiction as we have assumed that e1 < e2, and

0 < e1 < e2 <
m+1
2

then e1 is at minimum one, and thus e2 is at minimum 2.

Right Side of Equivalence 18 Sub-subcase 1: 2i ≡ y + i (mod m)

→ y ≡ i (mod m) → y = i. This is a contradiction.

Right Side of Equivalence 18 Sub-subcase 2: 2i ≡ 0 (mod m)

This is a contradiction as (2,m) = 1.

© 2022 José W. Velázquez Santiago
33/136

Right Side of Equivalence 18 Sub-subcase 3: y + i ≡ 0 (mod m)

→ y ≡ −i (mod m) → y ≡ j (mod m) → y = j which is a contradiction.

Thus, the left side of Equivalence 18 is the sum of two distinct powers of 2, both of which
are not equivalent to 2m and thus, once substituted for the equivalence class representatives,
they sum to an even integer less than 2m − 1. For the right side of the equivalence, there are
three non-equivalent powers of 2, with only one of them being equivalent to 2m (mod 2m−1),
and thus when replaced by their equivalent class representative, they sum to an odd integer
less than 2m − 1. Thus, Equivalence 18 turns into an equality between an even and an odd
integer which is a contradiction.

Now we move to the right side of Equivalence 16.

Right Subcase 1: 2i ≡ y + k (mod m).

→ 22y+k + 2i + 2k ≡ 22i+1 + 1 (19)
Left Side of Equivalence 19 Sub-subcase 1: 2y + k ≡ i (mod m)

This is a contradiction by the same argument as in left subcase 1.

Left Side of Equivalence 19 Sub-subcase 2: 2y + k ≡ k (mod m)

This is a contradiction by the same argument as left subcase 2.

Left Side of Equivalence 19 Sub-subcase 3: i ≡ k (mod m)

→ 2i ≡ y + i (mod m) → i ≡ y (mod m) → i = y which is a contradiction.

Right Side of Equivalence 19 Sub-subcase 1: 2i+ 1 ≡ 0 (mod m)

→ 22i+1 + 1 ≡ 2 (mod 2m − 1)

Thus, on the left side of Equivalence 19 we have the sum of three non-equivalent powers of
2, all of which are non-equivalent to 2m (as 0 < q, k, i < m) and thus sum to an even integer
less than 2m but greater than 2. On the right side we have that either the sum is equivalent
to 2 (mod 2m − 1) or an odd integer less than 2m − 1, both cases leading to a contradiction.

Right Subcase 2: 2i ≡ 0 (mod m).

This is a contradiction as (2,m) = 1.

© 2022 José W. Velázquez Santiago
34/136

Right Subcase 3: y + k ≡ 0 (mod m).

→ k ≡ −y (mod m) → k ≡ x (mod m) →

22y+x + 2i + 2x ≡ 22i + 2 (20)
From our previous analysis, we know that the left side of the equivalence results in the

sum of three non-equivalent powers of 2 which when replaced by their equivalence class rep-
resentative sum to an even integer less than 2m. For the right side of the equivalence, we
have the following:

Right Side of Equivalence 20 Sub-subcase 1: 2i ≡ 1 (mod m).

Since 0 < i < m+1
2

, the only possibility for 2i ≡ 1 (mod m) is that 2i = m + 1. However,
i < m+1

2
→ 2i < m+ 1. Thus, we reach a contradiction.

With these subcases, we have shown that the left side of Equivalence 16 is the sum of
three non-equivalent powers of 2, none of which are equivalent to 2m (mod 2m − 1). The
right side of the equivalence is also the sum of three non-equivalent powers of 2, with one of
them being 1. Thus, by substituting each term by their equivalence class representative, we
have equality between an even and an odd integer which is a contradiction. Thus, no such
value of q can exist such that 22x− 2x+1 and 22i− 2i+1 share a cyclotomic coset, and thus
exactly two Kasami-Welch exponents can share the same cyclotomic coset.

For the size of the cyclotomic cosets that contain these exponents, assume that there exists
one such cyclotomic coset whose size is a where a|m. The largest possible divisor of m (aside
from itself) is m

3
as m is an odd integer. As such, we shall consider 0 < a ≤ m

3
. Let us say that

the pair of exponents 22i−2i+1, 22j −2j +1 are in this cyclotomic coset, with i, j defined as
before. Since the size of the cyclotomic coset is a, we have that 2a(22i− 2i+1) ≡ 22i− 2i+1
(mod 2m − 1) and the following equivalence must be true:

22i+a − 2i+a + 2a ≡ 22i − 2i + 1 (mod 2m − 1) (21)
First Case: 0 < a < 2e1 − 1 and a < m

3

2i = m + 1 − 2e1 → 2i + 2e2 − 1 = m + 1 − 2e1 + 2e1 − 1 = m. Since a < 2e1 − 1, then
2i + a < m and 0 < i + a < m. Thus, 0 < a < i + a < 2i + a < m. On the other hand,
2i = m+1−2e1, since 1 ≤ e1 <

m+1
2

, then 2 ≤ 2e1 < m+1 → 0 < i < 2i < m → 22i−2i+1
is an odd integer less than 2m − 1.

Thus, the left side of Equivalence 21 is the sum of three non-equivalent powers of 2 less
than 2m which result in an even integer less than 2m − 1. The right side of the equivalence
is composed of three non-equivalent powers of 2 less than 2m, one of which is 1. Thus, they
sum to an odd integer less than 2m − 1. The equivalence can be replaced for equality, and

© 2022 José W. Velázquez Santiago
35/136

we would have equality between an odd and an even integer, which is a contradiction.

Second Case: a = 2e1 − 1 < m
3

→ 22i+a − 2i+a + 2a ≡ 2m+1−2e1+2e1−1 − 2
m+1

2
−e1+2e1−1 + 22e1−1 (mod 2m − 1) → 2m −

2
m+1

2
+e1−1 + 22e1−1 ≡ 22i − 2i + 1 (mod 2m − 1) → 1− 2j + 22j ≡ 22i − 2i + 1 (mod 2m − 1)

which implies that:

22j − 2j ≡ 22i − 2i (mod 2m − 1) (22)
Since e1 < m+1

2
then 2e1−1 < m+1

2
+e1−1 < m. This means that (2j−22j) is equivalent

(mod 2m− 1) to an even integer less than 2m− 1, and thus we have 22j − 2j = −(2j − 22j) ≡
2m − 1− (2j − 22j) (mod 2m − 1) which is an odd integer less than 2m − 1. The right side of
Equivalence 22 sums to an even integer less than 2m − 1 (as discussed in the previous case)
and thus we have a contradiction as we reach an equality between an even and an odd integer.

Third Case: 2e1 − 1 < a ≤ m
3
.

Let us define a = 2e1 − 1 + k ≤ m
3

which implies that 0 < k < m
3
. We have 22i+a − 2i+a +

2a ≡ 2m+1−2e1+2e1−1+k − 2
m+1

2
−e1+2e1−1+k + 22e1−1+k (mod 2m − 1) → 2m+k − 2

m+1
2

+e1−1+k +
22e1−1+k ≡ 22i − 2i + 1 (mod 2m − 1) → 22j+k − 2j+k + 2k ≡ 22i − 2i + 1 (mod 2m − 1) →

22j+k + 2i + 2k ≡ 22i + 2j+k + 1 (mod 2m − 1) (23)

We shall show that the left side of the equivalence is equivalent to an even integer less than
2m − 1 while the right side is equivalent to an odd integer less than 2m − 1. Thus, reaching
a contradiction as we would have equality between an odd and an even integer.

Left Subcase 1: 2j + k ≡ i (mod m)

→ q ≡ i (mod m). Furthermore, 2j + k ≡ i (mod m) → j + k ≡ 2i (mod m)

2i+1 + 2k ≡ 22i+1 + 1 (mod 2m − 1) (24)
For the left side of Equivalence 24, we know that k < m

3
and i + 1 = m+1

2
− e1 + 1 < m

for m > 1. Thus, 2i+1 + 2k sums to an even integer less than 2m − 1 and greater than 2. For
the right side of the equivalence we have two cases, either they sum to an odd integer less
than 2m − 1, or 2i + 1 ≡ m (mod m) → 22i+1 + 1 ≡ 2 (mod 2m − 1). Both cases lead to a
contradiction, as the left side is neither one, nor equivalent to 2.

Left Subcase 2: 2j + k ≡ k (mod m)

© 2022 José W. Velázquez Santiago
36/136

→ 2j ≡ 0 (mod m). This is a contradiction as (2,m) = 1.

Left Subcase 3: i ≡ k (mod m)

→ i = k → a = 2e1 − 1 + i = 2e1 − 1 + m+1
2

− e1 =
m+1
2

+ e1 − 1 > m
3

but a ≤ m
3
.

Right Subcase1: 2i ≡ j + k (mod m)

This is the same argument as Left Subcase 1.

Right Subcase 2: 2i ≡ 0 (mod m)

This is a contradiction as (2,m) = 1.

Right Subcase 3: j + k ≡ 0 (mod m)

→ k ≡ −j (mod m) → k ≡ i (mod m). This is a contradiction by the same argument as
Left Subcase 3.

Thus, both the left and right sides of equivalence 23 are distinct sums of non-equivalent
powers of 2. When you replace each term with its equivalence class representative, we have
equality between an even integer on the left side, and an odd integer on the right side. This is
a contradiction, and thus the only possible way that the equivalence can hold is if a = m. □

Theorem 7 (Cyclotomic Cosets (mod 2m − 1) that contain Kasami-Welch Exponents for
m even, (l,m) = 1). Let 22l − 2l + 1 be a Kasami-Welch exponent and m > 2, (l,m) = 1
an even integer. Then, the Kasami-Welch exponents occur only in a unique pair of the form
22i − 2i + 1, 22j − 2j + 1, j + i = m, (i,m) = (j,m) = 1 and the cyclotomic coset must be of
size m.

Proof: Consider: C(22i − 2i +1) = {22i − 2i +1, 2(22i − 2i +1)+ · · ·+2m−1(22i − 2i +1)} as
the cyclotomic coset of size m containing a Kasami-Welch exponent. Define i, j ∈ Z+ such
that 0 < i, j < m, i+ j = m. Now, consider:

22j(22i−2i+1) = 22(i+j)−2j+(j+i)+22j = 22m−2j+m+22j ≡ 1−2j+22j (mod 2m−1), (25)
Thus, we have found a "pair" of Kasami-Welch exponents that belong to the same cyclo-

tomic coset.
We show that this pair is unique in the cyclotomic coset by contradiction. Suppose

there is a third Kasami-Welch exponent in the cyclotomic coset, say 22x − 2x + 1, with
x ̸= i, x ̸= j. By the argument in the previous paragraph, we can find some positive
integer y such that y + x = m → 22y(22x − 2x + 1) ≡ 22y − 2y + 1 (mod 2m − 1) and
22x(22y−2y+1) ≡ 22x−2x+1 (mod 2m−1) with y ̸= j, y ̸= i. Rewrite these pairs as follows,
i = m

2
−e1, j =

m
2
+e1, x = m

2
−e2, y = m

2
+e2, with 0 < e1, e2 <

m
2
. Without loss of generality,

we shall assume that x < i (i.e, e1 < e2). We note that 2y = m + 2e2 ≡ 2e2 (mod m),

© 2022 José W. Velázquez Santiago
37/136

2j = m + 2e1 ≡ 2e1 (mod m), 2x = m − 2e2 ≡ −2e2 (mod m) and 2i = m − 2e1 ≡ −2e1
(mod m) . Since 22x− 2x+1 is in the same cyclotomic coset as 22i− 2i+1, then there exists
some integer q such that 2q(22x − 2x + 1) ≡ 22i − 2i + 1 (mod 2m − 1), with 0 < q < m.
We will show that such q cannot exists, and thus 22x − 2x + 1 cannot be in the cyclotomic
coset. We can separate all the possible values of q into three ranges. These are, 0 < q < 2e2,
q = 2e2 and 2e2 < q < m.

First Case: 0 < q < 2e2

2q(22x − 2x + 1) = 22x+q − 2x+q + 2q = 2m−2e2+q − 2
m
2
−e2+q + 2q →

2m−2e2+q − 2
m
2
−e2+q + 2q ≡ 22i − 2i + 1 (mod 2m − 1).

Since q < 2e2, then 2x + q = m − 2e2 + q < m. Furthermore, since q < x + q <
2x + q < m then q < m

2
− e2 + q < m − 2e2 + q < m, and 1 < 2q < 2m. This means that

2m−2e2+q − 2
m
2
−e2+q + 2q is an even integer less than 2m − 1. On the other hand, 22i < 2m as

2i = m− 2e1 < m and obviously 0 < 2i < 22i. Thus, 22i − 2i + 1 is an odd integer less than
2m − 1. We can thus substitute the equivalence for the equality:

2m−2e2+q − 2
m
2
−e2+q + 2q = 22i − 2i + 1.

Which cannot be true as the left side sums to an even integer while the right side sums to
an odd integer.

Second Case: q = 2e2

2q(22x − 2x + 1) = 22x+q − 2x+q + 2q = 2m−2e2+q − 2
m
2
−e2+q + 2q = 2m − 2

m
2
+e2 + 22e2 ≡

1− 2
m
2
+e2 + 22e2 (mod 2m − 1) → 22e2 − 2

m
2
+e2 + 1 ≡ 22i − 2i + 1 (mod 2m − 1)

This implies that:

22e2 − 2
m
2
+e2 ≡ 22i − 2i (mod 2m − 1) (26)

From the argument in the previous case, we know that 22i − 2i is an even integer
less than 2m − 1. On the other hand, since e2 < m

2
, then 2e2 < m

2
+ e2 < m. Thus,

22e2 < 2
m
2
+e2 < 2m → 2

m
2
+e2 − 22e2 is a positive even integer less than 2m − 1. We then

have that 22e2 −2
m
2
+e2 = −(2

m
2
+e2 −22e2). Applying equivalence modulo 2m−1 gives us that

−(2
m
2
+e2−22e2) ≡ (2m−1)−(2

m
2
+e2−22e2) (mod 2m−1). Note that (2m−1)−(2

m
2
+e2−22e2)

is a positive odd integer less than 2m− 1 as it is an odd integer minus an even integer. Thus,
Equivalence 26 can be written as the equality:

(2m − 1)− (2
m
2
+e2 − 22e2) = 22i − 2i

This implies an odd integer is equal to an even integer, which is a contradiction.

Third Case: 2e2 < q < m

© 2022 José W. Velázquez Santiago
38/136

Say q = 2e2 + k, with 0 < k < m then, 2q(22x − 2x + 1) = 22x+q − 2x+q + 2q =
2m−2e2+q−2

m
2
−e2+q+2q = 2m+k−2

m
2
+e2+k+22e2+k ≡ 2k−2

m
2
+e2+k+22e2+k (mod 2m−1) →

2k − 2
m
2
+e2+k + 22e2+k ≡ 22i − 2i + 1 (mod 2m − 1).

We can rewrite this equivalence to obtain the following equivalence:

22e2+k + 2i + 2k ≡ 22i + 2
m
2
+e2+k + 1 (mod 2m − 1) (27)

Our approach shall be to show that this is equivalent to distinct sums of three distinct
powers of 2 less than 2m − 1, and thus by Lemmas 2 and 3, the equivalence should not hold
for such value of q. The first observation is that since m ≥ 4, the sum of three distinct powers
of 2 less than 2m is less than 2m − 1. Now, we show that the terms on the left side of the
equivalence are all non-equivalent powers of 2.

Left Subcase 1: 2e2 + k ≡ i (mod m)

2e2 + k ≡ i (mod m) → q ≡ i (mod m). With this, Equivalence 27 turns into:

2i+1 + 2k ≡ 22i + 2
m
2
+e2+k + 1 (mod 2m − 1) (28)

Left Side of Equivalence 28 Sub-subcase 1: i+ 1 ≡ k (mod m)

We have that i + 1 ≡ k (mod m) → q + 1 ≡ k (mod m) → q + 1 ≡ q − 2e2
(mod m) → 1 ≡ −2e2 (mod m) → 2 has a multiplicative inverse in Z∗

m which is a con-
tradiction as (2,m) = 2. Finally, it is clear that i + 1, k are both not equivalent (mod m)
to m as 0 < i < m

2
→ i+ 1 ≤ m

2
< m and 0 < k < m.

Right Side of Equivalence 28 Sub-subcase 1: 2i ≡ m
2
+ e2 + k (mod m)

If 2i ≡ m
2
+ e2 + k (mod m) then, 2q ≡ m

2
+ e2 + (q − 2e2) (mod m) → q ≡ m

2
− e2

(mod m) → q ≡ x (mod m) → i ≡ x (mod m) → i = x which is a contradiction.

Right Side of Equivalence 28 Sub-subcase 2: 2i ≡ 0 (mod m)

If 2i ≡ 0 (mod m) → i is a zero divisor, but this cannot be the case as (i,m) = 1.

Right Side of Equivalence 28 Sub-subcase 3: m
2
+ e2 + k ≡ 0 (mod m)

If m
2
+ e2 + k ≡ 0 (mod m) then, m

2
+ e2 + k = m

2
+ e2 + (q − 2e2) =

m
2
− e2 + q ≡ 0

(mod m) → x + q ≡ 0 (mod m) → x ≡ −i (mod m). However, j ≡ −i (mod m) → x ≡ j
(mod m) but this is a contradiction as x ̸= j and both of them are less than m.

Since 0 < i + 1, k, 2i < m then all the corresponding powers of 2 are less than 2m and
we can replace 2

m
2
+e2+k by the equivalence class representative (say 2c, for 0 < c < m). Then

Equivalence 28 turns into the equality:

2i+1 + 2k = 22i + 2c + 1

© 2022 José W. Velázquez Santiago
39/136

This is a contradiction as we have an even integer on the left side of the equality and
an odd integer on the right.

Left Subcase 2: 2e2 + k ≡ k (mod m)

If 2e2 + k ≡ k (mod m), then 2e2 ≡ 0 (mod m) → 2e2 = 0 (as 0 < e2 <
m
2
) which is a

contradiction.

Left Subcase 3: i ≡ k (mod m)

i ≡ k (mod m) transforms Equivalence 27 to 22e2+i + 2i + 2i ≡ 22i + 2
m
2
+e2+i + 1

(mod 2m − 1) which gives the equivalence:

22e2+i + 2i+1 ≡ 22i + 2
m
2
+e2+i + 1 (mod 2m − 1) (29)

Right Side of Equivalence 29 Sub-subcase 1: 2e2 + i ≡ i+ 1 (mod m)

2e2 + i ≡ i + 1 (mod m) → 2e2 ≡ 1 (mod m) → 2 has a multiplicative inverse in Z∗
m

which is not possible as (2,m) = 2.

Right Side of Equivalence 29 Sub-subcase 2: 2e2 + i ≡ 0 (mod m)

2e2 + i ≡ 0 (mod m) → q ≡ 0 (mod m) which is a contradiction as e2 < q < m

Right Side of Equivalence 29 Sub-subcase 3: i+ 1 ≡ 0 (mod m)

If i + 1 ≡ 0 (mod m) then i + 1 = 0 (as 0 < i < m
2
→ 1 < i + 1 ≤ m

2
< m) which is a

contradiction as i is a positive integer.

Left Side of Equivalence 29 Sub-subcase 1: 2i ≡ m
2
+ e2 + i (mod m)

If 2i ≡ m
2
+ e2 + i (mod m) then i ≡ m

2
+ e2 (mod m) → i ≡ y (mod m) → i = y as

both of these integers are less than m. This is a contradiction as i ̸= y.

Left Side of Equivalence 29 Sub-subcase 2: 2i ≡ 0 (mod m)

If 2i ≡ 0 (mod m) then we have a contradiction as (i,m) = 1 and thus i is a unit in
Z∗

m.

Left Side of Equivalence 29 Sub-subcase 3: m
2
+ e2 + i ≡ 0 (mod m)

If m
2
+ e2 + i ≡ 0 (mod m) then we have m

2
+ e2 ≡ −i (mod m) → y ≡ −i (mod m) →

y ≡ j (mod m) → y = j, which is a contradiction as j ̸= y.

© 2022 José W. Velázquez Santiago
40/136

If we substitute 22e2+i and 2
m
2
+e2+i for 2c, 2c2 respectively (0 < c, c2 < m) i.e their

equivalence class representative, then Equivalence 29 becomes the equality:

2c + 2i+1 = 22i + 2c2 + 1,

Which is a contradiction as we have an even integer being equal to an odd integer.
Now, we move on to the right side of the Equivalence 27.

Right Subcase 1: 2i ≡ m
2
+ e2 + k (mod m)

If 2i ≡ m
2
+ e2 + k (mod m), then 2i ≡ y + k (mod m). Equivalence 27 changes to

22e2+k + 2i + 2k ≡ 22i + 22i + 1 which implies that:

22e2+2i−y + 2i + 22i−y ≡ 22i+1 + 1 (mod 2m − 1) (30)
Left Side of Equivalence 30 Sub-subcase 1: 2e2 + 2i− y ≡ i (mod m)

If 2e2 + 2i− y ≡ i (mod m) then q ≡ i (mod m) (as 2e2 + 2i− y = e2 + k = q) which
we showed in Left Subcase 1 of Equivalence 27 leads to a contradiction.

Left Side of Equivalence 30 Sub-subcase 2: 2e2 + 2i− y ≡ 2i− y (mod m)

If 2e2 + 2i− y ≡ 2i− y (mod m) then 2e2 ≡ 0 (mod m) → 2e2 = 0 which is a contra-
diction as 0 < e2 <

m
2
.

Left Side of Equivalence 30 Sub-subcase 3: i ≡ 2i− y (mod m)

If i ≡ 2i − y (mod m) then 0 ≡ i − y (mod m) → i ≡ y (mod m) → i = y which is a
contradiction as 0 < i < m

2
< y < m.

Right Side of Equivalence 30 Sub-subcase 1: 2i+ 1 ≡ 0 (mod m)

If 2i+ 1 ≡ 0 (mod m) then −2i ≡ 1 (mod 2m − 1) → 2 has a multiplicative inverse in
Z∗

m which cannot happen as (2,m) = 2.

We have that on the left side of the equivalence, the powers of 2 are less than 2m as
2e2 + 2i − y = q < m, i < m and k < m. For the right side, since 0 < i < m

2
then

0 < 2i ≤ m
2
< m → 0 < 2i < m − 1 → 0 < 2i + 1 ≤ m − 1 < m. Thus, Equivalence 30

becomes the equality:

22e2+2i−y + 2i + 22i−y = 22i+1 + 1,

This cannot be true as we have an even integer on the left of the equality and an odd
integer on the right.

Right Subcase 2: 2i ≡ 0 (mod m)

© 2022 José W. Velázquez Santiago
41/136

2i ≡ 0 (mod m) is a contradiction as (i,m) = 1.

Right Subcase 3: m
2
+ e2 + k ≡ 0 (mod m)

If m
2
+ e2 + k ≡ 0 (mod m) then m

2
+ e2 + (q − 2e2) ≡ 0 (mod m) → m

2
− e2 + q ≡ 0

(mod m) → x + q ≡ 0 (mod m) → q ≡ −x (mod m) → q ≡ y (mod m) → q = y
(as both y and q are less than m). Substituting this into Equivalence 27 we have that
22e2+k + 2i + 2k = 2y + 2i + 2y−2e2 ≡ 22i + 20 + 1 (mod 2m − 1) and from this we deduce the
equivalence:

2y + 2i + 2y−2e2 ≡ 22i + 2 (mod 2m − 1) (31)
Left Side of Equivalence 31 Sub-subcase 1: y ≡ i (mod m)

If y ≡ i (mod m) then i = y as both of them are less than m which is a contradiction.

Left Side of Equivalence 31 Sub-subcase 2: y ≡ y − 2e2 (mod m)

If y ≡ y − 2e2 (mod m) then 0 ≡ −2e2 (mod m) → 0 = −2e2 which is a contradiction
as 0 < e2 <

m
2
.

Left Side of Equivalence 31 Sub-subcase 3: i ≡ y − 2e2 (mod m)

If i ≡ y−2e2 (mod m) then i ≡ m
2
+e2−2e2 (mod m) → i ≡ m

2
−e2 (mod m) → i ≡ x

(mod m) → i = x which is a contradiction.

Right Side of Equivalence 31 Sub-subcase 1: 2i ≡ 1 (mod m)

If 2i ≡ 1 (mod m) → 2 has a multiplicative inverse in Z∗
m which is not possible as

(2,m) = 2.

We have that on the left side of Equivalence 31, y, i and y− 2e2 are all less than m and
for the right side 2i ̸≡ 0 (mod m) as 0 < i < m

2
. Thus, the equivalence can be changed for

the equality:

2y + 2i + 2y−2e2 = 22i + 2

This is a contradiction as we have two distinct 2-adic representations of an integer,
which by Lemma 3 is not possible.

With the subcases for the left and right sides of Equivalence 27 all leading to contradic-
tions, we conclude that Equivalence 27 does not hold. On the left side, we have that 2i < 2m,
2k < 2m and 22e2+k < 2m as i < m k < m and 2e2 + k = q < m. On the right side we
have that 22i < 2m, 1 < 2m as 0 < 1 < 2i < m and 2

m
2
+e2+k ̸≡ 2m (mod 2m − 1) as per

Right Subcase 3. We substitute 2
m
2
+e2+k for its equivalence class representative, say 2c for

0 < c < m. Thus, we can turn Equivalence 27 into the equality:

© 2022 José W. Velázquez Santiago
42/136

22e2+k + 2i + 2k = 22i + 2c + 1

Which is a contradiction as we have an even integer on the left and an odd integer on
the right. Thus, no integer q exists such that 2q(22x− 2x+1) ≡ 22i− 2i+1. This means that
22x− 2x+1 and 22i− 2i+1 do not share a cyclotomic coset, and thus neither do 22y − 2y +1
and 22i − 2i + 1 as 22x − 2x + 1 and 22y − 2y + 1 must share a cyclotomic coset.

For the size of the cyclotomic cosets that contain these exponents, assume that there
exists one such cyclotomic coset whose size is a where a|m. The largest possible divisor of
m (aside from itself) is m

2
, and as such, we shall consider 0 < a ≤ m

2
. Let us say that the

pair of exponents 22i − 2i + 1, 22j − 2j + 1 are in this cyclotomic coset, with i, j defined as
before. Since the size of the cyclotomic coset is a, we have that 2a(22i− 2i+1) ≡ 22i− 2i+1
(mod 2m − 1) and the following equivalence must be true:

22i+a − 2i+a + 2a ≡ 22i − 2i + 1 (mod 2m − 1) (32)
We show that no value of 0 < a ≤ m

2
can satisfy this equivalence, and thus an exponent

of the form 22i − 2i + 1 cannot be found in a cyclotomic coset of size less than m. We add
that, since i = m

2
− e1, j = m

2
+ e1 then 0 < e1 < m

2
and we have that 2i ≡ −2e1 (mod m)

and 2j ≡ 2e1 (mod m). We can divide all possible values that a can take into three cases,
0 < a < 2e1, a = 2e1 and 2e1 < a ≤ m

2
.

First Case: 0 < a < 2e1

Since a < 2e1, then 2i + a = m − 2e1 + a < m. Furthermore, a < i + a < 2i + a < m.
Thus, the left side of Equivalence 32 sums to an even integer less than 2m − 1. For the right
side of the equivalence, we have that 0 < i < 2i < m and thus the sum of the powers of 2
result in an odd integer less than 2m−1. We can then change Equivalence 32 for the equality:

22i+a − 2i+a + 2a = 22i − 2i + 1,

which is a contradiction as we have an odd integer equal to an even integer.

Second Case: a = 2e1

Substituting into Equivalence 32 we have 22i+a − 2i+a + 2a = 2m−2e1+2e1 − 2
m
2
−e1+2e1 +

22e1 ≡ 20− 2
m
2
+e1 +22j (mod 2m− 1) → 22j − 2j +1 ≡ 22i− 2i+1 (mod 2m− 1) which gives

us that:

22j − 2j ≡ 22i − 2i (mod 2m − 1) (33)
Note that, 2j ≡ 2e1 (mod m) and j = m

2
+ e1. Since e1 <

m
2

then 2e1 <
m
2
+ e1 < m →

22e1 < 2
m
2
+e1 < 2m. We have that, 22j − 2j ≡ 22e1 − 2

m
2
+e1 (mod 2m − 1) → 22e1 − 2

m
2
+e1 ≡

22i−2i (mod 2m−1). Note that, 22e1 −2
m
2
+e1 = −(2

m
2
+e1 −22e1) ≡ (2m−1)− (2

m
2
+e1 −22e1)

(mod 2m − 1), with (2m − 1) − (2
m
2
+e1 − 22e1) being an odd integer less than 2m − 1. We

substitute Equivalence 33 for the equality:

(2m − 1)− (2
m
2
+e1 − 22e1) = 22i − 2i

© 2022 José W. Velázquez Santiago
43/136

which is a contradiction as the left side of the equation is an odd integer while the right
side is an even integer.

Third Case: 2e1 < a ≤ m
2

Let us say that a = 2e1 + k for some integer k such that 1 < k < m
2
− 1. We have these

bounds for k as e1 is at minimum one and thus 2e1 is at minimum 2. On the other hand,
since a ≤ m

2
then k can at most be m

2
−2 as 2e1 is at the minimum 2. We substitute this value

on Equivalence 32 and we have 22i+a − 2i+a + 2a = 2m−2e1+2e1+k − 2
m
2
−e1+2e1+k + 22e1+k =

2m+k−2
m
2
+e1+k+22e1+k ≡ 2k−2j+k+22e1+k (mod 2m−1) → 22e1+k−2j+k+2k ≡ 22i−2i+1

(mod 2m − 1). We can rewrite this equivalence as:

22e1+k + 2i + 2k ≡ 22i + 2j+k + 1 (mod 2m − 1) (34)
We will show that this equivalence cannot be true. First, we show that all the powers

of 2 on the left side are non-equivalent (mod 2m − 1) to each other, then we do the same
for the right side. We substitute the equivalence by equality by using the equivalence class
representatives of the terms (and if they are all distinct powers of 2, then they will sum to
less than 2m) and reach a contradiction.

Left Subcase 1: 2e1 + k ≡ i (mod m)

2e1 + k ≡ i (mod m) → 2j + k ≡ i (mod m). Since j + i = m, then j ≡ −i (mod m).
Thus, we have 2j + k ≡ i (mod m) → k ≡ 3i (mod m). Substituting into Equivalence 34
results in 2i+2i+23i ≡ 22i+2j+3i+1 (mod 2m−1) → 2i+1+23i ≡ 22i+22i+1 (mod 2m−1)
This is reduced to the equivalence:

2i+1 + 23i ≡ 22i+1 + 1 (mod 2m − 1). (35)

Left Side of Equivalence 35 Sub-subcase 1: i+ 1 ≡ 3i (mod m)

We have that i+1 ≡ 3i (mod m) → 1 ≡ 2i (mod m) which implies 2 has a multiplica-
tive inverse in Z∗

m which is not possible as (2,m) = 0.

Right Side of Equivalence 35 Sub-subcase 1: 2i+ 1 ≡ 0 (mod m)

We have that 2i+1 ≡ 0 (mod m) → −2i ≡ 1 (mod m) which is the same contradiction
as the previous subcase.

Finally, 0 < i+1 ≤ m
2

and thus i+1 ̸≡ 0 (mod m) and 3i ̸≡ 0 (mod m) as otherwise it
would imply that i is a zero divisor in Z∗

m which it cannot be as (i,m) = 1. This means that
either 23i < 2m or it is equivalent (mod 2m − 1) to some power of 2 less than 2m − 1. Select
2c, 0 < c < m as the equivalence class representative of 23i. Furthermore 0 < i < m

2
→ 0 <

© 2022 José W. Velázquez Santiago
44/136

2i < m → 0 < 2i < m− 1 → 1 < 2i+1 ≤ m− 1 < m. Thus, Equivalence 35 can be changed
for the equality:

2i+1 + 2c = 22i+1 + 1

This is a contradiction as we have an even integer on the left side of the equivalence
and an odd integer on the right.

Left Subcase 2: 2e1 + k ≡ k (mod m)

2e1 + k ≡ k (mod m) → 2e1 ≡ 0 (mod m) which is a contradiction as 0 < e1 < m
2
→

0 < 2e1 < m.

Left Subcase 3: i ≡ k (mod m)

i ≡ k (mod m) → k = i (as both of them are less than m) which implies that
a = 2e1 +

m
2
− e1 =

m
2
+ e1 = j but this is a contradiction as a ≤ m

2
.

Now for the right side of Equivalence 34.

Right Subcase 1: 2i ≡ j + k (mod m)

2i ≡ j + k (mod m) → 3i ≡ k (mod m) which is the same contradiction as in Left
Subcase 1.

Right Subcase 2: 2i ≡ 0 (mod m)

2i ≡ 0 (mod m) → i is a zero divisor on Z∗
m which is a contradiction as (i,m) = 1.

Right Subcase 3: j + k ≡ 0 (mod m)

j + k ≡ 0 (mod m) → k ≡ i (mod m) which is the same contradiction as in Left Sub-
case 3.

Since 0 < a, i, k < m, then all the terms on the left side of the equivalence are less
than 2m. For the right side, 0 < 2i < m, and we can substitute 2j+k for its equivalence class
representative (say 2c, for 0 < c < m). With this, we can change Equivalence 34 for the
equality:

22e1+k + 2i + 2k = 22i + 2c + 1

Which is a contradiction as we have an odd integer equal to an even integer. Thus
Equivalence 34 is not true. Therefore, no such a such that 0 < a ≤ m

2
can exists such that

2a(22i − 2i + 1) ≡ 22i − 2i + 1 (mod 2m − 1). This means that m
2
< a with a|m and thus

a = m. □

© 2022 José W. Velázquez Santiago
45/136

Corollary 2 (Exact number of Kasami-Welch Near-Bent Functions Over F2m). Let the
Kasami-Welch Boolean near-bent function in m variables be of the form Tr(x22l−2l+1) such
that 1 ≤ l ≤ m − 1 and (l,m) = 1. Then, the number of non-equal near-bent functions
generated is exactly Φ(m)

2
.

Proof: Let Tr(x22l−2l+1) be the Kasami-Welch near bent functions in m variables with
(l,m) = 1. By Definition 5, Tr(x22l−2l+1) = x22l−2l+1+x2(22l−2l+1)+ · · ·+x2m−1(22l−2l+1). The
exponents in the terms of the sum are the elements in the cyclotomic coset that contains
22l−2l+1, i.e C(22i−2i+1). It is clear that for any integer i, Tr(x22l−2l+1) = Tr(x2i(22l−2l+1))

as 2i(22l − 2l + 1) is also in C(22l − 2l + 1), and as such Tr(x2i(22l−2l+1)) = x2i(22l−2l+1) +

x2i+1(22l−2l+1) + · · ·+ x2i+m−1(22l−2l+1) with all of the exponents of the terms forming C(22i −
2i+1). For an integer m, we have precisely two Kasami-Welch exponents in each cyclotomic
coset that contains them. The possible values of l are 1, 2, 3 . . . ,m− 1, and only those such
that (l,m) = 1 lead to near-bent functions. The number of such values is given by Euler’s ϕ
function, and the total is divided by 2, as the exponents appear in pairs in the coset and these
pairs lead to the same Boolean function. Thus, Φ(m)

2
will be the total number of non-equal

Kasami-Welch near-bent functions generated.
□

4.2.1. Improved Proofs.

Theorem 8 (The Number of Gold Exponents in The Cyclotomic Cosets (mod 2m − 1)).
Let 2l + 1 be a Gold exponent. Gold exponents occur in pairs of the form 2i + 1, 2j + 1 in
a cyclotomic coset of size a (mod 2m − 1) where j + i = m. Furthermore, the size of the
cyclotomic coset is either m or m

2
.

Proof: First, we shall assume a cyclotomic coset of size m. Say we have the cyclotomic
coset containing 2i + 1: C(2i + 1) = {2i + 1, 2 ∗ (2i + 1), . . . 2m−1 ∗ (2i + 1)}. Consider j
such that j + i = m,0 < j, i < m (if j = i then the pair of 2i + 1 is itself) then we have
2j(2i + 1) ∈ C(2i + 1) and

2j(2i+1) ≡ 2i+j+2j (mod 2m−1) ≡ 2m+2j (mod 2m−1) ≡ 1+2j (mod 2m−1). (36)
Thus, we found a "pair" of Gold exponents in the same cyclotomic coset. Now we show

that no other Gold exponent can be found. Suppose there exists another pair of Gold expo-
nents, 2x+1, 2y +1, such that x+ y = m, x ̸= i, x ̸= j, y ̸= i, y ̸= j for 0 < x < y < m. Since
this requires that we have four non-equal Gold exponents in the same cyclotomic coset, then
m ≥ 4. We will prove that this second pair cannot exist in the cyclotomic coset. Since all these
exponents share a cyclotomic coset, then there must exist some integer 0 < q < m such that
2q(2x+1) ≡ 2i+1 (mod 2m−1). Clearly q ̸= y or else 2y+1 ≡ 2i+1 (mod 2m−1) → 2y ≡ 2i

(mod 2m − 1) → y ≡ i (mod m) → y = i which is a contradiction. We have the following
equivalence:

2x+q + 2q ≡ 2i + 1 (mod 2m − 1) (37)

© 2022 José W. Velázquez Santiago
46/136

We can divide the possible values that q takes into two cases, 0 < q < y, y < q < m

Case 1: 0 < q < y

→ q + x < m and q + x ̸= q → 2x+q + 2q < 2m − 1 (by Lemma 2). This means that
2x+q + 2q sums to an even integer less than 2m − 1. For the right side of Equivalence 37,
i < m → 2i < 2m − 1 → 2i + 1 sums to an odd integer less than 2m − 1. Thus, we can
substitute the equivalence by equality and obtain an equality between an odd and an even
integer which is a contradiction.

Case 2: y < q < m

Since x+ y = m, then m < x+ q. Let us say that y + x = e+m for some integer e < m.
Then Equivalence 37 changes to:

2e + 2q ≡ 2i + 1 (mod 2m − 1) (38)
The left side of the equivalence sums to an even integer less than 2m − 1 as both e, q are

less than m. The right side of the equivalence sums to an odd integer less than 2m−1 by the
same argument as the previous case. Thus, we reach a contradiction as we reach an equality
between an even and an odd integer.

Now we consider the size of the cyclotomic coset. The size of the cyclotomic coset must
be a divisor of m. Since we are assuming it is not m, the size of the cyclotomic coset shall
be an integer a such that 0 < a ≤ m

2
, where a is a divisor of m. Thus, 2a(2i + 1) ≡ 2i + 1

(mod 2m − 1). We shall consider the following equivalence:

2a+i + 2a ≡ 2i + 1 (mod 2m − 1) (39)
We shall consider four cases, 1)i = m

2
, a < m

2
, 2) i = m

2
, a = m

2
, 3) i < m

2
, a < m

2
and 4)

i < m
2
, a = m

2
. We note that m+1

2
− 1 < m

2
for all m. Furthermore, for m odd the maximum

possible value of a is m
3

Thus, we consider i, a < m
2

which are cases that are satisfied when
i ≤ m+1

2
− e1 and a ≤ m

3
(corresponding to m being odd).

Case 1: i = m
2
, a < m

2

→ a + i < m,→ 2a+i + 2a is an even integer less than 2m − 1, while for the right side of
Equivalence 39 we have that 2i + 1 is an odd integer less than 2m − 1. Hence, we have an
equality between an odd and an even integer which is a contradiction.

Case 2: i = m
2
, a = m

2

© 2022 José W. Velázquez Santiago
47/136

→ a + i = m → 2a+i ≡ 20 (mod 2m − 1) → 1 + 2a ≡ 2i + 1 (mod 2m − 1) → 2a ≡ 2i

(mod 2m − 1). This case holds true.

Case 3: i < m
2
, a < m

2

As in Case 1, 2a+i < 2m and thus we will have that 2a+i + 2a sums to an even integer less
than 2m−1 while 2i+1 sums to an odd integer less than 2m−1. This is an equality between
an even and an odd integer which is a contradiction.

Case 4: i < m
2
, a = m

2

As in cases 1 and 3, 2a+i < 2m and thus we will have that 2a+i+2a sums to an even integer
less than 2m − 1 while 2i + 1 sums to an odd integer less than 2m − 1. This is an equality
between an even and an odd integer which is a contradiction.

The only case where we had a cyclotomic coset of size distinct from m is Case 2. This
case can be turned into an if and only if, that is, a = m

2
if and only if i = m

2
. First, if

a = m
2

then we see from cases 2 and 4 that we reach a contradiction unless i = m
2
. For the

other direction, if i = m
2

from cases 1 and 2 we know that we get a contradiction unless a = m
2
.

With these results, we thus have that the size of the cyclotomic coset containing a pair of
Gold exponents must be m unless the pair of exponents are of the form 2

m
2 + 1, in which

case the size of the cyclotomic coset is a = m
2
.

□

4.3. New proof for Yoshiara’s result on the CCZ-equivalence of Gold and Kasami-
Welch Near-Bent Functions. In the previous subsection, we have finished proving that
Gold and Kasami-Welch exponents occur in unique pairs on a cyclotomic coset. This result is
one part of the condition of cyclotomic equivalence for (m,m) Boolean power functions of the
form f(x) = xd. In this subsection, we prove that the Gold and Kasami-Welch exponents,
as defined previously, do not meet the second criteria for cyclotomic equivalence.

Theorem 9 (Inverse of a Gold Exponent in a Cyclotomic Coset). Consider the Gold expo-
nents 2i + 1, 2x + 1 such that 2q(2i + 1) ̸≡ 2x + 1 (mod 2m − 1), 0 < i, x < m for any integer
q and (i,m) = (x,m) = 1,m > 3. Then, there does not exist an integer 0 ≤ a < m such that
(2i + 1) ∗ (2x + 1) ≡ 2a (mod 2m − 1).

Proof: For i, x there exists some integer j, y respectively such that i+ j = m,x+ y = m.
Since the exponents do not share a cyclotomic coset, then i ̸= x and j ̸= y. Since (i,m) =
(x,m) = 1, and by Theorem 5, (2i + 1, 2j + 1), (2x + 1, 2y + 1) are unique Gold exponents
pairs in their respective cyclotomic cosets. We can assume, without loss of generality, that
i, x are integers such that 0 < i, x < m

2
(with m

2
< j, y < m). Note that (2i+1)∗(2x+1) ≡ 2a

(mod 2m− 1) → 2m−a(2i+1) ∗ (2x+1) ≡ 1 (mod 2m− 1) → the Gold exponents considered
have an inverse (mod 2m − 1). We have two main cases, m even and m odd.

© 2022 José W. Velázquez Santiago
48/136

Case 1: m even

For m even, we have that 2m ≡ 1 (mod 3), and as such, 2m − 1 ≡ 0 (mod 3). On
the other hand, since i, x must be relatively prime to m then they must be odd integers.
However, for r an odd integer, 2r ≡ 2 (mod 3) → 2r + 1 ≡ 0 (mod 3). This means that
(2x+1, 2m−1) ≥ 3, (2i+1, 2m−1) ≥ 3 → the exponents do not have a multiplicative inverse
and thus (2i + 1) ∗ (2x + 1) ≡ 2a (mod 2m − 1) cannot be true for any integer a.

Case 2: m odd

We note that if m = 3, there are only two Gold exponents defined (for i = 1, j = 2).
Thus, we cannot define such x for which the multiplicative inverse shares a cyclotomic coset
with another Gold exponent, but not the exponent itself. Because of this, we consider m > 3.
We have that (2i + 1) ∗ (2x + 1) ≡ 2x+i + 2x + 2i + 1 (mod 2m − 1) This means that:

2x+i + 2x + 2i + 1 ≡ 2a (mod 2m − 1). (40)
We shall prove that the left side of the equivalence is equivalent to an odd integer less

than 2m − 1 but greater than one, while the right-hand side must be equivalent to an even
integer less than 2m − 1 or 1. We verify that all the terms on the left-hand side are not
equivalent (mod 2m − 1) to each other.

Left Side of Equivalence 40 Subcase 1: x+ i ≡ x (mod m)

x+ i ≡ x (mod m) → i ≡ 0 (mod m) which is a contradiction as 0 < i < m.

Left Side of Equivalence 40 Subcase 2: x+ i ≡ i (mod m)

x+ i ≡ i (mod m) → x ≡ 0 (mod m) which is a contradiction as 0 < x < m.

Left Side of Equivalence 40 Subcase 3: x+ i ≡ 0 (mod m)

x+ i ≡ 0 (mod m) → x ≡ −i (mod m) → x ≡ j (mod m) → x = j which is a contra-
diction as 0 < x < m

2
while m

2
< j.

Left Side of Equivalence 40 Subcase 4: x ≡ i (mod m) (mod m)

x ≡ i (mod m) → x = i is a contradiction as x ̸= i.

Left Side of Equivalence 40 Subcase 5: x ≡ 0 (mod m)

x ≡ 0 (mod m) is a contradiction as 0 < x < m.

Left Side of Equivalence 40 Subcase 6: i ≡ 0 (mod m)

© 2022 José W. Velázquez Santiago
49/136

i ≡ 0 (mod m) is a contradiction as 0 < i < m.

We note that since x, i < m
2

then x + i < m the left side of the equation is the sum of
four non-equivalent powers of 2. Since m > 3 is odd, we have that the terms on the right
sum to a number less than 2m while the right side will be less than 2m as 0 ≤ a < m. We
obtain the equality:

2x+i + 2x + 2i + 1 = 2a

This leads to a contradiction as the left side is an odd integer greater than one, and the
right side is either 1 or an even integer. Therefore, there does not exist such an integer a for
which (2i + 1) ∗ (2x + 1) ≡ 2a (mod 2m − 1) for m > 3.

□

CCZ-equivalence between two Gold functions (and the number of non-equivalent func-
tions being Φ(m)

2
) has been shown by Budaghyan in [4]. We arrive at a proof for this by

combining Theorem 5 with Theorem 9

Theorem 10 (Cyclotomic-Equivalent Gold Functions). Let f(x) = x2i+1, g(x) = x2x+1

be vectorial Gold Boolean functions F2m → F2m , with m > 3. If i ̸= x, 0 < i, x < m and
(i,m) = (x,m) = 1, then, these functions are cyclotomic-equivalent if and only if i+ x = m.

Proof: For the forwards direction, if the functions are cyclotomic-equivalent, then either
(2x + 1)(2i + 1) ≡ 2a (mod 2m − 1) for some integer 0 ≤ a < m or the exponents are in the
same cyclotomic coset. We have proven in Theorem 9 that no such a can exist for m > 3.
The exponents must then share a cyclotomic coset which is only possible if i+ x = m.

For the backwards direction, if i+x = m, then 2i+1, 2x+1 share a cyclotomic coset as
per Theorem 5. Thus, the functions are cyclotomic-equivalent by definition. Thus, we have
our result.

□

The total number of Gold exponents 2l+1 that lead to APN functions over F2m is given
by the number of integers 0 < l < m such that (l,m) = 1. This number is given by Φ(m).
Since the exponents occur in pairs 2i + 1, 2x + 1 such that x+ i = m in a cyclotomic coset,
then the total number of non CCZ-equivalent Gold exponent functions is given by Φ(m)

2
. This

is a re-statement of the result from Theorem 2.1 in [4]. We obtain a similar result for the
Kasami-Welch case.

Theorem 11 (Inverse of a Kasami-Welch exponent in a Cyclotomic Coset). Let f, g :

F2m → F2m , f(x) = x22i−2i+1, g(x) = x22x−2x+1 be vectorial Kasami-Welch Boolean functions
such that 2q(22i − 2i + 1) ̸≡ 22x − 2x + 1 (mod 2m − 1), 0 < i, x < m for some integer q
and (i,m) = (x,m) = 1,m > 5. Then, there does not exist an integer 0 ≤ a < m such that
(22i − 2i + 1) ∗ (22x − 2x + 1) ≡ 2a (mod 2m − 1).

Proof: For i, x, there exists some integer j, y respectively such that i+ j = m,x+ y = m.
Since the exponents do not share a cyclotomic coset, then i ̸= x and j ̸= y. Since (i,m) =
(x,m) = 1, and by Theorems 6 and 7, (22i − 2i + 1, 22j − 2j + 1), (22x − 2x + 1, 22y − 2y + 1)
are unique Kasami-Welch exponents pairs in their respective cyclotomic cosets, then we

© 2022 José W. Velázquez Santiago
50/136

can assume, without loss of generality, that i, x are integers such that 0 < i, x < m
2

(with m
2

< j, y < m). Note that (22i − 2i + 1) ∗ (22x − 2x + 1) ≡ 2a (mod 2m − 1) →
2m−a(22i − 2i + 1) ∗ (22x − 2x + 1) ≡ 1 (mod 2m − 1) this implies that the Kasami-Welch
exponents considered have a multiplicative inverse in Z2m−1. We have two main cases, m
even and m odd.

Case 1: m even

For m even, we have that 2m ≡ 1 (mod 3), and as such, 2m − 1 ≡ 0 (mod 3). On the
other hand, since i, x must be relatively prime to m then they must be odd integers. However,
for r an odd integer, 2r ≡ 2 (mod 3) → 22r − 2r +1 ≡ 1− 2+ 1 (mod 3) → 22r − 2r +1 ≡ 0
(mod 3). This means that (22i−2i+1, 2m−1) ≥ 3, (22x−2x+1, 2m−1) ≥ 3 → the exponents
do not have a multiplicative inverse and thus (22i−2i+1)∗ (22x−2x+1) ≡ 2a (mod 2m−1)
cannot be true for any integer a.

Case 2: m odd

We note that if m = 3, there are only two Kasami-Welch exponents defined (for
i = 1, j = 2). Thus, we cannot define such x for which the multiplicative inverse shares
a cyclotomic coset with another Kasami-Welch exponent, but not the exponent itself. We
have that (22i−2i+1)∗(22x−2x+1) ≡ 2a (mod 2m−1) → 22(x+i)−22i+x+22i−22x+i+2x+i−
2i + 22x − 2x + 1 ≡ 2a (mod 2m − 1). From this equivalence, we deduce that the following
equivalence has to be met for (22i − 2i + 1) ∗ (22x − 2x + 1) ≡ 2a (mod 2m − 1) to be true:

22(x+i) + 22x + 2x+i + 22i + 1 ≡ 2a + 22x+i + 22i+x + 2x + 2i (mod 2m − 1) (41)
To show that this equivalence does not hold, we shall show that the right and left sides

of the equivalence are equivalent to distinct integers (mod 2m − 1). First, we show that all
the terms on the left side of the equivalence are not equivalent to each other.

Left Side of Equivalence 41 Subcase 1: 2(x+ i) ≡ 2x (mod m)

2(x + i) ≡ 2x (mod m) → 2i ≡ 0 (mod m). This is a contradiction as (i,m) = 1 and
thus is not a zero divisor in Z∗

m.

Left Side of Equivalence 41 Subcase 2: 2(x+ i) ≡ x+ i (mod m)

2(x+ i) ≡ x+ i (mod m) → x+ i ≡ 0 (mod m) → x ≡ −i (mod m) → x ≡ j (mod m)
which is a contradiction as it would mean that 22x−2x+1 and 22i+2i+1 share a cyclotomic
coset which is not the case.

Left Side of Equivalence 41 Subcase 3: 2(x+ i) ≡ 2i (mod m)

© 2022 José W. Velázquez Santiago
51/136

2(x+ i) ≡ 2i (mod m) → 2x ≡ 0 (mod m) which is a contradiction as (x,m) = 1 which
means x is not a zero divisor in Z∗

m.

Left Side of Equivalence 41 Subcase 4: 2(x+ i) ≡ 0 (mod m)

2(x + i) ≡ 0 (mod m) → 2x ≡ −2i (mod m) → x ≡ j (mod m) which is a contradic-
tion by the same argument as Subcase 2.

Left Side of Equivalence 41 Subcase 5: 2x ≡ x+ i (mod m)

2x ≡ x + i (mod m) → x ≡ i (mod m) which is a contradiction as both of these are
distinct integers less than m.

Left Side of Equivalence 41 Subcase 6: 2x ≡ 2i (mod m)

2x ≡ 2i (mod m) → x ≡ i which is a contradiction by the same argument as Subcase
5.

Left Side of Equivalence 41 Subcase 7: 2x ≡ 0 (mod m)

2x ≡ 0 (mod m) is a contradiction by the same argument as Subcase 3.

Left Side of Equivalence 41 Subcase 8: x+ i ≡ 2i (mod m)

x+ i ≡ 2i (mod m) → i ≡ x (mod m) which is a contradiction by the same argument
as Subcase 5.

Left Side of Equivalence 41 Subcase 9: x+ i ≡ 0 (mod m)

x+ i ≡ 0 (mod m) → x ≡ −i (mod m) → x ≡ j (mod m) which is a contradiction by
the same argument as Subcase 2.

Left Side of Equivalence 41 Subcase 10: 2i ≡ 0 (mod m)

2i ≡ 0 (mod m) which is a contradiction by the same argument as Subcase 1.

Thus, all the terms in the left side of the equivalence are equivalent to distinct powers
of 2 (mod 2m− 1). If we substitute each term by their equivalence class representative then
by Lemma 2, this means that they sum to 0 (mod 2m − 1) if m = 5 and an odd integer less
than 2m − 1 if m > 5, as it is the sum of five distinct powers of 2. Now, for the right side of
the equivalence, we show that the last four terms are not equivalent (mod 2m − 1) to each
other. We do not compare 2a to the other terms because the only restriction on a is that
0 ≤ a < m, so we cannot reach a contradiction via direct comparison. The cases follow:

© 2022 José W. Velázquez Santiago
52/136

Right Side of Equivalence 41 Subcase 1: 2x+ i ≡ 2i+ x (mod m)

2x+ i ≡ 2i+ x (mod m) → x ≡ i (mod m) which is a contradiction as x, i are distinct
integers less than m.

Right Side of Equivalence 41 Subcase 2: 2x+ i ≡ x (mod m)

2x + i ≡ x (mod m) → x + i ≡ 0 (mod m) → x ≡ −i (mod m) → x ≡ j (mod m)
which is a contradiction as it would mean that 22x−2x+1 and 22i+2i+1 share a cyclotomic
coset which is not the case.

Right Side of Equivalence 41 Subcase 3: 2x+ i ≡ i (mod m)

2x + i ≡ i (mod m) → 2x ≡ 0 (mod m) which is a contradiction as (x,m) = 1 and
thus x cannot be a zero divisor in Z∗

m.

Right Side of Equivalence 41 Subcase 4: 2i+ x ≡ x (mod m)

2i+x ≡ x (mod m) → 2i ≡ 0 (mod m) which is a contradiction as (i,m) = 1 and thus
i is not a zero divisor in Z∗

m.

Right Side of Equivalence 41 Subcase 5: 2i+ x ≡ i (mod m)

2i + x ≡ i (mod m) → i + x ≡ 0 (mod m) → x ≡ −i (mod m) → x ≡ j (mod m)
which is a contradiction by the same argument as Subcase 2.

Right Side of Equivalence 41 Subcase 6: 2i+ x ≡ i (mod m)

x ≡ i (mod m) is a contradiction by the same argument as subcase 1.

We have showed that the last four terms of the right side of Equivalence 41 are not
equivalent to each other (mod 2m − 1). For m = 5, this means that if we take a to be the
remaining integer that is less than m, then both sides of the equivalence will be sums of five
non-equivalent powers of 2 (mod 2m − 1), which, by Lemma 2, satisfies the equivalence.
Thus, we consider m > 5. For m > 5, the possibility that the two sums differ in at least
one term exists, and thus by Lemma 3, they would be two distinct 2-adic representations
of the same integer, which is a contradiction. We can also show that a ̸= 0, as otherwise,
Equivalence 41 transforms into 22(x+i) + 22x + 2x+i + 22i + 1 ≡ 1 + 22x+i + 22i+x + 2x + 2i

(mod 2m − 1) which gives us:

22(x+i) + 22x + 2x+i + 22i ≡ 22x+i + 22i+x + 2x + 2i (mod 2m − 1). (42)
This is the sum of non-equivalent powers of 2 on the left and right sides of the equiva-

lence. None of the elements in the left side of the equivalence are equivalent to 2m (mod 2m−

© 2022 José W. Velázquez Santiago
53/136

1), and thus their sum is equivalent (mod 2m − 1) to some even integer less than 2m. For
the right side of the equivalence, we have two possibilities:

1) If one of the terms is equivalent to 2m (mod 2m−1), then no other term is (as they are
all non-equivalent to each other). Thus, the right side of the equivalence will be the sum of a
term equivalent to 1 (mod 2m−1) and three other terms that are equivalent (mod 2m−1)
to distinct powers of 2 less than 2m. As such, their sum will be equivalent (mod 2m − 1) to
some odd integer less than 2m − 1. Then, Equivalence 42 cannot be true.

2) If none of the terms on the right are equivalent to 2m (mod 2m − 1), then it suffices to
show that the two sums differ in at least one term, and thus after substituting the equivalence
class representatives of each term we can reach a contradiction by Lemma 3.

Subcase of Equivalence 42 2.1: 2x+ i ≡ 2(x+ i) (mod m)

2x+ i ≡ 2(x+ i) (mod m) → 0 ≡ i (mod m) which is a contradiction as 0 < i < m.

Subcase of Equivalence 42 2.2: 2x+ i ≡ 2x (mod m)

2x+ i ≡ 2x (mod m) → i ≡ 0 (mod m) which is a contradiction by the same argument
as Subcase 2.1.

Subcase of Equivalence 42 2.3: 2x+ i ≡ x+ i (mod m)

2x+ i ≡ x+ i (mod m) → x ≡ 0 (mod m) which is a contradiction as 0 < x < m.

Subcase of Equivalence 42 2.4: 2x+ i ≡ 2i (mod m)

2x+ i ≡ 2i (mod m) → 2x ≡ i (mod m) which is the only possibility.

Subcase of Equivalence 42 2.5: 2i+ x ≡ 2(x+ i) (mod m)

2i+x ≡ 2(x+i) (mod m) → 0 ≡ x (mod m) which is by the same argument as Subcase
2.3.

Subcase of Equivalence 42 2.6: 2i+ x ≡ 2x (mod m)

2i+ x ≡ 2x (mod m) → 2i ≡ x (mod m) which is a possibility.

Subcase of Equivalence 42 2.7: 2i+ x ≡ x+ i (mod m)

2i+ x ≡ x+ i (mod m) → i ≡ 0 (mod m) which is a contradiction as 0 < i < m.

© 2022 José W. Velázquez Santiago
54/136

Subcase of Equivalence 42 2.8: 2i+ x ≡ 2i (mod m)

2i+x ≡ 2i (mod m) → 0 ≡ x (mod m) which is a contradiction by the same argument
as Subcase 2.3.

Subcase of Equivalence 42 2.9: x ≡ 2(x+ i) (mod m)

x ≡ 2(x+i) (mod m) → 0 ≡ x+2i (mod m) → x ≡ −2i (mod m) → x ≡ 2j (mod m)
which is a possibility.

Subcase of Equivalence 42 2.10: x ≡ 2x (mod m)

x ≡ 2x (mod m) → 0 ≡ x (mod m) which is a contradiction by the same argument as
Subcase 2.3.

Subcase of Equivalence 42 2.11: x ≡ x+ i (mod m)

x ≡ x + i (mod m) → i ≡ 0 (mod m) which is a contradiction by the same argument
as subcase 2.1.

Subcase of Equivalence 42 2.12: x ≡ 2i (mod m)

x ≡ 2i (mod m) → 0 ≡ x (mod m) which is a possibility.

Subcase of Equivalence 42 2.13: i ≡ 2(x+ i) (mod m)

i ≡ 2(x+ i) (mod m) → 0 ≡ 2x+ i (mod m) → 2x ≡ −i (mod m) → 2x ≡ j (mod m)
which is a possibility.

Subcase of Equivalence 42 2.14: i ≡ 2x (mod m)

i ≡ 2x (mod m) is a possibility.

Subcase of Equivalence 42 2.15: i ≡ x+ i (mod m)

i ≡ x + i (mod m) → 0 ≡ x (mod m) which is a contradiction by the same argument
as Subcase 2.3.

Subcase of Equivalence 42 2.16: i ≡ 2i (mod m)

i ≡ 2i (mod m) → 0 ≡ i (mod m) which is a contradiction by the same argument as
Subcase 2.1.

© 2022 José W. Velázquez Santiago
55/136

If the two sums in Equivalence 42 do not differ in any term, then each term in the right
side of the equivalence must correspond to a unique term on the left side of the equivalence,
with no repetitions (as any two terms on the right are not equivalent (mod 2m − 1) to each
other). 22x+i could only possibly be equivalent to 22i and 22i+x could only be equivalent to
22x. On the other hand, 2x could be equivalent to 22(x+i) or 22i, and 2i could be equivalent to
22(x+i) or 22x. Note that since 22x+i could only possibly be equivalent to 22i and 22i+x could
only be equivalent to 22x then it forces both 2i, 2x to be equivalent to 22(x+i) (mod 2m − 1),
which is a contradiction as 2x ̸≡ 2i (mod 2m − 1). We conclude that a ̸= 0 as Equivalence
42 cannot be true.

We now show that the last four terms of the right side of Equivalence 41 are all not
equivalent to 2m (mod 2m − 1).

Right Side of Equivalence 41 Subcase 7: 2x+ i ≡ 0 (mod m)

2x + i ≡ 0 (mod 2m − 1) → 2x ≡ −i (mod m) → 2x ≡ j (mod m). This transforms
Equivalence 41 into: 2j+2i+22x+2x+i+22i+1 ≡ 2a+2j+i+22i+x+2x+2i (mod 2m− 1) →
2m+i+22x+2x+i+22i+1 ≡ 2a+2m+22i+x+2x+2i (mod 2m−1) → 2i+22x+2x+i+22i+1 ≡
2a + 1 + 22i+x + 2x + 2i (mod 2m − 1). This gives us the equivalence

→ 22x + 2x+i + 22i ≡ 2a + 22i+x + 2x (mod 2m − 1) (43)
We have proven already that all the terms on the left side are non-equivalent to each

other, and the last two terms of the right side are non-equivalent to each other. Furthermore,
none of the terms on the left are equivalent to 2m (mod 2m − 1), while for the right side,
0 < a < m, x ̸≡ 0 (mod m) and 2i + x ≡ 0 (mod m) → x ≡ −2i (mod m) → x ≡ 2j
(mod m). This would mean that 2x − x ≡ j − 2j (mod m) → x ≡ −j (mod m) → x ≡ i
(mod m) → x = i which is a contradiction. We show that these two sums differ in at least
one term, and thus by Lemma 3 cannot be equivalent (mod 2m − 1).

Equivalence 43 Subcase 1: x ≡ 2x (mod m)

x ≡ 2x (mod m) → x ≡ 0 (mod m) which is a contradiction as 0 < x < m.

Equivalence 43 Subcase 2: x ≡ x+ i (mod m)
x ≡ x+ i (mod m) → i ≡ 0 (mod m) which is a contradiction as 0 < i < m.

Equivalence 43 Subcase 3: x ≡ 2i (mod m)

If x ≡ 2i (mod m) then x + 4x ≡ 2i + 2j (mod m) → 5x ≡ 2m (mod m) → 5x ≡ 0
(mod m) which is false unless m = 5 as (x,m) = 1.

There is the possibility that a = m − 1, and 2a equivalent (mod 2m − 1) to one of
the terms on the right, but in such case, the sum of both 2m−1 terms is equivalent to 2m

(mod 2m − 1), in which case the sum of the terms on the right would be equivalent to some

© 2022 José W. Velázquez Santiago
56/136

odd integer (mod 2m − 1) less than 2m while the sum on the left would be equivalent to
some even integer (mod 2m − 1) less than 2m (as all these terms are not equivalent to
2m or each other (mod 2m − 1)). Thus, these two sums cannot be equivalent (mod 2m − 1)
to each other.

Right Side of Equivalence 41 Subcase 8: 2i+ x ≡ 0 (mod m)

Since the exponent distribution of the powers of 2 is symmetric on x and i, proving
that 2i + x ≡ 0 (mod 2m − 1) is a contradiction also proves that 2i + x ≡ 0 (mod m) is a
contradiction. That is, it is the same argument as Subcase 7 except inverting x with i, and
y with j.

Right Side of Equivalence 41 Subcase 9 : x ≡ 0 (mod m)

→ x = 0 which is a contradiction as 0 < x < m.

Right Side of Equivalence 41 Subcase 10 : i ≡ 0 (mod m)

→ i = 0 which is a contradiction as 0 < i < m.

There is one last subcase to consider, can a = m − 1 be equivalent (mod 2m − 1) to
another term on the right and thus their sum be equivalent to 2m (mod 2m − 1)?

Right Side of Equivalence 41 Subcase 11 : a ≡ m − 1 (mod m) and a ≡ 2x + i
(mod 2m − 1)

We have that Equivalence 41 transforms into 22(x+i) + 22x + 2x+i + 22i + 1 ≡ 2m−1 +
2m−1 + 22i+x + 2x + 2i (mod 2m − 1) → 22(x+i) + 22x + 2x+i + 22i + 1 ≡ 2m + 22i+x + 2x + 2i

(mod 2m − 1) → 22(x+i) + 22x + 2x+i + 22i + 1 ≡ 1 + 22i+x + 2x + 2i (mod 2m − 1) →
22(x+i) + 22x + 2x+i + 22i ≡ 22i+x + 2x + 2i (mod 2m − 1). The terms on the left are not
equivalent (mod 2m − 1) to each other, and neither are the terms on the right side of the
equivalence. We substitute the equivalence class representatives and change the equivalence
to an equality:

2a + 2b + 2c + 2d = 2a2 + 2b2 + 2c2

With 0 < a, b, c, d, a2, b2, c2 < m, a, b, c, d all distinct from each other and a2, b2, c2
all distinct from each other. This is a contradiction by Lemma 3 as it would mean that
an integer has two different 2-adic representations. This same contradiction is reached if we
had assumed that a = m−1 was equivalent to any of the remaining three terms on the right.

With these results, we go back to Equivalence 41. We have shown that all the terms
on the left side of the equivalence are not equivalent (mod 2m − 1) to each other, and that
the last four terms of the right side of the equivalence are not equivalent (mod 2m − 1)
to each other or 2m and that 0 < a < m − 1. We can substitute each of the terms of the

© 2022 José W. Velázquez Santiago
57/136

left side for their equivalence class representatives, which sum to an odd integer less than
2m − 1. On the right side, if we substitute each of the terms for their equivalence class
representatives, we know that the last four terms are distinct and thus sum to an even
integer. Since 0 < a < m−1 then the right side will sum to an even integer less than 2m−1.
Hence, we have equality between an odd integer on the left and an even integer on the right,
which is a contradiction. Thus, Equivalence 41 does not hold for m > 5 and there does not
exist an integer 0 < a < m such that (22i − 2i + 1) ∗ (22x − 2x + 1) ≡ 2a (mod 2m − 1).

□

Finally, we use Theorem 11 to state and prove the cyclotomic equivalence result for
Kasami-Welch Boolean functions:

Theorem 12 (Cyclotomic-Equivalent Kasami-Welch Functions). Let f(x) = x22i−2i+1, g(x) =

x22x−2x+1 be vectorial Kasami-Welch Boolean functions F2m → F2m ,m > 5. If i ̸= x, 0 <
i, x < m and (i,m) = (x,m) = 1, then, these functions are cyclotomic-equivalent if and only
if i+ x = m.

Proof: For the forwards direction, if the functions are cyclotomic-equivalent, then it means
that either (22x − 2x +1)(22i − 2i +1) ≡ 2a (mod 2m − 1) for some integer 0 ≤ a < m or the
exponents are in the same cyclotomic coset. We have proven in Theorem 11 that no such a
can exist for m > 5. The exponents must then share a cyclotomic coset which is only possible
if i+ x = m.

For the backwards direction, if i+x = m, then 22i−2i+1, 22x−2x+1 share a cyclotomic
coset as per Theorem 6 and Theorem 7. Thus, the functions are cyclotomic-equivalent by
definition. Thus, we have our result.

□

From these results, we state a theorem on the number of non CCZ-equivalent Kasami-
Welch functions.

Theorem 13 (Number of non CCZ-Equivalent Kasami-Welch Functions). Let f(x) =

x22l−2l+1 be the vectorial Kasami-Welch Boolean function F2m → F2m ,m > 5, (l,m) = 1.
Then there are Φ(m)

2
non CCZ-equivalent Kasami-Welch functions

Proof: From Theorem 12, we know that two Kasami-Welch functions f(x) = x22i−2i+1, g(x) =

x22l−2l+1, i ̸= l, (i,m) = (l,m) = 1 over F2m are cyclotomic-equivalent (and hence CCZ-
equivalent) if and only if i + l = m. This only happens whenever the two exponents are
in the same cyclotomic coset (mod 2m − 1). From Theorems 6 and 7 we know that the
exponents occur in these unique pairs in the cyclotomic coset. The total number of integers
0 < l < m such that (l,m) = 1 is given by Φ(m). Since they occur in pairs in the cyclotomic
cosets, then the total number of non CCZ-equivalent Kasami-Welch functions will be Φ(m)

2
.
□

© 2022 José W. Velázquez Santiago
58/136

5. Improvement on Dillon and Dobbertin’s Theorem on the Construction
of Bent Gold and Kasami-Welch Functions

5.1. Gold Bent Function Construction. In this subsection, we consider the Boolean
functions in m variables of the form Tr(αixd). This subsection references details of the
results from our Springer PROMS article [67]. In Algorithm 7, we define a list containing
the Gold exponents of the form 2l+1 for 0 < l < m and iterate over all the exponents in the
list. For α ∈ F∗

2m , a primitive element, we iterate over 0 ≤ i < 2m − 1 (covering all nonzero
elements in the field). We utilize SAGE online programming software to construct algorithms
that generate these functions. The main components of the The three main algorithms are
as follows a) select an irreducible polynomial of degree m to construct the finite field and
polynomial ring, b) verify if a Boolean function is bent; c) constructs these functions, d) and
verifies bent-ness. The irreducible polynomials are the Conway polynomials as described in
[58]. This step is carried out to ensure that every time we construct the field, we use the
same modulus. The construction of the univariate Gold bent functions is known. Dillon in
1974 deduced that the Gold function Tr(λx2l−1), x ∈ F2m , λ ∈ F ∗

2m is bent if and only if
Tr(λx2l−1) was restricted to U (the multiplicative subgroup U of F ∗

2m) has Hamming weight
2l − 1. The following construction is given in [15]:

The function Tr(λx2j+1) where λ ∈ F2m\{x2j+1;x ∈ F2m}, m
(j,m)

= even, is bent
Dillon and Dobbertin in [22] state proposition 2 for the conditions under which Gold

Boolean functions are bent. In this section, we formulate a conjecture of a different construc-
tion by analyzing computational results from functions obtained via algorithms we developed
via SAGE. Our results show that the (l,m) = 1 criteria and conditions over λ can be changed
to produce Gold bent functions.

5.1.1. Algorithms. We refer to the SAGE Boolean function page for Boolean function com-
mands [49]. Three algorithms are constructed [67]:

Algorithm 5. [67] def FindModNonCube(m):
L =[]
P.<a> = PolynomialRing(GF(2))
k.<a> = GF(2**m, modulus = ’conway’)
r = k.modulus()
L.append(r)
return L

This algorithm constructs a polynomial ring over F2, uses the Conway polynomial
method to construct a finite field F2m , and stores the modulus on a list L. The algorithm
returns the modulus, which is used to construct polynomial rings and finite fields in other
algorithms.

Algorithm 6. [67]
def Bentness(f):

dim = f.nvariables()
w = f.walsh_hadamard_transform()
for i in range(2̂ dim):

© 2022 José W. Velázquez Santiago
59/136

if abs(w[i]) != 2̂ (dim/2)
return “Not Bent”

else:
i = pass

return “Bent”

This algorithm takes as input a Boolean function “f,” finds in how many variables this
function is defined, and determines its Walsh-Hadamard transform spectrum. There are many
ways to input a Boolean function, we use the "BooleanFunction(f(x))" command, where f(x)
is a polynomial over F2m and the result is the Boolean function given by Tr(f(x)) [49]. Then
it verifies if the function is bent by iterating over the spectrum to check if it meets Definition
1. The performance of this algorithm is comparable to the inbuilt “is_bent()” command in
sage. We compare these in Tables 2 and 3.

Variables Bent Functions Detected Time (s) Max Memory Allocation
4 10 0.108 27703
6 42 1.864 68556
8 170 33.754 125285
10 682 706.255 175985

Table 2: Computation time and memory allocation of
is_bent() command.

Variables Bent Functions Detected Time (s) Max Memory Allocation
4 10 0.106 25090
6 42 1.843 44221
8 170 35.895 124533
10 682 710.432 158697

Table 3: Computation time and memory allocation of
Bentness algorithm.

We compared these commands for up to 10 variables. We utilized Python memory
allocation and time tracking packages. Boolean functions of the form Tr(αix3) iterating for
0 ≤ i ≤ 2m − 1 were computed. We observe that the computational time was similar for
both methods, while the maximum memory allocation was slightly lower for the Bentness
algorithm.

Algorithm 7. [67]
def BentTraceIterationGold(m):

f = FindModNonCube(m)
R.<x> = GF(2̂ m,’a’, modulus = f)[]
k.<a> = GF(2**m, modulus = f)
print("Variables, Exponent, Power of the element, Is it Bent?")
for j in range(1,m):

© 2022 José W. Velázquez Santiago
60/136

for i in range(0,2̂ m - 1):
GB = BooleanFunction((â i)*x̂ (G[j]))
print(m,",", G[j], ", α̂ ”, i, ” ,",Bent-ness(GB))

The algorithm takes as input the number of variables "m" and then constructs a Boolean
polynomial Ring over F2m such that it assigns a as the congruence class [x] modulo f (the
irreducible polynomial from Algorithm 5). Then it constructs a finite field as powers of "a"
where a is a primitive element in the field. Next, it iterates over the possible Gold exponents
(which are stored in a list "G") and all the power of "a" to go over all the possible Gold
functions. Finally, it verifies if the function is bent and prints the results.

5.1.2. Explicit Families of Gold Bent Functions Not Obtained by Dillon and Dobbertin: We
observed a pattern in the generation of the bent and non-bent functions. If Tr(αixd) was
non-bent for i some multiple of an integer k, then it was not bent for all the multiples of k.
Furthermore, we noted that k took on values as divisors of the Gold exponent under consid-
eration. We denoted these exceptions by "Mk" meaning "multiples of k.” Tables with all the
functions were computed for up to 10 variables. We established some observations based on
the resulting tables and then obtained results for 12-18 variables only considering powers of
i that correspond to multiples of divisors of d. We had the following observations for up to
14 variables:

1) If (l,m) = 1, then the exceptions are the multiples of 3.
2) Let i, i2, t, t2, j ∈ Z , m ̸= 2j , and say m = 2i ∗ t , then if l = 2i2 ∗ t2 for i ≤ i2, then all

cases are exceptions.
3) For all other cases, the exceptions are multiples of some divisor of d. Special case when

m = 2 x l. Then the exceptions are multiples of d.

We list the obtained tables in section 8 (see Tables 4-5) noting for what multiples of
k the function was not bent. We computed partial results for up to 24 variables (see Table
6) and verified that the deduced conditions apply to these cases. Computational limitations
resulted in Table 6 not being completed for 20-24 variables. However, the pattern is still
present in the observed results. Note that for 24 variables, when m = 2 ∗ l, 4 ∗ l, 6 ∗ l, 8 ∗ l,
and 12 ∗ l, the exceptions are Md. Interestingly, m = 3 ∗ l does not lead to this result as
it meets the second case (perhaps suggesting priority for that condition). For 22 variables,
when m = 2 ∗ l the exceptions are for Md but for m = 11 ∗ l we see that case 2 applies and
we get M1 as the exceptions. For 20 variables when m = 2 ∗ l, 4 ∗ l, 10 ∗ l the exceptions
are for Md but for m = 5 ∗ l we see that case 2 applies and we get M1 as the exceptions.
This pattern is observed for 16 and 18 variables. For the remaining cases, we note that the
exceptions coincide with the smallest Gold exponent in the set of divisors of d. The excep-
tion to this is the M9 cases that fall under case 4 as if 9 divides the Gold exponent, so
does 3. It seems that M3 cases only occur under condition 1) , so perhaps this could be an
if and only if condition, although we do not have strong enough evidence to state this yet.
These observations lead to the final set of conditions deduced from the computational results:

1) If (l,m) = 1, then the functions are bent whenever i ̸∈ M3.

© 2022 José W. Velázquez Santiago
61/136

2) Let i, i2, t, t2, j ∈ Z+ , m ̸= 2j , and say m = 2i ∗ t , then if l = 2i2 ∗ t2 for i ≤ i2, then
all cases are exceptions.

3) Given that case 2 is not met, then if m = t ∗ l for an integer t , then the functions are
bent whenever i ̸∈ Md.

4) If the previous cases are not met, then the functions are bent for i ̸∈ Mk, where k is
the smallest Gold exponent such that k|d, k > 3.

Based on these conditions, we state the following conjecture on the Gold Boolean bent
functions:

5.1.3. Conjectures For The Construction of Boolean Bent Gold Functions.

Conjecture 1 (Velazquez, Janwa [67] Constructed Families of Gold Boolean Bent Func-
tions). Consider m, l, i, k ∈ Z and the finite field F2m , where m is an even integer. Let
d = 2l + 1 be a Gold exponent, and α ∈ F2m a primitive element in the field. Let Tr(αixd)
be a Gold Boolean function and Mk the set of all the multiple of k. Then:

1) If (l,m) = 1, Tr(αixd) is bent if i ̸∈ M3.
2) Let i, i2, t, t2, j ∈ Z+ , m ̸= 2j , and say m = 2i ∗ t , then if l = 2i2 ∗ t2 for i ≤ i2 then

Tr(αixd) is not bent.
3) Given that case 2 is not met, then if m = t ∗ l for t ∈ Z+ , then Tr(αixd) is bent if

i ̸∈ Md.
4) If the previous cases are not met, then Tr(αixd) is bent if i ̸∈ Mk for k the smallest

Gold exponent such that k|d, k > 3.

The first case follows from Dillon and Dobbertin’s results.

5.2. Further Results and Conjectures for the Gold Case.

5.2.1. Algorithms. We continued our research on Gold Boolean bent functions by com-
putationally testing conditions for equality. We develop an algorithm to generate the Gold
Boolean functions in m (even) variables of the form f(x) = Tr(αix2l+1). We compare these
functions in four variables to observe patterns to state and prove our following theorems.

Algorithm 8. def TestEquality(m):
f = FindModNonCube(m)
R.< x > = GF(2̂ m,’a’, modulus = f)[]
k.< a > = GF(2**m, modulus = f)
BANF = []
BF = []
BentL = []
c = 0
for i in range(1,m):

for j in range(1,2̂ m - 1):
BG = BooleanFunction(â j ∗ x̂ (2̂ i+ 1))
BentL.append(Bentness(BG))

© 2022 José W. Velázquez Santiago
62/136

BF.append("Tr(â {” + str(j) + ”}x̂ {” + str(2̂ i+ 1) + ”})")
BANF.append(BG.algebraic_normal_form())

for i in range(1,m/2 + 1):
for j in range(1,2̂ m - 1):

BG = BooleanFunction(â j ∗ x̂ (2̂ i+ 1))
ANF = BG.algebraic_normal_form()
BF2 = ("Tr(â {” + str(j) + ”}x̂ {” + str(2̂ i+ 1) + ”})")
c2 = [i for i, n in enumerate(BANF) if n == ANF]
n = len(c2)
print(str(BF[c]), end = "")
c3 = c2
c3.remove(BF.index(BF2))
for i2 in c3:

print(" = ", BF[i2], end = "")
print(" = " + str(n), " = ", BentL[c])
c = c + 1

The algorithm takes as inputs the number of variables considered. Then, it utilizes
Algorithm 5 to find an irreducible polynomial of degree m. This polynomial (stored in the
variable f) is used as the modulus of the Boolean polynomial Ring over F2m such that it
assigns a as the congruence class [x] modulo f and to construct a finite field as powers of “a”
where a is a primitive element in the field. Then, three empty lists are created (BANF,BF
and BentL) to store the algebraic normal forms, the string representations, and the bent-
ness property of the functions, respectively. These lists are created such that the algebraic
normal form in the position “i” on the list BANF corresponds to the string representation of
the functions on position “i” of the list BF, and the same for BentL. A counting variable is
defined to count the number of functions that are compared. Then, two for loops are used
to iterate over the constructed functions’ exponents of α and x. The first double loop is
used to generate all the functions of the form Tr(αix2j+1). The string representation of this
function, and its algebraic normal and bent-ness form are stored in their respective lists.
The bent property is determined via an algorithm we constructed in. Then, we iterate over
the exponents again, going over all exponents of α but only up to x2

m
2 +1. This is to avoid

repeating the comparison between functions. The functions are generated, their algebraic
normal form found, and their string representation as a trace assigned to the variable “BF2.”
Next, a list of indices of the functions that share the same algebraic normal form as the
current generated function is assigned to “c2” and its length is determined. The second list of
indices is constructed so that the current function is removed from the list to avoid repeated
results. Then, the algorithm outputs the current function and all the functions that share
the same algebraic normal form (and thus are equal). It also outputs the number of such
functions and whether they are bent or not. The results of the algorithm can be observed in
Table 13.

Algorithm 9. def CycloCosTestBentIteration(m):
f = FindModnoncube
R.< x > = GF(2̂ m,’a’, modulus = f)[]

© 2022 José W. Velázquez Santiago
63/136

k.< a > = GF(2**m, modulus = f)
l = cyclocosets(m)
print("Variables - CycloRep - Exponent - Exception - Function")
for i in l:

for e in list(set(i)):
st = []
w = 0
for y in range(2̂ m - 1):

GB = BooleanFunction((â y)*(x̂ e))
B = Bentness(GB)
if B == "Bent":

if y == o:
break
pass

else:
w = w + 1
st.append(y)
if w == 3:

st.remove(0)
print(m, "-",CycloRep(e, 2 ˆm - 1), "-", e, "- M" + str(gcd(st)),

" - Tr(α̂ { i } x ˆ {" + str(e) + ""}))

This algorithm tests if Boolean functions of the form Tr(αixC(d)) meet the same con-
ditions over the value of i to be bent. The input is the number of variables considered and
the first three lines find a monic irreducible polynomial in m variables to be used as the
modulus for the finite field and polynomial ring constructed (k. < a > and R. < x >). Then
it assigns to "l" a list of cyclotomic cosets (mod 2m − 1). Next, the algorithm iterates over
the list of cyclotomic cosets and the elements inside them. It defines a list "st" that stores all
the exponents of x that lead to non-bent functions for all values of i and a counter variable
”w” that determines when we find the third non-bent function. Then, it iterates over all
the possible values of i, defines a Boolean function, and tests if it is bent. If it is bent, it
checks if α = 0. If it is, then we skip over to the next cyclotomic coset. This is because the
case Tr(xd) is a special case we do not consider in this work. If it is not bent, we add the
exponent to the list “st” and a one to the counter variable. If it is the third non-bent function
found (counter = 3), then we print the results, with the exceptions being Mk where k is the
greatest common divisor of the values in st.

5.2.2. Results for Gold Boolean Functions. The basis of this analysis is to identify a
one to one correspondence between functions in m variables of the form Tr(αax2i+1) and
Tr(αbx2j+1). In Section 4, for the near-bent case, we had identified the condition that the
Boolean functions in m variables Tr(x2i+1), Tr(x2j+1) and Tr(x22i−2i+1), Tr(x22j−2j+1) were
equal if j + i = m. The proof of this is deduced from our cyclotomic coset analysis for
these exponents. From the cyclic property of the definition of the trace, we know that
Tr(x) = Tr(x2j) for some integer j. The presence of the α term should make the previ-
ous analysis not possible. We analyze the four and six variable case to observe if there are

© 2022 José W. Velázquez Santiago
64/136

equivalences between Tr(αixd) and Tr(αix2jd) (where d is the Gold exponent). First, we
note that:

Tr(αixd) = αixd + α2ix2d + α4ix4d + . . . α2m−1ix2m−1d

Tr(αix2d) = αix2d + α2ix4d + α4ix8d + . . . α2m−1ixd

It shifts the powers of x, however, it does not indicate anything about equality or
equivalence. To determine equality, we utilized Algorithm 9 to test and observe results in
Table 14. We observe that for d in a particular cyclotomic coset, the conditions for bent-ness
are the same. For the equality analysis, we did not find any equal functions by taking d in
the same cyclotomic coset. For the Gold case in particular, we know from Theorem 5 that
two Gold exponents 2i+1, 2j +1, are in the same cyclotomic coset (mod 2m−1) given that
i+j = m. These results seem to indicate that this property is crucial for preserving the bent-
ness property of these functions and potentially for equality of these functions. We observe
that the Gold Boolean functions shared the same conditions on the exponent of α for them
to be bent given that i+j = m. This is seen in Tables 4,5, 6, where we note that the values of
l for each case can be paired to sum to m. However, the functions Tr(αaxd) and Tr(αax2k(d))
are not necessarily equal, as for example, in four variables Tr(α1x3) ̸= Tr(α1x6).

Next, we focus on the case where we cycle through the exponents of both α and x. For
this analysis, we apply Definition 5 to the Gold Boolean functions in m variables:

Tr(αax2i+1) = (αax2i+1) + (αax2i+1)2 + (αax2i+1)4 + · · ·+ (αax2i+1)2
m−1

(44)

= (αax2i+1) + (α2ax2(2i+1)) + (α4ax4(2i+1)) + · · ·+ (α2m−1ax2m−1(2i+1)) (45)

= (αax2i+1) + (α2ax(2i+1+2)) + (α4ax(2i+2+4)) + · · ·+ (α2m−1ax(2i+m−1+2m−1)) (46)
We note that the exponents of α and x cycle through elements in a cyclotomic coset

(mod 2m − 1). That is, the exponents of α and x in the trace sum elements will be C(a)
and C(x) respectively. In fact, note that, for integers i, k, e, q, 0 < e, q < m, e + q = m, say
i = mk + e, then:
Tr((αax2i+1)2

i
) = (αax2i+1)2

i
+ (αax2i+1)2

i+1
+ (αax2i+1)2

i+2
+ · · ·+ (αax2i+1)2

i+q
+ · · ·+

(αax2i+1)2
i+m−1

= (αax2i+1)2
mk+e

+ (αax2i+1)2
mk+e+1

+ (αax2i+1)2
mk+e+2

+ · · ·+
(αax2i+1)2

mk+e+q
+ · · ·+ (αax2i+1)2

mk+e+m−1 .

Since α, x ∈ F2m , their exponents can be taken (mod 2m − 1), which gives us:
Tr((αax2i+1)2

i
) = (αax2i+1)2

mk+e
+ (αax2i+1)2

mk+e+1
+ (αax2i+1)2

mk+e+2
+ · · ·+

(αax2i+1)2
mk+e+q

+ · · ·+ (αax2i+1)2
mk+e+m−1 → Tr((αax2i+1)2

i
) =

(αax2i+1)2
e
+ (αax2i+1)2

e+1
+ (αax2i+1)2

e+2
+ · · ·+ (αax2i+1)2

0
+ · · ·+ (αax2i+1)2

e−1 .

Note that the exponents of the terms in the sum all form C(1). Hence, applying a
power of 2 to the term of the trace results in an equal function. That is, Tr((αax2i+1)1) =

Tr((αax2i+1)2
i
) for any integer i. In Table 13 we observe patterns on the equality of these

© 2022 José W. Velázquez Santiago
65/136

functions. First, each function with a Gold exponent of the form 2i+1 is equal to a function
with Gold exponent 2j + 1, with i + j = 4. Second, we had previously established Con-
jecture 1 on the powers of α that lead to bent functions, and the powers which did not.
In four variables, for the Gold exponents 3,5 and 9, the cases where the function was not
bent were when the power was a multiple of 3, 5 and 3, respectively. In this table, we see
that this property is preserved for the non-bent functions. For the Gold exponent 3, the
functions are sent to: Tr(α3x3) → Tr(α9x9), Tr(α6x3) → Tr(α3x9), Tr(α9x3) → Tr(α12x9)
and Tr(α12x3) → Tr(α6x9). For the exponent 5, we have that Tr(α5x5) → Tr(α10x5) and
Tr(α10x5) → Tr(α5x5). We use Lemma 1 to prove the following:

Theorem 14 (Equal Gold Boolean functions of the form Tr(αax2i+1)). Let α ∈ F∗
2m be

a primitive element, and a, b, i, j integers such that 0 < a, b < 2m − 1, 0 < i, j < m and
(i,m) = (j,m) = 1. Then, the Boolean functions in m variables Tr(αax2i+1), T r(αbx2j+1)
are equal if 2j ∗ (2i + 1) ≡ 2j + 1 (mod 2m − 1) and b = 2j(a) , j + i = m.

Proof: As per Definition 5 we know that Tr(αax2i+1) = (αax2i+1)2
0
+ (αax2i+1)2

1
+ · · ·+

(αax2i+1)2
m−1 . Since 0 < j < m and j + i = m, one of the terms of the sum will be:

(αax2i+1)2
j
= (α2j(a)x2j+i+2j) = (α2j(a)x2m+2j).

With 2m ≡ 1 (mod 2m − 1) → (α2j(a)x2m+2j) = (α2j(a)x1+2j)

Similarly, we have that Tr(αbx2j+1) = (αbx2j+1)2
0
+ (αbx2j+1)2

1
+ . . . (αbx2j+1)2

m−1 ,
since 0 < i < m, then one of the terms of the sum will be:

(αbx2j+1)2
i
= (α2i(b)x1+2i) = (α2i(2j(a))x1+2i) = (αax2i+1).

As stated in previous discussions, Tr(x) = Tr(x2t) for any integer t. Thus, Tr(αax2i+1) =

Tr((αax2i+1)2
j
) = Tr(αbx2j+1) = Tr((αbx2j+1)2

i
).

□

With these theorems combined with our previous observations from subsection 5.1.3,
we state the following conjecture.

Conjecture 2 (Further results on the Gold bent function cases). Let α ∈ F∗
2m be a

primitive element. For i, j, a, b integers such that 0 < i, j < m, i+j = m and 0 < a, b < 2m−1
then the Gold Boolean functions in m variables of the form Tr(αax2i+1), T r(αbx2j+1) and
b = 2j(a) are bent for the same powers of α.

The proof for this depends on Conjecture 1. In particular, we gave various conditions
over the exponent a for the Gold Boolean functions of the form Tr(αax2l+1) to be bent in the
previous subsection. Specifically, based on shared factors of l,m, the exponents of α such that
the function was not bent varied. The most well-known case is when (l,m) = 1 as showed
by Dillon and Dobbertin [22] (although they stipulated that m could not be divisible by 6,
which we do not consider in our results in subsection 5.1.3). For this case, Whenever αa is a
cube element in the field, then the function is not bent. This corresponds to saying that a is
a multiple of three as per Lemma 1. For this case, it is clear that the conjecture is true as the
pair of Gold functions of the form Tr(αax2i+1), T r(αbx2j+1), j + i = m, (i,m) = (j,m) = 1
and b = 2j(a) will both share the same condition for the function being not bent, that is, a, b

© 2022 José W. Velázquez Santiago
66/136

not being multiples of 3. However, for the general case, say Tr(αax2i+1) being not bent for a
a multiple of some integer 0 < k < 2m−1. If k|(2m−1), then we have that the multiples of k
repeat themselves with a period of 2m−1

k
(mod 2m−1), i.e k, 2k, 3k, . . . , k((2

m−1)
k

), k((2
m−1)
k

+
1), . . . which taken (mod 2m − 1) is k, 2k, 3k, . . . , 0, k(1), This means that for some
positive integer q , if kq > 2m − 1, then it is equivalent to a multiple of k when you take the
modulo. Consider the pair of Gold functions of the form Tr(αax2i+1), T r(αbx2j+1), j+ i = m
and b = 2j(a). If a is a multiple of k, then so is b by the previous discussion. We know that
Tr(αax2i+1) is not bent only for a ∈ Mk (where Mk is the set of multiples of k). Consider
any b such that Tr(αbx2j+1) is not bent. Then, we know from Theorem 14 that there exists
some integer a such that b = 2j(a) with Tr(αbx2j+1) = Tr(αax2i+1). For Tr(αax2i+1) to
be non-bent, a must be a multiple of k, say a = kq, for some positive integer q. Then,
b = 2j(a) = 2j(kq) = k(2jq). Thus, if Tr(αbx2j+1) is not bent, then it must meet the same
conditions as Tr(αax2i+1). The final proof for our Conjecture 2 depends on proving the
results from Conjecture 1 and showing that the possible values of k always divide 2m − 1.

The implication of this conjecture is that the Gold Boolean bent functions of the form
Tr(αix2l+1) are generated for l < m

2
, as the other values of l will generate the same bent

functions. This is consistent with Table 1 in Carlet’s paper [15], as they define the Gold bent
exponents associated to AB functions as 2l + 1 with (i,m) = 1 and 1 ≤ l < m

2
. The results

of our Table 13 imply that these pairs of functions are the only such equal pair of Gold bent
functions for (l,m) = 1. This result may be related to our previous results on the size of
the cyclotomic cosets that contain the Gold exponents. We use our computational results to
state and prove the following theorem.

Theorem 15 (Upper Bound For The Number of Non-Equal Gold Bent Functions of The
Form Tr(αix2l+1)). Let α ∈ F∗

2m be a primitive element. For 0 < i < 2m − 1, 0 < l < m,
i + j = m, (i,m) = (j,m) = 1 and 0 < a < 2m − 1 define Tr(αix2l+1) as the Gold Boolean
bent functions in m variables. Then, there are at most ((2m − 2) − (2

m−1
3

− 1)) ∗ (Φ(m)
2

)
non-equal Gold Boolean bent functions, where Φ is Euler’s phi function.

Proof: For a Gold Boolean bent function Tr(αix2l+1) in m variables, we can iterate over
2m− 2 different exponents of α (as we do not consider α0). Out of these exponents, the ones
that are multiples of 3 do not lead to bent functions when (i,m) = 1 [15, 22]. The formula for
computing the number of multiples of three less than 2m − 1 is given by 2m−1

3
− 1. We know

that 3|(2m − 1) as m is even and 2m ≡ 1 (mod 3) for m an even integer. The total number
of Gold exponents that satisfy (l,m) = 1 is given by Φ(m). Since these exponents appear in
the trace functions in pairs of the form (αax2i+1), (α2jax2j+1), by Theorem 14 at maximum
the total number of non-equal Boolean bent functions is Φ(m)

2
. Thus, the total number of

functions whose power of α is not a multiple of three is given by (2m − 2)− (2
m−1
3

− 1) and
the total number of Gold exponents that do not lead to equal functions is at most Φ(m)

2
. So,

the total number of functions whose power of α is not a multiple of three and its power of x
is a valid Gold exponent is upper bounded by ((2m − 2)− (2

m−1
3

− 1)) ∗ (Φ(m)
2

).
□

Based on all the results have so far, we postulate the following conjecture:

© 2022 José W. Velázquez Santiago
67/136

Conjecture 3 (Exact Number of Equal Gold Bent Functions of The Form Tr(αix2l+1)).
Let α ∈ F∗

2m be a primitive element. For 0 < i < 2m − 1, 0 < l < m, i + j = m,
(i,m) = (j,m) = 1 and 0 < a, b < 2m − 1 define Tr(αix2l+1) as the Gold Boolean bent
functions in m variables. Then, there are ((2m − 2) − (2

m−1
3

− 1)) ∗ (Φ(m)
2

) non-equal Gold
Boolean bent functions, where Φ is Euler’s phi function.

To prove this it remains to show that no other Gold Boolean bent function is equal to
the pair Tr(αax2i+1), T r(α2jax2j+1) as described in Theorem 14.

5.3. Kasami-Welch Bent Function Construction. In this section, we consider the Boolean
functions in m variables of the form Tr(αixd). In this subsection we reference results from
our Springer PROMS article [67]. We define a list of Kasami-Welch exponent: 22l−2l+1 for
0 < l < m and repeat a similar methodology as the Gold case. For the following subsection,
we develop an additional algorithm to construct the Kasami-Welch bent functions. Dillon
and Dobbertin studied and obtained results on the construction of the Kasami-Welch bent
functions [22]. One of their main results is on the conditions under which these functions are
bent (see Theorem
refTh:KWDill). In this section, we construct algorithms that generate Kasami-Welch Boolean
functions and determine when they are bent. We obtain computational results that show that
there exist Kasami-Welch bent functions in m number of variables divisible by 6, thus remov-
ing these criteria from Dillon and Dobbertin’s theorem. We conjecture a generalized form of
their result on the bent-ness of the functions based on these results.

5.3.1. Algorithms. We construct an algorithm to determine if the Kasami-Welch Boolean
function is bent or not [67].

Algorithm 10. [67] def BentTraceIterationKas(m):
f = FindModNonCube(m)
R.<x> = GF(2̂ m,’a’, modulus = f)[]
k.<a> = GF(2**m, modulus = f)
print(“Variables, Exponent, Power of the element, Is it Bent?”)
for j in range(1,m):

for i in range(0,2̂ m - 1):
KB = BooleanFunction((â i)*x̂ (K[j]))
print(m,",", K[j], ", α̂ ”, i, ” ,",Bent-ness(KB))

The algorithm repeats the same process as the Gold case algorithm. The key difference
is that we pre-generated and used a list of Kasami-Welch exponents.

5.3.2. Explicit Families of Kasami-Welch Bent Functions Not Obtained by Dillon and Dob-
bertin: We generated the functions of the form Tr(αixd), d = 22l − 2l + 1 for up to 12
variables and for all values of i such that 0 ≤ i ≤ 2m − 2. We note that for (l,m) = 1 our
computational results show that Theorem 2 is met as the exception found are when i is a
multiple of 3. However, for six and 12 variables, we find bent functions. These exist for (l,m)
= 1. We show the results for the six and 12 variable cases in Table 7 in Appendix 8.

© 2022 José W. Velázquez Santiago
68/136

The results show that the non-divisibility by six criteria given in [22] can be removed
and still generate some bent functions. The conditions on λ and (l,m) = 1, however, are
still satisfied for these cases. We propose a generalization of the bent function result of their
theorem as follows:

5.3.3. Conjectures For The Construction of Kasami-Welch Boolean Bent Functions.

Conjecture 4 (Velazquez, Janwa [67] Generalized Kasami-Welch Boolean Bent Functions).
Let L = F2m , where m is an even integer, let α be a primitive element in F2m and the
Kasami-Welch exponent d = 22l − 2l + 1, (l,m) = 1 . Let Tr(αixd) be the Kasami-Welch
Boolean functions and Mk the set of multiples of the integer k. We have:

sα
i

d (x) = Tr(αixd) and let ρλd = (−1)s
λ
d

then

If i ̸∈ M3, then sα
i

d (x) is bent i.e ρ̂α
i

d (β) = ±1, ∀β ∈ L (47)

6. Weight Distribution of Dual Cyclic Codes and Some Conjectures

6.1. Symmetric Weight Distribution of Generated Codes. The weight distribution
of cyclic codes is directly related to cross-correlation values of binary m-sequences. For α as
a primitive element in the field F2m , with mi(x) being the minimal polynomial of αi over
GF (2), then the cross-correlation values of two m-sequences with characteristic polynomials
m1(x),mi(x) give information on the weight distribution of the dual code of the cyclic code
with defining set {1, i} [51]. In 1976, Helleseth conjectured that two binary m-sequences of
length 2m − 1 (m a power of 2) cannot have a 3-valued cross-correlation [38]. McGuire in
[51] considered that if -1 was a cross-correlation value, then the values must have the form
−1,−1+A,−1+B for some A,B. If A = B then it completes part of Helleseth’s conjecture
as one must then prove that the cross-correlation values do not have that specific form. This
is equivalent to stating that the corresponding dual code must have a weight distribution of
[2m−1 − a, 2m−1, 2m−1 + a]. McGuire in 2004 studied the weight distribution of the dual code
of the binary cyclic code of length 2m − 1 with two roots [52]. According to McGuire, while
there are various conjectures on the instances in which the dual code is a three-weight code,
a complete classification is difficult [52]. It is conjectured that the weights of these codes are
symmetric over 2m−1. For the construction and analysis of three-weight dual codes, we also
consider the "Cusick exponents" which are known to lead to three-valued cross-correlation
functions [18, 23].

Conjecture 5 (On the weights of three nonzero weight codes [52]). Let C be a cyclic
code over F2m and C⊥ its dual code. If C⊥ has three weights of the form w1 = 2m−1 − a,
w2 = 2m−1, w3 = 2m−1 + b then a = b.

We have verified this conjecture for the codes we generated in Section 3. We utilized
the results on the spectrum of the codes from Algorithm 2. We considered all possible
values of the second element of the defining set of the codes. According to Ding and Carlet
[23, 12], many of the codes with three nonzero weights are considered optimal, and as such

© 2022 José W. Velázquez Santiago
69/136

we focus on their construction. Using Algorithm 2 we construct Table 19. We note that all
the codes satisfied the conjecture. In the following subsection we compare these codes to
known theorems compiled by Ding in [23] about the weight distribution of dual codes of
cyclic codes in two roots.

6.2. Ding Weight Distribution Tables.

Theorem 16 (Calderbank, Goethals, Gold and Kasami [8, 30, 31, 43] Three Weight Codes
First Theorem). Let m ≥ 4 and the defining set of the code binary cyclic code "C" of
length n = 2m − 1 is {1, 2e + 1} for some integer e ≤ m

2
. Then C is a three weight code if

and only if either m is odd and (2e + 1, n) = 1 or m is even and e = m
2
.

The distribution for the first case the nonzero weights will be: (2m−1−2m−1−l, 2m−1, 2m−1+

2m−1−l) with l = (m−gcd(m,e))
2

. For the second case, the nonzero weights are: (2m−1−2
m−2

2 , 2m−1, 2m−1+

2
m−2

2).

Theorem 17 (Ding [23] Three Weight Codes Second Theorem). The binary cyclic code
"C" of length n = 2m − 1, that has dimension 2m and defining set {1, v} has the nonzero
weights of the first case of the previous theorem with l = m−1

2
and l = m−2

2
(for m odd and

even respectively) given that v is equal to:
1) 2

m+2
2

+3, m ≡ 2 (mod 4)

2) 2
m
2 + 2

m+2
4 + 1, m ≡ 2 (mod 4)

3) Is the Kasami-Welch exponent with m
(l,m)

odd
4) Is the Welch exponent with m odd
5) Is the Niho exponent (even and odd case)

The dual codes of the codes obtained by Theorems 17 and 16 (when the exponent is
2d + 1 and (d,m) = 1) are known to be optimal [23]. With the conditions given, we begin
the construction of an algorithm to identify which of the constructed codes fall under these
theorems.

Algorithm 11. {def DistIdent(m,CR):
C1 = []
C2 = []
N = []
I = []
D = []
W = []
n = 2̂ m - 1
if m%4 == 2:

C1.append(2̂ (m/2) + 2̂ ((m + 2)/4) + 1)
C2.append(2̂ (m/2 + 1) + 3)

if m%2 == 1:
I.append(2̂ m - 2)
W.append(2̂ ((m-1)/2) + 3)

© 2022 José W. Velázquez Santiago
70/136

if m%4 == 1:
N.append(2̂ ((m - 1)/2) + 2̂ ((m-1)/4) - 1)

if m%4 == 3:
N.append(2̂ ((m - 1)/2) + 2̂ ((3m-1)/4) - 1)

if m%5 == 0:
D.append(2̂ (4m/5) + 2̂ (3m/5) +2̂ (2m/5) +2̂ (m/5) - 1)

if set(Cyclo(CR,n)) & set(K) ! = set([]) or set(Cyclo(CR,n)) & set(W) ! =
set([]) or set(Cyclo(CR,n)) & set(N) ! = set([]) or set(Cyclo(CR,n)) & set(C1)
! = set([]) or set(Cyclo(CR,n)) & set(C2) ! = set([]):

if m%2 == 1:
l = (m - 1)/2
a = 2̂ ((m-1)/2) - 2̂ (m-1-l)
b = 2̂ (m-1)
c = 2̂ ((m-1)/2) + 2̂ (m-1-l)
return "Distribution type 1, is" a,b,c

else:
l = (m - 2)/2
a = 2̂ ((m-1)/2) - 2̂ (m-1-l)
b = 2̂ (m-1)
c = 2̂ ((m-1)/2) + 2̂ (m-1-l)
return "Distribution type 1, is" a,b,c

if set(Cyclo(CR,n)) & set([G]) ! = set([]) and (m ≥ 4 and CR ≤ (2̂ (m/2)+
1)):

if gcd(n,CR) == 1:
e = log(CR - 1,2)
l = (m - gcd(m,e))/2
a = 2̂ ((m-1)/2) - 2̂ (m-1-l)
b = 2̂ (m-1)
c = 2̂ ((m-1)/2) + 2̂ (m-1-l)
return "Distribution type 1, is" a,b,c

if m%2 == 0 and CR ==(2̂ (m/2) + 1):
a = 2̂ (m-1) - 2̂ ((m-2)/2)
b = 2̂ (m-1)
a = 2̂ (m-1) + 2̂ ((m-2)/2)
return "Distribution type 2, is" a,b,c

}

The input of the code will be the list of cyclotomic coset representatives of the three
nonzero weight cyclic codes generated previously and m, where the length of the code is
n = 2m − 1. Lines 2-7 define the lists where we will store the exponents that are used in the
theorems (Gold, Kasami-Welch, Welch, inverse, Cusick, Niho and Dobbertin) and define the
length of the code. Lines 8-19 construct the exponents based on the length of the code (Gold
and Kasami-Welch exponents are pre-generated since they do not depend on the number of
variables m). Line 20 verifies if the second element in the defining set of the code belongs to

© 2022 José W. Velázquez Santiago
71/136

the set of exponents defined in Theorem 17. For this, we use the “Cyclo” function that gives
a list of the elements of the cyclotomic coset that contains the second element of the defining
set under consideration. This is done to account for cyclotomic equivalence. The following
lines verify the respective conditions needed for the distribution given that the element sat-
isfied Theorem 17 and the other lines in the middle give the weight distribution. Next, the
algorithm verifies the conditions needed to apply Theorem 16 (that the element is a Gold
exponent with l ≤ m

2
). Then the following lines verify the conditions for the distributions

and return the distribution.

With this algorithm, we were able to classify some of our 95 codes under the distribution
types (based on the tables in [23]) The result was Table 8. These codes were obtained
by using Algorithm 2 to identify three nonzero weight dual codes after iterating over all
possible cyclotomic coset representatives. This was done for cyclic codes of length 2m − 1,
for m = 4 to m = 13. Several codes did not meet any of the theorems (yet still presented
a symmetric weight distribution). It is possible that some of the codes not meeting the
distribution conditions are equivalent to some that do. We construct a table considering
equivalent codes. The analysis for “equivalent codes” was done as follows. Given that the
defining set of the cyclic code of length n = 2m − 1 is {1, d} we identify "z" such that
d ∗ z ≡ 1 (mod n). The new "equivalent" code will have defining set {1, z}. The condition
that m must possess a multiplicative inverse must be considered, as otherwise, there is no
“equivalent” code based on this construction. This construction is validated by Niho in his
1972 report [54] where they discuss these “inverse pair relationship” of codes based on the
non one entry in their defining set, and the context of this work is on cross-correlation and
d-decimation functions which are directly related to the weight distribution of the dual codes
[47]. This notion of cyclic code equivalence also coincides with the cyclotomic equivalence
concept defined in Definition 9. As seen in Table 9. Once the inverse element was identified
(given its existence) we used the cyclotomic coset representative of the element in our tables.
For example, the multiplicative inverse of 43 modulo 2047 is 1809, but we utilized 143 as 143
is the cyclotomic coset representative of 1809. All the codes that did not meet the theorems
directly were equivalent to some codes that did (See Table 9.

6.3. Weight Distribution Classes of Cyclic Codes. In this subsection, we construct
cyclic codes in two, three, and four roots for four, five, six and seven variables and observe
their weight distribution classes. To accomplish this, we generate the corresponding trace
functions and list some of their cryptographic properties. The codes are generated by taking
the cyclotomic coset representatives of all the exponents considered (see Table 1). We also
identified to which exponent type the defining set elements belonged to. The methodology of
this section is motivated by results obtained by Janwa and Wilson in [41] and Zeng in [73].
Janwa and Wilson proved the necessity of APN exponents for the construction of two-error-
correcting cyclic codes. Close to 20 years later, Zeng studied the three-error-correcting case
and analyzed some combinations of known APN exponents that led to codes with the same
weight distributions as the three-error-correcting BCH [1,3,5] code. This is a cyclic code with
defining set {1, 3, 5}.

© 2022 José W. Velázquez Santiago
72/136

Due to the connections between the construction of bent and near-bent trace functions
and the construction of APN functions/two-error-correcting codes, part of our analysis is
focused on other cryptographic properties of these functions and how they may relate to the
corresponding codes. These properties follow:

Definition 15 (Forrester [27] Correlation Immunity). We say that a Boolean function is
correlation immune (or resilient) of order m if the output is statistically independent of any
m entries.

Definition 16 (Forrester [27] Algebraic degree). The algebraic degree of a Boolean func-
tion is the degree of its algebraic normal (polynomial) form.

Definition 17 (Taranikov [65] Autocorrelation). Let f be a Boolean function on Fm
2 . For

each u ∈ Fm
2 the autocorrelation coefficient of the function f at the vector u is defined as:

f̂(u) =
∑

x∈Fm
2
(−1)f(x)+f(x+u)

Definition 18 (Han [35] Algebraic Immunity). Algebraic immunity is a measure of the
resistance of a Boolean function f to algebraic attacks. It is the smallest degree of a non-trivial
annihilator of f or f+1 .

6.3.1. Algorithms. The first algorithm constructed is Algorithm 14. The input of the algo-
rithm is the number of variables “m.” The algorithm outputs all the trace Boolean functions
of the form Tr(xd) where d corresponds to an APN/near-bent/bent exponent defined over
F2m along with the properties considered. First, we utilize Algorithm 5 which finds an irre-
ducible polynomial of degree m that is used as the modulus to construct the finite field and
polynomial ring used. Then we define the length of the code "n" and the value t = m−1

2
.

For the Gold and Kasami-Welch cases, we print the headers of the table, then begin a for
loop where the exponents are defined, and the corresponding functions constructed. We uti-
lize a “CycloRep” algorithm which finds the cyclotomic coset representative (mod 2m − 1).
This is done to avoid considering multiple instances of equal functions. Then the functions
printed with their cyclotomic cosets representative form and the Boolean function proper-
ties considered. For the non-Gold, Dobbertin, and Kasami-Welch case, the algorithm first
verifies if the number of variables is odd. Then it goes case by case depending on the specific
sub-conditions, defines the corresponding function, and prints them with their properties.
For the Dobbertin case, it checks if the number of variables is divisible by five (as it is the
corresponding condition for those functions to be defined).

The second algorithm constructed is Algorithm 15. The algorithm takes as an input
the number of variables "m" and the size of the defining sets considered "sD.” Empty lists
are defined to store the Gold and Kasami-Welch exponents as well as the list containing
the defining set and a list that will store the weight distribution of the codes. The values
"n,t" are defined as in the previous algorithm. An empty list "EL" is defined with the
purpose of storing all the considered exponents. The Gold and Kasami-Welch exponents are
generated and appended into their respective lists. We note that for this algorithm we use the
cyclotomic coset representative of the exponents to only consider defining sets with elements
corresponding to distinct minimal polynomials. After the list of Gold and Kasami-Welch
exponents is defined, the elements are appended to the list "EL.” The other exponents of

© 2022 José W. Velázquez Santiago
73/136

interests are defined and appended to "EL" in a similar manner, verifying that the conditions
for the exponents to be defined are met. Once all the exponents have been added to the list
"EL,” we take the set of elements in this list that are distinct and turn it back into a list (see
line 26). Then all the combinations of the elements in EL of size sD are constructed such
that the first entry is a one and stored as a list of lists "cyclo2" (lines 27-32). Then we begin
a for loop that goes over all the possible defining sets of size sD with one as the first entry
and constructs the corresponding codes. The algorithm finds the check polynomial of the
cyclic code, whose reverse corresponds to the generator polynomial of the dual cyclic code.
Said code is constructed and its weight distribution is assigned to the list "sd.” The way the
spectrum command outputs the weight distribution is by assigning the number of codewords
with weight "i" to the "i-th" position in the list. Thus, we obtain the list of positions in
the list that are nonzero (corresponding to the weight numbers that the code has) and then
eliminate the 0-th position as we are only interested in the nonzero weights. Next, we append
the defining sets and weight distributions to the lists DSL and WLL, respectively. A copy
of the list of weight distributions is made, and a while loop begins under the condition that
the copy of the list of weight distributions is not empty. The loop goes over all the elements
that are equal in the list of weight distributions and the corresponding defining set. Then it
eliminates from the list all the defining sets covered in the previous iteration of the loop and
loops again.

Finally, we designed Algorithm 16 which takes as an input the number of variables "m"
and a specific defining set whose first entry must be 1. The output will be a list that classifies
each entry in the defining set as belonging to a specific APN/AB/bent exponent family. The
first four lines of the algorithm define empty lists to store the Gold and Kasami-Welch
exponents as well as defining "n,t" as in the previous algorithms. Next, it defines and assigns
the exponents considered for the construction of the defining sets while changing them to
their cyclotomic coset representative. Then, the following lines loop over the elements in the
defining set that were used as an input and the variable j2 is used to find the corresponding
cyclotomic coset representative. The algorithm verifies if the cyclotomic coset representative
of the element in the defining set matches the cyclotomic coset representative of one of the
APN/AB/bent exponents. If it is the case, then it classifies it as such, if not, it moves to the
next candidate. This loop is repeated until we go over all the elements not equal to one in
the defining set.

6.3.2. Algorithm Results. The results obtained from Algorithm 14 are observed in Tables
20,21,22 and 23. For the four variable case, we know that the maximum nonlinearity of
Boolean functions is given by 24−1 = 2

4
2
−1 = 8− 2 = 6. That is, none of the displayed trace

Boolean functions reach maximum nonlinearity (i.e. they are not bent). We have not found
any known constructions of bent functions of the form Tr(xd), although Table 10 shows that
for the specific case of 8 variables Tr(x15), T r(x45) are bent. For l = 2 we observe that the
nonlinearity is 0. This is because Tr(x5) = x5 + x10 + x20 + x40 = x5 + x10 + x5 + x10 = 0
over F24 . In terms of algebraic degrees, the ones that differ are the Gold and Kasami-Welch
exponents that correspond to l = 2. For the Gold case, we have shown that the function is the
0 function. For the Kasami-Welch case, we have a function of algebraic degree 3. Similarly, the
algebraic immunity of the functions is uniform except for when l = 2. This matches up with

© 2022 José W. Velázquez Santiago
74/136

the knowledge of the conditions for these exponents to lead to high nonlinear functions as
(l,m) = 1. However, their nonlinearity is equal, yet other important cryptographic properties
do vary. The autocorrelation, correlation immunity, and algebraic immunity are important
in the Global Avalanche Criterion for good cryptographic functions as described by Zhang in
1996 [74]. The cases for l = 2 are also the only ones that present a distinct autocorrelation
spectrum for the functions. Since for five and seven variables, all possible values of l are
relatively prime, we continue these observations for the six variable case. The maximum
nonlinearity for Boolean functions in six variables is 25 − 22 = 28. We observe that the
maximum nonlinearity achieved by these functions is 24. The Gold cases only had one set of
functions that differed in the respective properties, this being Tr(x9), corresponding to l = 3.
For the Kasami-Welch case, the nonlinearity and correlation immunity values do not change
(and coincide with the l ̸= 3 Gold cases). However, the algebraic degrees, algebraic immunity,
and autocorrelation values do change. In fact, they are paired for values of l that sum to the
number of variables. For example, for l = 1, 5, l = 2, 4 and l = 3 we have "pairs" of defined
functions that share the properties. For five variables, The maximum nonlinearity of Boolean
functions is 25−1−2

5−1
2 = 16−4 = 12 which all the functions except the Dobbertin and inverse

functions achieve. The Gold functions share the properties of the same functions considered.
The Kasami-Welch case presents two distinct classes of properties. One for l = 1, 4 and the
other for l = 2, 3. The first cases correspond to the Gold case, indicating that for those
Kasami-Welch exponents, the application of these functions is equivalent in some way to
the Gold cases. The Welch function presents the same properties as the Kasami-Welch case,
while the Niho case presents the same properties as the Gold case. This indicates that for
the near-bent exponents in five variables, we have two types of functions. The inverse and
Dobbertin functions are APN but not AB. Thus they do not achieve maximum nonlinearity.
The inverse and Dobbertin functions differ with both the Gold and Kasami-Welch case in
algebraic degrees, but do share correlation immunity, algebraic immunity, and autocorrelation
values with the Kasami-Welch case. Thus, if we only consider these last three properties, we
can separate these functions into two main classes, the Gold class, and the Kasami-Welch
class. For the seven variable cases, once again we observe that all the Gold functions share
the same properties, while the Kasami-Welch functions are paired for values of l that sum to
m. For l ̸= 1, 6, the Kasami-Welch functions share the same last three properties. The Welch
function had similar properties to the Kasami-Welch case, while the Niho function differed
in the algebraic degree but shared all other properties. It is important to note that while
EA-equivalence between these functions preserves algebraic degree, CCZ-equivalence does
not [11]. Thus, it is still possible to classify this function as belonging to the Kasami-Welch
class for this analysis. The inverse function belongs to its own class, as it has unique property
values for every property except the correlation immunity.

Results from Algorithms 15 and 16 are observed in Figures 24-33. We proceed to analyze
these tables and establish conjectures based on the results.

6.3.3. Two-root Cyclic Code Observations. We observe that the two root case follows ex-
pected patterns. The defining sets of the form {1, APN} correspond to cyclic codes that are
two-error-correcting. In four variables, when l = 2, no minimum distance, five codes are found
as per Janwa and Wilson’s results [41]. For the five variables case, the inverse and Dobbertin

© 2022 José W. Velázquez Santiago
75/136

exponents coincided in the cyclotomic coset (hence the codes were the same). The weight
distributions of the dual codes corresponding to these exponents have more weights than
for the Gold and Kasami-Welch cases. These are also the only ones that are not near-bent
exponents, only APN. In six variables Gold for l = 1, 5 and Kasami Welch for l = 1, 5 lead to
two-error-correcting codes. For l = 2, 4 Gold and Kasami-Welch have the same distribution
and were not two-error-correcting (as expected since (l,m) ̸= 1). For l = 3 the Gold and
Kasami-Welch exponents had a unique weight distribution. In seven variables, only the in-
verse exponent had a different weight distribution, although it was still two-error-correcting.
As per our trace function properties tables, we can deduce that the two-error-correcting ca-
pability of the codes corresponding to these functions is not directly dependent on a strict
nonlinearity value but rather on the nonlinearity being above a certain threshold. Of course,
in general, these functions are described as APN for two-error-correcting purposes, although
some “Perfect Nonlinear” functions do fall into this category (as in, their nonlinearity is the
maximum possible for the number of variables considered). We note that in five variables,
the inverse and Dobbertin functions share their last three properties with the Kasami-Welch
case, yet their weight distributions are unique. This implies that the algebraic degree and
nonlinearity properties may be more important for determining weight distributions than
correlation/algebraic immunity and autocorrelation of the corresponding functions.

As covered in a previous subsection, it is conjectured that the weight distribution is
symmetric for three-weight codes, and these are constructed via APN functions. This is
mainly for the odd case however, as McGuire in [52] states that for n = 2m− 1,F = F2m and
α ∈ F a primitive root, then the cyclic code with two zeroes α, αd (i.e defining set {1, d}),
then the code could not have a three-weight code if m is even and d ≡ 0 (mod 3). For the
Gold and Kasami-Welch exponents, this happens whenever (l,m) = 1 as it would mean l is
odd and thus 2l + 1 is divisible by three, and so is 2(2i)− 2i + 1. This is what we observe in
our results. In fact, for the odd case, McGuire proves that if the minimum distance is greater
than three and the weight distribution of nonzero codewords is 2m−1−a, 2m−1, 2m−1+a then
m must be odd, the minimum distance is five, a = 2

m−1
2 and the weight distribution is that

of the two-error-correcting BCH code. Our tables coincide with this result, which provides
validation to our methodology.

6.3.4. Three-root Cyclic Code Observations. For the three-root cases, in four variables,
the first classification is the one corresponding to the BCH [1,3,5] (cyclic code with defining
set {1, 3, 5}) three-error-correcting code. All the codes in this class have the second entry in
the defining set being a Gold exponent. As per the second class seen, double Kasami-Welch
exponents do not lead to three-error-correction. Even though 5 corresponds to l = 2 which is
not relatively prime to m = 4, a defining set did lead to three-error-correction. The second
class has exponents Gold l = 1 - Kasami-Welch l = 2. For the third class, we have Gold
l = 2 – Kasami-Welch l = 2, both of which have l as a divisor of m. This class could only
correct one error. It is as if they are divided into three, two and one error-correcting classes.
In both the second and first classes, we have combinations of APN and non-APN elements
in the sets. Our initial observation was that perhaps if we have one APN exponent in the set,
then we can guarantee two-error-correction, with the following element not necessarily being
APN. What condition does this following element have to meet? We note that while five

© 2022 José W. Velázquez Santiago
76/136

corresponds to the Gold exponent with l = 2 (and hence not relatively prime to m, meaning
the corresponding function is not APN), it is a three-error-correcting BCH code defining set
element.

For five variables, we had multiple classes of weight distributions. We have one weight
distribution class corresponding to three-error-correction and minimum distance six codes.
This first-class corresponds to the BCH [1,3,5] code. All the defining sets in this first-class
are pairs of APN exponents. We note that there are no inverse/Dobbertin exponents in the
three-error-correcting class.

For six variables, there are two classes with minimum distance of three (one error-
correcting). For the first one we find Gold l = 2 - Kasami-Welch l = 2 exponents. The
second class has Gold and Kasami-Welch exponents that correspond to l = 3 in the same
defining set and is unique to them.

For the seven variable case, the first class corresponds to the BCH [1,3,5] code. All the
second and third elements of the defining set are APN (as seven is relatively prime to all
possible values of 0 < l < 7) and the other elements correspond to APN functions for m odd.
There is a second class of codes that correct three errors. This class contains the defining
set with Gold l = 1 1 – inverse exponents. However, its number of weights is 20 vs. the five
of the BCH class. This is an increase of four times the total distinct weights of the dual
codes. As discussed before, the inverse and Dobbertin functions are APN yet do not achieve
maximum nonlinearity. Based on our observations, we conjecture the following:
Conjecture 6. Defining Sets of Size 3 for Triple error-correcting Cyclic codes

Define C as a [n, n− r, d] cyclic code with defining set of size 3. Then, at least one element
in the defining set must correspond to a non-inverse/Dobbertin APN function for the code
to be three-error-correcting.
Conjecture 7. Weight Distribution of Dual Cyclic Codes with Defining Set of Size ≤ 3

Define C as a [n, n− r, d] cyclic code, n = 2m − 1, 2m − 2, the inverse exponent for m an
odd integer and 2

4m
5 +2

3m
5 +2

2m
5 +2

m
5 −1 with 5|m. Then, if these exponents are contained in

the defining set of a cyclic code, the corresponding dual code will not have minimum number
of nonzero weights.
6.3.5. Four-root Cyclic Code Observations. For the four variable case, the largest minimum
distance observed is 15 This is because the resulting codes (corresponding to the weight
distribution of the BCH [1,3,5,7] BCH code) which is just the trivial code of all 1s and all
0s codewords. As seen in Table 24, this is the only class of weight distributions constructed
from non-equivalent APN/near-bent/bent exponents.

For the five variable case, the largest minimum distance is 11 (five error-correcting, BCH
code case). Once again, when looking at the cyclotomic coset representative case, we observe
only the class of minimum distance 11, implying that the other codes are products of repeated
roots. An important observation for this case is that, based on the pattern of expected errors
corrected, a minimum distance of 9 is what we expected (hence four-error-correcting for the
defining set of size 4), yet in this case, we had a five-error-correcting code.

For the six variable case, the highest minimum distance observed was 7. The BCH code
weight distribution class cannot be obtained from combinations of the considered exponents.
At best we have previous BCH code plus some extra root which is either redundant or

© 2022 José W. Velázquez Santiago
77/136

does not increase the minimum distance. Table 31 shows that we have obtained six distinct
classes of weight distributions. Since the number of variables is m = 6, it means that the BCH
[1,3,5,7] code would only have one element in the defining set that corresponds to a highly
nonlinear function (only three, as five, corresponds to l = 2 and seven does not correspond
to any of the functions considered). This means that, for this case, high nonlinearity is not
a strict requirement to obtain high error-correcting codes. However, it is still possible to
optimize for the small number of nonzero weights. We observe that while there are four
classes of codes with minimum distance of 7, the lowest number of nonzero weights is 7,
while the largest is 18.

For the seven variable case, the highest minimum distance observed is 8. In Table 33 we
observe that there are four classes of weight distributions for codes with minimum distance
of 8. Once again, the corresponding BCH code cannot be found with this construction.
There were 13 classes of codes of minimum distance 7. We note that one code of minimum
distance seven is found that has less nonzero weights than a minimum distance seven code.
In particular, the code with defining set {1, 3, 5, 9} leads to a dual code with seven nonzero
weights, while the code with defining set {1, 3, 63} has 20 nonzero weights (see Table 32).
However, the {1, 3, 5} code has five nonzero weights on its dual code. This means that
some exponents considered can decay the performance or properties of codes to below the
properties of codes with a greater number of roots even for the same minimum distance.
In this case, we observe that it is the inverse exponent that seems to lead to a code whose
number of nonzero weights is significantly higher than for other exponent combinations. It
is also present in 12 out of the 13 cyclic codes with more than 20 nonzero weights in Table
33.

7. LDPC Code Algorithms and Next-Generation NASA Code Construction
Through Bent and Near-Bent Functions

The goal of this section is to use cyclic codes with two roots corresponding to known
APN, bent, and near-bent exponents and consider them under the LDPC code context.
We use previously constructed cyclic codes in two roots, and construct their parity check
matrix. This matrix is then used in algorithms developed by Neal [53] that simulate the
transmission of information over an AWGN channel. We compare the performance of these
codes in terms of coding gain against other constructions to verify if they are competitive. We
aim to propose a construction that satisfies next-generation NASA coding schemes criteria.
LDPC codes have fast linear-time decoding through Bayesian Belief propagation. The codes
we construct have very high code rates, which should be ideal for high data rates applications
(like Mars/Lunar missions such as links between probes sent to Mars and the Moon). We
focus on obtaining BER vs. SNR graphs for our codes by encoding messages and simulating
deep-space transmission. We compare the performance of these codes to other constructions
to determine a relative coding gain. We note that the codes constructed may not have ideal
sparseness, for which the decoding complexity could suffer. The two conditions we examine
in this work are the spectral efficiency (which, with the very high rates of our codes, allow
for very strict bandwidth implementations) and coding gain.

© 2022 José W. Velázquez Santiago
78/136

7.1. Algorithms used. Neal’s algorithm is used to measure the performance of codes
over an AWGN channel [53]. The algorithm used considers C a [n, k, d] linear code with
k = n − r, r the rank of the parity check matrix. Consider “C⊥” a [n, r, d] dual code of C.
The algorithm assumes that a codeword can be divided into r check bits, c, followed by k
message bits, s. That is, the message bits are at the end. This means that the kxn generator
matrix must have an kxk identity matrix as its last k columns. With these assumptions and
proper matrix operations, the parity check matrix H can be divided into an rxr matrix A
occupying the first r columns of H and an rxk matrix B occupying the remaining columns
of H. For a codeword, it must satisfy that when multiplied by a parity check matrix, the
result is the 0 vector. This is written as:

Ac+Bs = 0

Where, given that A is non-singular:
c = A−1Bs

For example, for the [7, 4, 3] Hamming code a corresponding parity check matrix:

H =

1 0 0 1 1 1 0
0 1 0 1 1 0 1
0 0 1 0 1 1 1

 , A =

1 0 0
0 1 0
0 0 1

 , B =

1 1 1 0
1 1 0 1
0 1 1 1

Given that the rows of H are linearly independent, A will always be non-singular. This

reasoning is used in the storing of the parity check and generator matrix files in Neal’s
algorithm. We note that each of the generator matrix representation commands includes a
specification for how the columns of the parity check matrix should be re-ordered so that the
message bits come last. We specifically use the "dense" format for the generator matrices.
This format stores A−1B in a dense format which represents the matrix by a pointer to a
structure of type "mod2dense.” It records the number of rows and columns in the matrix,
with an array of pointers where the bits of each column are stored. We note that this is
for the representation of the generator matrix. However the file containing the parity check
matrix constructed is not altered in its file.

The commands used in this work are:

1) make-pchk pchk-file n-checks n-bits row:col

pchk-file is the name of the pchk file. This is followed by the number of rows and the
length of the code. Then you input the pairs i:j where each such entry corresponds to a 1 in the
(i,j) position of the matrix. This will contain the data on the parity check matrix of the code.

2) make-gen pchk-file gen-file method

The first input is the parity check file of the code you want the generator matrix of.
Then the name of the generator matrix file is inputted, followed by the specific representa-
tion method.

© 2022 José W. Velázquez Santiago
79/136

3) rand-src source-file seed n-bitsxNumber

Creates a file of random message vectors. First is the name of the file, then the random
seed used to generate these values, followed by the length of the messages and the number of
messages generated. The seed is a form of randomization for the generation of these values.
For our purposes, we use 58 as the random seed.

4) encode pchk-file gen-file source-file encoded-file

The first inputs are the name of the corresponding parity check, generator matrix, and
message files. Then the name of the encoded file you want to create.

5) transmit encoded-file received-file seed channel

This command transmits the encoded messages through the specified channel. A random
noise will add errors to the information transmitted. This noise is generated pseudo-randomly
based on the seed. We also select 58 as our random seed for all computations. The input is
the name of the encoded file, followed by the name of the "received file.” Then the seed and
specific channel where transmission occurs. The channel input also considers the standard
deviation of the AWGN channel. This has a direct relationship with the signal-to-noise ratio
(SNR) measured for the transmission. We provide tables with the conversion between stan-
dard deviation values and SNR values of our codes. This conversion depends on the rate of
the codes and, as such, varies with the length of our codes.

6) decode pchk-file received-file decoded-file channel method

This command decodes the codewords after being transmitted. The results show the
total of blocks decoded, the number of blocks that lead to valid codewords, the average
number of iterations of the decoding algorithm used, and the percentage of bits that were
changed. The inputs are the name of the parity check, generator matrix, and decoded files.
Then the channel is used to transmit the codewords and the method of decoding (in our
case, belief propagation).

7) verify pchk-file decoded-file gen-file src-file

The command verifies if the blocks in the decoded file are codewords according to the
parity check matrix in the pchk file. If the generator matrix file is specified, it displays the
bit error rate (BER) by comparing the decoded message bits with the true message bits.

Algorithms were developed to construct these files and do the decoding and verification
analysis. The Algorithms developed are Algorithms 17-23.

The first algorithm is "makepchkJose,” which takes as input the parity check matrix of
our codes (as constructed in Proposition 1). It also takes as inputs the roots of the cyclic
code corresponding to the check matrix. The inputs are coded such that you can input a

© 2022 José W. Velázquez Santiago
80/136

cyclic code of up to six roots, but if you input less than six roots, the algorithm ignores
the variables that are unassigned. Then the algorithm determines the number of rows of the
matrix, its rank, and the length of the corresponding code. This is done by computing the
number of entries in the first row of the matrix "(list(H[0])).” Then, the number of variables
m is computed as log2(n+1) (since the length of the codes is n = 2m−1) and the number of
roots. Then, it begins printing the command based on the entries needed as described above.
The naming convention that we use for most commands is "cyclicLDPC-n-len-m-var-#rt-1-
d1-d2-d3-d4-d5-d6,” with the standard deviation and seed added for the transmission and
source file cases. The random source file does not depend on the codes, so we simply title
it "cyclicLDPC-n-len-m-var-#rt" and we only generate one such file per code length. Then
it iterates over the roots that were used as an input and adds them to the name of the file.
The "makegenJose" algorithm follows a similar methodology. Its inputs are the number of
variables and the roots of the cyclic code. Then it verifies which roots were given as an input
and uses them to print the command. The "randsrcJose" and "encJose" algorithms also use
as inputs the roots and number of variables for the cyclic code. Both algorithms determine the
number of roots on input and print the command. For the encoding algorithm, the command
requires the names of previous files, so it is extended to construct such names based on the
inputs. The transmit commands takes an additional input, that being the standard deviation
of the AWGN channel (which is specified) under consideration. It determines the roots of the
code and constructs the name of the files required in the commands. It adds the standard
deviation value after the name of the received file. The verify command also takes as input
the number of variables, the standard deviation, and the roots of the code. It determines the
roots of the code and constructs the command needed, adding the standard deviation to the
end of the decoded files name. Finally, the decoding command algorithm uses as inputs the
number of variables, the standard deviation, the number of iterations used in the decoding,
and the roots of the corresponding cyclic code. It adds the number of iterations at the end of
the code. We also specify that the transmission occurred over an AWGN channel. We avoid
using the minus sign before the number of iterations as it guarantees that the algorithm
stops if it reaches a likely solution rather than doing all iterations.

7.2. Methodology. For our parameters, we use a list of known APN, bent and near-bent
exponents based on known tables (see Table 1). Our standard number of iterations is 100,
matching the number of iterations used by Andrews in [1]. We ran these commands from
3 to 12 variables. We observed the results and adjusted the codes/parameters based on the
observations. Our initial results were obtained considering up to 250 iterations and with a
standard deviation = 0.80. Observations showed that as the length of the code increased,
although we expected more valid codewords, instead, the source and check errors increased.
After length 127, no correction happened. For three variables, 28.7 iterations at max and 10%
bit change. For five variables, 219 iterations at max and 1% bit changes; for seven variables,
250 iterations and 0% bit changes. Perhaps by setting the number of iterations this high, we
discarded possible solutions, or not enough iterations were done for the larger length codes.
We note that in [1], the maximum number of iterations was set to 100, although the author
state that most codes decoded in five or so iterations. Thus, our starting value of 250 is well
over the expected value. Our first attempt was to increase the number of iterations to 500.

© 2022 José W. Velázquez Santiago
81/136

While the number of iterations increased, the performance did not improve significantly. The
bit change percentage remain like the 250 iterations case. For codes of length more than 127,
no valid words were found and had a 0% bit change. We considered the possibility that too
many iterations caused valid results to be thrown out. Results show that for a lower number
of iterations, the code performance did not improve; we still observe significant performance
degradation for lengths 31+ and 0% bit changes for codes of length 127. Our next step was
to vary the standard deviation of the AWGN channel. Recall that these previous results are
done for a standard deviation of 0.80. This corresponds to a high SNR value (for code rates
of 1

2
, it is an SNR of 1.94). The results showed by Andrews in [1] (see Figure 1) indicate that

the codeword error rate increases significantly for these codes for SNR values below 2. This
means that our results are expected, or at the very least not outside the expected range of
values.

According to Neal [53], the relationship between SNR and standard deviation of the
AWGN channel is given by Eb

N0
= 1

2Rs2
, where R is the code rate and s the standard deviation.

This is then represented in units of dB by applying a log base 10 to this result and multiplying
it by 10 [53]. Since our codes have varying code rates depending on their length, the range
of standard deviation values used was different. Since the rate of our codes is much higher
than the rate of the examples in Neal’s page article (a rate of 0.5) we expect the values to
change. As the length increases, we expect negative values to be showed, as the rate will be
much higher, meaning the ratio computed 1

2Rs2
will be smaller, and thus the logarithm will

be a smaller number.
We utilize this relation for the construction of Algorithms 12 and 13.

Algorithm 12. {def StdtoSNR(s,R):
s2 = ŝ 2
Ratio = 1/(2*R*s2)
SNR = 10*log(Ratio,10)
return(round(SNR,3),round(s,3))

}

Algorithm 13. {def SNRLDPCJose(m,r,s):
n = 2̂ m - 1
K = n - r*m
R = K/n
return(StdtoSNR(s,R))

}

The first algorithm, “StdtoSNR” takes as an input the standard deviation of the channel
and the rate of the code. It computes the square of the standard deviation, and then it
utilizes the definition given by Neal on how to compute the signal to noise ratio via the
relation Eb

N0
= 1

2Rs2
. Then log base 10 is applied to this result and multiplied by 10. This

algorithm is for general use; if you have the rate of the code and the standard deviation,
you we can obtain the SNR. The second algorithm is for our construction. The input will be
the number of variables, the number of roots considered, and the standard deviation of the
AWGN channel. Then the length of the code, its dimension, and rate will be computed. The
rate is then used on the previous algorithm to compute the corresponding SNR. In Table 34

© 2022 José W. Velázquez Santiago
82/136

we list the results from Algorithm 13. Since the rate of our codes is much higher than the
rate of the examples in Neal’s page (a rate of 0.5) we expect the values to change. As the
length increases, we expect negative values to be showed, as the rate will be much higher,
meaning the ratio computed 1

2Rs2
will be smaller and thus, the logarithm will be a smaller

number. We utilize similar algorithms to convert from SNR to standard deviation values and
create tables with these values.

To obtain our results, we defined the number of iterations, SNR values, and codes that
we considered. We first considered the range of values for the SNR as all the integers from
one to 19, but the data points were too sparse to compare with graphs from other articles.
We then selected values in the range [0.25, 19] going with steps of size 0.25. The source files
used are the same for all the different codes of same length. The command was written such
that the algorithm stops the first time it finds a valid codeword (thus, not always doing the
maximum number of iterations). As a comparison point, we also computed the LDPC code
of length 2000 and dimension 1000 in Neal’s page (see Figure 7). We computed the standard
deviation values that correspond to the range of SNR values we considered for our codes
(see Table 34). Since the SNR depends on the rate of the code, a different set of standard
deviation values corresponding to the same SNR range as in our codes was computed for
the example case (see Table 35). We then encoded, transmitted, decoded, and verified the
codes. We include the graph of this example with the graph of our codes. The example code
used is an LDPC code of length 2000 and dimension 1000, i.e a rate of 1

2
. The code was

made via the “evenboth” three method. That is, it produces a matrix in which the number of
1s in each column is approximately 3. The evenboth method attempts to make the number
of checks per row be approximately uniform. The “no4cycle” option causes cycles of length
four to be removed from the code if possible. This example code did not contain any cycles
of length four, as 24 such cycles were eliminated by moving checks within a column. For
the near-bent case, we constructed codes for lengths 7,31,127,511 and 2047. We considered
defining sets {1, 3}, {1, 9}, {1, 57}, {1, 129} and {1, 16257} (see Figures 7, 8 and 9) . The
performance of these codes is equivalent. For the Bent cases, we computed LDPC Codes
for lengths 15,63,255 and 1023. We considered defining sets {1, 3}, {1, 5} (corresponding to
l = 1, 2 in the Gold case) and {1, 5}, {1, 9}, {1, 17}, {1, 33} (see Figures 10, 11 and 12) for
codes of length 15,63,255 and 1023 respectively.

7.3. SNR Performance Improvement Comparisons to Other Codes. We note that
the codes constructed show a lower bit error rate for a given SNR than the example code in
the range [0.25,1). It is of note that we can achieve much lower bit error rates with codes
of length 31 and 511, which are significantly smaller in length than the example case. This
proves promising. While the interval seems small, Thorpe in [66] shows his construction
for protograph-based LDPC codes in the range [0.5,1.3]. This means that our area of im-
provement is relevant when compared to Thorpe’s construction (see Figure 2). Smarandache,
Divsalar Sah and also consider codes that perform well for values of SNR in these ranges
[63],[24], [61] (see Figures 3, 5 and 4). A promising result is that, even though our codes have
girth four (maximum size of shortest cycle in the graph), they can outperform girth > 4
LDPC codes. The girth property of graphs is important for LDPC code performance, as it
directly affects the decoding process [62]. We created various files that saved the commands

© 2022 José W. Velázquez Santiago
83/136

used to construct the encoded, transmitted, decoded, and verification files. We also saved
the results of the decoding steps on separate files to compare the performance of the codes
in terms of valid codewords and the number of iterations needed. It seems that the perfor-
mance improvements, based on the current parameters, plateaus at length 511. This has two
important implications. First, it means that we can get comparable code performance with
codes of shorter length. The second implication is that a lack of significant improvement for
increasing lengths may indicate a limitation of the construction. We do note that the cases
considered for the near-bent functions included cases where (l,m) = 1 and (l,m) ̸= 1, yet
both cases performance did not differ significantly. For the bent case, we considered cases
where the corresponding (m,m) vectorial Boolean functions had different conditions for their
component functions to be bent.

Figure 2 represents protograph and multi-edge based LDPC codes of length n = 8192
and rate 1

2
. Since the length of the codes is six times larger than our largest length codes,

we expected significantly better performance when compared to our codes (as coding gain
improves with the length of the code [1]). However, for an SNR value of 0.5, Thorpe’s codes
show BER values in-between 10−1 and 10−2. Comparing it to our codes with defining set
{1, 3} in Figure 7, the observed BER values for lengths 7 and 31 codes are comparable
to the multi-edge-type code (2.37x10−1, 1.10x10−1) on the other hand, the length 127, 511
and 2047 codes have BER values of 7.81x10−2, 7.02x10−2, 6.82x10−2, which is comparable to
the protograph results. This is notable considering the large difference in code lengths. The
performance improvement for larger SNR values falls off when compared to the protograph
codes. Our codes remain competitive until an SNR of 0.75. When compared to the example
LDPC code we also observe a similar behavior in the comparison, that is, after an SNR of
1.25 the improvement of our codes is slower than the example codes.

Figure 3 shows the performance of a Turbo code with rate 1
2

decoded through a Maxi-
mum a Posteriori (MAP) algorithm and a four-state convolutional code of length 1024. For
length 127 our codes have a BER of 8.38x10−2 for an SNR of 0.25 (and even lower BER
for larger lengths). In the figure, we can observe that for the SNR range [0.2, 0.4], the BER
values, at the lowest, are around 8x10−2. For an SNR value of 0.5, the figure shows at best a
BER of around 7x10−2. Our codes match this performance for a length of 511 and improve
it for larger lengths. This is notable because 511 is less than half the code length of the code
considered by Sah. However, they present a BER of under 6x10−2 for SNR of 75, while our
best-performing code presents a BER of 6.27x10−2. Our codes remain competitive (or with
performance) in the range [0,0.70). Once again, we note that the improvements to the BER
seem to plateau and slow down when compared to other codes.

Figure 4 shows an analysis of Quasi-Cyclic LDPC codes constructed in [63] over an
AWGN channel. These were constructed by assuming binary phase shift keyed (BPSK)
modulation and a maximum of 100 iterations. All these codes had girth above four, with 14
being the largest girth observed. We note that the codes they use are of lengths 1,225 and
13,365. However, our codes have positive coding gains when compared to these codes. For
example, Their codes reach a BER of close to 1x10−1 for an SNR of 0.5. Our length 63 codes
reach a BER of 9.68x10−2 for an SNR of 0.25. This means that for codes that are over 200
times shorter have a relative coding gain of over 0.25 dB. Furthermore, our codes, for length

© 2022 José W. Velázquez Santiago
84/136

31, reach a BER of 1.1x10−1 for the same SNR and even lower for larger lengths. Their
codes from examples 15 and 16 do have better performance than our codes for SNR of above
0.75. Once again, the range where our codes remain competitive against other constructions
is about [0, 0.7]. We do note that these codes have over six times the length of our longest
codes. On the other hand, our codes have comparable or better performance than the length
1,225 codes for up to an SNR of 1.

Figure 5 plots the BER and frame error rate (FER) vs. SNR via FPGA simulation
computed by JPL’s Universal Decoder for Sparse Codes [24]. These codes are constructed
through protographs with node degrees of at least 3. The solid curves represent the BER
vs. SNR graph. The codes by Divsalar have rates of 1

2
, 5
8
, 3
4

and 7
8
. The rate 1

2
codes perform

worse than our codes for lengths greater than 31 for an SNR in the range [0, 1] (presenting
a BER of around 6x10−2 vs. our length 511 code with a BER of 5.93x10−2. They present
a BER of 7x10−2 for an SNR of 0.75, while our codes of length 511 reach the same BER
for an SNR of 0.5 (a 0.25 dB coding gain). For the larger rate codes, their performance is
much worse than our codes (their rate 5

8
code having a negative coding relative coding gain

compared to our codes of about 1 dB compared to our length 511 code).
Finally, Figure 6 shows the performance difference for independently developed decoders

applied to an accumulate repeat-4 jagged accumulate (AR4JA) LDPC code. This one has
block length 1024 and rates 4

5
. For an SNR of 2.5, the AR4JA code has a BER of 4x10−2

while our length 255 codes reach this value for an SNR of less than 2.25. This means we
provide a coding gain of over 0.25 dB. For the length 1023 codes (which compare directly in
terms of length) a BER of 4x10−2 is reached for an SNR of less than two, meaning a relative
coding gain of more than 0.5 dB. All these results show that our codes remain competitive
(and even improve performance) of codes analyzed and proposed by other NASA researchers.
This analysis lead us to Proposition 1. We conjecture the following for the multiple root case:

Conjecture 8. Codes that meet NASA criteria for next generation channel decoding
Consider the set of near-bent exponents S := {j|j ̸∈ C(i)∀i ∈ S, i ̸= j}, α a primitive

element in F2m , fi(x) = xsi , si ∈ S, si ̸= sj for i ̸= j. Consider the y*m x n matrix of the
form:

H’ =

α2m−2 α2m−3 · · · α1 α0

f1(α
2m−2) f1(α

2m−3) · · · f1(α
1) f1(α

0)
f2(α

2m−2) f2(α
2m−3) · · · f2(α

1) f2(α
0)

. . · · · . .

. . · · · . .

. . · · · . .
fy−1(α

2m−2) fy−1(α
2m−3) · · · fy−1(α

1) fy−1(α
0)

Then, the resulting code will be a length n = 2m − 1, k ≥ 2m − 1− y ∗m and d(C) ≥ 5.

The graph constructed by utilizing this matrix as its adjacency matrix will correspond to
a code that meets NASA criteria for next generation channel decoding for m ≥ 7 for small
SNR values.

© 2022 José W. Velázquez Santiago
85/136

References

[1] Kenneth Andrews, Dariush Divsalar, Jon Hamkins, and Fabrizio Pollara. Error correcting codes for next
generation spacecraft telecommand. In 2013 IEEE Aerospace Conference, pages 1–8. IEEE, 2013.

[2] Blondeau, Anne Canteaut, and Pascale Charpin. Differential Properties of x → x2t−1. IEEE Transac-
tions on Information Theory, 57(12):8127–8137, 2011.

[3] Christina Boura. Block ciphers and Boolean functions. Available at https://christinaboura.files.
wordpress.com/2019/11/cryptobg2018-boura.pdf.

[4] Lilya Budaghyan. On inequivalence between known power APN functions. In Proc. Conference BFCA
2008, Copenhagen, 2008.

[5] Lilya Budaghyan, Marco Calderini, and Irene Villa. On relations between CCZ-and EA-equivalences.
Cryptography and Communications, 12(1):85–100, 2020.

[6] Lilya Budaghyan and Claude Carlet. Ccz-equivalence of single and multi output boolean functions.
In Post-proceedings of the 9-th International Conference on Finite Fields and Their Applications Fq,
volume 9, pages 43–54, 2010.

[7] Lilya Budaghyan and Claude Carlet. Ccz-equivalence of bent vectorial functions and related construc-
tions. Designs, Codes and Cryptography, 59(1):69–87, 2011.

[8] AR Calderbank and JM Goethals. Three-weight codes and association schemes. Philips J. Res, 39(4-
5):143–152, 1984.

[9] Gian Paolo Calzolari, Marco Chiani, Franco Chiaraluce, Roberto Garello, and Enrico Paolini. Channel
coding for future space missions: New requirements and trends. Proceedings of the IEEE, 95(11):2157–
2170, 2007.

[10] Anne Canteaut, Pascale Charpin, and Hans Dobbertin. A new characterization of almost bent functions.
In International Workshop on Fast Software Encryption, pages 186–200. Springer, 1999.

[11] Anne Canteaut and Léo Perrin. On CCZ-equivalence, extended-affine equivalence, and function twisting.
Finite Fields and Their Applications, 56:209–246, 2019.

[12] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, bent functions and permutations suitable
for DES-like cryptosystems. Designs, Codes and Cryptography, 15(2):125–156, 1998.

[13] Claude Carlet and Philippe Gaborit. Hyper-bent functions and cyclic codes. Journal of Combinatorial
Theory, Series A, 113(3):466–482, 2006.

[14] Claude Carlet and Andrew Klapper. Upper bounds on the numbers of resilient functions and of bent
functions. In Proceedings of 23rd Symposium on Information Theory in the Benelux, 2002.

[15] Claude Carlet and Sihem Mesnager. Four decades of research on bent functions. Designs, Codes and
Cryptography, 78(1):5–50, 2016.

[16] Ayça Çeşmelioğlu, Wilfried Meidl, and Alexander Pott. Vectorial bent functions and their duals. Linear
Algebra and its Applications, 548:305–320, 2018.

[17] Pascale Charpin, Enes Pasalic, and Cédric Tavernier. On bent and semi-bent quadratic Boolean func-
tions. IEEE Transactions on Information Theory, 51(12):4286–4298, 2005.

[18] Thomas W Cusick and Hans Dobbertin. Some new three-valued crosscorrelation functions for binary
m-sequences. IEEE Transactions on Information Theory, 42(4):1238–1240, 1996.

[19] Moises Delgado and Heeralal Janwa. On the conjecture on APN functions. arXiv preprint
arXiv:1207.5528, 2012.

[20] Ulrich Dempwolff. CCZ equivalence of power functions. Designs, Codes and Cryptography, 86(3):665–
692, 2018.

[21] John F Dillon. Multiplicative difference sets via additive characters. Designs, Codes and Cryptography,
17(1-3):225–235, 1999.

[22] John Francis Dillon and Hans Dobbertin. New cyclic difference sets with Singer parameters. Finite
Fields and Their Applications, 10(3):342–389, 2004.

[23] Cunsheng Ding, Chunlei Li, Nian Li, and Zhengchun Zhou. Three-weight cyclic codes and their weight
distributions. Discrete Mathematics, 339(2):415–427, 2016.

© 2022 José W. Velázquez Santiago
86/136

[24] Dariush Divsalar and Christopher Jones. CTH08-4: protograph LDPC codes with node degrees at least
3. In IEEE Globecom 2006, pages 1–5. IEEE, 2006.

[25] Hans Dobbertin. Another proof of Kasami’s theorem. Designs, Codes and Cryptography, 17(1-3):177–
180, 1999.

[26] Eric Férard. A infinite class of Kasami functions that are not APN infinitely often. Arithmetic, Geometry,
Cryptography and Coding Theory, 686:45, 2017.

[27] Jay Forrester. Boolean functions¶, 2015.
[28] Gary McGuire. APN Functions, APN Codes and S-Boxes. https :

//www.cosic.esat.kuleuven.be/natoarw/slidesparticipants/McGuireslidesnato08.pdf .
[29] Joseph Geraci and Frank Van Bussel. A note on cyclotomic cosets, an algorithm for finding coset

representatives and size, and a theorem on the quantum evaluation of weight enumerators for a certain
class of cyclic codes. CoRR, abs/cs/0703129, 2007.

[30] J.-M. Goethals. Association Schemes, pages 243–283. Springer Berlin Heidelberg, Berlin, Heidelberg,
1979.

[31] Robert Gold. Maximal recursive sequences with 3-valued recursive cross-correlation functions (corresp.).
IEEE transactions on Information Theory, 14(1):154–156, 1968.

[32] Anastasiya Gorodilova. On a remarkable property of APN Gold functions. IACR Cryptology ePrint
Archive, 2016:286, 2016.

[33] Jon Hamkins. Method of error floor mitigation in low-density parity-check codes, February 18 2014. US
Patent 8,656,245.

[34] Richard W Hamming. Error detecting and error correcting codes. The Bell system technical journal,
29(2):147–160, 1950.

[35] Gang Han, Yu Yu, Xiangxue Li, Qifeng Zhou, Dong Zheng, and Hui Li. 1-Resilient Boolean Functions
on Even Variables with Almost Perfect Algebraic Immunity. Security and Communication Networks,
2017, 2017.

[36] Alaa Eldin S Hassan, Moawad Dessouky, AA Elazm, and Mona Shokair. Evaluation of complexity versus
performance for turbo code and LDPC under different code rates. Proc. SPACOMM, pages 93–98, 2012.

[37] Chris Heegard and Stephen B Wicker. Turbo coding, volume 476. Springer Science & Business Media,
2013.

[38] Tor Helleseth. Some results about the cross-correlation function between two maximal linear sequences.
Discrete Mathematics, 16(3):209–232, 1976.

[39] Fernando Hernando and Gary McGuire. Proof of a conjecture on the sequence of exceptional numbers,
classifying cyclic codes and APN functions. Journal of algebra, 343(1):78–92, 2011.

[40] Honggang Hu and Dengguo Feng. On quadratic bent functions in polynomial forms. IEEE transactions
on information theory, 53(7):2610–2615, 2007.

[41] Heeralal Janwa and Richard M Wilson. Hyperplane sections of Fermat varieties in P 3 in char. 2 and
some applications to cyclic codes. In International Symposium on Applied Algebra, Algebraic Algorithms,
and Error-Correcting Codes, pages 180–194. Springer, 1993.

[42] Jørn Justesen and Tom Høholdt. A course in error-correcting codes, volume 1. European Mathematical
Society, 2004.

[43] Tadao Kasami. Weight distributions of bose-chaudhuri-hocquenghem codes. Coordinated Science Labo-
ratory Report no. R-317, 1966.

[44] Tadao Kasami. The weight enumerators for several classes of subcodes of the 2nd order binary Reed-
Muller codes. Information and Control, 18(4):369–394, 1971.

[45] Khoongming Khoo, Guang Gong, and Douglas R Stinson. A new characterization of semi-bent and bent
functions on finite fields. Designs, Codes and Cryptography, 38(2):279–295, 2006.

[46] Gohar M Kyureghyan and Valentin Suder. On inverses of APN exponents. In 2012 IEEE International
Symposium on Information Theory Proceedings, pages 1207–1211. IEEE, 2012.

[47] Nian Li. Some Recent Progress in the Applications of Niho Exponents. In Conference Hubei China,
pages 0–35. Faculty of Mathematics and Statistics, 2017.

© 2022 José W. Velázquez Santiago
87/136

[48] WenPing Ma, Moonho Lee, and Futai Zhang. A new class of bent functions. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, 88(7):2039–2040, 2005.

[49] Rusydi Makarim and Yann Laigle-Chapui. Boolean functions. https://doc.sagemath.org/html/en/
reference/cryptography/sage/crypto/boolean_function.htm, 2016. Accessed: 2019-12-7.

[50] Robert J McEliece and Laif Swanson. Reed-Solomon codes and the exploration of the solar system.
1994.

[51] Gary McGuire. On certain 3-weight cyclic codes having symmetric weights and a conjecture of helleseth.
In Sequences and their applications, pages 281–295. Springer, 2002.

[52] Gary Mcguire. On three weights in cyclic codes with two zeros. Finite Fields and Their Applications,
10(1):97–104, 2004.

[53] Raford Neal. Software for Low Density Parity Check Codes. https://www.cs.toronto.edu/~radford/
ftp/LDPC-2006-02-08/index.html, 2006. Accesed 2021-01-24.

[54] Yoji Niho. Multi-valued cross-correlation functions between two maximal linear recursive sequences.
Technical report, UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES ELECTRONIC SCI-
ENCES LAB, 1972.

[55] Kaisa Nyberg. Perfect nonlinear S-boxes. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 378–386. Springer, 1991.

[56] Kaisa Nyberg. S-boxes and round functions with controllable linearity and differential uniformity. In
International Workshop on Fast Software Encryption, pages 111–130. Springer, 1994.

[57] François Rodier. Borne sur le degré des polynômes presque parfaitement non-linéaires. In Arithmetic,
geometry, cryptography and coding theory, volume 487 of Contemp. Math., pages 169–181. Amer. Math.
Soc., Providence, RI, 2009.

[58] David Roe, Jean-Pierre Flori, and Peter Bruin. Routines for Conway and pseudo-Conway poly-
nomials. https://doc.sagemath.org/html/en/reference/finite_rings/sage/rings/finite_
rings/conway_polynomials.html?highlight=conway#module-sage.rings.finite_rings.conway_
polynomials, 2020. Accessed: 2020-02-10.

[59] Oscar S Rothaus. On “bent” functions. Journal of Combinatorial Theory, Series A, 20(3):300–305, 1976.
[60] William E Ryan et al. An introduction to LDPC codes, 2004.
[61] Dhaneshwar Sah. Iterative Decoding of Turbo Codes. Journal of Advanced College of Engineering and

Management, 3:15–30, 2017.
[62] Amin Shokrollahi. LDPC codes: An introduction. In Coding, cryptography and combinatorics, pages

85–110. Springer, 2004.
[63] Roxana Smarandache and David GM Mitchell. Necessary and Sufficient Girth Conditions for Tanner

Graphs of Quasi-Cyclic LDPC Codes. arXiv preprint arXiv:2105.03462, 2021.
[64] Bo Sun. On Classification and Some Properties of APN Functions. PhD thesis, Skipnes Kommunikasjon,

2018.
[65] Yuriy Tarannikov, Peter Korolev, and Anton Botev. Autocorrelation coefficients and correlation immu-

nity of Boolean functions. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 460–479. Springer, 2001.

[66] Jeremy Thorpe. Low-density parity-check (LDPC) codes constructed from protographs. IPN progress
report, 42(154):42–154, 2003.

[67] Jose Velazquez and Heeralal Janwa. Bent and Near-Bent Function Construction and 2-Error-Correcting
Codes. Springer Proceedings in Mathematics & Statistics, 2021.

[68] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their applications. John Wiley &
Sons, 1999.

[69] DCK Wong. Cyclotomic Cosets, Codes and Secret Sharing. Malaysian Journal of Mathematical Sciences,
11:59–73, 2017.

[70] DCK Wong. Cyclotomic Cosets, Codes and Secret Sharing. 2017.
[71] Satoshi Yoshiara. Equivalences of power APN functions with power or quadratic APN functions. Journal

of Algebraic Combinatorics, 44(3):561–585, 2016.

© 2022 José W. Velázquez Santiago
88/136

[72] Amr M. Youssef and Guang Gong. Hyper-bent functions. In Birgit Pfitzmann, editor, Advances in
Cryptology — EUROCRYPT 2001, pages 406–419, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[73] Xiangyong Zeng, Jinyong Shan, and Lei Hu. A triple-error-correcting cyclic code from the Gold and
Kasami–Welch APN power functions. Finite Fields and Their Applications, 18(1):70–92, 2012.

[74] Xian-Mo Zhang and Yuliang Zheng. GAC—the criterion for global avalanche characteristics of cryp-
tographic functions. In J. UCS The Journal of Universal Computer Science, pages 320–337. Springer,
1996.

© 2022 José W. Velázquez Santiago
89/136

8. Appendix:Tables

Variables l Case Prediction Computational Results
4 1,3 1 M3,M3 M3,M3
4 2 3 M5 M5
6 1,5 1 M3,M3 M3,M3
6 2,4 2 M1,M1 M1,M1
6 3 3 M9 M9
8 1,3,5,7 1 M3,M3,M3,M3 M3,M3,M3,M3
8 2,4,6 3 M5,M17,M(divisor of 65) M5,M17,M5
10 1,3,7,9 1 M3,M3,M3,M3 M3,M3,M3,M3
10 2,4,6,8 2 M1,M1,M1,M1 M1,M1,M1,M1
10 5 3 M33 M33

Table 4: Gold bent functions exceptions test 4-10 vari-
ables [67].

Variables l Case Prediction Computational Results
12 1,5,7,11 1 M3,M3,M3,M3 M3,M3,M3,M3
12 2,3,6,9,10 3 M5,Mi,M65,Mi,Mi M5,M9,M65,M9,M5
12 4,8 2 M1,M1 M1,M1

14 1,3,5,9,11
13 1 M3,M3,M3,M3,M3

M3
M3,M3,M3,M3,M3

M3

14 2,4,6,8,10
12 2 M1,M1,M1,M1,M1

M1
M1,M1,M1,M1,M1

M1
14 7 3 M129 M129

Table 5: Gold bent functions exceptions test 12-14 vari-
ables. We define i as a divisor of a Gold exponent [67].

Variables l Case Prediction Computational Results

16 1,3,5,7,9
11,13,15 1 M3,M3,M3,M3,M3

M3,M3
M3,M3,M3,M3,M3

M3,M3

16 2,4,6,8,10
12,14 3 M5,M17,Mi,Mi,Mi

Mi,Mi
M5,M17,M5,M257,M5

M17,M5

18 1,5,7,11,13
17 1 M3,M3,M3,M3,M3

M3
M3,M3,M3,M3,M3

M3

18 2,4,6,8,10
12,14,16 2 M1,M1,M1,M1,M1

M1,M1,M1
M1,M1,M1,M1,M1

M1,M1,M1
18 3,9,15 3 Mi,M513,Mi M9,M513,M9

20 1,3,7,9,11
13 1 M3,M3,M3,M3,M3

M3
M3,M3,M3,M3,M3

M3

© 2022 José W. Velázquez Santiago
90/136

20 2,5,6,10,14 3 M5,Mi,Mi,M1025,Mi M5,M33,M5,M1025,M5
20 4,8,12 2 M1,M1,M1 M1,M1,M1
22 1,3,5,7,9 1 M3,M3,M3,M3,M3 M3,M3,M3,M3,M3

22 2,4,6,8,10
12 2 M1,M1,M1,M1,M1

M1
M1,M1,M1,M1,M1

M1
22 11 3 M2049 M2049
24 1,5,7,11,13 1 M3,M3,M3,M3,M3 M3,M3,M3,M3,M3

24 2,3,4,6,9
10,12 3 M5,Mi,M17,Mi,Mi

Mi,Mi
M5,M9,M17,M65,M9

M5,M4097
24 8 2 M1 M1

Table 6: Gold bent function exceptions partial test 16-24
variables [67].

Variables Exponent (d) Condition Is it Bent?
6 3 (l,m) = 1, i ̸∈ M3 Bent
6 993 (l,m) = 1, i ̸∈ M3 Bent
12 3 (l,m) = 1, i ̸∈ M3 Bent
12 993 (l,m) = 1, i ̸∈ M3 Bent
12 16257 (l,m) = 1, i ̸∈ M3 Bent
12 4192257 (l,m) = 1, i ̸∈ M3 Bent
Table 7: Kasami-Welch Boolean bent function compu-
tations 6,12 variables. The functions are of the form
Tr(αixd) [67].

Length Defining Set Distribution Type Distribution
15 {1, 5 } 2 6 8 10
31 {1, 3 } 1 12 16 20
31 {1, 5 } 1 12 16 20
31 {1, 7 } 1 12 16 20
31 {1, 11 } 1 12 16 20
63 {1, 5 } 1 24 32 40
63 {1, 9 } 2 28 32 36
63 {1, 13 } 1 24 32 40
127 {1, 3 } 1 56 64 72
127 {1, 5 } 1 56 64 72
127 {1, 9 } 1 56 64 72
127 {1, 11 } 1 56 64 72
127 {1, 13 } 1 56 64 72
127 {1, 15 }

© 2022 José W. Velázquez Santiago
91/136

127 {1, 23 } 1 56 64 72
127 {1, 27 }
127 {1, 29 } 1 56 64 72
127 {1, 43 }
255 {1, 17 } 2 120 128 136
511 {1, 3 } 1 240 256 272
511 {1, 5 } 1 240 256 272
511 {1, 9 } 1 224 256 288
511 {1, 13 } 1 240 256 272
511 {1, 17 } 1 240 256 272
511 {1, 19 } 1 240 256 272
511 {1, 27 }
511 {1, 31 }
511 {1, 47 } 1 240 256 272
511 {1, 57 } 1 240 256 272
511 {1, 59 }
511 {1, 87 }
511 {1, 103 }
511 {1, 171 }
1023 {1, 5 } 1 480 512 544
1023 {1, 13 } 1 480 512 544
1023 {1, 17 } 1 480 512 544
1023 {1, 25 }
1023 {1, 33 } 2 496 512 528
1023 {1, 41 } 1 480 512 544
1023 {1, 49 } 1 480 512 544
1023 {1, 79 } 1 480 512 544
1023 {1, 107 }
1023 {1, 181 }
1023 {1, 205 }
2047 {1, 3 } 1 992 1024 1056
2047 {1, 5 } 1 992 1024 1056
2047 {1, 9 } 1 992 1024 1056
2047 {1, 13 } 1 992 1024 1056
2047 {1, 17 } 1 992 1024 1056
2047 {1, 33 } 1 992 1024 1056
2047 {1, 35 } 1 992 1024 1056
2047 {1, 43 }
2047 {1, 57 } 1 992 1024 1056
2047 {1, 63 }
2047 {1, 95 } 1 992 1024 1056

© 2022 José W. Velázquez Santiago
92/136

2047 {1, 107 }
2047 {1, 117 }
2047 {1, 143 } 1 992 1024 1056
2047 {1, 151 }
2047 {1, 231 }
2047 {1, 249 } 1 992 1024 1056
2047 {1, 315 }
2047 {1, 365 }
2047 {1, 411 }
2047 {1, 413 }
2047 {1, 683 }
4095 {1, 17 } 1 1920 2048 2176
4095 {1, 65 } 2 2016 2048 2080
4095 {1, 241 } 1 1984 2048 2112
8191 {1, 3 } 1 4032 4096 4160
8191 {1, 5 } 1 4032 4096 4160
8191 {1, 9 } 1 4032 4096 4160
8191 {1, 13 } 1 4032 4096 4160
8191 {1, 17 } 1 4032 4096 4160
8191 {1, 33 } 1 4032 4096 4160
8191 {1, 57 } 1 4032 4096 4160
8191 {1, 65 } 1 4032 4096 4160
8191 {1, 67 } 1 4032 4096 4160
8191 {1, 71 } 1 4032 4096 4160
8191 {1, 127 }
8191 {1, 171 }
8191 {1, 191 } 1 4032 4096 4160
8191 {1, 241 } 1 4032 4096 4160
8191 {1, 287 } 1 4032 4096 4160
8191 {1, 347 }
8191 {1, 367 }
8191 {1, 635 }
8191 {1, 723 }
8191 {1, 911 }
8191 {1, 1243 }
8191 {1, 1245 }
8191 {1, 1453 }
8191 {1, 1639 }
8191 {1, 1691 }
8191 {1, 2731 }

© 2022 José W. Velázquez Santiago
93/136

Table 8: Table with codes that had three nonzero weight
dual codes classified by Li’s distribution types.

Length of Code Non theorem Cyclic Code Defining set Equivalent Code Defining Set Meet Theorems? Distribution Type
127 {1, 15} {1, 9} Yes 1
127 {1, 27} {1, 5} Yes 1
127 {1, 43} {1, 3} Yes 1
511 {1, 27} {1, 19} Yes 1
511 {1, 31} {1, 17} Yes 1
511 {1, 59} {1, 13} Yes 1
511 {1, 87} {1, 47} Yes 1
511 {1, 103} {1, 5} Yes 1
511 {1, 171} {1, 3} Yes 1
1023 {1, 25} {1, 41} Yes 1
1023 {1, 107} {1, 49} Yes 1
1023 {1, 181} {1, 17} Yes 1
1023 {1, 205} {1, 5} Yes 1
2047 {1, 43} {1, 143} Yes 1
2047 {1, 63} {1, 33} Yes 1
2047 {1, 107} {1, 249} Yes 1
2047 {1, 117} {1, 35} Yes 1
2047 {1, 151} {1, 95} Yes 1
2047 {1, 231} {1, 9} Yes 1
2047 {1, 315} {1, 13} Yes 1
2047 {1, 365} {1, 17} Yes 1
2047 {1, 411} {1, 5} Yes 1
2047 {1, 413} {1, 57} Yes 1
2047 {1, 683} {1, 3} Yes 1
8191 {1, 127} {1, 65} Yes 1
8191 {1, 171} {1, 241} Yes 1
8191 {1, 347} {1, 71} Yes 1
8191 {1, 367} {1, 67} Yes 1
8191 {1, 635} {1, 13} Yes 1
8191 {1, 723} {1, 57} Yes 1
8191 {1, 911} {1, 9} Yes 1
8191 {1, 1243} {1, 33} Yes 1
8191 {1, 1245} {1, 191} Yes 1
8191 {1, 1453} {1, 17} Yes 1
8191 {1, 1639} {1, 5} Yes 1
8191 {1, 1691} {1, 287} Yes 1
8191 {1, 2731} {1, 3} Yes 1

Table 9. Table with the three nonzero weight cyclic codes which did not
correspond to any of the theorems and their equivalent codes.

n k d(C) Defining Set APN Exponent F(x) Near-Bent? Bent?
15 7 5 {1, 3} Gold Kasami-Welch X^3 No
31 21 5 {1, 3} Gold Kasami-Welch X^3 Yes
31 21 5 {1, 5} Gold Niho even X^5 Yes
31 21 5 {1, 7} Welch Nyberg X^7 Yes
31 21 5 {1, 11} Kasami-Welch X^11 Yes
31 21 5 {1, 15} Inverse Dobbertin X^15 No

© 2022 José W. Velázquez Santiago
94/136

63 51 5 {1, 3} Gold Kasami-Welch X^3 No
127 113 5 {1, 3} Gold Kasami-Welch X^3 Yes
127 113 5 {1, 5} Gold X^5 Yes
127 113 5 {1, 9} Gold X^9 Yes
127 113 5 {1, 11} Welch X^11 Yes
127 113 5 {1, 13} Kasami-Welch X^13 Yes
127 113 5 {1, 15} X^15 Yes
127 113 5 {1, 23} Kasami-Welch X^23 Yes
127 113 5 {1, 27} X^27 Yes
127 113 5 {1, 29} Niho odd X^29 Yes
127 113 5 {1, 43} X^43 Yes
127 113 5 {1, 63} Inverse Nyberg X^63 No
255 239 5 {1, 3} Gold Kasami-Welch X^3 No
255 239 5 {1, 9} Gold X^9 No
255 239 5 {1, 15} X^15 Yes
255 239 5 {1, 39} Kasami-Welch X^39 No
255 239 5 {1, 45} X^45 Yes
511 493 5 {1, 3} Gold Kasami-Welch X^3 Yes
511 493 5 {1, 5} Gold X^5 Yes
511 493 5 {1, 13} Kasami-Welch X^13 Yes
511 493 5 {1, 17} Gold X^17 Yes
511 493 5 {1, 19} Welch Niho even X^19 Yes
511 493 5 {1, 27} X^27 Yes
511 493 5 {1, 31} X^31 Yes
511 493 5 {1, 47} Kasami-Welch X^47 Yes
511 493 5 {1, 59} X^59 Yes
511 493 5 {1, 63} X^63 No
511 493 5 {1, 87} X^87 Yes
511 493 5 {1, 103} X^103 Yes
511 493 5 {1, 171} X^171 Yes
511 493 5 {1, 255} Inverse X^255 No
1023 1003 5 {1, 3} Gold Kasami-Welch X^3 No
1023 1003 5 {1, 9} Gold X^9 No
1023 1003 5 {1, 57} Kasami-Welch X^57 No
1023 1003 5 {1, 213} Dobbertin X^213 No
1023 1003 5 {1, 237} X^237 No
2047 2025 5 {1, 3} Gold Kasami-Welch X^3 Yes
2047 2025 5 {1, 5} Gold X^5 Yes
2047 2025 5 {1, 9} Gold X^9 Yes
2047 2025 5 {1, 13} Kasami-Welch X^13 Yes
2047 2025 5 {1, 17} Gold X^17 Yes
2047 2025 5 {1, 33} Gold X^33 Yes
2047 2025 5 {1, 35} Welch X^35 Yes
2047 2025 5 {1, 43} X^43 Yes
2047 2025 5 {1, 57} Kasami-Welch X^57 Yes
2047 2025 5 {1, 63} X^63 Yes
2047 2025 5 {1, 95} Kasami-Welch X^95 Yes
2047 2025 5 {1, 107} X^107 Yes

© 2022 José W. Velázquez Santiago
95/136

2047 2025 5 {1, 117} X^117 Yes
2047 2025 5 {1, 143} Kasami-Welch X^143 Yes
2047 2025 5 {1, 151} X^151 Yes
2047 2025 5 {1, 231} X^231 Yes
2047 2025 5 {1, 249} Niho odd X^249 Yes
2047 2025 5 {1, 255} X^255 No
2047 2025 5 {1, 315} X^315 Yes
2047 2025 5 {1, 365} X^365 Yes
2047 2025 5 {1, 411} X^411 Yes
2047 2025 5 {1, 413} X^413 Yes
2047 2025 5 {1, 683} X^683 Yes
2047 2025 5 {1, 1023} Inverse X^1023 No

Table 10: Cyclic-codes with minimum distance five from the ’guava’
package in SAGE [67].

Code d(C) Defining Set Non-zero Weights of C⊥

{7, 1} 7 {1, 3} 3
{31, 21} 5 {1, 3}, {1, 5}, {1, 7}, {1, 11} 3
{31, 21} 5 {1, 15} 6

{127, 113} 5 {1, 3}, {1, 5}, {1, 9}, {1, 11}
{1, 13}, {1, 15}, {1, 23}, {1, 29} 3

{127, 113} 5 {1, 63} 11

{511, 493} 5 {1, 3}, {1, 5},{1, 9},{1, 13}
{1, 17},{1, 19},{1, 47},{1, 57} 3

{511, 493} 4 {1, 63} 15
{511, 493} 5 {1, 255} 23

{2047, 2025} 5
{1, 3},{1, 5},{1, 9},{1, 13}

{1, 17},{1, 33},{1, 35},{1, 57}
{1, 95},{1, 143},{1, 249}

3

{2047, 2025} 4 {1, 255} 16
{2047, 2025} 5 {1, 1023} 45

Table 11: Minimum distance computations with alterna-
tive method to SAGE.

n k Defining Set f(x) APN? Equivalence
127 113 {1, 15} X^15 Yes f(x) = x15 ≡ g(x) = x9 , Gold
127 113 {1, 27} X^27 Yes f(x) = x27 ≡ g(x) = x5 , Gold
127 113 {1, 43} X^43 Yes f(x) = x43 ≡ g(x) = x3 , Gold
511 493 {1, 27} X^27 Yes f(x) = x27 ≡ g(x) = x19 , Niho and Welch
511 493 {1, 31} X^31 Yes f(x) = x31 ≡ g(x) = x17 , Gold
511 493 {1, 59} X^59 Yes f(x) = x59 ≡ g(x) = x13 , Kasami-Welch

© 2022 José W. Velázquez Santiago
96/136

511 493 {1, 63} X^63 No No Equivalence
511 493 {1, 87} X^87 Yes f(x) = x87 ≡ g(x) = x47 , Kasami-Welch
511 493 {1, 103} X^103 Yes f(x) = x103 ≡ g(x) = x5 , Gold
511 493 {1, 171} X^171 Yes f(x) = x171 ≡ g(x) = x3 , Gold
2047 2025 {1, 43} X^43 Yes f(x) = x43 ≡ g(x) = x143 , Kasami-Welch
2047 2025 {1, 63} X^63 Yes f(x) = x63 ≡ g(x) = x33 , Gold
2047 2025 {1, 107} X^107 Yes f(x) = x107 ≡ g(x) = x249 , Niho
2047 2025 {1, 117} X^117 Yes f(x) = x117 ≡ g(x) = x35 , Welch
2047 2025 {1, 151} X^151 Yes f(x) = x151 ≡ g(x) = x95, Kasami-Welch
2047 2025 {1, 231} X^231 Yes f(x) = x231 ≡ g(x) = x9 , Gold
2047 2025 {1, 255} X^255 No f(x) = x255 ≡ g(x) = x731 , not APN
2047 2025 {1, 315} X^315 Yes f(x) = x315 ≡ g(x) = x13, Kasami-Welch
2047 2025 {1, 365} X^365 Yes f(x) = x365 ≡ g(x) = x17, Gold
2047 2025 {1, 411} X^411 Yes f(x) = x411 ≡ g(x) = x5, Gold
2047 2025 {1, 413} X^413 Yes f(x) = x413 ≡ g(x) = x57, Kasami-Welch
2047 2025 {1, 683} X^683 Yes f(x) = x683 ≡ g(x) = x3, Gold

Table 13: Gold Boolean function equality in four vari-
ables.

Equal Functions Number of Equal Functions Bent-ness
Tr(a1x3) Tr(a8x9) 2 Bent
Tr(a2x3) Tr(a1x9) 2 Bent
Tr(a3x3) Tr(a9x9) 2 Not Bent
Tr(a4x3) Tr(a2x9) 2 Bent
Tr(a5x3) Tr(a10x9) 2 Bent
Tr(a6x3) Tr(a3x9) 2 Not Bent
Tr(a7x3) Tr(a11x9) 2 Bent
Tr(a8x3) Tr(a4x9) 2 Bent
Tr(a9x3) Tr(a12x9) 2 Not Bent
Tr(a10x3) Tr(a5x9) 2 Bent
Tr(a11x3) Tr(a13x9) 2 Bent
Tr(a12x3) Tr(a6x9) 2 Not Bent
Tr(a13x3) Tr(a14x9) 2 Bent
Tr(a14x3) Tr(a7x9) 2 Bent
Tr(a1x5) Tr(a2x5) Tr(a4x5) Tr(a8x5) 4 Bent
Tr(a2x5) Tr(a1x5) Tr(a4x5) Tr(a8x5) 4 Bent
Tr(a3x5) Tr(a11x5) Tr(a12x5) Tr(a14x5) 4 Bent
Tr(a4x5) Tr(a1x5) Tr(a2x5) Tr(a8x5) 4 Bent
Tr(a5x5) Tr(a10x5) 2 Not Bent
Tr(a6x5) Tr(a7x5) Tr(a9x5) Tr(a13x5) 4 Bent

© 2022 José W. Velázquez Santiago
97/136

Tr(a7x5) Tr(a6x5) Tr(a9x5) Tr(a13x5) 4 Bent
Tr(a8x5) Tr(a1x5) Tr(a2x5) Tr(a4x5) 4 Bent
Tr(a9x5) Tr(a6x5) Tr(a7x5) Tr(a13x5) 4 Bent
Tr(a10x5) Tr(a5x5) 2 Not Bent
Tr(a11x5) Tr(a3x5) Tr(a12x5) Tr(a14x5) 4 Bent
Tr(a12x5) Tr(a3x5) Tr(a11x5) Tr(a14x5) 4 Bent
Tr(a13x5) Tr(a6x5) Tr(a7x5) Tr(a9x5) 4 Bent
Tr(a14x5) Tr(a3x5) Tr(a11x5) Tr(a12x5) 4 Bent

Table 13: Cyclotomic equivalence analysis of "new" two-
error-correcting codes functions [67].

Variables Coset Representative Exponent Exception Function
4 0 0 M1 Tr(αix0)
4 1 8 M1 Tr(αix8)
4 1 1 M1 Tr(αix1)
4 1 2 M1 Tr(αix2)
4 1 4 M1 Tr(αix4)
4 3 9 M3 Tr(αix9)
4 3 3 M3 Tr(αix3)
4 3 12 M3 Tr(αix12)
4 3 6 M3 Tr(αix6)
4 5 10 M5 Tr(αix10)
4 5 5 M5 Tr(αix5)
4 7 11 M1 Tr(αix11)
4 7 13 M1 Tr(αix13)
4 7 14 M1 Tr(αix14)
4 7 7 M1 Tr(αix7)
6 0 0 M1 Tr(αix0)
6 1 32 M1 Tr(αix32)
6 1 1 M1 Tr(αix1)
6 1 2 M1 Tr(αix2)
6 1 4 M1 Tr(αix4)
6 1 8 M1 Tr(αix8)
6 1 16 M1 Tr(αix16)
6 3 33 M3 Tr(αix33)
6 3 3 M3 Tr(αix3)
6 3 6 M3 Tr(αix6)
6 3 12 M3 Tr(αix12)
6 3 48 M3 Tr(αix48)
6 3 24 M3 Tr(αix24)

© 2022 José W. Velázquez Santiago
98/136

6 5 34 M1 Tr(αix34)
6 5 5 M1 Tr(αix5)
6 5 40 M1 Tr(αix40)
6 5 10 M1 Tr(αix10)
6 5 17 M1 Tr(αix17)
6 5 20 M1 Tr(αix20)
6 7 35 M1 Tr(αix35)
6 7 7 M1 Tr(αix7)
6 7 14 M1 Tr(αix14)
6 7 49 M1 Tr(αix49)
6 7 56 M1 Tr(αix56)
6 7 28 M1 Tr(αix28)
6 9 9 M9 Tr(αix9)
6 9 18 M9 Tr(αix18)
6 9 36 M9 Tr(αix36)
6 11 37 M1 Tr(αix37)
6 11 11 M1 Tr(αix11)
6 11 44 M1 Tr(αix44)
6 11 50 M1 Tr(αix50)
6 11 22 M1 Tr(αix22)
6 11 25 M1 Tr(αix25)
6 13 38 M1 Tr(αix38)
6 13 41 M1 Tr(αix41)
6 13 13 M1 Tr(αix13)
6 13 19 M1 Tr(αix19)
6 13 52 M1 Tr(αix52)
6 13 26 M1 Tr(αix26)
6 15 39 M1 Tr(αix39)
6 15 15 M1 Tr(αix15)
6 15 51 M1 Tr(αix51)
6 15 57 M1 Tr(αix57)
6 15 60 M1 Tr(αix60)
6 15 30 M1 Tr(αix30)
6 21 42 M1 Tr(αix42)
6 21 21 M1 Tr(αix21)
6 23 43 M1 Tr(αix43)
6 23 46 M1 Tr(αix46)
6 23 53 M1 Tr(αix53)
6 23 23 M1 Tr(αix23)
6 23 58 M1 Tr(αix58)
6 23 29 M1 Tr(αix29)

© 2022 José W. Velázquez Santiago
99/136

6 27 27 M1 Tr(αix27)
6 27 45 M1 Tr(αix45)
6 27 54 M1 Tr(αix54)
6 31 47 M1 Tr(αix47)
6 31 55 M1 Tr(αix55)
6 31 59 M1 Tr(αix59)
6 31 61 M1 Tr(αix61)
6 31 62 M1 Tr(αix62)
6 31 31 M1 Tr(αix31)

Table 14: Non-bent function conditions for Boolean func-
tions of the form Tr(αixC(d)).

Table 15. Gold exponents cyclotomic cosets (mod 2m − 1) for m even.

Table 16. Gold exponents cyclotomic cosets (mod 2m − 1) for m odd.

© 2022 José W. Velázquez Santiago
100/136

Table 17. Kasami-Welch exponents cyclotomic cosets (mod 2m − 1) for m even.

Table 18. Kasami-Welch exponents cyclotomic cosets (mod 2m − 1) for m odd.

n roots Weights a = b?
15 {1, 5} 10,8,6 Yes
31 {1, 3} 20,16,12 Yes
31 {1, 5} 20,16,12 Yes
31 {1, 7} 20,16,12 Yes
31 {1, 11} 20,16,12 Yes
63 {1, 5} 40,32,24 Yes
63 {1, 9} 36,32,28 Yes
63 {1, 13} 40,32,24 Yes
127 {1, 3} 72,64,56 Yes
127 {1, 5} 72,64,56 Yes
127 {1, 9} 72,64,56 Yes
127 {1, 11} 72,64,56 Yes
127 {1, 13} 72,64,56 Yes
127 {1, 15} 72,64,56 Yes
127 {1, 23} 72,64,56 Yes
127 {1, 27} 72,64,56 Yes
127 {1, 29} 72,64,56 Yes
127 {1, 43} 72,64,56 Yes
255 {1, 17} 136,128,120 Yes
511 {1, 3} 272,256,240 Yes

© 2022 José W. Velázquez Santiago
101/136

511 {1, 5} 272,256,240 Yes
511 {1, 9} 288,256,224 Yes
511 {1, 13} 272,256,240 Yes
511 {1, 17} 272,256,240 Yes
511 {1, 19} 272,256,240 Yes
511 {1, 27} 272,256,240 Yes
511 {1, 31} 272,256,240 Yes
511 {1, 47} 272,256,240 Yes
511 {1, 57} 288,256,224 Yes
511 {1, 59} 272,256,240 Yes
511 {1, 87} 272,256,240 Yes
511 {1, 103} 272,256,240 Yes
511 {1, 171} 272,256,240 Yes
1023 {1, 5} 544,512,480 Yes
1023 {1, 13} 544,512,480 Yes
1023 {1, 17} 544,512,480 Yes
1023 {1, 25} 544,512,480 Yes
1023 {1, 33} 528,512,496 Yes
1023 {1, 41} 544,512,480 Yes
1023 {1, 49} 544,512,480 Yes
1023 {1, 79} 544,512,480 Yes
1023 {1, 107} 544,512,480 Yes
1023 {1, 181} 544,512,480 Yes
1023 {1, 205} 544,512,480 Yes
2047 {1, 3} 1056,1024,992 Yes
2047 {1, 5} 1056,1024,992 Yes
2047 {1, 9} 1056,1024,992 Yes
2047 {1, 13} 1056,1024,992 Yes
2047 {1, 17} 1056,1024,992 Yes
2047 {1, 33} 1056,1024,992 Yes
2047 {1, 35} 1056,1024,992 Yes
2047 {1, 43} 1056,1024,992 Yes
2047 {1, 57} 1056,1024,992 Yes
2047 {1, 63} 1056,1024,992 Yes
2047 {1, 95} 1056,1024,992 Yes
2047 {1, 107} 1056,1024,992 Yes
2047 {1, 117} 1056,1024,992 Yes
2047 {1, 143} 1056,1024,992 Yes
2047 {1, 151} 1056,1024,992 Yes
2047 {1, 231} 1056,1024,992 Yes
2047 {1, 249} 1056,1024,992 Yes

© 2022 José W. Velázquez Santiago
102/136

2047 {1, 315} 1056,1024,992 Yes
2047 {1, 365} 1056,1024,992 Yes
2047 {1, 411} 1056,1024,992 Yes
2047 {1, 413} 1056,1024,992 Yes
2047 {1, 683} 1056,1024,992 Yes
4095 {1, 17} 2176,2048,1920 Yes
4095 {1, 65} 2176,2048,1920 Yes
4095 {1, 241} 2176,2048,1920 Yes
8191 {1, 3} 4160,4096,4032 Yes
8191 {1, 5} 4160,4096,4032 Yes
8191 {1, 9} 4160,4096,4032 Yes
8191 {1, 13} 4160,4096,4032 Yes
8191 {1, 17} 4160,4096,4032 Yes
8191 {1, 33} 4160,4096,4032 Yes
8191 {1, 57} 4160,4096,4032 Yes
8191 {1, 65} 4160,4096,4032 Yes
8191 {1, 67} 4160,4096,4032 Yes
8191 {1, 71} 4160,4096,4032 Yes
8191 {1, 127} 4160,4096,4032 Yes
8191 {1, 171} 4160,4096,4032 Yes
8191 {1, 191} 4160,4096,4032 Yes
8191 {1, 241} 4160,4096,4032 Yes
8191 {1, 287} 4160,4096,4032 Yes
8191 {1, 347} 4160,4096,4032 Yes
8191 {1, 367} 4160,4096,4032 Yes
8191 {1, 635} 4160,4096,4032 Yes
8191 {1, 723} 4160,4096,4032 Yes
8191 {1, 911} 4160,4096,4032 Yes
8191 {1, 1243} 4160,4096,4032 Yes
8191 {1, 1245} 4160,4096,4032 Yes
8191 {1, 1453} 4160,4096,4032 Yes
8191 {1, 1639} 4160,4096,4032 Yes
8191 {1, 1691} 4160,4096,4032 Yes
8191 {1, 2731} 4160,4096,4032 Yes

Table 19: Symmetric weight distribution verification for
dual of cyclic codes generated.

© 2022 José W. Velázquez Santiago
103/136

Table 20. Properties of trace Boolean functions in four variables.

Table 21. Properties of trace Boolean functions in five variables.

Table 22. Properties of trace Boolean functions in six variables.

© 2022 José W. Velázquez Santiago
104/136

Table 23. Properties of trace Boolean functions in seven variables.

Table 24. Weight distribution classes of cyclic codes in four variables with
defining sets of size two, three and four considering cyclotomic coset representatives

Table 25. Weight distribution classes of cyclic Codes in five variables with
defining sets of size two, three and four considering cyclotomic coset representatives.

© 2022 José W. Velázquez Santiago
105/136

Table 26. Weight distribution classes of cyclic codes in six variables with
defining sets of size two, three and four considering cyclotomic coset representatives.

© 2022 José W. Velázquez Santiago
106/136

Table 27. Weight distribution classes of cyclic codes in seven variables with
defining sets of size two and three considering cyclotomic coset representatives.

© 2022 José W. Velázquez Santiago
107/136

Table 28. Weight distribution classes of cyclic codes in seven variables with
defining sets of size four considering cyclotomic coset representatives.

© 2022 José W. Velázquez Santiago
108/136

Table 29. Weight distribution classification of defining sets considered for
cyclic codes in four variables with defining sets of size two, three and four
considering cyclotomic coset representatives.

Table 30. Weight distribution classification of defining sets considered for
cyclic codes in five variables with defining sets of size two, three and four
considering cyclotomic coset representatives.

© 2022 José W. Velázquez Santiago
109/136

Table 31. Weight distribution classification of defining sets considered for
cyclic codes in six variables with defining sets of size two, three and four
considering cyclotomic coset representatives.

© 2022 José W. Velázquez Santiago
110/136

Table 32. Weight distribution classification of defining sets considered for
cyclic codes in seven variables with defining sets of size two and three consid-
ering cyclotomic coset representatives.

© 2022 José W. Velázquez Santiago
111/136

Table 33. Weight distribution classification of defining sets considered for
cyclic codes in seven variables with defining sets of size four considering cyclo-
tomic coset representatives.

© 2022 José W. Velázquez Santiago
112/136

Variables SNR Standard Deviation
4 26.32 0.05
4 20.3 0.1
4 16.778 0.15
4 14.279 0.2
4 12.341 0.25
4 10.757 0.3
4 9.418 0.35
4 8.258 0.4
4 7.235 0.45
4 6.32 0.5
4 5.492 0.55
4 4.737 0.6
4 4.041 0.65
4 3.398 0.7
4 2.798 0.75
4 2.238 0.8
4 1.711 0.85
4 1.215 0.9
4 0.745 0.95
5 24.702 0.05
5 18.681 0.1
5 15.159 0.15
5 12.661 0.2
5 10.722 0.25
5 9.139 0.3
5 7.8 0.35
5 6.64 0.4
5 5.617 0.45
5 4.702 0.5
5 3.874 0.55
5 3.118 0.6
5 2.423 0.65
5 1.779 0.7
5 1.18 0.75
5 0.619 0.8
5 0.093 0.85
5 -0.404 0.9
5 -0.873 0.95
6 23.928 0.05
6 17.907 0.1
6 14.386 0.15

© 2022 José W. Velázquez Santiago
113/136

6 11.887 0.2
6 9.949 0.25
6 8.365 0.3
6 7.026 0.35
6 5.866 0.4
6 4.843 0.45
6 3.928 0.5
6 3.1 0.55
6 2.344 0.6
6 1.649 0.65
6 1.005 0.7
6 0.406 0.75
6 -0.154 0.8
6 -0.681 0.85
6 -1.177 0.9
6 -1.647 0.95
7 23.518 0.05
7 17.497 0.1
7 13.975 0.15
7 11.476 0.2
7 9.538 0.25
7 7.955 0.3
7 6.616 0.35
7 5.456 0.4
7 4.433 0.45
7 3.518 0.5
7 2.69 0.55
7 1.934 0.6
7 1.239 0.65
7 0.595 0.7
7 -0.004 0.75
7 -0.565 0.8
7 -1.091 0.85
7 -1.588 0.9
7 -2.058 0.95
8 23.292 0.05
8 17.271 0.1
8 13.749 0.15
8 11.251 0.2
8 9.312 0.25
8 7.729 0.3

© 2022 José W. Velázquez Santiago
114/136

8 6.39 0.35
8 5.23 0.4
8 4.207 0.45
8 3.292 0.5
8 2.464 0.55
8 1.708 0.6
8 1.013 0.65
8 0.369 0.7
8 -0.23 0.75
8 -0.791 0.8
8 -1.317 0.85
8 -1.814 0.9
8 -2.283 0.95
9 23.166 0.05
9 17.145 0.1
9 13.624 0.15
9 11.125 0.2
9 9.187 0.25
9 7.603 0.3
9 6.264 0.35
9 5.104 0.4
9 4.081 0.45
9 3.166 0.5
9 2.338 0.55
9 1.582 0.6
9 0.887 0.65
9 0.243 0.7
9 -0.356 0.75
9 -0.916 0.8
9 -1.443 0.85
9 -1.939 0.9
9 -2.409 0.95
10 23.096 0.05
10 17.075 0.1
10 13.554 0.15
10 11.055 0.2
10 9.117 0.25
10 7.533 0.3
10 6.194 0.35
10 5.034 0.4
10 4.011 0.45

© 2022 José W. Velázquez Santiago
115/136

10 3.096 0.5
10 2.268 0.55
10 1.512 0.6
10 0.817 0.65
10 0.173 0.7
10 -0.426 0.75
10 -0.986 0.8
10 -1.513 0.85
10 -2.009 0.9
10 -2.479 0.95
11 23.057 0.05
11 17.037 0.1
11 13.515 0.15
11 11.016 0.2
11 9.078 0.25
11 7.494 0.3
11 6.155 0.35
11 4.995 0.4
11 3.972 0.45
11 3.057 0.5
11 2.229 0.55
11 1.474 0.6
11 0.778 0.65
11 0.135 0.7
11 -0.465 0.75
11 -1.025 0.8
11 -1.552 0.85
11 -2.048 0.9
11 -2.518 0.95
12 23.036 0.05
12 17.015 0.1
12 13.493 0.15
12 10.995 0.2
12 9.056 0.25
12 7.473 0.3
12 6.134 0.35
12 4.974 0.4
12 3.951 0.45
12 3.036 0.5
12 2.208 0.55
12 1.452 0.6

© 2022 José W. Velázquez Santiago
116/136

12 0.757 0.65
12 0.113 0.7
12 -0.486 0.75
12 -1.047 0.8
12 -1.573 0.85
12 -2.07 0.9
12 -2.539 0.95

Table 34: Standard deviations and corresponding SNR
values for the two root codes.

SNR Standard Deviation
0.972 0.25
0.944 0.5
0.917 0.75
0.891 1.0
0.866 1.25
0.841 1.5
0.818 1.75
0.794 2.0
0.772 2.25
0.75 2.5
0.729 2.75
0.708 3.0
0.688 3.25
0.668 3.5
0.649 3.75
0.631 4.0
0.613 4.25
0.596 4.5
0.579 4.75
0.562 5.0
0.546 5.25
0.531 5.5
0.516 5.75
0.501 6.0
0.487 6.25
0.473 6.5
0.46 6.75
0.447 7.0
0.434 7.25

© 2022 José W. Velázquez Santiago
117/136

0.422 7.5
0.41 7.75
0.398 8.0
0.387 8.25
0.376 8.5
0.365 8.75
0.355 9.0
0.345 9.25
0.335 9.5
0.325 9.75
0.316 10.0
0.307 10.25
0.299 10.5
0.29 10.75
0.282 11.0
0.274 11.25
0.266 11.5
0.259 11.75
0.251 12.0
0.244 12.25
0.237 12.5
0.23 12.75
0.224 13.0
0.218 13.25
0.211 13.5
0.205 13.75
0.2 14.0
0.194 14.25
0.188 14.5
0.183 14.75
0.178 15.0
0.173 15.25
0.168 15.5
0.163 15.75
0.158 16.0
0.154 16.25
0.15 16.5
0.145 16.75
0.141 17.0
0.137 17.25
0.133 17.5

© 2022 José W. Velázquez Santiago
118/136

0.13 17.75
0.126 18.0
0.122 18.25
0.119 18.5
0.115 18.75
0.112 19.0

Table 35: Standard deviation to SNR conversion for the
rate .5 LDPC(2000,1000) code.

9. Appendix:Figures

Figure 1. Andrews table of codeword error rate vs. SNR [1]

© 2022 José W. Velázquez Santiago
119/136

Figure 2. Example graph based on Thorpe’s construction taken from [66]

© 2022 José W. Velázquez Santiago
120/136

Figure 3. Example graph based on Sah’s construction taken from [61] where
they compare the performance of rate 1

2
log-MAP Turbo codes versus four

state convolutional Code

© 2022 José W. Velázquez Santiago
121/136

Figure 4. Example graph based on Smaradanche construction taken from
[63] where they compare the performance of Quasi-Cyclic based LDPC codes

© 2022 José W. Velázquez Santiago
122/136

Figure 5. Example graph based on Divsalar’s construction taken from [24]
where they compare the performance of different rate codes based on their construction.

© 2022 José W. Velázquez Santiago
123/136

Figure 6. Example graph based on Hamkins construction taken from [33]
where they compare the performance of selected length 1024 rate 4

5
AR4JA decoders.

© 2022 José W. Velázquez Santiago
124/136

Figure 7. Codes with defining set D = {1, 3} and the (2000,1000) LDPC
code example of girth > 4 from Neal’s page.

© 2022 José W. Velázquez Santiago
125/136

Figure 8. Codes from cyclic codes in odd number of variables with defining
set D = {1, d}, for d a Gold or Kasami-Welch exponent (2l + 1, 22l − 2l + 1),
with l = 3

© 2022 José W. Velázquez Santiago
126/136

Figure 9. Codes from cyclic codes in odd number of variables with defining
set D = {1, d}, for d a Gold or Kasami-Welch exponent (2l + 1, 22l − 2l + 1),
with l = 7

© 2022 José W. Velázquez Santiago
127/136

Figure 10. Codes from cyclic codes in even number of variables with defining
set D = {1, d}, for d a Gold exponent (2l + 1), with l = 1

© 2022 José W. Velázquez Santiago
128/136

Figure 11. Codes from cyclic codes in even number of variables with defining
set D = {1, d}, for d a Gold exponent (2l + 1), with l = 2

© 2022 José W. Velázquez Santiago
129/136

Figure 12. Codes from cyclic codes in even number of variables with defining
set D = {1, d}, for d a Gold exponent (2l + 1), with l = m

2

10. Appendix:Algorithms

Algorithm 14. def TraceProp(m):
f = FindModNonCube(m)[0]
R.<x> = GF(2̂ m,’a’, modulus = f)[]
k.<a> = GF(2 ∗ ∗m, modulus = f)
n = 2̂ m - 1
t = (m-1)/(2)
print("Gold Function ; Nonlinearity ; Algebraic Degree ; Correlation Immunity

; Algebraic Immunity ; Autocorrelation")
for i in range(1,m):

d = CycloRep((2̂ i + 1)%(n),n)
Gf = BooleanFunction(x̂ (d))
print(" $Tr(x̂ ” + str(2̂ i+ 1) + ”)$ = $Tr(x̂ ” + str(d) + ”)$; ", Gf.nonlinearity(),

" ; " ,Gf.algebraic_degree(), " ; ", Gf.correlation_immunity(), " ; ",
Gf.algebraic_immunity()," ; ", Gf.absolute_autocorrelation())

print("Kasami-Welch Function ; Nonlinearity ; Algebraic Degree ; Correlation
Immunity ; Algebraic Immunity ; Autocorrelation")

for i in range(1,m):
d = CycloRep((2̂ (2*i) - 2̂ i + 1)%(n),n)

© 2022 José W. Velázquez Santiago
130/136

Kf = BooleanFunction(x̂ (d))
print("$Tr(x̂ ” + str(2̂ (2 ∗ i)− 2̂ i+ 1) + ”)$ = $Tr(x̂ ” + str(d) + ”)$; ",

Kf.nonlinearity(), " ; " ,Kf.algebraic_degree(), " ; ", Kf.correlation_immunity(),
" ; ", Kf.algebraic_immunity()," ; ", Kf.absolute_autocorrelation())

if m%2 == 1:
print("Welch Function ; Nonlinearity ; Algebraic Degree ; Correlation Immunity

; Algebraic Immunity ; Autocorrelation")
d = CycloRep((2̂ (t) + 3)%(n), n)
Wf = BooleanFunction(x̂ (d))
print("$Tr(x̂ ” + str(2̂ (t) + 3) + ”)$ = $Tr(x̂ ” + str(d) + ”)$; ", Wf.nonlinearity(),

" ; " ,Wf.algebraic_degree(), " ; ", Wf.correlation_immunity(), " ; ",
Wf.algebraic_immunity()," ; ", Wf.absolute_autocorrelation())

print("Inverse Function ; Nonlinearity ; Algebraic Degree ; Correlation
Immunity ; Algebraic Immunity ; Autocorrelation")

d = CycloRep((2̂ m− 2)%(n), n)
If = BooleanFunction(x̂ (d))
print("$Tr(x̂ ” + str(2̂ m− 2) + ”)$ = $Tr(x̂ ” + str(d) + ”)$; ", If.nonlinearity(),

" ; " ,If.algebraic_degree(), " ; ", If.correlation_immunity(), " ; ",
If.algebraic_immunity()," ; ", If.absolute_autocorrelation())

print("Niho Function ; Nonlinearity ; Algebraic Degree ; Correlation Immunity
; Algebraic Immunity ; Autocorrelation")

if (((m− 1))/2)%2 == 0:
d = CycloRep((2̂ (t) + 2̂ (t/(2)) - 1)%(n),n)
Nf = BooleanFunction(x̂ (d))
print(" $Tr(x̂ ” + str(2̂ (t) + 2̂ (t/(2))− 1) + ”)$ = $Tr(x̂ ” + str(d) + ”)$; ",

Nf.nonlinearity(), " ; " ,Nf.algebraic_degree(), " ; ", Nf.correlation_immunity(),
" ; ", Nf.algebraic_immunity()," ; ", Nf.absolute_autocorrelation())

else:
d = CycloRep((2̂ (t) + 2̂ ((3*(t) + 1)/2) -1)%(n),n)
Nf = BooleanFunction(x̂ (d))
print("$Tr(x̂ ” + str(2̂ (t) + 2̂ ((3 ∗ (t) + 1)/2)− 1) + ”)$ = $Tr(x̂ ” + str(d) + ”)$

; ", Nf.nonlinearity(), " ; " ,Nf.algebraic_degree(), " ; ",
Nf.correlation_immunity(), " ; ", Nf.algebraic_immunity()," ; ",
Nf.absolute_autocorrelation())

if m%5 == 0:
print("Dobbertin Function ; Nonlinearity ; Algebraic Degree ; Correlation

Immunity ; Algebraic Immunity ; Autocorrelation")
d = CycloRep((2̂ (4 ∗ t) + 2̂ (3 ∗ t) + 2̂ (2 ∗ t) + 2̂ (t)− 1)%(n), n)
Df = BooleanFunction(x̂ (d))
print("$Tr(x̂ ” + str(2̂ (4 ∗ t) + 2̂ (3 ∗ t) + 2̂ (2 ∗ t) + 2̂ (t)− 1) + ”)$ =

$Tr(x̂ ” + str(d) + ”)$; ", Df.nonlinearity(), " ; " ,Df.algebraic_degree(), " ;
", Df.correlation_immunity(), " ; ", Df.algebraic_immunity(), " ; ",
Df.absolute_autocorrelation())

© 2022 José W. Velázquez Santiago
131/136

Algorithm 15. def CyclicCodeClassification(m,sD):
GL = [1]
KL = []
EL = []
t = (m-1)/(2)
n = 2̂ m - 1
DSL = []
WLL = []
for i in range(1,m):

GL.append((2̂ i + 1)%(2̂ m - 1))
KL.append((2̂ (2*i) - 2̂ i + 1)%(2̂ m - 1))

EL = EL + GL + KL
if m%2 == 1:

WL = [(2̂ (t) + 3)%(2̂ m - 1)]
InL = [(2̂ m - 2)%(2̂ m - 1)]
EL = EL + WL + InL
if (((m - 1))/2)%2 == 0:

NL = [(2̂ (t) + 2̂ (t/(2)) - 1)%(2̂ m - 1)]
EL = EL + NL

else:
NL = [(2̂ (t) + 2̂ ((3*(t) + 1)/2) -1)%(2̂ m - 1)]
EL = EL + NL

if m%5 == 0:
DL = [(2̂ (4*t) + 2̂ (3*t) + 2̂ (2*t) + 2̂ (t) - 1)%(2̂ m - 1)]
EL = EL + DL

EL = list(set(EL))
cyclo = combinations(EL, sD)
cyclo = list(cyclo)
cyclo2 = []
for i in range(0,len(cyclo)):

if cyclo[i][0] == 1:
cyclo2.append(cyclo[i])

for i in range(0,len(cyclo2)):
DS = cyclo2[i]
C = codes.CyclicCode(field=GF(2), length=n, D = DS)
h = C.check_polynomial()
DC = codes.CyclicCode(generator_pol = h.reverse(), length = n)
sd = DC.spectrum(algorithm = "binary")
indexlist = [i for i, e in enumerate(sd) if e != 0]
indexlist = [y for y in indexlist if y != 0]
DSL.append(DS)
WLL.append(indexlist)

WLL2 = WLL
while len(WLL2) != 0:

© 2022 José W. Velázquez Santiago
132/136

element = WLL2[0]
c = [index for (index, element) in enumerate(WLL) if element == WLL2[0]]
for i in c:

print(list(DSL[i]), end = "")
print(" - ",WLL2[0], " - ", len(WLL2[0]))
WLL2 = [y for y in WLL2 if y != WLL2[0]]

Algorithm 16. def DsetClassification(m,DS):
GL = []
KL = []
t = (m-1)/(2)
n = 2̂ m− 1
DSL = []
for i in range(1,m):

GL.append(CycloRep((2̂ i + 1)%(n),n))
KL.append(CycloRep((2̂ (2*i) - 2̂ i + 1)%(n),n))

if m%2 == 1:
WL = [CycloRep((2̂ (t) + 3)%(n),n)]
InL = [CycloRep((2̂ m - 2)%(n),n)]
if (((m - 1))/2)%2 == 0:

NL = [CycloRep((2̂ (t) + 2̂ (t/(2)) - 1)%(n),n)]
else:

NL = [CycloRep((2̂ (t) + 2̂ ((3*(t) + 1)/2) -1)%(n),n)]
if m%5 == 0:

DL = [CycloRep((2̂ (4*t) + 2̂ (3*t) + 2̂ (2*t) + 2̂ (t) - 1)%(n),n)]
print("[1", end = "")
for j in DS[1:]:

j2 = CycloRep(j,n)
print(",", end = "")
if j2 in GL:

print (" Gold ",end = "")
if j2 in KL:

print (" Kasami-Welch ",end = "")
if m%2 == 1:

if j2 in WL:
print (" Welch ",end = "")

if j2 in InL:
print (" Inverse ",end = "")

if j2 in NL:
print (" Niho ",end = "")

if m%5 == 0:
if j2 in DL:

print (" Dobbertin ",end = "")
print("], ", end = ”)

© 2022 José W. Velázquez Santiago
133/136

Algorithm 17. {def makepchkJose(H,d1 = -1, d2 = -1, d3 = - 1, d4 = - 1, d5 =
-1):

l = list(H[:,0])
k = len(l)
r - rank(H)
l2 = list(H[0])
n = len(l2)
m = log(n + 1,2)
t = k/m
print("make-pchk cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) +

"rt", end = "")
D = [1,d1,d2,d3,d4,d5]
for j in range(len(D)):

if D[j] > −1:
print("-"+ str(D[j]) +"",end = "")

print(".pchk "+ str(k) + " " + str(n) + " ", end = "")
for i in range(k):

for j in range(n):
if H[i,j] == 1:

print(str(i) + ":" + str(j) + " ", end = "")
else:

pass }

Algorithm 18. {def makegenJose(m,d1 = -1,d2 = -1,d3 = -1,d4 = -1,d5 = -1):
D = [1,d1,d2,d3,d4,d5]
n = 2̂ m - 1
for j in range(len(D)):

if D[j] == -1:
t = len(D[:j])
break

print("make-gen cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) +
"rt", end = "")

for j in range(len(D)):
if D[j] > -1:

print("-"+ str(D[j]) +"",end = "")
print(".pchk ", end = "")
print("cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt", end

= "")
for j in range(len(D)):

if D[j] > -1:
print("-"+ str(D[j]) +"",end = "")

print(".gen dense ") }

Algorithm 19. {def randsrcJose(m,d1 = -1,d2 = -1,d3 = -1,d4 = -1,d5 = -1):
D = [1,d1,d2,d3,d4,d5]

© 2022 José W. Velázquez Santiago
134/136

n = 2̂ m - 1
for j in range(len(D)):

if D[j] == -1:
t = len(D[:j])
break

k = n - m*t
print("rand-src cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) +

"rt.src 58 " + str(k) + "x" + str(1000)) }

Algorithm 20. {def encJose(m,d1 = -1,d2 = -1,d3 = -1,d4 = -1,d5 = -1):
D = [1,d1,d2,d3,d4,d5]
n = 2̂ m - 1
for j in range(len(D)):

if D[j] == -1:
t = len(D[:j])
break

print("encode cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt",
end = "")

for j in range(len(D)):
if D[j] > -1:

print("-"+ str(D[j]) +"",end = "")
print(".pchk ", end = "")
print("cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt", end

= "")
for j in range(len(D)):

if D[j] > -1:
print("-"+ str(D[j]) +"",end = "")

print(".gen ", end = "")
print("cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt.src ",

end = "")
print("cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt", end

= "")
for j in range(len(D)):

if D[j] > -1:
print("-"+ str(D[j]) +"",end = "")

print(".enc", end = "") }

Algorithm 21. {def transmitJose(m,s,d1 = -1,d2 = -1,d3 = -1,d4 = -1,d5 = -1):
D = [1,d1,d2,d3,d4,d5]
n = 2̂ m− 1
for j in range(len(D)):

if D[j] == -1:
t = len(D[:j])
break

© 2022 José W. Velázquez Santiago
135/136

print("transmit cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) +
"rt", end = "")

for j in range(len(D)):
if D[j] > -1:

print("-"+ str(D[j]) +"",end = "")
print(".enc ", end = "")
print("cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt", end

= "")
for j in range(len(D)):

if D[j] > -1:
print("-"+ str(D[j]) +"",end = "")

print("-" + str(s) + "std.rec 58 awgn " + str(s), end = "") }

Algorithm 22. {def decodeJose(m,s,it,d1 = -1,d2 = -1,d3 = -1,d4 = -1,d5 = -1):
D = [1,d1,d2,d3,d4,d5]
n = 2̂ m− 1
for j in range(len(D)):

if D[j] == -1:
t = len(D[:j])
break

print("decode cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt",
end = "")

for j in range(len(D)):
if D[j] > -1:

print("-"+ str(D[j]) +"",end = "")
print(".pchk ", end = "")
print("cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt", end

= "")
for j in range(len(D)):

if D[j] > -1:
print("-"+ str(D[j]) +"",end = "")

print("-" + str(s) + "std.rec " , end = "")
print("cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt", end

= "")
for j in range(len(D)):

if D[j] > -1:
print("-"+ str(D[j]) +"",end = "")

print("-" + str(s) + "std.dec awgn " +str(s) + " prprp " + str(it)) }

Algorithm 23. {def verifyJose(m,s,d1 = -1,d2 = -1,d3 = -1,d4 = -1,d5 = -1):
D = [1,d1,d2,d3,d4,d5]
n = 2̂ m− 1
for j in range(len(D)):

if D[j] == -1:
t = len(D[:j])

© 2022 José W. Velázquez Santiago
136/136

break
print("verify cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt",

end = "")
for j in range(len(D)):

if D[j] > -1:
print("-"+ str(D[j]) +"",end = "")

print(".pchk ", end = "")
print("cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt", end

= "")
for j in range(len(D)):

if D[j] > -1:
print("-"+ str(D[j]) +"",end = "")

print("-" + str(s) + "std.dec " , end = "")
print("cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt", end

= "")
for j in range(len(D)):

if D[j] > -1:
print("-"+ str(D[j]) +"",end = "")

print(".gen ", end = "")
print("cyclicLDPC-" + str(n)+ "-len-" +str(m)+"-var-" +str(t) + "rt.src")

}

