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Abstract

Our research work is on the construction of new absolute irreducible testing criteria and the
creation of criteria that guarantee the existence of an absolute irreducible factor defined over
Fq and its applications towards the exceptional almost perfect nonlinear (APN) conjecture.

Our results have direct implications and applications to algebraic geometry, algebraic num-
ber theory, coding theory, cryptography, sequence design, exceptional polynomials, finite
geometry and combinatorics, where absolute irreducibility is critical.
We use these new criteria and previous well establish results to solve many pending cases of
the exceptional APN conjecture. We resolved the conjecture completely when the polynomial
degree is Gold, and the second term is an odd degree term. We do this by generalizing a
previous result by Delgado and Janwa. When the degree is Gold, and the second term is an
even degree term, we use a method designed by Delgado and Janwa to prove the conjecture of
all the possible cases with three exceptions. In these three cases, we gave a series of conditions
the polynomials left need to fulfill.

For the Kasami-Welch degree case, first, we extend the criteria for factorization into abso-
lutely irreducible factors for the monomial case. When the degree of the polynomial is a
Kasami-Welch exponent, and the degree of the second term is 1 (mod 4), we generalize a
result by Delgado and Janwa in two different ways. First, we give a bound on the degree of
the second term that allows us to cover more cases than the one of degree 5 (mod 8). Second,
we gave a condition on the Kasami exponent, which allows us to guarantee the existence of
an absolutely irreducible factor defined over Fq. Using a technique similar to the Gold, we
manage to provide an upper bound on the multiplicity of the point {(1, 1, 1)} for the second
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term. If this bound is not met, then we can guarantee the existence of an absolutely irre-
ducible factor defined over Fq. Using this bound, we can partially prove the conjecture when
the second term has an even degree. For the even degree case, we provide a characterization

of the factorization for an infinite family of cases. We also give a conditional proof for the
general case. Using this characterization and the results of Caullery and Rodier, for the case,
when the degree of the polynomial is 4e, when e is a Gold or Kasami-Welch exponent, we
prove that under a certain condition in the second term, the polynomial is not exceptional
APN.
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LIST OF SYMBOLS

N set of natural numbers

Z set of integer numbers

Fpn , GF (pn) field of order pn

F∗pn multiplicative group (without the zero element)

R[X] a ring of polynomials in the variable X with coefficients in a ring
R

R[X1, . . . , Xn] a ring of multivariate polynomials in the variablesX1, . . . , Xn

with coefficients in a ring R

νp(G) multiplicity of a p[oint p of a Multivariate polynomial G

Gal(Fqr/Fq), the Galois group of Fqr associated with Fq
m(G), the minimal extension in which G factors into absolutely
irreducible components

APN almost prefect nonlinear function

EAPN exceptional almost prefect nonlinear

(a,b) greatest common divisor of a and b

TG the tangent cone of G at 0

tG the first cone of G

DG(F ) the degree-gap of F (X)

X represent the variables X1, . . . , Xn

bac the floor of a

φf (X, Y, Z) the polynomial φ(X, Y, Z) =
f(X) + f(Y ) + f(Z) + f(X + Y + Z)

(X + Y )(Y + Z)(X + Z)
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1. Introduction

Finite Fields were discovered by Evariste Galois and are usually referred to as Galois fields.
During this thesis, every field we consider will be a finite field except is stated otherwise.
Let F be any finite field, then F[X] is the polynomial ring in X with coefficients in F. Let
p(X) ∈ F[X] be an irreducible polynomial over Fq, then it is well known that the ideal
< p(X) > is an irreducible ideal and hence a maximal ideal in this principal ideal domain.
Therefore, the resulting quotient ring F[X]/ < p(X) > is a finite field of degree extension
deg(p(X)). Specifically, if p(X) is an irreducible polynomial of degree n in F[X] and the
order of F is q, then ff [X]/ < p(X) > is a finite field of order qn. The resulting field is the
field of polynomials modulo p(X) of degree less than n with coefficients in F. This field is
also represented as F[α], where α is any root of p(X). It is well known that every finite field
has order pn, where p is a prime number and it is the characteristic of the field. We denote
the finite field of q elements by Fq or GF (q). By Galois Theory, finite fields are unique up
to isomorphisms, namely the splitting fields of separable polynomial Xqn − x over the finite
field Fq.
The order of an element α in the multiplicative group of nonzero elements of Fq, is the
smallest positive integer l such that αl = 1. Fq always contains at least one element of order
q − 1, any such element is called a primitive element. Given a finite field Fq, and an integer
n > 1, we can always find a finite field (Fqn) with qn elements, this field is known as the
extension of Fq of degree n. We can define a map σ : Fqn → Fqn by σ(x) = xq, with the
property that for every element a ∈ Fq, we have that σ(a) = a (that is, it fixes Fq pointwise),
and is also a linear map. This map is known as the Frobenius automorphism. We can show
that the Galois group Gal(Fqn/Fq) is the group of automorphism of Fqn such that Fq is fixed.
It turns out this group is generated by the Frobenius automorphism i.e. the group is cyclic
of order n.

Example 1. Let F4 = {0, 1, α, α2} is the group of order 4 of characteristic 2. Then the map
σ : F4 → F4 defined by σ(x) = x2 is the Frobenius automorphism and the generator of the
group Gal(F4/F2) =< σ >.

1.1. Algebraic Geometry. We present a background on the algebraic geometry results
that is used in this thesis. For a more comprehensive and detail study of the subject we refer
to Fulton [27], Shafarevich [49], and Hartshorne [30].

Definition 1. Let G ∈ Fq[X1, . . . , Xn], and P ∈ Fnq . Then we called P a rational point if
G(P ) = 0. If G is a not a constant, the set of rational points of G is called the hypersurface
defined by G. A hypersurface in F2

q is called an affine plane curve.

Every irreducible factor of G is called a component. We can classify the rational points of
a hypersurface and assign them a multiplicity. Later in chapter 2, we will use the multiplicity
of rational points to create absolutely irreducible criteria.
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Definition 2 (Fulton [27]). Let f(X1, . . . , Xn) ∈ Fq[X1, . . . , Xn]. A point a = (a1, . . . , an)

on f is singular if δf
δx1

(a) = · · · = δf
δxn

(a) = 0. The multiplicity of a on f , denoted νa(f), is
the smallest degree term with nonzero coefficients in F (X) = f(X−a). Any point o a curve
will have multiplicity at least 1, while a singular point has multiplicity at least 2. Define
T (F ) to be the homogeneous polynomial composed of the terms of degree νa(f) in F . Then
T (F ) is called the tangent cone of F at a and the tangent lines to f at a are the factors of
T (F ).

Let G(X) ∈ Fq[X1, . . . , Xn] and a ∈ Fnq we will denote by νa(G) be the multiplicity of a.
We can establish the following properties.

Lemma 1. Let G(X), F (X) ∈ Fq[X1, . . . , Xn] and a ∈ Fnq . Then the we have the following
(1) νa(FG) = νa(F ) + νa(G),
(2) νa(F +G) ≥ min(νa(F ), νa(G)).

Definition 3. Let G(X) ∈ Fq[X1, . . . , Xn], such that every rational point of the hypersurface
obtained by G has multiplicity 1. Then G(X) is called a non-singular polynomial, otherwise
we called G(X) a singular polynomial.

Proposition 1 (Fulton [27]). Let H be a hypersurface and let P be a singular point of H,
then νP (H) > 1.

Proposition 2 (Fulton [27]). Let H be a hypersurface and let P be a simple point of H,
then νP (H) = 1.

Definition 4. Let G(X) ∈ Fq[X1, . . . , Xn] be a polynomial in which every term has the
same degree d. We called G(X) a homogeneous polynomial or form of degree d.

The following definition will be important in chapter 2. We will put conditions sufficient
conditions on the tangent cone to guarantee that a polynomial has an absolutely irreducible
factor defined over Fq.

Definition 5. Let G(X) ∈ Fq[X1, . . . , Xn] and let P ∈ Fnq . Let G(X− P ) = Gd(X) + · · ·+
Ge(X), be the degree-decreasing order, where Gi(X) is either a homogeneous polynomial
of degree i or 0. We called Ge(X) the tangent cone of G(X) at P . If P is not specified is
assumed to be the point 0.

We will denote the tangent cone of a polynomial G at P by TP (G). If no point P is
specified we will assume is 0.

Example 2. Let G(X, Y ) = X2 + Y 2 ∈ F4[X, Y ]. Then the hypersurface obtain by G is
given by {(0, 0), (1, 1), (α, α), (α + 1, α + 1)}.
Example 3. Let G(x) = x2 + y3 ∈ F2[X, Y ]. Then ν(0,0)(G) = 2, that is (0, 0) is a singular
point. the point (1, 1) is a simple point since ν(1,1)(G) = 1.

Example 4. The polynomial from Example 2 is nonsingular, while the polynomial from
Example 3 is singular.

Example 5. Let G(X, Y ) = X2+Y 2 ∈ Fq[X, Y ], then G(X, Y ) is a homogeneous polynomial
of degree 2.
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Let Fq is an algebraically closed field. Let F,G be plane curves and let P ∈ F2
q. We

will denote the intersection number of F and G at P by I(P, F ∩ G). We say that F and
G intersect properly at P if F and G have no common components that pass through P.
Two curves F and G intersect transversally at P if P is a simple point on both F and G
with different tangent lines from F and G. We require the intersection number to have the
following properties.

(1) I(P, F ∩G) is a nonnegative integer for any F , G and P given that F and G intersect
properly at P . Otherwise if they do not intersect properly at P we have I(P, F ∩G) =
∞.

(2) I(P, F ∩G) = 0 if and only if P /∈ F ∩G. I(P, F ∩G) depends only on the components
of F and G that pass through P . Moreover I(P, F ∩ G) = 0 if either F or G is a
nonzero constant.

(3) The intersection number is invariant under affine change of coordinate in the following
sense. If T is an affine change of coordinates on A2, and T (Q) = P , then I(P, F∩G) =
I(Q,F T ∩GT ).

(4) I(P, F ∩G) = I(P,G ∩ F ) (symmetric).
(5) I(P, F ∩G) ≥ mp(F )mp(G) with equality occurring if and only if F and G have no

tangent lines in common at P .
(6) If F =

∏
F ri
i and G =

∏
G
sj
j , then I(P, F ∩G) =

∑
i,j risjI(P, Fi ∩Gj).

(7) If F is irreducible, I(P, F ∩G) should depend only on the image of G in Γ(F ). Which
is equivalent to I(P, F ∩G) = I(P, F ∩ (G+ AF )) for any A ∈ k[X, Y ].

The following theorem defines the intersection number.

Theorem 1. There is a unique intersection number I(P, F ∩G) defined for all plane curves
F,G, and all points P ∈ A2, satisfying the previous seven properties. Moreover, this number
is given by the formula

I(P, F ∩G) = dimk(OP (A2)/(F,G)).

One can also prove teo more properties about the intersection number.
(8) If P is a simple point then I(P, F ∩G) = ordFp (G).
(9) If F,G have no common components then∑

P I(P, F ∩G) = dimk(k[x, y]/(F,G)).
Remark: This properties can be extended to include projective plane curves.
The following theorem has great importance in analysing singularities and points in common
between two projective plane curves. Janwa, Wilson, and McGuire [35] used the following
theorem to give an algorithm to test absolute irreducibility.

Theorem 2 (Bezout’s Theorem [27]). Let F and G be absolutely irreducible projective
plane curves of degree m and n respectively. Assume F and G have no common component.
Then ∑

P I(P, F ∩G) = mn.

1.2. Absolutely Irreducible Criteria.
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Definition 6. Let G(X) ∈ Fq[X1, . . . , Xn] be a non-constant multivariate polynomial. We
say G(X) is absolutely irreducible if G(X) is irreducible over Fq, where Fq is the algebraic
closure of Fq.

Finding Criteria to test whether or not a polynomial is an absolutely irreducible is a
very complex problem in mathematics. There only exists a few criteria in the literature
that can be applied to any polynomial. Many times we only need that the polynomial
g(X) ∈ Fq[X1, . . . , Xn] contain an absolutely irreducible factor defined over Fq. There exist
many criteria that guarantee the existence of an absolutely irreducible factor defined over
Fq. Later in chapter 2, we will present new criteria to guarantee the existence of absolutely
irreducible factors defined over Fq. Absolute irreducibility have applications in many areas of
mathematics; for example, finite geometry [32, 33], combinatorics [53], algebraic-geometric
codes [52], permutation polynomials [42], function field sieve [1], coding theory [34], cryp-
tography [34] and algebraic geometry [30].

For polynomials in 1 variable, we have a well-known test for irreducibility given by Eisen-
stein [22].

Theorem 3 (Eisenstein’s Criterion 1850). Let R be a unique factorization domain and let
f = f0 + f1x+ · · ·+ fnx

n ∈ R[x], where f0, fn 6= 0. If there is a prime p ∈ R such that all the
coefficients except fn of f are divisible by p but f0 is not divisible by p2 then f is irreducible
over the fraction field of R.

This theorem can be generalized to multiple variables. The following two theorem are
generalizations due to Dumas [20] and Wan [54].

Theorem 4 (Eisenstein-Dumas Criterion). Let R be a unique factorization domain and let
f = f0 + f1x+ · · ·+ fnx

n ∈ R[x], where f0, fn 6= 0. Assume that f is primitive; i.e. f0, . . . , fn
have no common factor in R. If the Newton polygon of f with respect to some prime p ∈ R
consists of the only line segment from (0,m) to (n, 0) and (n,m) = 1 then f is irreducible
in R[X]

This theorem can be generalized into another context such as local fields or fields with
valuations [7, 38, 43].

Theorem 5 (Special Case of Eisenstein-Dumas Criterion). Let F be any field and let f =
f0(y) + f1(y)x + · · · + fn(y)xn ∈ F[x, y]. Assume that f0(y) 6= 0 and fn(y) is a nonzero
constant in F. If the Newton polygon of f has only one line segment from (0,m) to (n, 0)
and (n,m) = 1 then f is absolutely irreducible over F.

The following criterion to test absolute irreducibility is due to Stepanov and Schmidt
[48, 50, 51].

Theorem 6 (Stepanov-Schmidt Criterion). Let F be a field and let f ∈ F[x, y] with degree
n in X. If the upper Netwon polygon of f with respect to y has only one line segment from
(0,m) to (n, 0) and (n,m) = 1, then f is absolutely irreducible over F.

These methods using the Newton polygon has been generalized to Newton Polytopes by
Gao in [28] obtaining the following two absolute irreducibility criterion.
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Theorem 7 (Gao 2001 [28]). Let f = g(X) + h(X1, . . . , Xn), where g ∈ F[X] of degree r
and h ∈ F[X1, . . . , Xn] of total degree m. If (r,m) = 1, then f is absolutely irreducible over
F.

Theorem 8 (Gao 2001 [28]). Let f = aXm + byn +
∑
cijX

iY j ∈ F[X, Y ] with a, b 6= 0 and
(i, j) different from (m, 0), (0, n). Suppose that the Newton polytope of f is contained in the
triangle with vertices (m, 0), (0, n) and (u, v) for some point (u, v) ∈ R2. If (m,n) = 1, then
f is absolutely irreducible over F.

One can use algebraic geometry to create many absolute irreducibility testing criteria. The
following two criteria are well-known results.

Theorem 9. Let F (X) ∈ Fq[X] be a non constant polynomial. If F (X) is non singular then
F (X) is absolutely irreducible.

Theorem 10. Let F (X) ∈ Fq[X] be a non constant polynomial and F (X) = Fd(X) + · · ·+
F0(X), where Fi(X) is a form of degree i or 0. If Fd(X) is absolutely irreducible then F (X)
is absolutely irreducible.

The following lemma is proven in [14]. Later in Chapter 2 in Lemma 18 we generalize
Lemma 2 by lower the condition of relatively primeness of the highest degree two nonzero
homogeneous polynomials to the relative primeness of all the nonzero homogeneous poly-
nomials. We also generalized for polynomials in several variables. This generalization will
then prove all the exceptions left in the Gold degree case when the second-highest degree is
congruent with 1 (mod 4).

Lemma 2. [Delgado and Janwa [14]] Let K be a field. Let G(X, Y, Z) ∈ K[X, Y, Z] be a
polynomial whose graded homogeneous representation is: G = Gb +Ga + · · ·+G0, where Gi

is 0 or homogeneous of degree i ∈ {0, . . . , b}. We also assume that b > 2a and that Gb factors
into distinct irreducible factors over K and (Ga, Gb) = 1. Then, G is absolutely irreducible.

One can also test absolute irreducibility by using Noether irreducibility forms [37].
Janwa and Wilson [34] and Janwa, McGuire and Wilson [35] introduce the algorithm 1.

This is one of the most powerful tools to test the absolute irreducibility of polynomials of sev-
eral variables. This algorithm is quite powerful and valuable since it is one of the few criteria
that can be used for arbitrary polynomials. The algorithm is based on intersection theory,
singularity analysis by using Bezout’s Theorem. The main problem with this algorithm is
that finding all the singularities for many polynomials is quite difficult and computationally
exhaustive.

Algorithm 1. [Janwa and Wilson [34], Janwa, McGuire and Wilson [35]] Let F (X, Y, Z) ∈
K[X, Y, Z], where K is an arbitrary field.

1. Assume F (X, Y, Z) factors as P (X, Y, Z)Q(X, Y, Z).
2. Compute and classify multiplicities of each singular point.
3. Find intersection multiplicities.
4. If the sum of intersection multiplicities exceeds that predicted by Bezout’s theorem,

then factorization can not occur.
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For many applications we do not need to prove the whole polynomial is absolutely irre-
ducible, instead it is enough to show the existence of an absolutely irreducible factor defined
over the same field as the polynomial. For example, in the Segre Bartocci conjecture re-
garding exceptional hyperovals, Hernando and McGuire show that if a specific polynomial
contains an absolutely irreducible factor, its corresponding hyperoval can not be exceptional
hyperoval [32]. Using Algorithm 1 Hernando and Mcguire show that apart from the excep-
tions every polynomial associate with the hyperoval has an absolutely irreducible factor, and
thus, they prove the conjecture [32]. Similarly, Jedlicka [36], and Hernando and McGuire [31]
use Algorithm 1 to prove the Exceptional APN conjecture for monomials.

In 2010 Aubry, McGuire, and Rodier [2] using intersection analysis gave the following
criteria to determine the existence of an absolutely irreducible factor.
Let X be a hypersurface in three variables and let X be its projective closure.

Lemma 3. [2] Let H be a projective hypersurface in P3. If X ∩H is a reduced absolutely
irreducible curve, then X is absolutely irreducible.

The following lemma gave conditions to guarantee the existence of an absolutely irreducible
factor.

Lemma 4. [2] Let H be a projective hypersurface. If X ∩ H has a reduced absolutely
irreducible factor defined over Fq then X contains an absolutely irreducible factor defined
over Fq.

Recently Bartoli and Schmidt [3] have proved the lemma below. In chapter 2 we generalized
this lemma in two different ways. We generalize to several variables and for reduced absolutely
irreducible factors rather than linear factors. Moreover, we create new criteria by changing
the conditions of Lemma 5 to obtain many new criteria, including absolute irreducibility
criteria. Furthermore, we gave a construction we will call the first cone, which has similar
properties to the ones of the tangent cone. We present analog theorems to the tangent cone
criteria by using the first cone.

Lemma 5. [3] Let H ∈ Fq[x, y] and suppose that the tangent cone of H contains a reduced
linear factor over Fq. Then H has an absolutely irreducible factor defined over Fq.

The following results regarding the factorization of a polynomial are important. In Chapter
2, we present an improvement of this result. The following lemma will play an important
role in chapters 3 and 4.

Lemma 6. [39] Suppose p(X) ∈ Fq[X1, . . . , Xn] is of degree d and is irreducible in Fq[X1, . . . , Xn].
Then there exists r with r | d and an absolutely irreducible polynomial h(X) ∈ Fqr [X1, . . . , Xn]
of degree d/r such that

p(X) = c
∏
σ∈G

σ(h(X))

where G = Gal(Fqr/Fq) and c ∈ Fq. Furthermore, if p(X) is homogeneous, then so is h(X).

For a computational approach to factor into absolutely irreducible factors, we refer to the
Lenstra algorithm [41].
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1.3. Almost Perfect Nonlinear Conjecture. One can obtain the definition of almost
perfect nonlinear functions by different areas of mathematics. The following construction is
obtained by cryptography. The differential cryptanalysis is an attack invented by Biham and
Shamir in 1991 [4] which exploit the symmetries of the difference and the fact that some
difference occurs with high probability. Precisely, differential cryptanalysis is an iterative
process that can summarize as follows. Let consider an r-round, symmetric block cipher. We
can summarize the differential cryptanalysis as follows [40] :

(1) Find a differential (α, β) such that P (∆X = α|∆X(r−1) = β) with high probability.
(2) Choose a random plaintext x and compute x∗ such that ∆X = α Now encrypt x,

x∗ (under the secret key) and obtain the outputs y and y*. Now using the expected
difference in the (r−1)-round and partially decrypting predict some of the key values.

(3) Repeat this process until some key values occur with a great frequency. Take these
values as the values of the key.

A natural way to make a cryptographic system that is resistant to this type of attack is
to make sure every difference occurs with low probability. This motivates the definition of a
δ-uniform function. For the rest of the document let L = F2k .

Definition 7. A function f : F2k → F2k is δ-uniform if for every a ∈ F2k , a 6= 0, then the
equation f(x+ a) + f(x) = b has at most δ solutions for every b ∈ F2k .

If a function is 2-uniform then it is called an almost perfect nonlinear (APN). More for-
mally:

Definition 8. Let f : Fq → Fq. We say that f is an Almost Perfect Nonlinear Function if
for every a, b ∈ Fq, a 6= 0 the equation

f(x+ a)− f(X) = b

has at most 2 solutions.

Example 6. Consider the function f : F23 → F23 define by f(x) = x3. Then f(x) is APN.

Notice that if x is a solution of the equation f(x + a) + f(x) = b, then x + a is also a
solution, so the solutions come in pairs. In this sense, APN functions minimize the probability
of success of the differential cryptanalysis.

We can also derive the concept of APN function using code theory. Lets start by recalling
the Hamming codes are [2m, 2m − 1 − m, 3] codes. Let Hm := [h1, h2, . . . , h2m−1] where
hi ∈ Fn2 −{0} where n = 2m. Now we can think Fn2 as a vector space over F2 with dimension
m. Also we can think on it as the extension field F2 given by the following quotient F2[x] xn−x
give us an extension of F2 in which the polynomial xn−x = x(xn−1−1) split completely (i.e.
every root of this polynomial is an element of the field). The following theorem is a classical
theorem in algebra that state a relation between every nonzero element.

Theorem 11. Let K be a finite field then (K×, ∗, 1) is a cyclic group.

By using this theorem we can express Fm2 − {0} as < α > where α ∈ Fm2 and α is a
generator of ffm2 − {0}.

Let H = [α0, α, α2, . . . α2m−2], α2m−1 = 1 = α0. Now we can define the hamming code:
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CHm := {x|Hmx = 0}
i.e. x ∈ CHm if

∑2m−2
i=0 xiα

i = 0. Let f(x) = sum2m−2
i=0 xix

i. So f(α) = 0. Notice that
0 = f(α) = sum2m−2

i=0 xiα
i. Now if we multiply by α we obtain

0 = 0 · α = α · f(α) =
2m−2∑
i=0

xiα
i+1

= x0α + x1α
2 + · · ·+ x2m−3α

2m−2 + x2m−2α
2m−1

Therefore, (x2m−2), x0, x1, . . . , x2m−2) ∈ CHm. A code with this property that if x is a solution
then all the solutions are shift of this element is called a cyclic code. Now given a cyclic code
C we can try to obtain a new code by adding more rows to increase the minimum distance
and hence it can correct more errors. Consider the matrix analyze previously Hm and add
extended as follows: Let

H =

(
α0 α α2 . . . α2m−2

α0t αt α2t . . . α(2m−2)t

)
.

Now consider the code CH = {x|Hxt = 0} and let x = [0, 0, . . . , 1, 0, 0, . . . , 1, 0,
. . . , 1, 0, . . . , 1, 0, . . . , 0] be the vector with nonzero coordinates in the 0 ≤ i, j, k, l ≤ 2m − 2
position. Now Hxt give us the following system of equations:

[
αi + αj + αk + αl = 0
αit + αjt + αkt + αlt = 0

]
If 4 columns are linearly independent then the code CH has minimum distance dmin(CH) ≥

5. Lets see an example,

Example 7. Let t = 3 and (m, t) = 1 then we obtain the following matrix:

H =

(
α0 α α2 . . . α2m−2

α0 α3 α6 . . . α(2m−2)3

)
.

Let x be the mentioned vector and denote xi = αi, xj = αj, xk = αk, and xl = αl. So we
obtained the following system of equation:

[
xi + xj + xk + xl = 0
x3i + x3j + x3k + x3l = 0

]
We can extend this system and create the following system of equation. Let first

Vm =


xi xj xk xl
x2i x2j x2K x2l
x3i x3j x3k x3l
x4i x4J x4k x4l
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then the system can be express as Vm ∗1 = 0 where 1 is the vector with all entries equal to 1.
Now notice that Vm is a Vandermonde matrix so is invertible if xi 6= xj for i 6= j. Therefore,
the columns Vm are linearly independent and 4 columns of H are linearly independent. This
implies that distance of CH ≥ 5.

Now a function that extend the minimum distance of the code to 5 is APN.

Definition 9. A function f : F2k → F2k is APN if the cyclic codes C(t)
s generated by f has

a minimum distance 5.

The definition of an almost perfect nonlinear function can be derived also from algebraic
geometry. The following proposition gives another characterization of these functions.

Proposition 3 (Rodier [46]). A function f : Fq → Fq is APN if and only if the rational
points fq of the affine surface

f(X) + f(y) + f(z) + f(x+ y + z) = 0

are contained in the surface (x+ y)(x+ z)(y + z) = 0.

Almost perfect nonlinear property is invariant under certain transformations. This allows
us to define equivalence classes. The following three are the equivalence transformation. The
last transformation is the most general one and includes the other two.

Definition 10. A polynomial in F2m [x] of the form

L(x) =
∑
i

cix
2i

is called a linearized polynomial. The addition of a linearized polynomial and a constant
term is called an affine polynomial. A linearized (resp. affine) polynomial which defines a
permutation over F2m is called a linear (resp. affine) permutation.

Proposition 4. Let A(x) be affine polynomial and f(x) be a APN polynomial in F2m [x],
then f(x) + A(x) is APN over F2m [x].

Proposition 5. Let A1(x) and A2(x) be affine permutations, A(x) be an affine polynomial
and f(x) be an APN polynomial in F2m [x]. The polynomial

A1 ◦ f ◦ A2(x) + A(x)

is APN over F2m [x].

The last equivalence was introduced by Carlet, Charpin, and Zinoviev [6] and it includes
the previous equivalences.

Proposition 6 (Carlet, Charpin and Zinoviev [6]). Let f and g be two polynomials in Fq[x].
Suppose there exists a linear permutation L : Fq → Fq between the sets {(x, f(x))|x ∈ Fq}
and {x, g(x))|x ∈ Fq}. Then f is APN if and only if g is APN.

Finding functions that are APN is not an easy task and is a good research problem the
following table summarize the known APN monomial functions.
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f(x) = xd Exponent d Constraints References
Gold 2r + 1 (r, n) = 1 [45]

Kasami-Welch 22r − 2r + 1 (r, n) = 1 [34]
Welch 2r + 3 n = 2r + 1 [18]
Niho 2r + 2r/2 − 1 n = 2r + 1, r even [17]

2r + 2(3r+1)/2 − 1 n = 2r + 1, r odd
Inverse 22r − 1 n = 2r + 1

Dobbertin 24r + 23r + 22r + 2r − 1 n = 5r [19]

Table 1. Monomial APN functions

It is conjectured that these are the only monomial up to equivalence that is APN functions.
Until 2006 this was the only APN function that is known up to equivalence. In this year
Y.Edel, G.Kyureghyan, and A.Pott discover the first APN polynomial function that is not
equivalent to any APN monomial [21]. Since then, the researcher has found many APN
polynomial functions. A similar list of known families of polynomials that are APN is given
in [29] (see table 2). Now let’s define what is an exceptional APN function. For a good survey
on APN function see [29], and see [5] for a good survey on cryptography and APN functions.

f(x) Constraints
x2

s+1 + a2
t−1x2

it+2rt+s
n = 3t, (t, 3) = (s, 3t) = 1, t ≥ 3

i ≡ st (mod 3), r = 3− i, a is primitive in L
x2

s+1 + a2
t−1x2

it+2rt+s
n = 4t, (t, 2) = (s, 2t) = 1, t ≥ 3

i ≡ st (mod 4), r = 4− i, a is primitive in L
ax2

s+1 + a2
m
x2

m+s+2m + bx2
m+1+ n = 2m, m odd cj ∈ F2m , (s,m) = 1, s odd∑m−1

j=1 cjx
2m+i+2i a, b are primitive in L

ax2
n−t+2t+s

+ a2
t
x2

s+1
+ bx2

n−t+1 n = 3t, (s, 3t) = 1, (3, t) = 1, 3|(t+ s)
a es primitive en L, b ∈ F2t

a2
t
x2

n−t+2t+s
+ ax2

s+1
+ bx2

n−t+1 n = 3t, (s, 3t) = 1, (3, t) = 1, 3|(t+ s)
a es primitive en L, b ∈ F2t

a2
t
x2

n−t+2t+s
+ ax2

s+1
+ bx2

n−t+1+ n = 3t, (s, 3t) = 1, (3, t) = 1, 3|(t+ s)

ca2
t+1x2

t+s+2s a es primitive en L, b, c ∈ F2t , bc 6= 1

x2
2k+2k + bxq+1 + cxq(2

2k+2k) n = 2m, m odd, c a power of (q − s)
but no a power of (q − 1)(2i + 1), cbq + b 6= 0

x3 + trn1 (x
9)

x2
k+1 + trnm(x)

2k+1 n = 2m = 4t, (n, k) = 1

Table 2. Nonmonomial APN functions

Definition 11. A polynomial function f : L → L is an exceptional APN if f is APN over
L and on infinitely many extensions of L.

Notice that Gold and Kasami-Welch monomials are exceptional APN.
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Example 8. Let f(x) = x13 ∈ F23 . Now we have 13 = 22(2)−22+1 and (2, 3) = 1. Therefore,
f(x) is APN over F23 . Moreover, f(x) is also APN over any odd extension of F23 , thus f(x)
is APN in infinitely many extension. Hence, f(x) is exceptional APN.

Janwa and Wilson [34] characterize the exceptional almost perfect nonlinear monomials
using algebraic geometry. Later in 2009 Rodier in [46] gave a characterization of APN and
Exceptional APN functions. For any f(x) ∈ Fq[x], we define

φf (X, Y, Z) =
f(X) + f(y) + f(z) + f(x+ y + z)

(x+ y)(x+ z)(y + z)
.

If deg(f) = d and d is not a power of two then φf (X, Y, Z) has degree d−3. For convenience
if f(X) = X t we will denote φf (X, Y, Z) by φt(X, Y, Z). Notice that if every f(X) = a

or f(X) = aiX
2i , (a, ai ∈ Fq) then there corresponding φf (X, Y, Z) = 0. Now for every

f(X) ∈ Fq[x] of degree d we have

φf (X, Y, Z) =
d∑
i=3

aiφi(X, Y, Z).

The following theorem characterizes the Exceptional APN functions.

Theorem 12. [46] Let f : Fq → Fq a polynomial function of degree d. Suppose that the
surface X of affine equation

f(X) + f(y) + f(z) + f(x+ y + z)

(x+ y)(x+ z)(y + z)
= 0

is absolutely irreducible (or has an absolutely irreducible factor defined over L) and d ≥ 9,
d < 0.45q1/4 + 0.5, then f is not an APN function.

Using this theorem is easy to prove that it is enough to satisfy the following condition to not
be an APN function.

Corollary 1. If φf (X, Y, Z) is absolutely irreducible or contain an absolutely irreducible
factor different from (x+ y), (x+ z), (y + z), then f is not exceptional APN.

In 2009 Hernando and Mcguire stated the next conjecture. In the next subsections, we
will detail all the known results regarding the exceptional APN conjecture.

Exceptional APN conjecture [31]. The only exceptional APN functions up to equivalence
are the Kasami-Welch and Gold monomials.

1.3.1. Monomial Case. Consider f(x) = xn, if n is even then f(x) is CCZ equivalent to a
monomial xn′ , where n′ is an odd number. To be precise, n = 2an′. So it is enough to work
only with the monomials of odd degree. If f(x) is linear then it is clear by the definition
that f(x) is not APN. It is well known that X2n+1 (Gold) and X4n−2n+1 (Kasami-Welch)
are APN in F2m whenever (n,m) = 1. Therefore, both are exceptional APN over ff2. Janwa
and Wilson [34] prove the following factorization for their corresponding surfaces φ(X, Y, Z).
For the Gold Case we have that

φ2n+1(X, Y, Z) =
∏

α∈F2n−F2

(x+ αy + (α + 1)z) (1)
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while for the Kasami Welch case we have
φ22n−2n+1(X, Y, Z) =

∏
α∈F2n−F2

pα(X, Y, Z), (2)

where Pα(X, Y, Z) is an absolutely irreducible polynomial of degree 2k + 1, defined over F2k

and Pα(X, 0, 1) = (X + α)2
k+1.

The next two results characterize the multiplicity of (1, 1, 1) in the absolutely irreducible
factors of the Gold and Kasami-Welch cases respectively. This will be important in Chapter
3 and Chapter 4 in the proofs of new cases of the exceptional APN conjecture.

Lemma 7. [Janwa and Wilson [34]] In the absolutely irreducible factorization of Equation
1, the component (X+αY +(α+1)Z), α ∈ F2k−F2, we have ν(1,1,1)((X+αY +(α+1)Z) = 1
for every α ∈ F2k − F2.

Lemma 8. [Delgado and Janwa, [12]] In the absolutely irreducible factorization of Equation
2, the components Pα(X, Y, Z), α ∈ F2k − F2, intercept transversally at p = (1, 1, 1).

This lemma implies directly that ν(1,1,1)(Pα) = 1, for every α ∈ F2k − F2.
Aubry McGuire and Rodier prove the following result.

Lemma 9. If d is an odd integer, then (X + Y )(Y + Z)(X + Z) - φd(X + Y + Z).

We also have the following characterization of the factorization when d is even. Suppose
d = 2me, where e is an odd number, then we have

φ2me(X, Y, Z) = φ2m−1
6 (X, Y, Z)φ2m

e (X, Y, Z), (3)

where φ6(X, Y, Z) = (X+Y )(Y +Z)(X+Z). The following lemmas regarding the relatively
prime between two different factor as well as the resulting polynomial obtained after intersect
φd(X, Y, Z) with the hyperplane Y = Z are important results.

Lemma 10 ([13]). For an integer k > 1, let l = 2k + 1, m = 22k − 2k + 1 and n = 2k + 3 be
Gold, Kasami-Welch and Welch numbers, respectively. Then (φl, φm) = 1, (φl, φn) = 1, and
(φm, φn) = 1. Also:

a) If l1 = 2k1 + 1 and l2 = 2k2 + 1 are two different Gold numbers such that (k1, k2) = 1,
then (φl1 , φl2) = 1.

b) (φm1 , φm2) = 1 for different Kasami-Welch numbers m1 and m2.
c) (φn1 , φn2) = 1 for different Welch numbers n1 and n2.

Later Delgado and Janwa using an affine transformation manage to prove that φ2k+1 is
relatively prime with φd, d odd whenever d is not a Gold or a Gold satisfying the previous
lemma [13].

Theorem 13. [Delgado and Janwa [13]] If d is an odd integer, then φ2k+1 and φd are relatively
prime for all k ≥ 1 except when d = 2l + 1 and (l, k) > 1.

The following Lemma characterizes the intersection of the surface φ(X, Y, Z) with the
plane Y = Z.
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Lemma 11. [Delgado and Janwa [15]] Let φn(X, Y, Z) ∈ F2[X, Y, Z]. Then
a) For n = 2k + 1 > 3, φn(X, Y, Y ) = (X + Y )2

k−2.
b) For n ≡ 3 (mod 4) > 3, φn(X, Y, Y ) = R(X, Y ) such that X + Y does not divides

R(X, Y ).
c) For n ≡ 1 (mod 4) > 5, φn(X, Y, Y ) = (X + Y )2

l−2S(X, Y ), such that X + Y does
not divides S(X, Y ), where n = 1 + 2lm, and m > 1 is an odd number.

Janwa and Wilson [34] also show the following results:

Theorem 14 (Janwa and Wilson [34]). Suppose that t ≡ 3 (mod 4), say t = 2l, with l
an odd integer. If the maximal cyclic code Bi of length l has no codewords of weight 4, in
particular if the minimum distance of Bl is at least 5, then the curve defined by φt(X, Y, Z)
is a nonsingular curve. Hence, φt(X, Y, Z) is absolutely irreducible.

The following two corollaries are a direct consequence of the previous theorem.

Corollary 2 (Janwa and Wilson [34]). The curve φt(X, Y, Z) is nonsingular for those values
of t = 2l + 1, where l is an odd integer such that 2r ≡ −1 (mod l) for some r.

Corollary 3 (Janwa and Wilson [34]). The curve φt(X, Y, Z) is nonsingular for those values
of t = 2l + 1, where l is a prime ≥ 17 such that the order of 2 modulo l is (l − 1)/2.

Janwa and Wilson also show the following key result.

Lemma 12. [Janwa and Wilson [34]] If t ≡ 3 (mod 4), then (1, 1, 1) is not a rational point
of the curve given by φt(X, Y, Z).

This theorem implies that ν(1,1,1)(φt) = 0 if t ≡ 3 (mod 4). This will be important in
Chapter 3, 4, and 5.

Later in 1995 Janwa, McGuire, and Wilson in [35] extend the results obtained by Janwa
and Wilson in 1993.

Theorem 15 (Janwa, McGuire and Wilson [35]). If t ≡ 3 (mod 4), t > 3, then φt(X, Y, Z)
is absolutely irreducible.

Theorem 16 (Janwa, McGuire and Wilson [35]). Suppose that t ≡ 5 (mod 8), t > 13 and
that the maximal cyclic code Bl has no codewords of weight 4. Then φt(X, Y, Z) is absolutely
irreducible.

Ferard in the next theorem provides other criteria for the case when t ≡ 5 (mod 8) to
guarantee that φt(X, Y, Z) is absolutely irreducible.

Theorem 17 (Ferard [24]). Let l be an odd integer, l ≥ 7, t = 4l + 1 and φt(x, y, 1) as
in equation. We assume that there are no points (x, y) ∈ (F2)

2 which satisfy the following
system 

x 6= 1, y 6= 1, x 6= y

xl = 1, yl = 1, (x+ y + 1)l = 1

φ13(x, y) = 0

Then the polynomial φt is absolutely irreducible.
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In the case when φt is not absolutely irreducible Ferard proved the following theorem.

Theorem 18 (Ferard [23, 9]). Suppose that t ≡ 5 (mod 8), t ≥ 29 and that φt is not
absolutely irreducible. Then φ13 divides φt.

Theorem 19 (Janwa, McGuire and Wilson [35]). Suppose that the maximal cyclic code Bl

has no codewords of weight 4, and that F2i does not contain a nontrivial lth root of unity
i.e., (l, 2i − 1) = 1. Then φt(X, Y, Z) is absolutely irreducible.

Using Algorithm 1 and the following characterization of APN functions Jedlicka proved
Theorem 20 below. He also classifies the singularities and their corresponding multiplicities
for many cases, see table 3 for the classification.

Definition 12. Define q(x, y) = (x+ 1)m + xm + (y + 1)m + ym and h(x, y) = q(x,y)
(x+y)(x+y+1)

Proposition 7. If h(x, y) has an absolutely irreducible factor over F2, then f(x) = xm is
not APN over F2n for large enough n.

Theorem 20. Let f(x) = x2
il+1 ∈ F2[x]. If (l, 2i−1) < l, then f(x) is not exceptional APN.

Type description νp(h) Ip bound Max number of points
Ia Affine, on a line, x0, y0 ∈ F∗

2l
2l (2l−1)2 2(d-1)

Ib Affine, on a line, x0, y0 /∈ F∗
2l

2l − 1 0 m′ − 3
IIa Affine, off both lines, x0, y0 ∈ F∗

2l
2l + 1 2l−1(2l−1 + 1) (d− 1)(d− 3)

IIb Affine, off both lines,
exactly one of x0, y0 ∈ F∗

2l
2l 0 Not important

IIc Affine, off both lines, x0, y0 /∈ F∗
2l

2l 2l if l > 1, (m
′−3
2

)(m′ − a− 3)−
(d− 1)(d− 3)

0 if l = 1 and (m
′−3
2

)(2l − 2)(2l + 1)
IIIa (1 : 1 : 0) 2l − 2 (2l−1)2 d− 1
IIIb (ω : 1 : 0), ωd = 1, ω 6= 1 2l (2l−1)2 d− 1
IIIc (ω : 1 : 0), ωd 6= 1 2l − 1 0 Not important

Table 3. All singularities of h [36]

The constants m, l,m′, d are defined by the following definition.

Definition 13 (Jedlicka [36]). Let f(x) = xm. Define l to be the largest integer such that
2l divides m− 1. Also let m′ = m−1

2l−1 + 1. Let d = (m− 1, 2l − 1) = (m
′−1
2
, 2l − 1).

The remaining case was settled by Hernando and McGuire [31]. They also classified the
singularities for φd(X, Y, Z) for the remaining case. Table 4.

Theorem 21 (Hernando and McGuire [31]). Let f(x) = x2
il+1 ∈ F2, not a Kasami-Welch

exponent. If (l, 2i − 1) = l, then φ(X, Y, Z) contain an absolutely irreducible factor defined
over F2. Therefore, f(x) is not exceptional APN.
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Type Number of Points νp(f2il+1) νp(φ2il+1)
I 1 2i + 1 2i − 2
II 3(l − 1) 2i + 1 2i

III ≤ (l − 1)(l − 3) 2i + 1 2i + 1
Table 4. Singularities of φ2il+1 [31]

Where f2il+1(X, Y, Z) = X2il+1 +Y 2il+1 +Z2il+1 + (X +Y +Z)2
il+1. The following are the

three types of singular points (α, β, λ).
(I) α = β = λ = 1.
(II) Either α = 1 and β 6= 1, or β = 1 and α 6= 1, or α = β 6= 1 and λ = 1 We divide

these singular points into two cases:
(II.A) Where II holds and α, β ∈ F2i .
(II.B) Where II holds and αβ not both in GF (2i).

(III) α 6= 1, β 6= 1 and α 6= β. We divide these singular points into two cases:
(III.A) Where III holds and α, β ∈ F2i .
(III.B) Where III holds and α, β not both in F2i .

This last theorem complete the case of all monomials. Now let take a look to the polynomial
case. We will separate the polynomial case into the following 4 subcases.

(1) Odd degree case, not Gold or Kasami-Welch.
(2) Gold degree case.
(3) Kasami-Welch degree case.
(4) Even degree case.

1.3.2. Odd degree case, not Gold or Kasami-Welch case. This case was completely solved
by Aubry, McGuire and Rodier [2] in the following theorem. Later in Chapter 2 we give an
alternative proof of this theorem by using the new criteria develop in that chapter.

Theorem 22. If the degree of the polynomial function f is odd and not a Gold or a Kasami-
Welch number, then f is not APN over Fnq for all n sufficiently large.

1.3.3. The degree of f is a Gold number. Now we are going to explore the case of polynomials
of degree 2r + 1. The following results summarize what is known in this case.

Theorem 23. [2] Suppose f(X) = X2r+1 +h(X) h(X) have deg(h) ≤ 2r−1 + 1. Let h(X) =∑2r−1+1
j=0 ajX

j. If there exist a coefficient aj 6= 0 in h such that φj(X, Y, Z) is absolutely
irreducible, then φ(X, Y, Z) is also absolutely irreducible. Moreover f is not exceptional
APN.

Theorem 24 ([2]). Suppose f(X) = X2r+1 + h(X) ∈ F2n [x] and deg(h) = 2r−1 + 2. Let
r be odd and relatively prime to n. If g(x) does not have the form αx2

k−1+2 + α2x3 then
φ is absolutely irreducible, while if g(x) does have this form, then either φ is absolutely
irreducible or φ splits into two absolutely irreducible factors that are both defined over L.

Theorem 25 (DJ [15]). Let k ≥ 2 and α 6= 0. Take h(x) =
∑2k−1+1

j=0 ajx
j ∈ Fq[2n] and

suppose that a) or b) holds.
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a) a5 = 0
b) There is a nonzero ajφj for some j 6= 5.

Set f(x) = x2
k+1 + αx2

k−1+3 + h(x) ∈ F2n [x]. Then φ(X, Y, Z) is absolutely irreducible.

Theorem 26. [15] If f(X) = X2r+1 + h(X), deg(h) ≡ 3 (mod 4), deg(h) < 2r + 1 and
r ≥ 2. then f(X) is not exceptional APN.

Theorem 27. [15] For k ≥ 2, let f(X) = 2k + 1 + h(X) ∈ L[x], where deg(h(X) ≡ 1
(mod 4) < 2k + 1. If (φ2k+1, φd) = 1, then f is not exceptional APN.

Later Delgado and Janwa improve this theorem.

Theorem 28 ([15]). For k ≥ 2, let f(X) = 2k + 1 + h(X) ∈ L[x], where deg(h(X) ≡ 1
(mod 4) < 2k + 1. If deg(h) is not a Gold number, then f is not exceptional APN.

This last theorem left some exceptions which have been partially solved. In Chapter 3 we
will prove the remaining cases.

Theorem 29. [11, 16] For k ≥ 2, let f(X) = X2k+1 +h(X) ∈ F2n[x] where deg(h) = 2s+1 <
2k + 1. Then:

a. If (k, s) = 1, then f is not exceptional APN.
b. If (k, s) 6= 1 and h contains a term of degree m such that (φ2k+1, φm) = 1, then φf is

not exceptional APN.

Theorem 30. [44, 14] For k1 ≥ 2, let f(x) = x2
k1+1+h(x) ∈ F2n [x], where deg(h) = 2k2+1 <

2k1 + 1. Then φ is absolutely irreducible when h(x) =
∑t

j=2 ajx
2kj+1, is such that aj 6= 0

for 2 ≤ j ≤ t, and (k1, . . . , kt) = 1 and f is not an exceptional APN function. Under the
same conditions, if (k1, . . . , kt) = q > 1, then φ is divisible by φ2q+1 and φ is not absolutely
irreducible.

Theorem 31 ([14]). Let f(x) = x2
k1+1 + h(x) ∈ F2n [x], where deg(h) = 2k2+1 < 2k1 + 1. If

h(x) =
∑t

j=2 ajx
2mj (2kj+1) and (k1, . . . , kt) = (k1, k2) = q > 1, then φ contains an absolutely

irreducible factor and f is not exceptional APN.

In Chapter 3 we remove the condition (k1, . . . , kt) = (k1, k2) from the previous theorem
and thus finish the conjecture in the odd degee case of the Gold case.

1.3.4. Kasami-Welch Case. From the odd cases, the Kasami-Welch turns out to be the most
difficult. Only a few results have been obtained. Here we are just going to present the two
main results that have been obtained so far. The first results in these cases whereby Ferard,
Oyono, and Rodier in [26]. Apart from those results and the ones presented here, there is
nothing much proved.

Theorem 32. [26] Suppose that f(X) = X4k−2k+1 + g(X) ∈ F2n [x] where deg(g) ≤
22k−1 − 2k−1 + 2. Let k ≥ 3 be odd and relatively prime to n. If g(X) does have the form
aX2k−1−2k−1+2 + a2X3 then φ is absolutely irreducible, while if g(X) does have this form
then either φ is irreducible or φ splits into two absolutely irreducible factors which are both
defined over F2n .
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Theorem 33. [26] Let f(x) = x2
2k−2k+1 + g(x) ∈ L[x] where deg(g) ≤ 22k−1 − 2k−1 + 1.

Let g(x) =
∑22k−1−2k−1+1

j=0 ajx
j. Assume, there exists a nonzero coefficient aj of g such that

φj(x, y, z) is absolutely irreducible. Then f is not exceptional APN.

Theorem 34. [12, 25] Let f(X) = X22k−2k+1 +h(X) ∈ F2n , where d = deg(h) ≡ 3 (mod 4).
Then φ(X, Y, Z) is absolutely irreducible.

Ferard in [25] obtains the same result by using different arguments.

Theorem 35. [12] Let f(X) = X22k−2k+1 + h(X), where d = deg(h) ≡ 5 (mod 8), h <
22k − 3(2k)− 1. If (φ22k−2k+1, φd) = 1, then f is not exceptional APN.

In Chapter 4 we generalize this result in two different ways.

Theorem 36. [Ferard [25]] Let r be an integer ≥ 2, kr = 22r − 2r + 1 a Kasami exponent,
d and odd integer, 5 ≤ d < kr and f(x) = xkr + h(x) where h(x) is a polynomial of degree
d. Assume that d ≡ 1 (mod 4). We write d = 12jl with l an odd integer and j and integer
≥ 2. If 2r − 1 does not divide l, then φf (X, Y, Z) is absolutely irreducible.

1.3.5. Even degree. This case is the hardest case of all except when the degree is of the form
2e, with e odd. Until now there not exists a clear path on how to proceed. We gave a new
criterion that can potentially simplify these problems.

Theorem 37. [2] If the degree of the polynomial function f is 2e with e odd, and if f
contains a term of odd degree, then f is not APN over Fqn for all n sufficiently large.

We will give in Chapter 2, an alternative proof of this theorem using our new techniques.

Theorem 38. [47] If the degree of the polynomial function f is even such that deg(f) = 4e
with e ≡ 3 (mod 4), and if the polynomials of the form

(x+ y)(y + z)(x+ z) + P,

with
P (X, Y, Z) = c1(X

2 + y2 + z2) + c4(xy + xz + zy) + b1(x+ y + z) + d

for c1, c4, b1, d ∈ Fq3 , do not divide φ then f is not APN over Fqn for n large.

Theorem 39. [8] Let f : Fq → Fq such that deg(f) = 4e with e ≡ 3 (mod 4) and e > 3,
then f cannot be APN over infinitely many extensions of Fq.
Caullery also proves the following theorem. This theorem characterizes the exceptional APN
polynomials of degree 4e, e odd. We are going to use later this theorem together with some
new techniques to prove that certain polynomials of degree 4e when e ≡ 1 (mod 4) are not
exceptional APN.

Theorem 40 ([10]). Let f : F2n → F2n be an exceptional APN function of degree 4e with
e odd and let φf (X, Y, Z) be its associated polynomial. Let σ be a generator of the Galois
group Gal(F23n/F2n). One of the three conditions holds

(1) The polynomial φf is divisible by

(φ6 + P (X, Y, Z))(φ6 + σ(P (X, Y, Z)))(φ6 + σ2(P (X, Y, Z))),

where P (X, Y, Z) is a symmetric polynomial of degree 2 defined over Fq3 .



© 2021 Carlos A. Agrinsoni Santiago
29/93

(2) The polynomial φf is divisible by
(Ψ(X, Y, Z) + L(X, Y, Z))(φ6Ψ(X, Y, Z) +R(X, Y, Z))σ((φ6Ψ(X, Y, Z)+

R(X, Y, Z))σ2((φ6Ψ(X, Y, Z) +R(X, Y, Z)),

where Ψ(X, Y, Z) is a non absolutely irreducible symmetric factor of φe defined over
F23n but not over F2n and R(X, Y, Z) annd L(X, Y, Z) are symmetric polynomials of
degree respectively less than deg(AΨ) and deg(Ψ) defined over F23n and F2n .

(3) The polynomial φf is divisible by

(φ6ψ
3(X, Y, Z) + S(X, Y, Z))σ(φ6ψ

3(X, Y, Z) + S(X, Y, Z))σ2(φ6ψ
3(X, Y, Z) + S(X, Y, Z)),

where ψ(X, Y, Z) is a square-free non absolutely irreducible symmetric factor of φe
defined over F23n such that ψ, σ(ψ) and σ2(ψ) are coprime.
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2. New Absolute Irreducibility Testing Criteria

This chapter is divided into four sections. In the first section, we define the reverse poly-
nomial for a certain class of polynomials and then prove there exists a relationship between
the factorization of a polynomial and its reverse polynomial. Moreover, in definition 14 we
introduce a new concept that we called the first cone of a polynomial. Then, we show there
exists a relationship between the first cone of a polynomial and the tangent cone of its reverse
polynomial.
In the second section, we use the tangent cone, the first cone, and the combination of both
cones to create a new absolute irreducibility testing criterion as well as some criteria that
guarantee the existence of absolutely irreducible factors. Moreover, we generalized lemma 5
for the case of more than two variables. In the third section, we introduce a new definition
called the degree-gap of a polynomial. Using this definition, we can characterize the factor-
ization of a large family of multivariate polynomials. Moreover, we generalize Lemma 2. In
the last section of this chapter, we gave an alternative proof of some results of the exceptional
APN conjecture.

2.1. Reverse Mapping. Before proving some results, we first introduce some notation
that is useful for stating the results. Let G(X) = G(X1, . . . , Xn) ∈ Fq[X1, . . . , Xn] be a
polynomial. Define di to be greatest integer such that Xdi

i divides at least one of the terms of
the polynomial G(X). Notice that if the polynomial is symmetric then d1 == · · · = dn = d.
Define the polynomial ψG(X) = ψG(X1, . . . , Xn) = Xd1

1 · · ·Xdn
n f( 1

X1
, . . . , 1

Xn
). We called

ψG(X) the reverse polynomial of G(X). When the context is clear we will denoted ψG(X)
by simply ψ(X). Notice that if G(X1, . . . , Xn) = Xd1

1 · · ·Xdn
n then ψ(X) = 1. For the rest of

this article we will assume that Xi do not divide G(X) for every i ∈ {1, . . . n}.

Lemma 13. Let G(X) ∈ Fq[X1, . . . , Xn], then G(X) is reducible over Fq if and only if
ψG(X) is reducible over Fq.

Proof: Suppose that G(X) = P (X)Q(X). Define qi to be the greatest integer such that Xqi
i

divides at least one term of Q(X) (respectively define pi to be the greatest integer such that
Xpi
i divides P (X)). Notice that pi + qi = di. Then

ψG(X) = Xd1
1 · · ·Xdn

n G(
1

X1

, . . . ,
1

Xn

) =

Xp1
1 · · · , Xpn

n P (
1

X1

, . . . ,
1

Xn

)Xq1
1 · · ·Xqn

n Q(
1

X1

, . . . ,
1

Xn

)

Since Xi do not divide G(X) for every i ∈ {1, . . . , n}, we have that Xi do not divide P (X)
and Q(X) for every i ∈ {1, . . . , n}.
Notice that Xp1

1 · · · , Xpn
n P ( 1

X1
, . . . , 1

Xn
) ∈ Fq[X1, . . . , Xn] and

Xq1
1 · · ·Xqn

n Q( 1
X1
, . . . , 1

Xn
) ∈ Fq[X1, . . . , Xn]. Since Xi do not divide any of the polynomials

for every i ∈ {1, . . . , n} is clear that the degree of both polynomial is ≥ 1. Therefore, ψG(X)
is reducible.
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Now we will prove that the reverse of ψG(X) is G(X). For every i ∈ {1, . . . , n}, since Xi do
not divide G(X) this implies there exists a term (we will denote it by gi(X)) in G(X) such
that Xi do not divide it. Now this implies that the term Xd1

1 · · ·Xdn
n gi(

1
X1
, . . . , 1

Xn
) is a term

of ψf (X). Therefore, Xdi
i divide at least one term of ψG(X). Now by the definition of ψG(X)

we know there not exists a i ∈ {1, . . . , n} such that Xdi
i divide a term of ψG(X). Therefore

the reverse of ψG(X) is given by

Xd1
1 · · ·Xdn

n ψf (
1

X1

, . . . ,
1

Xn

) = Xd1
1 · · ·Xdn

n ·
1

Xd1
1 · · ·Xdn

n

f(X) = f(X).

Therefore, if ψf (X) is reducible by the first part, f(X) is also reducible. �

Definition 14. Let G(X) = Gd(X) + · · ·+G0(X) ∈ Fq[X1, . . . , Xn], where Gi(X) is either
a homogeneous polynomial of degree i or 0. We called Gd(X) the first cone of G(X).

Lets denote by TG(X) ∈ Fq[X1, . . . , Xn] the tangent cone ofG(X) and tG(X) ∈ Fq[X1, . . . , Xn]
the first cone of G(X). When the context is clear we will denoted TG(X) by T (X) and tG(X)
by t(X).

Lemma 14. Suppose G(X) ∈ Fq[X1, . . . , Xn], then the tangent cone of ψG(X) is given by

Tψ(X) = Xd1
1 · · ·Xdn

n tG(
1

X1

, . . . ,
1

Xn

). (4)

Moreover, if for every i ∈ {1, . . . , n}, si is the highest power of Xi such that Xsi

i divides at
least one term of tG(X), then Tψ(X) can be written as follows

Tψ(X) = Xd1−s1
1 · · ·Xdn−sn

n ψGs(X1, . . . , Xn) (5)

Proof: Let G(X) = Gs(X) + Gs−1(X) + · · · + G0(X1, . . . , Xn), where Gi(X1, . . . , Xn) is a
form of degree i or 0. Now taking the reverse on both sides we obtain that

ψ(X) = Xd1
1 · · ·Xdn

n f(
1

X1

, . . . ,
1

Xn

) =

Xd1
1 · · ·Xdn

n (Gs(
1

X1

, . . . ,
1

Xn

) + · · ·+G0(
1

X1

, . . . ,
1

Xn

))

This implies that Xd1
1 · · ·Xdn

n Gi(
1
Xi
, . . . , 1

Xn
) is either a form of degree d1 + d2 + · · ·+ dn − i

or 0. Since deg(G(X)) = s and Gs(X1, . . . , Xn) 6= 0. We can conclude that equation 4 is
the equation of the tangent cone. Equation 5 is obtained directly from equation 4 and the
definition of si. �

The following two corollary are a direct consequence of lemma 13 and equation 5.

Corollary 4. Let G(X) ∈ Fq[X1, . . . , Xn]. If the tG(X) contains an irreducible factor (abso-
lutely irreducible factor) of multiplicity n1 defined over Fq, then Tψ(X) contains an irreducible
factor (absolutely irreducible factor) of multiplicity n1 over Fq.

Proof: Suppose that tG(X) contains an irreducible factor (absolutely irreducible factor) of
multiplicity n1 over Fq. By lemma 13 and equation 5 we can conclude that Tψ(X) contains
an irreducible factor (absolutely irreducible factor) of multiplicity n1 defined over Fq. �
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Remark: Every result we obtain for the tangent cone of a polynomial will imply an analog
result for the first cone of a polynomial since the first cone of G(X) will correspond to the
tangent cone of ψG(X).

2.2. New Absolute Irreducibility Testing Criteria.

2.2.1. Using the Tangent Cone to Create Criterion for Testing Absolute Irreducibility. The
following proposition extends lemma 6 to Theorem 41 which will be useful for the proof of
Theorem 43.

Proposition 8. Suppose that h(X1, . . . , Xn) ∈ Fqr [X1, . . . , Xn] is absolutely irreducible,
then for every σ ∈ Gal(Fqr/Fq), σ(h) = σ(h(X1, . . . , Xn)) is absolutely irreducible.

Proof: Assume that for some σ ∈ Gal(Fqr/Fq) we have that σ(h) is reducible, i.e. σ(h) = ab,
where a, b ∈ Fqr [X1, . . . , Xn]. Now apply σ−1 to both sides to obtain, h = (σ−1 ◦ σ)(h) =
σ−1(a)σ−1(b). This implies that either σ−1(a) is constant or σ−1(b) is a constant. This lead
to either a be constant or b be a constant, which is a contradiction with σ(h) being reducible.
Assume that for some β ∈ Gal(Fqr/Fq) we have that β(h) is not absolutely irreducible. By
lemma 6 we know there exists a k, an absolutely irreducible polynomial G ∈ Fqrk and c ∈ Fqr
such that:

β(h) = c
∏

σ∈Gal(F
qrk

/Fqr )

σ(G).

Notice that Gal(Fqrk/Fqr)) / Gal(Fqrk/Fq) and Gal(Fqr/Fq) / Gal(Fqrk/Fq). Therefore, every
σ ∈ Gal(Fqrk/Fqr) and β, β−1 are element of Gal(Fqrk/Fq) so we can apply β−1 to both sides
to obtain

h = c
∏

σ∈Gal(F
qrk

/Fqr )

(β−1 ◦ σ)(G)

Since h is absolutely irreducible we obtain the same contradiction as before. �

The following theorem generalizes lemma 6 in the sense that we show that each factor is
absolutely irreducible.

Theorem 41. Suppose p(X) ∈ Fq[X1, . . . , Xn] is of degree d and is irreducible in Fq[X1, . . . , Xn].
Then there exists a unique r with r | d and an absolutely irreducible polynomial h(X) ∈
Fqr [X1, . . . , Xn] of degree d/r such that

p(X) = c
∏
σ∈G

σ(h(X))

where G = Gal(Fqr/Fq) and c ∈ Fq. For each σ ∈ G, σ(h(X)) is absolutely irreducible.
Furthermore, if p(X) is homogeneous, then so is h(X).

Remark: Let F(G) be the splitting field of G(X), where G(X) split completely into
absolutely irreducible factors. Let m(G) = [Fq(G)) : Fq]. Then m(G) is an invariant of
G(X). It is clear that if G(X) is irreducible then the r obtained in theorem 41 is equal to
m(G).
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Let G(X) be an irreducible polynomial. Then, there exist an absolutely irreducible poly-
nomial h(X) ∈ Fq(G)[X1, . . . , Xn] and c ∈ Fq

G(X) =
∏

σ∈Gal(Fq(G)/Fq)

σ(h(X)). (6)

Let T (X) ∈ Fq[X1, . . . , Xn] be the tangent cone of G(X) and let Th(X) ∈ Fqr [X1, . . . , Xn]
be the tangent cone of h(X). Then we have that

T (X) = c
∏

σ∈Gal(Fqr/Fq)

σ(Th(X)). (7)

Let t(X) ∈ Fq[X1, . . . , Xn] be the tangent cone of G(X) and let th(X) ∈ Fqr [X1, . . . , Xn] be
the tangent cone of h(X). Then we have that

t(X) = c
∏

σ∈Gal(Fqr/Fq)

σ(th(X)). (8)

The following theorem is a generalization of lemma 5 above. This is a generalized to
multi-variable case and for absolutely irreducible component rather than a linear factor.

Theorem 42. Let G(X) ∈ Fq[X1, . . . , Xn]. If TG(X) contains a reduced absolutely irre-
ducible factor defined over Fq then G(X) contains an absolutely irreducible factor defined
over Fq.

Proof: Note that if G(X) factors then the tangent cone of G(X) is the product of the tan-
gent cone of the factors. Therefore, without loss of generality we can assume that G(X) is
irreducible. So there exists h(X) ∈ Fq(G)[X1, . . . , Xn] such that G(X) satisfy equation 6 and
TG(X) satisfy equation 7.
Since TG(X) contains a reduce absolutely irreducible factor t1(X), there exists α ∈ Gal(Fq(G)/Fq)
such that t1(X) | α(Th(X)). For every β ∈ Gal(Fq(G)/Fq) we have β(t1(X)) = t1(X) |
(β ◦ α)(Th(X)). Since t1(X) is reduced, this force r = 1. Therefore G(X) be absolutely
irreducible over Fq. �

Corollary 5. Let G(X) ∈ Fq[X1, . . . , Xn]. If tG(X) contains a reduced absolutely irreducible
factor defined over Fq then G(X) contains an absolutely irreducible factor defined over Fq.

Proof: Let ψG(X) be the reverse polynomial of G(X), then by theorem 42 ψG(X) contains
an absolutely irreducible component defined over Fq. Therefore, by lemma 13 G(X) contains
an absolutely irreducible component defined over Fq. �

Before stating and proving the new criterion for testing absolute irreducibility we will
prove the following lemmas which will be useful during the proof.

Lemma 15. Let G(X) ∈ Fq[X1, . . . , Xn] be an irreducible polynomial. If TG(X) contain an
absolutely irreducible factor t1(X) of multiplicity n1, then m(G) | n1.

Proof: Suppose G(X) is irreducible, then there exists h(X) ∈ Fq(G)[X1, . . . , Xn], c ∈ Fq
such that G(X) satisfy equation 6 and TG(X) satisfy equation 7. Since t1(X) is abso-
lutely irreducible there exist α ∈ Gal(Fq(G)/Fq) such that t1(X) | α(Th(X)). Take l to
be the greatest integer such that t1(X)l | α(Th(X)). For every β ∈ Gal(Fq(G)/Fq) we have
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β(t1(X)l) = t1(X)l | (β ◦ α)(Th(X)). Since every element of Gal(Fq(G)/Fq) can be written
in the form (β ◦ α) we can conclude that t1(X)l | γ(Th(X)) for every γ ∈ Gal(Fq(G)/Fq).
Notice that there not exists δ ∈ Gal(Fq(G)/Fq) such that tl+1

1 (X) | δ(Th(X)) because if there
exist that would imply by the first part that tl+1

1 | α(Th(X)) which is a contradiction of the
definition of l. Therefore, we can conclude that |Gal(Fq(G)/Fq)| = m(G) | n1. �

Corollary 6. Let G(X) ∈ Fq[X1, . . . , Xn] be an irreducible polynomial. If tG(X) contain an
absolutely irreducible factor R1(X) of multiplicity n1, then m(G) | n1.

Proof: Let ψG(X) be the reverse polynomial of G(X), then by lemma 13 we have that
m(G) = m(ψG). By lemma 4 the tangent cone of ψG(X) contains an absolutely irreducible
factor of multiplicity n1. Therefore, by lemma 15 m(G) | n1. �

Lemma 16. Let G(X) ∈ Fq[X1, . . . , Xn] be an irreducible polynomial. If TG(X) contains a
reduced irreducible factor R(X) ∈ Fq[X1, . . . , Xn], then m(G) | m(R).

Proof: Suppose G(X) is irreducible, then there exists h(X) ∈ Fq(G)[X1, . . . , Xn], c ∈ Fq
such thatG(X) satisfy equation 6 and TG(X) satisfy equation 7. Let t1(X) ∈ Fq(R)[X1, . . . , Xn]
be an absolutely irreducible factor of R(X) and t1(X) | TG(X). Notice that t1(X) is reduced
otherwise it contradict the fact that R(X) is reduced. By theorem 42 G(X) contains an
absolutely irreducible factor defined over Fq(R). Since the factorization in equation 6 is the
factorization into absolutely irreducible factors which is unique up to ordering and associates
we have that either m(G) | m(R) or m(R) | m(G).
Assume that m(R) | m(G) with m(G) > m(R). Let α ∈ Gal(Fq(G)/Fq) be a generator of
Gal(Fq(G)/Fq). Since t1(X) is absolutely irreducible there exists a β ∈ Gal(Fq(G)/Fq) such
that t1(X) | β(Th(X)). Then αm(R)(t1(X)) = t1(X) | (αm(R) ◦ β)(Th(X)) 6= β(Th(X)) which
contradicts the fact that t1(X) is a reduced factor. Therefore, m(G) | m(R). �

Corollary 7. Let G(X) ∈ Fq[X1, . . . , Xn] be an irreducible polynomial. If tG(X) contains a
reduced irreducible factor R(X) ∈ Fq[x1, . . . , Xn], then m(G) | m(R).

Proof: Let ψG(X) be the reverse polynomial of G(X). Then by lemma 13 we have that
m(G) = m(ψG). By lemma 4 the tangent cone of ψG(X) contains a reduced irreducible
factor ψf (X) with m(R) = m(ψR(X)). Therefore, by lemma 16 m(G) | m(R). �

Lemma 17. Let G(X) ∈ Fq[X1, . . . , Xn] be an irreducible polynomial. If TG(X) contains
an irreducible factor R(X) ∈ Fq[X1, . . . , Xn] of multiplicity n1 and (m(R),m(G)) = 1. Then
m(G) | n1.

Proof: Suppose G(X) is irreducible, then there exists h(X) ∈ Fq(G)[X1, . . . , Xn], c ∈ Fq
such that G(X) satisfy equation 6 and TG(X) satisfy equation 7. Now (m(R),m(G)) = 1
this implies that R(X) is irreducible over Fq(G). Then there exist α ∈ Gal(Fq(G)/Fq) such
that R(X) | Th(X).Take l to be the greatest integer such that R(X)l | α(Th(X)). For every
β ∈ Gal(Fq(G)/Fq) we have β(R(X)l) = R(X)l | (β ◦ α)(Th(X)). Since every element of
Gal(Fq(G)/Fq) can be written in the form (β ◦ α) we can conclude that R(X)l | γ(Th(X))
for every γ ∈ Gal(Fq(G)/Fq). Notice that there not exists δ ∈ Gal(Fq(G)/Fq) such that
Rl+1(X) | δ(Th(X)) because if there exist that would imply by the first part that Rl+1 |
α(Th(X)) which is a contradiction of the definition of l. Therefore, we can conclude that
|Gal(Fq(G)/Fq)| = m(G) | n1. �
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Corollary 8. Let G(X) ∈ Fq[X1, . . . , Xn] be an irreducible polynomial. If tG(X) contains
an irreducible factor R(X) ∈ Fq[X1, . . . , Xn] of multiplicity n1 and (m(R),m(G)) = 1. Then
m(G) | n1.

Proof: Let ψG(X) be the reverse polynomial of G(X). Then by lemma 13 we have that
m(G) = m(ψG). By lemma 4 the tangent cone of ψG(X) contains a absolutely irreducible
factor of multiplicity n1. Therefore, by lemma 16 m(G) | n1. �

Remark: Notice that J(X) ∈ Fq[X1, . . . , Xn] is irreducible if and only if for any a ∈ Fnq ,
J(X − a) is irreducible. Therefore, m(J) is invariant to translation of J(X).

Theorem 43. Let G(X) ∈ Fq[X1, . . . , Xn] be an irreducible polynomial and let a, b ∈ Fnq . If
one of the following conditions is satisfied then G(X) is absolutely irreducible.

(1) The tangent cone of G(X − a) contain a absolutely irreducible factor R1(X) ∈
Fq[X1, . . . , Xn] of multiplicity n1 and the tangent cone of G(X − b) contain an abso-
lutely irreducible factor R2(X) ∈ Fq[X1, . . . , Xn] of multiplicity n2 with (n1, n2) = 1.

(2) The tangent cone of G(X − a) contain an absolutely irreducible factor R1(X) ∈
Fq[X1, . . . , Xn] of multiplicity n1 and the tangent cone of G(X − b) contain an irre-
ducible polynomial R2(X) ∈ Fq[X1, . . . , Xn] of multiplicity n2 with (n1, n2) = 1 and
(m(G),m(R2)) = 1.

(3) The tangent cone of G(X − a) contain an irreducible factor R1(X) ∈ Fq[X1, . . . , Xn]
and the tangent cone of G(X− b) contain irreducible factor R2(X) ∈ Fq[X1, . . . , Xn],
with (m(R1),m(R2)) = 1.

Proof: Suppose G(X) is irreducible. We prove that each of the conditions implies that G(X)
is absolutely irreducible.

(1) Suppose that the tangent cone of G(X − a) contain a absolutely irreducible factor
R1(X) ∈ Fq[X1, . . . , Xn] of multiplicity n1 and the tangent cone of G(X − b) con-
tain a absolutely irreducible factor R2(X) ∈ Fq[X1, . . . , Xn] of multiplicity n2 with
(n1, n2) = 1. Then, by applying lemma 15 twice we obtain that m(G) divides both
n1 and n2. Therefore, m(G) | (n1, n2). Thus G(X) is absolutely irreducible.

(2) Suppose that the tangent cone of G(X − a) contain an absolutely irreducible factor
R1(X) ∈ Fq[X1, . . . , Xn] of multiplicity n1 and the tangent cone of G(X − b) contain
an irreducible factor R2(X) ∈ Fq[X1, . . . , Xn] of multiplicity n2 with (n1, n2) = 1 and
(m(R2),m(G)) = 1. Then applying lemma 15 to the tangent cone of G(X − a) we
obtain thatm(G) | n1. Applying lemma 17 to the tangent cone of G(X−b), we obtain
that m(G) | n2. Therefore, m(G) | (n1, n2). Thus G(X) is absolutely irreducible.

(3) Suppose The tangent cone of G(X − a) contain an irreducible factor R1(X) and the
tangent cone of G(X−b) contain an irreducible factor R2(X), with (m(R1),m(R2)) =
1. By applying lemma 16 to the tangent cone of G(X−a), we obtain that m(G) | n1.
Similarly, if we apply lemma 16 to the tangent cone of G(X − b), we obtain that
m(G) | n2. Therefore, m(G) | (n1, n2). Thus G(X) is absolutely irreducible.

�

Corollary 9. Let G(X) ∈ Fq[X1, . . . , Xn] be an irreducible polynomial. If one of the follow-
ing conditions is satisfied, then G(X) is absolutely irreducible.
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(1) TG(X) contain two absolutely irreducible factors R1(X), R2(X) ∈ Fq[X1, . . . , Xn] of
multiplicities n1, n2 (respectively) with (n1, n2) = 1.

(2) TG(X) contain an absolutely irreducible factorR1(X) ∈ Fq[X1, . . . , Xn] of multiplicity
n1 and an irreducible factor R2(X) ∈ Fq[X1, . . . , Xn] of multiplicity n2 with (n1, n2) =
1 and (m(R),m(G)) = 1.

(3) TG(X) contains two reduced absolutely irreducible factors R1(X) ∈ Fq[X1, . . . , Xn]
and R2(X) ∈ Fq[X1, . . . , Xn], with (m(R1),m(R2)) = 1.

Proof: Take a = b = 0 and apply theorem 43 to conclude thatG(X) is absolutely irreducible.
�

Corollary 10. Let G(X) ∈ Fq[X1, . . . , Xn] be an irreducible polynomial and let a, b ∈ Fnq .
If one of the following conditions is satisfied then G(X) is absolutely irreducible.

(1) The first cone ofG(X−a) contain a absolutely irreducible factorR1(X) ∈ Fq[X1, . . . , Xn]
of multiplicities n1 and the first cone of G(X − b) contain a absolutely irreducible
factor R2(X) ∈ Fq[X1, . . . , Xn] of multiplicities n2 with (n1, n2) = 1.

(2) The first cone ofG(X−a) contain a absolutely irreducible factorR1(X) ∈ Fq[X1, . . . , Xn]
of multiplicities n1 and the first cone of G(X − b) contain an irreducible polynomial
R2(X) ∈ Fq[X1, . . . , Xn] of multiplicity n2 with (n1, n2) = 1 and (m(R2),m(G)) = 1.

(3) The first cone of G(X−a) contain an irreducible factor R1(X) ∈ Fq[X1, . . . , Xn] and
the first cone of G(X− b) contain an irreducible factor R2(X) ∈ Fq[X1, . . . , Xn], with
(m(R1),m(R2)) = 1.

Proof: Let ψG(X) be the reverse polynomial of G(X). By lemma 4 the tangent cone of
ψG(X) satisfy the same conditions as the first cone of G(X). By theorem 43 ψG(X) is
absolutely irreducible. Therefore, by lemma 13 G(X) is absolutely irreducible. �

Corollary 11. Let G(X) ∈ Fq[X1, . . . , Xn] be an irreducible polynomial. If one of the
following conditions is satisfied then G(X) is absolutely irreducible.

(1) tG(X) contain two absolutely irreducible factors R1(X), R2(X) ∈ Fq[X1, . . . , Xn] of
multiplicities n1, n2 (respectively) with (n1, n2) = 1.

(2) tG(X) contain an absolutely irreducible factor R1(X) ∈ Fq[X1, . . . , Xn] of multiplicity
n1 and an irreducible polynomial R2(X) ∈ Fq[X1, . . . , Xn] of multiplicity n2 with
(n1, n2) = 1 and (m(R2),m(G)) = 1.

(3) tG(X) contains two reduced irreducible factors R1(X), R2(X) ∈ Fq[X1, . . . , Xn], with
(m(R1),m(R2)) = 1.

Proof: Take a = b = 0 and apply corollary 10 to conclude that G(X) is absolutely irre-
ducible. �

Let G(X) ∈ Fq[X1, . . . , Xn] and a ∈ Fnq we will denote by Ma(G) be the multiplicity of a.

Theorem 44. Let F (X), H(X) ∈ Fq[X1, . . . , Xn]. If there exists a = (a1, . . . , an) ∈ Fnq such
that 1 ≤ Ma(F ) < Ma(H) and the tangent cone of F (X − a) contains a reduced abso-
lutely irreducible factor defined over Fq, then G(X) = F (X) +H(X) contains an absolutely
irreducible factor defined over Fq.
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Proof: Take G(X − a). Lets compute the tangent cone of this polynomial. Since ma(f) <
ma(h) we know the tangent cone is of G(X−a) is the same as the tangent cone of F (X−a).
Then by assumption the tangent cone of G(X − a) contains a reduced absolutely irreducible
factor defined over Fq. By theorem 42, G(X1 + a1, . . . , Xn + an) contain an absolutely irre-
ducible factor defined over Fq. Thus, G(X1, . . . , Xn) contains an absolutely irreducible factor
defined over Fq. �

Corollary 12. Let F (X), H(X) ∈ Fq[X1, . . . , Xn]. If there exists a = (a1, . . . , an) ∈ Fnq
such that Ma(F ) = 1, and Ma(H) > 1, then G(X) = F (X) +H(X) contains an absolutely
irreducible factor defined over Fq.

2.2.2. Using the Tangent and the First Cone to Create Absolute Irreducibility Testing Crite-
ria.

Theorem 45. Let G(X) ∈ Fq[X1, . . . , Xn] and a, b ∈ Fnq be an irreducible polynomial. If
one of the following condition is satisfied, then G(X) is absolutely irreducible.

(1) The first cone ofG(X−a) contains a reduced irreducible factorR1(X) ∈ Fq[X1, . . . , Xn],
and the tangent cone of G(X − b) contains a reduced irreducible factor R2(X) ∈
Fq[X1, . . . , Xn] with (m(R1),m(R2)) = 1.

(2) The first cone ofG(X−a) contains an absolutely irreducible factorR1(X) ∈ Fq[X1, . . . , Xn]
of multiplicity n1 and the tangent cone of G(X − b) contains a reduced irreducible
factor R2(X) with (n1,m(R2)) = 1.

(3) The first cone ofG(X−a) contains a reduced irreducible factorR1(X) ∈ Fq[X1, . . . , Xn]
and the tangent cone of G(X−b) contains an irreducible factor R2(X) of multiplicity
n2 with (m(R1), n2) = 1.

(4) The first cone ofG(X−a) contains an absolutely irreducible factorR1(X) ∈ Fq[X1, . . . , Xn]
of multiplicity n1, and the tangent cone of G(X−b) contains an absolutely irreducible
factor R2(X) defined over Fq of multiplicity n2 with (n1, n2) = 1.

Proof: Since G(X) is irreducible we have that G(X − a) and G(X − b) are irreducible. Now
we prove that each of the conditions implies that G(X) is absolutely irreducible.

(1) By corollary 7 m(G) | m(R1). Similarly by lemma 16 m(G) | m(R2). Therefore,
m(G) | (m(R1),m(R2)). Thus, G(X) is absolutely irreducible.

(2) By corollary 6 m(G) | n1 and by lemma 16 m(G) | m(R2). Therefore, m(G) |
(n1,m(R2)). Thus, G(X) is absolutely irreducible.

(3) By corollary 7 m(G) | m(R1) and by lemma 15 m(G) | n2. Therefore, m(G) |
(m(R1), n2). Thus, G(X) is absolutely irreducible.

(4) By corollary 6 m(G) | n1. Similarly, by lemma 15 m(G) | n2. Therefore, m(G) |
(n1, n2). Thus, G(X) is absolutely irreducible.

�

Corollary 13. Let G(X) ∈ Fq[X1, . . . , Xn] be a irreducible polynomial. If one of the follow-
ing condition is satisfied, then G(X) is absolutely irreducible.

(1) tG(X) contains a reduced irreducible factor R1(X) ∈ Fq[X1, . . . , Xn], and TG(X)
contains a reduced irreducible factor R2(X) ∈ Fq[X1, . . . , Xn] with (m(R1),m(R2)) =
1.
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(2) tG(X) contains an absolutely irreducible factor R1(X) ∈ Fq[X1, . . . , Xn] of multiplic-
ity n1, and TG(X) contains a reduced irreducible factor R2(X) ∈ Fq[X1, . . . , Xn] with
(n1,m(R2)) = 1.

(3) tG(X) contains a reduced irreducible factor R1(X) ∈ Fq[X1, . . . , Xn], and TG(X)
contains an absolutely irreducible factor R2(X) ∈ Fq[X1, . . . , Xn] of multiplicity n2

with (m(R1), n2) = 1.
(4) tG(X) contains an absolutely irreducible factor R1(X) ∈ Fq[X1, . . . , Xn] of multiplic-

ity n1, and TG(X) contains an absolutely irreducible factor R2(X) ∈ Fq[X1, . . . , Xn]
of multiplicity n2 with (n1, n2) = 1.

Proof: Take a = b = 0 and apply theorem 45 to conclude thatG(X) is absolutely irreducible.
�

Theorem 46. Let G(X) ∈ Fq[X1, . . . , Xn] and a, b ∈ Fnq . If the tangent cone of G(X − a)
contains a reduced irreducible factor R1(X) ∈ Fq[X1, . . . , Xn], the first cone of G(X − b) is
reduced, and every irreducible factor of the first cone of G(X−b) over Fq are also irreducible
over Fq(R1), then G(X) contains an absolutely irreducible factor defined over Fq.

Proof: Suppose that G(X) is irreducible, then G(X − a) and G(X − b) are irreducible.
Let R2(X) ∈ Fq[X1, . . . , Xn] be an irreducible factor of the first cone of G(X − b), then
(m(R1),m(R2)) = 1. Therefore, by theorem 45 part 1, G(X) is absolutely irreducible.
Suppose that G(X) factors over Fq, then G(X − a) and G(X − b) also factors over Fq. Let
Q(X − a) = P (X)Q(X), where P (X), Q(X) ∈ Fq[X1, . . . , Xn] and Q(X) is an irreducible
polynomial such that the tangent cone of Q(X) contains R1(X). Notice that Q(X + a− b)
is an irreducible factor of G(X − b). Since the degree of the first cone of Q(X + a − b) is
greater than 1, it contains a reduced irreducible factor. Now Q(X + a) is a factor of G(X),
and by the first part of this proof it is absolutely irreducible. Therefore, G(X) contains an
absolutely irreducible component defined over Fq. �

Corollary 14. Let G(X) ∈ Fq[X1, . . . , Xn]. If TG(X) contains a reduced irreducible factor
R1(X) ∈ Fq[X1, . . . , Xn], and every irreducible factor of the first cone of G(X) over Fq are
also irreducible over Fq(R1), then G(X) contains an absolutely irreducible factor defined over
Fq.

Proof: Take a = b = 0, then by theorem 46 G(X) contains an absolutely irreducible factor
defined over Fq. �

2.3. Characterization of Factorization of a Large Family of Polynomials of Sev-
eral Variables. In this section, we will define a new concept called the degree-gap of a
polynomial. This definition will allow us to characterize the factorization of a large family of
multivariate polynomials. In concrete, we can bound the number of factors the polynomial
can have as well as give a lower bound on the degree of the factors.

Definition 15. Let f(X1, . . . , Xn) be a polynomial of degree n with at least two terms.
We defined the degree-gap DG(f) as the difference between the two highest degree of the
polynomial. If f(X1, . . . , Xn) is a homogeneous polynomial then DG(f) is defined to be
infinity.
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Notice that if f(X) = f(X1, . . . , Xn) ∈ Fq[X1, . . . , Xn] satisfy that deg(f(X)) < DG(f)
then f(X) is a homogeneous polynomial.

Theorem 47. Let F (X) = F (X) = Fm(X) + H(X). If Fm(X) is square free, then every
factor of F (X) has degree-gap at least that of F (X).

Proof: If F (X) is a homogeneous polynomial, then this result is immediate since a homo-
geneous polynomial factors as the product of homogeneous polynomials. Without loss of
generality we can assume that F (X) is not a homogeneous polynomial. It is clear that every
homogeneous factor of F (X) satisfy the stated property.

We may assume that without loss of generality that (Fm, H) = 1 that is there are no
homogeneous factors. If DG(F ) = 1, then this is a trivial result. Suppose that DG(F ) =
k > 1, then assume that F (X) factors as follows

F (X) = (Ps(X) + · · ·+ P0(X))(Qt(X) + · · ·+Q0(X)),

where Pi, (respectively Qj) is homogeneous polynomials of degree i (respectively degree j)
or zero, and DG(Q) ≥ DG(P ). Assume that DG(F ) > DG(P ). Let j = DG(P ), then we
have the following equation

0 = Fm−j =

j∑
i=1

Ps−iQt−j+i. (9)

By the degree-gap of P (X) we have that Ps−1 = . . . Ps−j+1 = 0 (respectively by the degree-
gap of Q(X) Qt−1 = · · · = Qt−j+1 = 0). Substituting these in Equation 9 we obtain

0 =

j∑
i=1

Ps−iQt−j+i = PsQt−j + Ps−jQt

implying that PsQt−j = QtPs−j. Since (Ps, Qt) = 1 as Fm(X) is square free, we obtain that
Ps | Ps−j that is Ps−j = 0. This is a contradiction with DG(P ) = j. Therefore, DG(F ) ≤
DG(P ) ≤ DG(Q). Since P (X) and Q(X) are arbitrary factor we can conclude that every
factor of F (X) has degree-gap at least that of F (X).

�

Corollary 15. Let F (X) = Fm(X) + H(X) ∈ Fq[X1, . . . , Xn], Fm(X) is square free, and
(Fm, H) = 1. If P (X) is a factor of F (X), then deg(P ) ≥ DG(F ).

This corollary follows directly from the proof of Theorem 47
The following corollary gave a bound on the number of factors a polynomial satisfying

certain conditions can have.

Corollary 16. Let F (X) = Fm(X) + H(X) ∈ Fq[X1, . . . , Xn]. If Fm(X) is square free and
(Fm, H) = 1, then F (X) have at most

⌊
deg(F )
DG(F )

⌋
factors.

Proof: By Theorem 47 and Corollary 15 we have deg(G) ≥ DG(F ). Then F (X) can have
at most

⌊
deg(F )
DG(F )

⌋
factors. �
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Using this corollary we can prove a generalization of Lemma 2 for finite fields in two
different ways. First, we generalize to any multivariate polynomial and second, we weaken
the greatest common divisor condition.

Corollary 17. Let F (X) ∈ Fm(X) + H(X) ∈ Fq[X1, . . . , Xn]. If Fm(X) is square free,
(Fm, H) = 1, and 2DG(F ) > deg(F ), then F (X) is absolutely irreducible.

Proof: By Corollary 16, F (X) can have at most one factor. �

The following corollary gives sufficient conditions to guarantee that the degree-gap is
preserved through factorization.

Corollary 18. Let F (X) = Fm(X)+H(X) ∈ Fq[X1, . . . , Xn]. If Fm(X) is square free,(Fm, Hd) =
1, and P (X) is a factor of F (X), then DG(P ) = DG(F ).

Proof: Assume that F (X) = (Ps(X)+ · · ·+P0(X))(Qt(X)+ · · ·+Q0(X). Then by the proof
of Theorem 47 we have the following system of equations.

Fm(X) = Ps(X)Qt(X)

Hd(X) = Ps(X)Qt−e(X) + Ps−e(X)Qt(X). (10)
Since (Fm, Hd) = 1, we have that Ps−e(X) 6= 0, and Qt−e(X) 6= 0. Therefore, DG(P ) =
DG(F ). �

Using this theorem we can show that many polynomials are absolutely irreducible. The
following corollary proves that a class of polynomials is absolutely irreducible. Let TF (X)
denote the tangent cone of a polynomial i.e., the lowest degree form of the polynomial.

Corollary 19. Let F (X) = Fm(X) + H(X) ∈ Fq[X1, . . . , Xn], where deg(F ) = m and
deg(H) = d < m. If Fm(X) is square free, (Fm, H) = 1 and deg(TF ) > deg(F ) − 2DG(F ),
then F (X) is absolutely irreducible.

Proof: Assume that F (X) = P (X)Q(X), then DG(P ) ≥ DG(F ) and DG(Q) ≥ DG(Q).
Then deg(TP ) ≤ deg(P ) −DG(P ) ≤ deg(P ) −DG(F ) and deg(TQ) ≤ deg(Q) −DG(Q) ≤
deg(Q)−DG(F ). Therefore, deg(TF ) = deg(TP ) + deg(TQ) ≤ deg(Q)−DG(F ) + deg(P )−
DG(F ) = deg(F )− 2DG(F ). �

One can characterize the factorization of all monomials in which the highest degree form
is square free.

Corollary 20. Let F (X) = Fm(X)+Fd(X) ∈ Fq[X1, . . . , Xn], where deg(F ) = m. If Fm(X)
is square free and (Fm, Fd) = 1, then F (X) is absolutely irreducible.

Proof: Assume that F (X) = P (X)Q(X). Then by Theorem 47 DG(P ) = DG(F ) and
DG(Q) = DG(F ). Therefore, TF (X) = TP (X)TQ(X), and deg(TF ) = deg(TP ) + deg(TQ) ≤
m− 2DG(F ) < m−DG(F ) = d. �

Remark: Every polynomial F (X) = Fm(X) + Fd(X) ∈ Fq[X1, . . . , Xn], where Fm(X) is
square free can be written as follows

F (X) = L(X)Q(X),

where L(X) = (Fm, Fd) and Q(X) ∈ Fq[X1, . . . , Xn] is absolutely irreducible.
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Corollary 21. Let F (X) = Fm(X)+H(X) ∈ Fq[X1, . . . , Xn], where deg(F ) = m, deg(H) =

d, Fm(X) is square free and (Fm, H) = 1. If F (X) is irreducible in Fqi for i = 1, . . . ,
⌊

deg(F )
DG(F )

⌋
,

then F is absolutely irreducible.

Proof: Assume F (X) factors over Fqr , where r >
⌊

deg(F )
DG(F )

⌋
. Then, by Lemma 6 F (X) have

r-factors, but this contradicts Corollary 16. �

From this corollary, one can derive the following algorithm to test absolute irreducibility.
Algorithm 1: Absolute irreducibility testing
Result: The polynomial is absolutely irreducible or not
t← 1;
F (X)← polynomial in Fq[X] satisfying conditions in Theorem 47;
while t ∗DG(F ) ≤ deg(F ) do

if if F (X) is irreducible in Fqt(X) then
t← t+ 1;

else
return(F(X) is not absolutely irreducible);
exit;

end
end
return(F(X) is absolutely irreducible)
The following lemma is a generalization of Lemma 2 in two ways. It mild the conditions

as well as generalized for polynomials of n variables.

Lemma 18. Let K be a field. Let G(x1, . . . , xn) ∈ K[x1, . . . , xn] be a polynomial whose
graded homogeneous representation is: G = Gb + Ga + Ga−1 + · · · + G0, where Gi is 0 or
homogeneous of degree i ∈ {0, . . . , b}. If b > 2a, Gb factors into distinct irreducible factors
over K and (Gb, Ga, Ga−1, . . . , G0) = 1, then G is absolutely irreducible.

Proof: Suppose that G(X) = P (X)Q(X). Notice that (Gb, Ga, Ga−1, . . . , G0) = 1 implies
that neither P (X) or Q(X) is homogeneous polynomial. By Definition 15 and Theorem 47
we have deg(P ) ≥ DG(G) > deg(G)

2
and deg(Q) ≥ DG(G) > deg(G)

2
. This is a contradiction

with the degree of G. Therefore, G is absolutely irreducible. �

2.4. Alternative Proofs. For the rest of this thesis, let q = 2`. We will assume that every
polynomial f(X) ∈ Fq[x] contains an odd degree term. We can make this assumption without
losing generalization because every polynomial with every term that has an even degree is
EA-equivalent to a polynomial that contains an odd degree term.

Theorems 48 and 49 were proved originally in [2]. Here we gave new proofs of these
theorems using the techniques developed at the beginning of this chapter.

Theorem 48. If the degree of the polynomial function f(X) ∈ Fq is odd and not a Gold or
a Kasami-Welch number then f(X) is not APN over Fqn for all n sufficiently large.

Proof: By Hernando and Mcguire [31] we know that if the degree of deg(f) = d is odd
and not a Gold or a Kasami-Welch number then φd(X, Y, Z) contains a reduced absolutely
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irreducible factor defined over Fq. Therefore, by corollary 5 φf (X, Y, Z) contains an absolutely
irreducible factor defined over Fq. Thus, f(X) is not APN over Fqn for all n sufficiently
large. �

Theorem 49. If the degree of the polynomial function f(X) ∈ Fq[x] is 2e with e odd, and
if f contains a term of odd degree, then f is not APN over Fqn for all n sufficiently large.

Proof: Notice that φ2e = φ6(X, Y, Z)φ2
e and φ6(X, Y, Z) - φe. This implies that φ2e contains a

reduced linear factor. Therefore, by corollary 5 φf (X, Y, Z) contains an absolutely irreducible
factor defined over Fq. Thus, f(X) is not APN over Fnq for all n sufficiently large. �
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3. Completion of the Gold Degree Case with Even Degree-gap and
Substantial Progress in the Odd Degree-gap Case

This chapter is divided into four sections. In the first section, we use the concept of degree
gap to provide bounds to guarantee the existence of absolute irreducible factors. Later in the
next two sections this bounds will be improve using the multiplicity of the point (1, 1, 1) to
give an upper bound in the number of factors φf (X, Y, Z) can have in the remaining open
cases in the literature. In the second section we prove the case when the second term have
odd degree. We use 17 develop in the previous chapter to proof the remaining cases in the
literature.

In the third section we investigate the case when the second term have even degree 2n−je,
when e ≡ 3 (mod 4). We gave a bound in the number of factors the polynomial could have
and show that if j ≥ 4 then φf (X, Y, Z) contains an absolute irreducible factor defined over
Fq and therefore, f(X) is not exceptional APN. In the last section we investigate the case
when e ≡ 1 (mod 4). Similarly to the previous case we show that if j > 4 and e is not a Gold
exponent, then φf (X, Y, Z) contain an absolute irreducible factor defined over Fq. Therefore,
f(X) is not exceptional APN. At the end of Sections 3 and 4 we state all the cases left to
proof in the exceptional APN conjecture with Gold degree.

Lemma 19. Let f(X) = Xe + h(X) ∈ Fq[X], where deg(h) < e and e is a Gold or Kasami-
Welch number. If φe contains an absolutely irreducible factor defined over Fq then φf (X, Y, Z)
contains an absolutely irreducible factor defined over Fq.

Proof: Let φf (X, Y, Z) = φe(X, Y, Z) + φh(X, Y, Z) and suppose φe(X, Y, Z) contains an
absolutely irreducible factor defined over Fq. Therefore, by corollary 5 φf (X, Y, Z) contains
an absolutely irreducible factor defined over Fq. �

Theorem 50. Let f(X) = X2n1n2+1 + h(X) ∈ Fq[X], where (n1, n2) = 1, n1, n2 > 1. If
φf (X, Y, Z) is irreducible over Fq then, φf (X, Y, Z) is absolutely irreducible.

Proof: Suppose φf (X, Y, Z) is irreducible over Fq and (n1, n2) = 1, n1, n2 > 1, then by
corollary 11 φf (X, Y, Z) is absolutely irreducible. �

Theorem 51. Let f(X) = Xe + h(X) ∈ Fq[x] where deg(h) < e and e is Gold or Kasami-
Welch number. If Tφ(X, Y, Z) contains a reduce irreducible factor R(X, Y, Z) ∈ Fq[X, Y, Z],
with (m(φe),m(R)) = 1, then φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq.

Proof: Suppose that φf (X, Y, Z) is irreducible, then by corollary 13 φf (X, Y, Z) is absolutely
irreducible. Suppose φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z) is irreducible
and TP (X, Y, Z) contains R(X, Y, Z). Notice that m(P ) | m(φf ). Therefore, by corollary
13 P (X, Y, Z) is absolutely irreducible. Thus, φf (X, Y, Z) contains an absolutely irreducible
component defined over Fq. �

3.1. Using the degree-gap to prove most of the Gold exception cases. Notice that
if do not contain any linear term f(X) and φf (X, Y, Z) have the same degree-gap. Now
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consider the polynomial f(X) = X2n+1 + h(X) ∈ Fq, where h(X) =
∑m

i=1 aiX
2ji (2ni+1) with

ai ∈ Fq and deg(h(X)) < 2n + 1. Then the maximum degree of h(X) is 2n−2(2 + 1). This
implies that the degree-gap in these cases is ≥ 2n + 1− (2n−1 + 2n−2) = 2n−2 + 1.

Proposition 9. Let f(X) = X2n+1 + h(X) ∈ Fq, where h(X) =
∑m

i=1 aiX
2ji (2ni+1) with

ai ∈ Fq and deg(h(X)) < 2n + 1. If φf (X, Y, Z) factors over Fq and (φ2n+1, φh) = 1 then,
φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq.

Proof: Suppose that φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z) and Q(X, Y, Z)
are non constant polynomials. Now writing its factor as sum of homogeneous term we obtain:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0).

where Pi, Qi are zero or homogeneous of degree i, s+t = 2n−2. Without loss of generality
assume that s ≥ t then, t ≤ 2n−1 − 1. Now the degree-gap of Q is ≥ 2n−2 + 1. Now
we claim that Q is absolutely irreducible. If deg(Qt−1) < DG(G) then, Q is absolutely
irreducible (where DG(G) is the degree-gap of G). By theorem 47 degree-gap ≥ 2n−2 + 1
then, deg(Qt−1) ≤ 2n−1 − 1 − (2n−2 + 1) = 2n−2 − 2 < DG(G).Therefore G is absolutely
irreducible. �

Corollary 22. Let f(X) = X2n+1 + h(X) ∈ Fq, where h(X) =
∑m

i=1 aiX
2ji (2ni+1) with

ai ∈ Fq and deg(h(X)) < 2n + 1 and let φd = (φ2n+1, φh). If φf
φd

factors over Fq then,
φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq.

Proof: Let ρf =
φf
φd

Suppose that ρf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z)

and Q(X, Y, Z) are non constant polynomials. Now writing its factor as sum of homogeneous
term we obtain:

ρf = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pi, Qi are zero or homogeneous of degree i, s + t = 2n − 2d. Without loss of
generality assume that s ≥ t then, t ≤ 2n−1 − 2d−1. Now the degree-gap of Q is ≥ 2n−2 + 1.
Now we claim that Q is absolutely irreducible. If deg(Qt−1) < DG(G) then, Q is absolutely
irreducible (where DG(G) is the degree-gap of G). By theorem 47 degree-gap ≥ 2n−2 + 1
then, deg(Qt−1) ≤ 2n−1 − 2d−1 − (2n−2 + 1) = 2n−2 − 2d−1 − 1 < DG(G).Therefore G is
absolutely irreducible. �

Theorem 52. Let f(X) = X2n+1 + h(X) ∈ Fq, where deg(h(X)) < 2n + 1. If there exists
a prime number p, p > 3 such that p1|n and (φ2p+1, φh) = 1 then, φf (X, Y, Z) contains an
absolutely irreducible factor defined over Fq.

Proof: Without loss of generality assume that (φ2n+1, φh) = 1 (in case when it is 6= 1, we just
divide the polynomial by (φ2n+1, φh) and proceed in the same way). If φf (X, Y, Z) is reducible
over Fq then, by lemma 9 φf (X, Y, Z) contain an absolutely irreducible factor defined over Fq.
So we can suppose φf (X, Y, Z) is irreducible over Fq. Now φ2n+1 contains reduced absolutely
irreducible factors over Fqp . By lemma 4 we have that the tangent cone of ψφ contains a
reduced absolutely irreducible factor defined over Fqp . By Bartoli (generalization of Bartoli)
we obtain that ψφ contain an absolutely irreducible factor defined over Fqp . By lemma 13
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φf (X, Y, Z) contain an absolutely irreducible factor H1 over Fqp . By lemma 6 there exists an
r, c ∈ Fq and an absolutely irreducible polynomial H ∈ Fqr such that

φf (X, Y, Z) =
∏

σ∈Gal(Fqr/Fq)

σ(H).

Since H1 is absolutely irreducible we have that there exists β ∈ Gal(Fqr/Fq) such that
H1 | β(H). Notice that by lemma 8 β(H) is absolutely irreducible. Therefore, p | r.
By lemma 6 the degree of σ(H) is deg(φf )/r for every σ ∈ Gal(Fqr/Fq). Then deg(σ(H)) <
deg(φf )/4. Notice that 4DG(φf ) ≥ 4(2n−2 + 1) = 2n + 4 > deg(φf ). Therefore, DG(φf ) >
deg(σ(H)) which implies by theorem 47 that σ(H) is a form which is a contradiction with
(φ2n+1, φh) = 1. �

Theorem 53. Let f(X) = X2p+1 +h(X) ∈ Fq[x], where deg(h) < 2p+1, p prime number. If
DG(φf ) > deg(φ2p+1)/p then, φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq.

Proof: Notice that (φ2p+1, φh) = 1. Suppose that φf = PQ, where P is irreducible over
Fq. We are going to show that P is absolutely irreducible. By theorem 47 we know that
DG(P ) ≥ DG(φf ) > deg(φ2p+1)/p. By Kopparty lemma 6 there exists a positive integer r,
absolutely irreducible polynomial g(X, Y, Z) ∈ Fqr [X, Y, Z] and c ∈ Fq such that

P = c
∏

σ∈Gal(Fqr/Fq)

σ(g(X, Y, Z)).

Notice that P = Ps + · · ·+P0, Ps contains a reduced linear factor over Fqp which implies by
lemma 13 and theorem 42 that P have an absolutely irreducible factor defined over Fqp . The
factorization by Kopparty lemma gave the factorization into absolutely irreducible factors
which implies the factor that lies in Fqp also lies in Fqr which only gave leave us with two
options either P is absolutely irreducible or p | r). If r > 1 by theorem 47 each factor satisfy
σ(g(X, Y, Z)) have degree DG(σ(g(X, Y, Z))) > deg(φ2p+1)/p > deg(σ(g(X, Y, Z))). This
implies that every factor of P are forms and therefore P is a form. This is a contradiction
to the fact that (φ2p+1, φh) = 1. Therefore r = 1. Thus we can suppose that φf (X, Y, Z) is
irreducible over Fq.

Similarly by Kopparty lemma 6 there exists a positive integer r1, absolutely irreducible
polynomial g1(X, Y, Z) ∈ Fqr1 [X, Y, Z] and c1 ∈ Fq such that

φf (X, Y, Z) = c1
∏

σ∈Gal(Fqr1 /Fq)

σ(g1(X, Y, Z)).

Notice that φ2p+1 contains an absolutely irreducible factor defined over Fqp which implies that
φf (X, Y, Z) have an absolutely irreducible factor defined over Fqp by lemma 13 and theorem
42. The factorization by Kopparty lemma gave the factorization into absolutely irreducible
factors which implies the factor that lies in Fqp also lies in Fqr1 which only gave leave us with
two options either P is absolutely irreducible or p | r1). If r1 > 1 by theorem 47 each factor
satisfy DG(σ(g1(X, Y, Z))) > deg(φ2p+1)/p = deg(σ(g1(X, Y, Z))). This implies that every
factor of φf (X, Y, Z) are forms and therefore φf (X, Y, Z) is a form. This is a contradiction
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to the fact that (φ2p+1, φh) = 1. Therefore r = 1. Thus φf (X, Y, Z) contains an absolutely
irreducible factor defined over Fq. �

But we can even improve further this result.

Theorem 54. Let f(X) = X2n+1 + h(X) ∈ Fq[x], where deg(h) < 2n + 1. Let p′ be
the highest prime that divide n and (φ2p′+1, φf ) = 1. If DG(φf ) > deg(φ2n+1)/p

′ then,
φf (X, Y, Z) contain an absolutely irreducible factor defined over Fq.
Proof: Suppose φf (X, Y, Z) is irreducible over Fq. Notice that φ2n+1 contains a reduced
linear term over Fqp′ , by applying the reverse to φf (X, Y, Z) we obtain that the tangent cone
of ψφ (by lemma 4) contains a reduced absolutely irreducible factor defined over Fqp′ . By
theorem 42 ψφ contains an absolutely irreducible factor defined over Fqp′ . This implies by
lemma 13 that φf (X, Y, Z) contains an absolutely irreducible factor defined over Fqp′ . Since
φf (X, Y, Z) is irreducible over Fq by lemma 6 there exists a positive integer r, an absolutely
irreducible polynomial g(X, Y, Z) ∈ Fqr and c ∈ Fq such that

φf (X, Y, Z) = c
∏

σ∈Gal(Fqr/Fq)

σ(g(X, Y, Z)).

If r > 1, and the fact that every σ(g(X, Y, Z)) is absolutely irreducible, we can conclude
that p′ | r (since we know one of the absolutely irreducible factor of φf (X, Y, Z) lie over
Fqp′ ). By theorem 47 DG(σ(g(X, Y, Z))) ≥ DG(φf ) > deg(φ2n+1)/p. This implies that every
σ(g(X, Y, Z)) is a form and thus φf (X, Y, Z) is a form which is a contradiction. Therefore
r = 1. Similarly if φf (X, Y, Z) = PQ, where P is an irreducible polynomial over Fq that
contain an irreducible factor of φ2p+1. Apply the same argument over P to conclude P is
absolutely irreducible since P is not a form (φ2p′+1, φf ) = 1 (implies this, otherwise is a
contradiction with being relatively prime). �

3.2. Completion of the Gold Degree Case with Even Degree-gap of the Excep-
tional APN Conjecture. The following theorem finishes the Gold case when the second
term is of odd degree.

Theorem 55. Let f(x) = x2
k1+1+h(x) ∈ L[x], where deg(h) = 2k2 +1 and deg(h) < 2k1 +1.

If h(x) =
∑t

j=2 ajx
2mj (2kj+1), then φ contains an absolutely irreducible factor and f is not

an exceptional APN polynomial.

Proof: Suppose that (k1, k2 . . . , kt) = 1, then by Lemma 18 φ is absolutely irreducible.
Suppose that (k1, k2 . . . , kt) = q, by Theorem 13, we can conclude that φ2q+1 divides φ(x, y, z).
Consider the factor of φ of degree 2k1 − 2q, defined by:

H(x, y, z) :=
φ(x, y, z)

φ2q+1(x, y, z)
. (11)

Then writing (11) as the sum of homogeneous terms, H = Hb1 +Hb2 +Hb3 + · · ·+Hbt , where
Hb1 = φ2k1+1/φ2q+1 andHbi = ai(x

2mj (2kj+1)), for i ∈ {2, . . . , t}. Therefore, (Hb, Ha, Ha−1, . . . , H0) =
1 and by Lemma 18 H is absolutely irreducible. �

Theorem 56. Let f(X) = xd + h(X) ∈ Fq[X], where d = 2n + 1, and e = deg(h) < d. If
e ≡ 1 (mod 4), then φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq.
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Theorem 57. Let f(X) = xd + h(X) ∈ Fq[X], where d = 2n + 1, and e = deg(h) < d. If e
is odd, then φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq.

3.3. Case when deg(h) = 2n−je, where e ≡ 3 (mod 4). Let f(x) = x2
n+1 + h(x), with

deg(h) = 2n−je, where j ≥ 2 and e ≡ 3 (mod 4). Then we have the following results

Lemma 20. ν(1,1,1)(φ(2n−je) = (2n−j − 1)(3).

Proof: This follows directly from Equation 3 and Lemma 12. �

Lemma 21. Let R(X, Y, Z) be a factor of φ2n+1, then deg(R) = ν(1,1,1)(R)

Proof: By Equation 1 we have that

φ2n+1(X, Y, Z) =
∏

α∈F2n−F2

(X + αY + (α + 1)Z).

Notice that ν(1,1,1)(X + βY + (β + 1)Z) = 1 for all β ∈ F2n − F2 and hence ν(1,1,1)(φ2n+1) =
2n − 2. Since R(X, Y, Z) | φ2n+1(X, Y, Z), then there exist a subset A ⊂ F2n − F2 such that
R(X, Y, Z) =

∏
γ∈A(X + γY + (γ + 1)Z). Therefore, by lemma 1 we have that deg(R) =

ν(1,1,1)(R). �

Lemma 22. Let f(x) = x2
n+1 +h(x), with deg(h) = 2n−je, where j ≥ 2 and e ≡ 3 (mod 4).

Then, DG(φf ) ≥ 2n−j + 1.

Proof: The maximum degree term of the form 2n−je, with 2n + 1 > 2n−je is given by
2n−j(2j − 1) = 2n − 2n−j. Therefore, DG(φf ) ≥ 2n + 1− (2n − 2n−j) = 2n−j + 1. �

Proposition 10. Let f(X) = X2n+1 + h(X), where deg(h) = 2n−je, where e ≡ 3 (mod 4).
Then (φ2n+1, φh) = 1. Moreover, φf (X, Y, Z) is not divisible by any homogeneous polynomial.

Notice that if j = 2, then we obtain that e = 3 and we obtain in some cases some exception
of the Gold sum Case. For the rest of the article assume that j ≥ 4.

Proposition 11. Let f(X) = X2n+1 + h(X), where deg(h) = 2n−je, where e ≡ 3 (mod 4).
Then φf (X, Y, Z) can factor up to 5 factors.

Proof: Assume that φf (X, Y, Z) =
∏6

i=1Ri(X, Y, Z)) is the product of 6 factors. Notice that
by lemma 22 and lemma 20 3(DG(φf )) ≥ 3(2n−j + 1) > 3(2n−j − 1) = ν(1,1,1)(φ2n−je). By
theorem 47 and lemma 22 DG(Ri) ≥ DG(φf ) ≥ 2n−j + 1. By proposition 10 then we can
conclude that deg(Ri) ≥ DG(Ri) ≥ 2n−j + 1. Now consider P (X, Y, Z) =

∏3
i=1Ri(X, Y, Z)

and Q(X, Y, Z) =
∏6

i=4Ri(X, Y, Z). We write P and Q as sums of homogeneous terms:
φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s + t = 2k − 2. Without loss of
generality assume that s ≥ t. Then,

PsQt = φ2n+1,

Since φ2k+1 is equal to the product of different linear factors, (Ps, Qt) = 1. Then, equating
the terms of degree s+ t− 1 gives PsQt−1 + Ps− 1Qt = 0. Hence, we have Ps | Ps−1Qt and
this implies that Ps | Ps−1. Therefore, Ps−1 = 0 and Qt−1 = 0 as Ps 6= 0.



© 2021 Carlos A. Agrinsoni Santiago
48/93

Similarly, equating the terms of degree > 2n−je− 3 we get:
Ps−2 = Qt−2 = 0

. . .

Ps−d+1 = Qt−d+1 = 0

and
φ2n−je(X, Y, Z) = PsQt−d + Ps−dQt.

Notice that ν(1,1,1)(Ps) = deg(Ps) ≥ 3DG(φf ) > ν(1,1,1)(φ2n−je) and ν(1,1,1)(Qt) = deg(Qt) ≥
3DG(φf ) > ν(1,1,1)(φ2n−je). By lemma 1 we get ν(1,1,1)(φ2n−je) ≥ min(PsQt−d, Ps−dQt) >
ν(1,1,1)(φ2n−je) which is a contradiction. Therefore, φf (X, Y, Z) can not have more than 5
factors. �

Proposition 12. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−je, where e ≡ 3
(mod 4). If n is a prime greater than 6, then φf (X, Y, Z) contain an absolutely irreducible
factor define over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible over Fq. By factorization in Equation 1 φ2n+1 con-
tains an irreducible factor P (X, Y, Z) ∈ Fq[X, Y, Z] withm(P ) = n. By Corollary 7m(φf ) | n
but n prime implies that either m(φf ) = 1 or m(φf ) = n. If m(φf ) = n, then φf (X, Y, Z)
factor into n factors which is a contradiction of proposition 11. Therefore, m(φf ) = 1 and
φf (X, Y, Z) is absolutely irreducible.

Suppose that φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z) is irreducible and
P (X, Y, Z), Q(X, Y, Z) are non constant polynomials. Since P (X, Y, Z) is non constant poly-
nomial, then tP (X, Y, Z) contains an irreducible factor P1(X, Y, Z) ∈ Fq[X, Y, Z] withm(P1) =
n. By the first part of the proof P1(X, Y, Z) is absolutely irreducible. Therefore, φf (X, Y, Z)
contains an absolutely irreducible factor defined over Fq. �

Proposition 13. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−je, where e ≡ 3
(mod 4). If n is odd, n > 6 and n is not a prime power, then φf (X, Y, Z) contain an absolutely
irreducible factor defined over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible over Fq. Since n is not a prime power there exist
at least two primes p1, p2 (p1 6= p2) such that p1p2 | n, then by Theorem 50 φf (X, Y, Z) is
absolutely irreducible.

Suppose that φf (X, Y, Z) factors over Fq and let p1, p2 be prime numbers such that p1p2 | n
with p1 6= p2. Let

φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z)R(X, Y, Z),
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where P (X, Y, Z), Q(X, Y, Z) are irreducible non constant polynomials and tP (X, Y, Z) con-
tains an irreducible factor of φ2p1+1(X, Y, Z). If tP (X, Y, Z) also contain an irreducible fac-
tor of φ2p2+1(X, Y, Z), then by Corollary 11 P (X, Y, Z) is absolutely irreducible. There-
fore, we can assume without loss of generality that (tP (X, Y, Z), φ2p2+1(X, Y, Z)) = 1. Now
we can assume without loss of generality that tQ(X, Y, Z) contains an irreducible factor
of φ2p2+1(X, Y, Z). Now by Corollary 7 we have that m(P ) | p1 and m(Q) | p2. If either
m(P ) = 1 or m(Q) = 1, then φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Assume that m(P ) = p1 and m(Q) = p2, then φf (X, Y, Z) have a factorization
with at least p1 + p2 > 5 factors which is a contradiction with proposition 11. Therefore,
either m(P ) = 1 or m(Q) = 1 and thus, φf (X, Y, Z) contains an absolutely irreducible factor
defined over Fq. �

Proposition 14. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−je, where e ≡ 3
(mod 4). If n is a power of 5, then φf (X, Y, Z) contain an absolutely irreducible factor defined
over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible. Notice that φ2n+1 contains an irreducible factor
R(X, Y, Z) defined over Fq with m(R) = 5. By Corollary 7 we have that m(φf ) | m(R) so we
have that either m(φf ) = 5 or m(φf ) = 1. If m(φf ) = 5, i.e. φf (X, Y, Z) =

∏5
i=1Ri(X, Y, Z),

where Ri(X, Y, Z) ∈ Fq5 [X, Y, Z]. Then by theorem 41 we have that deg(Ri) = (2n − 2)/5

for i = 1, . . . , 5. Notice that φ2n+1(X, Y, Z) =
∏5

i=1 tRi
(X, Y, Z). Now by lemma 21 we have

that ν(1,1,1)(tRi
) = deg(tRi

) = (2n − 2)/5.
Notice that 5ν1,1,1(φ2n−je = 15(2n−j − 1) ≤ 15(2n−4− 1) = 2n− 2n−4− 15 < 2n− 2. There-

fore, ν(1,1,1)(tRi
) > ν(1,1,1)(φ2n−je). Now define P (X, Y, Z) = R1(X, Y, Z) and Q(X, Y, Z) =∏5

i=2Ri(X, Y, Z). We write P and Q as sums of homogeneous terms:
φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

By Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(PsQt−d), ν(1,1,1)(Ps−dQt)) > ν(1,1,1)(φ2n−je) which is
a contradiction. Therefore, m(φf ) = 1 and φf (X, Y, Z) is absolutely irreducible.

Suppose that φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z), Q(X, Y, Z) ∈ Fq[X, Y, Z],
P (X, Y, Z) and Q(X, Y, Z) are non constant polynomials and P (X, Y, Z) is irreducible. Since
P (X, Y, Z) is non constant then there exists an irreducible polynomial W (X, Y, Z) such that
W (X, Y, Z) | tP (X, Y, Z). By Equation 1 m(W ) = 5k where k ≥ 1 and by Corollary 7 we
have m(P ) | m(W ). Therefore, m(P ) is either m(P ) = 1 or m(P ) = 5k1 , where 1 ≤ k1 ≤ k.
If m(P ) = 5k1 , then by theorem 41 P (X, Y, Z) factors into 5k1 factors and we obtain that
φf (X, y, Z) has a factorization with at least 5k1 + 1 factors which is a contradiction with
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Proposition 11. Therefore,m(P ) = 1 and thus, φf (X, Y, Z) contains an absolutely irreducible
factor defined over Fq.

�

Proposition 15. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−je, where e ≡ 3
(mod 4) and j ≥ 4. If n is a power of 3, then φf (X, Y, Z) contain an absolutely irreducible
factor defined over Fq.
Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible. Notice that φ2n+1 contains an irreducible factor
R(X, Y, Z) defined over Fq with m(R) = 3. By Corollary 7 we have that m(φf ) | m(R) so we
have that either m(φf ) = 3 or m(φf ) = 1. If m(φf ) = 3, i.e. φf (X, Y, Z) =

∏3
i=1Ri(X, Y, Z),

where Ri(X, Y, Z) ∈ Fq3 [X, Y, Z]. Then by theorem 41 we have that deg(Ri) = (2n − 2)/3

for i = 1, 2, 3. Notice that φ2n+1(X, Y, Z) =
∏3

i=1 tRi
(X, Y, Z). Now by lemma 21 we have

that ν(1,1,1)(tRi
) = deg(tRi

) = (2n − 2)/3.
Notice that 3ν1,1,1(φ2n−je) = 9(2n−j − 1) ≤ 9(2n−4− 1) = 2n−1 + 2n−4− 9 < 2n− 2. There-

fore, ν(1,1,1)(tRi
) > ν(1,1,1)(φ2n−je). Now define P (X, Y, Z) = R1(X, Y, Z) and Q(X, Y, Z) =∏3

i=2Ri(X, Y, Z). We write P and Q as sums of homogeneous terms:
φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

By Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(PsQt−d), ν(1,1,1)(Ps−dQt)) > ν(1,1,1)(φ2n−je) which is
a contradiction. Therefore, m(φf ) = 1 and φf (X, Y, Z) is absolutely irreducible.

Suppose that φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z)R(X, Y, Z), where P (X, Y, Z), Q(X, Y, Z),
R(X, Y, Z) ∈ Fq[X, Y, Z], P (X, Y, Z) and Q(X, Y, Z) are non constant irreducible polynomi-
als. Since P (X, Y, Z) is non constant then there exists an irreducible polynomial W (X, Y, Z)
such that W (X, Y, Z) | tP (X, Y, Z). By Equation 1 m(W ) = 3k where k ≥ 1 and by
Corollary 7 we have m(P ) | m(W ). Therefore, m(P ) is either m(P ) = 1 or m(P ) = 3k1 ,
where 1 ≤ k1 ≤ k. Similarly, there exists an irreducible polynomial V (X, Y, Z) such that
V (X, Y, Z) | tQ(X, Y, Z). By equation 1, m(V ) = 3a, where a ≥ 1 and by Corollary7 we have
m(Q) | m(V ). Therefore, m(Q) = 1 or m(Q) = 3a1 , where 1 ≤ a1 ≤ a. If either m(P ) = 1 or
m(Q) = 1, then you have an absolutely irreducible factor defined over Fq. So we can assume
that m(P ),m(Q) > 1, then by Theorem 41 P (X, Y, Z) factors into at least 3 factors. Sim-
ilarly, Q(X, Y, Z) factors into at least 3 factors. Therefore, φ(X, Y, Z) have a factorization
into at least 6 factors which is a contradiction with Proposition 11. �

Proposition 16. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−je, where e ≡ 3
(mod 4) and j ≥ 4. If n = pm, where p is a prime p > 5, then φf (X, Y, Z) contain an
absolutely irreducible factor defined over Fq.
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Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible. Notice that φ2n+1 contains an irreducible factor
R(X, Y, Z) defined over Fq with m(R) = p. By Corollary 7 we have that m(φf ) | m(R) so
we have that either m(φf ) = p or m(φf ) = 1. If m(φf ) = p, then by Theorem 41 φf (X, Y, Z)
factors into p absolutely irreducible factors. This is a contradiction with Proposition 11.
Therefore, φf (X, Y, Z) is absolutely irreducible.

Suppose that φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z), Q(X, Y, Z),∈ Fq[X, Y, Z],
P (X, Y, Z) and Q(X, Y, Z) are non constant polynomials and P (X, Y, Z) is irreducible. Since
P (X, Y, Z) is non constant then there exists an irreducible polynomial W (X, Y, Z) such that
W (X, Y, Z) | tP (X, Y, Z). By Equation 1 m(W ) = pk where k ≥ 1 and by Corollary 7 we
have m(P ) | m(W ). Therefore, m(P ) is either m(P ) = 1 or m(P ) = pk1 , where 1 ≤ k1 ≤ k.
If m(P ) = pk1 , then by theorem 41 P (X, Y, Z) factors into pk1 factors and we obtain that
φf (X, y, Z) has a factorization with at least pk1 + 1 factors which is a contradiction with
Proposition 11. Therefore,m(P ) = 1 and thus, φf (X, Y, Z) contains an absolutely irreducible
factor defined over Fq.

�

Proposition 17. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−je, where e ≡ 3
(mod 4). If n is a power of 2, then φf (X, Y, Z) contain an absolutely irreducible factor defined
over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible. Notice that φ2n+1 contains an irreducible fac-
tor R(X, Y, Z) defined over Fq with m(R) = 2. By Corollary 7 we have that m(φf ) |
m(R) so we have that either m(φf ) = 2 or m(φf ) = 1. If m(φf ) = 2, i.e. φf (X, Y, Z) =
P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z)Q(X, Y, Z) ∈ Fq2 [X, Y, Z]. Then by theorem 41 we
have that deg(P ) = deg(Q) = 2n−1−1. Notice that φ2n+1(X, Y, Z) = tP (X, Y, Z)tQ(X, Y, Z).
Now by lemma 21 we have that ν(1,1,1)(tP ) = ν(1,1,1)(tQ) = deg(tP ) = 2n−1 − 1.

Notice that 2ν1,1,1(φ2n−je = 6(2n−j−1) ≤ 9(2n−4−1) = 2n−1+2n−4−9 < 2n−2. Therefore,
ν(1,1,1)(tP ) = ν(1,1,1)(tQ) > ν(1,1,1)(φ2n−je). We write P and Q as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

By Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(PsQt−d), ν(1,1,1)(Ps−dQt)) > ν(1,1,1)(φ2n−je) which is
a contradiction. Therefore, m(φf ) = 1 and φf (X, Y, Z) is absolutely irreducible.
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Suppose that φf (X, Y, Z) factors over Fq with factorization

φf (X, Y, Z) =
k∏
i=1

Ri(X, Y, Z), (12)

where Ri(X, Y, Z) ∈ Fq[X, Y, Z] is irreducible non constant polynomial for i = 1, . . . , k.
Notice that for each tRi

(X, Y, Z), there exists an irreducible polynomialWi(X, Y, Z) such that
m(Wi) = 2ki , where ki ≥ 1 for each i = 1, . . . , k. By Corollary 7 we have that m(Ri) | m(Wi)
for each i = 1, . . . , k. Therefore, m(Ri) = 2ai , where 0 ≤ ai ≤ ki for every i = 1, . . . , k. If
there exists a i0 such that m(Ri0) = 1, then we have an absolutely irreducible factor defined
over Fq. So we can assume that m(Ri) = 2ai , where 1 ≤ ai ≤ ki for each i = 1, . . . , k. Now for
every i = 1, . . . , k by Theorem 41 there exist an absolutely irreducible factor hi(X, Y, Z) ∈
Fq2ai [X, Y, Z], ci ∈ Fq such that

Ri(X, Y, Z) = ci
∏

α∈Gal(F
q2

ai )/Fq)

σ(hi(X, Y, Z)), (13)

Combining Equations 12 and 13 we obtain the following equation:

φf (X, Y, Z) =
k∏
i=1

ci
∏

α∈Gal(F
q2

ai )/Fq)

σ(hi(X, Y, Z)). (14)

Notice that |Gal(Fq2ai )/Fq)| = 2ai and that for every α, β ∈ Gal(Fq2ai )/Fq) we have that
deg(α(hi)) = deg(β(hi)). Let γi be a generator of Gal(Fq2ai )/Fq), define gi(X, Y, Z) =∏2a1−1

r=1 γri (hi(X, Y, Z)) and fi(X, Y, Z) =
∏2ai

r=2ai−1+1 γ
r
i (hi(X, Y, Z)). Then using this defi-

nitions we can rewrite Equation 14 as

φf (X, Y, Z) =
k∏
i=1

cigi(X, Y, Z)fi(X, Y, Z)

Notice that deg(fi) = deg(gi). Define P (X, Y, Z) =
∏k

i=1 gi(X, Y, Z) and Q(X, Y, Z) =∏k
i=1 cifi(X, Y, Z), then φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), with deg(P ) = deg(Q) =

2n−1 − 1. Notice that φ2n+1(X, Y, Z) = tP (X, Y, Z)tQ(X, Y, Z). Now by lemma 21 we have
that ν(1,1,1)(tP ) = ν(1,1,1)(tQ) = deg(tP ) = 2n−1 − 1.

Notice that 2ν1,1,1(φ2n−je = 6(2n−j−1) ≤ 9(2n−4−1) = 2n−1+2n−4−9 < 2n−2. Therefore,
ν(1,1,1)(tP ) = ν(1,1,1) > ν(1,1,1)(φ2n−je). We write P and Q as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.



© 2021 Carlos A. Agrinsoni Santiago
53/93

By Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(PsQt−d), ν(1,1,1)(Ps−dQt)) > ν(1,1,1)(φ2n−je) which
is a contradiction. Therefore, there exist an i0 ∈ {1, . . . , k} such that m(Ri0) = 1. Thus,
φf (X, Y, Z) contains an absolutely irreducible component defined over Fq. �

Proposition 18. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−je, where e ≡ 3
(mod 4). If n is even, and p | n is a prime p > 3, then φf (X, Y, Z) contain an absolutely
irreducible factor defined over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible over Fq. Since n is not a prime power there exist at
least two primes 2, p (p 6= 2) such that 2p | n, then by Theorem 50 φf (X, Y, Z) is absolutely
irreducible.

Suppose that φf (X, Y, Z) factors over Fq and let
φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z)R(X, Y, Z),

where P (X, Y, Z), Q(X, Y, Z) are irreducible non constant polynomials and tP (X, Y, Z) con-
tains φ22+1(X, Y, Z). If tP (X, Y, Z) also contain an irreducible factor of φ2p+1(X, Y, Z), then
by Corollary 11 P (X, Y, Z) is absolutely irreducible. Therefore, we can assume without loss
of generality that (tP (X, Y, Z), φ2p+1(X, Y, Z)) = 1. Without loss of generality we can as-
sume that tQ(X, Y, Z) contains an irreducible factor of φ2p+1. By Corollary 7 we have that
m(P ) | 2 and m(Q) | p, then we have that either m(P ) = 1 (respectively m(Q) = 1) or
m(P ) = 2 (respectively m(Q) = p). If either m(P ) = 1 or m(Q) = 1, then φf (X, Y, Z)
contains an absolutely irreducible factor defined over Fq. We can assume that m(P ) = 2 and
m(Q) = p, then φf (X, Y, Z) have a factorization with at least 2 + p > 6 factors which is a
contradiction of Proposition 11.

�

Proposition 19. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−je, where e ≡ 3
(mod 4). If 6 | n, then φf (X, Y, Z) contain an absolutely irreducible factor defined over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

If n is divisible by any prime p different than 2 and 3, then by Proposition 18 φf (X, Y, Z)
contains an absolutely irreducible factor defined over Fq. So we can assume that n is only
divisible by 2 and 3, i.e. n = 2n13n2 , where n1, n2 ≥ 1.

Suppose that φf (X, Y, Z) is irreducible over Fq. Since n is not a prime power there exist
at least two primes 2, 3 such that 6 | n, then by Theorem 50 φf (X, Y, Z) is absolutely
irreducible.

Suppose that φf (X, Y, Z) factors over Fq and let
φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z)R(X, Y, Z),
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where P (X, Y, Z), Q(X, Y, Z) are irreducible non constant polynomials and tP (X, Y, Z) con-
tains φ22+1(X, Y, Z). If tP (X, Y, Z) also contain an irreducible factor of φ23+1(X, Y, Z), then
by Corollary 11 P (X, Y, Z) is absolutely irreducible. Therefore, we can assume without loss
of generality that (tP (X, Y, Z), φ23+1(X, Y, Z)) = 1. Without loss of generality we can assume
that tQ(X, Y, Z) contains an irreducible factor of φ23+1.By Corollary 7 we have that m(P ) | 2
and m(Q) | 3, then we have that either m(P ) = 1 (respectively m(Q) = 1) or m(P ) = 2
(respectively m(Q) = 3). If either m(P ) = 1 or m(Q) = 1, then φf (X, Y, Z) contains an
absolutely irreducible factor defined over Fq. We can assume that m(P ) = 2 and m(Q) = 3.
If R(X, Y, Z) is a non constant polynomial then we get a contradiction with Proposition 11
(2 factors from P , 3 factors from Q and 1 factor from R). Therefore, we can assume that
φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z).

Suppose that deg(P ) ≥ deg(Q), then deg(P ) ≥ 2n−1−1. Sincem(P ) = 2, then there exists
R1(X, Y, Z), R2(X, Y, Z) ∈ Fq2(X, Y, Z) such that P (X, Y, Z) = R1(X, Y, Z)R2(X, Y, Z),
with deg(R1) = deg(R2). Notice that deg(R1) ≥ 2n−2 − 1. By Lemma 21 we have that
ν(1,1,1)(tR1) = ν(1,1,1)(tR2) ≥ 2n−2 − 1 > 4(2n−4 − 1) > 3(2n−j − 1) = ν(1,1,1)(φ2n−je).

Define A(X, Y, Z) = R1(X, Y, Z) and B = R2(X, Y, Z)Q(X, Y, Z), then φf (X, Y, Z) =
A(X, Y, Z)B(X, Y, Z). We write A(X, Y, Z) and B(X, Y, Z) as sums of homogeneous terms:

φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),

where Aj and Bj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = AsBt,

and
φ2n−je = AsBt−d + As−dBt.

By Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(AsBt−d), ν(1,1,1)(As−dBt)) > ν(1,1,1)(φ2n−je) which
is a contradiction. Thus, φf (X, Y, Z) contains an absolutely irreducible component defined
over Fq.

Suppose that deg(Q) ≥ 2n−1−1. Sincem(Q) = 3, then there existsR1(X, Y, Z), R2(X, Y, Z),
R3(X, Y, Z) ∈ Fq3 [X, Y, Z] such thatQ(X, Y, Z) =

∏3
i=1Ri(X, Y, Z) and deg(R1) = deg(R2) =

deg(R3). Notice that deg(Ri) > 2n−3−1 for i = 1, 2, 3. Similarly, since m(P ) = 2, then there
existsW1(X, Y, Z),W2(X, Y, Z) ∈ Fq2 [X, Y, Z] such that P (X, Y, Z) = W1(X, Y, Z)W2(X, Y, Z)
and deg(W1) = deg(W2). By Theorem 47 and Lemma 22 DG(Wi) ≥ DG(φf ) ≥ 2n−j + 1. By
Proposition 10 deg(Wi) ≥ DG(Wi) ≥ 2n−j + 1. Define A(X, Y, Z) = R1(X, Y, Z)W1(X, Y, Z)
and B(X, Y, Z) = R2(X, Y, Z)R3(X, Y, Z)W2(X, Y, Z). We write A(X, Y, Z) and B(X, Y, Z)
as sums of homogeneous terms:

φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),

where Aj and Bj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = AsBt,

and
φ2n−je = AsBt−d + As−dBt.
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By Lemma 21 and Lemma 1 we have that ν(1,1,1)(As) = ν(1,1,1)(tR1) + ν(1,1,1)(tW 1) ≥
2n−3 + 2n−j > 3(2n−j − 1) = ν(1, 1, 1)(φ2n−je). Clearly, deg(B) > deg(A). Therefore, by
Lemma 21 ν(1,1,1)(Bt) > ν(1,1,1)(As) > ν(1,1,1)(φ2n−je).

By Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(AsBt−d), ν(1,1,1)(As−dBt)) > ν(1,1,1)(φ2n−je) which
is a contradiction. Thus, φf (X, Y, Z) contains an absolutely irreducible component defined
over Fq.

�

Theorem 58. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−je, where e ≡ 3
(mod 4). If j ≥ 4, then φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq.

Lemma 23. Let f(X) = xd + h(X), where d = 2n + 1, e = deg(h) ν(1,1,1)(φe) < 2n−2 − 1.
Then every irreducible factor R(X, Y, Z) ∈ Fq[X, Y, Z] of φf (X, Y, Z) is either absolutely
irreducible or ν(1,1,1)(tR) < 2n−2.

Proof: If φd(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φd(X, Y, Z) do not contain an abso-
lutely irreducible factor defined over Fq.

Let φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z), Q(X, Y, Z) ∈ Fq[X, Y, Z] non
constant polynomials and P (X, Y, Z) be irreducible. If m(P ) = 1, then P (X, Y, Z) is abso-
lutely irreducible. Therefore, m(P ) > 1. It is enough to show that for every m(P ) = p, p
prime the condition is satisfied. Assume that 2n−2 − 1 < ν(1,1,1)(tP ) < 2n−1 − 1. We write
P (X, Y, Z) and Q(X, Y, Z) as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = d. Then
φd = PsQt,

and
φe = PsQt−a + Ps−aQt.

Since ν(1,1,1)(tP ) < 2n−1 − 1, then ν(1,1,1)(tQ) = ν(1,1,1)(φd)− ν(1,1,1)(tP ) ≥ 2n−1 − 1. Then we
have ν(1,1,1)(φe) ≤ 2n−2 − 1 ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt)) > 2n−2 − 1, which is a
contradiction. Therefore, ν(1,1,1)(tP ) ≥ 2n−1 − 1. Assume that ν(1,1,1)(tR) ≥ 2n−1 − 1.

If p = 2, then we have
P (X, Y, Z) = V1(X, Y, Z)V2(X, Y, Z)

where V1(X, Y, Z), V2(X, Y, Z) ∈ Fq2 [X, Y, Z] are conjugates. DefineA(X, Y, Z) = V1(X, Y, Z)
and B(X, Y, Z) = V2(X, Y, Z)Q(X, Y, Z), then φf (X, Y, Z) = A(X, Y, Z)B(X, Y, Z). We
write A and B as sums of homogeneous terms:

φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),

where Aj and Bj are zero or homogeneous of degree j, s+ t = d. Then
φd = AsBt,

and
φe = AsBt−a + As−aBt.
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Since V1, V2 are conjugates then deg(V1) = deg(V2), thus by Lemma 21 ν(1,1,1)(tV1) =
ν(1,1,1)(tV2) ≥ 2n−2. Then we have ν(1,1,1)(φe) ≤ 2n−2−1 ≥ min(ν(1,1,1)(AsBt−a), ν(1,1,1)(As−aBt)) >
2n−2 − 1, which is a contradiction. Therefore, ν(1,1,1)(tP ) ≤ 2n−2 − 1.

If p > 3, then we have

P (X, Y, Z) =
∏

σ∈Gal(Fqp/Fq)

σ(H(X, Y, Z))

whereH(X, Y, Z) ∈ Fqp [X, Y, Z]. Therefore deg(α(H)) = deg(β(H)), for all α, β ∈ Gal(Fqp/Fq),
thus by Lemma 21 ν(1,1,1)(tα(H)) = ν(1,1,1)(tβ(H)) ≥ (2n−1 − 1)/p. Let γ ∈ Gal(Fqp/Fq) be a
generator. Then,

P (X, Y, Z) =

p∏
i=1

γi(H(X, Y, Z))

DefineA(X, Y, Z) = Q(X, Y, Z)
∏(p−1/2)

i=1 γi(H(X, Y, Z)) andB(X, Y, Z) =
∏p

i=(p−1)/2+1 γ
i(H(X, Y, Z)),

then φf (X, Y, Z) = A(X, Y, Z)B(X, Y, Z). We write A(X, Y, Z) and B(X, Y, Z) as sums of
homogeneous terms:

φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),

where Aj and Bj are zero or homogeneous of degree j, s+ t = d. Then
φd = AsBt,

and
φe = AsBt−a + As−aBt.

Notice that ν(1,1,1)(Bt) ≥ (2n−1−1)/2 ≥ 2n−2. Computing ν(1,1,1)(As), we obtain ν(1,1,1)(As) =
p−1
2p

(2n − 2 − ν(1,1,1)(tQ)) + ν(1,1,1)(tQ) = (p−1)(2n−1−1)
p

+ p+1
2p
ν(1,1,1)(tQ) ≥ 4

5
(2n−1 − 1) +

p+1
2p
ν(1,1,1)(tQ) = 2n+1−4

5
+ p+1

2p
ν(1,1,1)(tQ) ≥ 2n−2. Then we have ν(1,1,1)(φe) ≤ 2n−2 − 1 ≥

min(ν(1,1,1)(AsBt−a), ν(1,1,1)(As−aBt)) ≥ 2n−2 > 2n−2−1, which is a contradiction. Therefore,
ν(1,1,1)(tP ) ≤ 2n−2 − 1.

If p = 3, then we have

P (X, Y, Z) =
∏

σ∈Gal(Fq3/Fq)

σ(H(X, Y, Z))

whereH(X, Y, Z) ∈ Fq3 [X, Y, Z]. Therefore deg(α(H)) = deg(β(H)), for all α, β ∈ Gal(Fq3/Fq)
thus by Lemma 21 ν(1,1,1)(tα(H)) = ν(1,1,1)(tβ(H)) ≥ (2n−1 − 1)/3. Let γ ∈ Gal(Fqp/Fq) be a
generator. Then,

P (X, Y, Z) =
3∏
i=1

γi(H(X, Y, Z))

Define A(X, Y, Z) =
∏2

i=1 γ
i(H(X, Y, Z)) and B(X, Y, Z) = Q(X, Y, Z)H(X, Y, Z), then

φf (X, Y, Z) = A(X, Y, Z)B(X, Y, Z). We write A and B as sums of homogeneous terms:
φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),
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where Aj and Bj are zero or homogeneous of degree j, s+ t = d. Then
φd = AsBt,

and
φe = AsBt−a + As−aBt.

Notice that ν(1,1,1)(As) ≥ 2
3
(2n−1 − 1) = (2

n−2
3

) > 2n−2 − 1. Let c = ν(1,1,1)(tQ), then
ν(1,1,1)(Bt) = c + 2n−2−c

3
= 2n−2

3
+ 2c

3
> (2n−4 − 1)(3) ≥ (2n−j − 1)(3). Then we have

ν(1,1,1)(φe) ≤ 2n−2 − 1 ≥ min(ν(1,1,1)(AsBt−a), ν(1,1,1)(As−aBt)) ≥ 2n−2 > 2n−2 − 1, which is a
contradiction. Therefore, ν(1,1,1)(tR) ≤ 2n−2 − 1. �

Theorem 59. Let f(X) = Xd + h(X), where d = 2n + 1, deg(h) = e and ν(1,1,1)(φe) <
2n−j − 1. Then every irreducible factor φf (X, Y, Z) contains an absolutely irreducible factor
defined over Fq.

Proof: Assume that φf (X, Y, Z) is irreducible, then by lemma 23 φf (X, Y, Z) is absolutely
irreducible. Suppose that

φf (X, Y, Z) =
k∏
i=1

Ri(X, Y, Z)

where Ri(X, Y, Z) ∈ Fq[X, Y, Z] is a non-constant irreducible polynomial for i ∈ {1, . . . , k}.
If one of the Ri(X, Y, Z) is absolutely irreducible then we are done, so we can assume with-
out loss of generality that every Ri(X, Y, Z) is not absolutely irreducible for i ∈ {1, . . . , k}.
By Lemma 23 we have ν(1,1,1)(tRi

) < 2n−2 for every i ∈ {1, . . . , k}. Define P (X, Y, Z) =∏w
i=1Ri(X, Y, Z), where w is the minimum number such that ν(1,1,1)(tP ) > 2n−2 (i.e. ν(1,1,1)(

∏w−1
i=1 (tRi

)) <

2n−2). Define Q(X, Y, Z) =
∏k

i=w+1Ri(X, Y, Z). We write P (X, Y, Z) and Q(X, Y, Z) as sums
of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = d. Then
φd = PsQt,

and
φe = PsQt−a + Ps−aQt.

Notice that ν(1,1,1)(Ps) < 2 ∗ (2n−2) = 2n−1 and ν(1,1,1)(Qt) = 2n − 2− ν(1,1,1)(Ps) ≤ 2n − 2−
(2n−1− 1) = 2n−1− 1 > 2n−2. Therefore, ν(1,1,1)(φe) ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt) <
2n−2 which is a contradiction. Thus, there exists a i0 ∈ {1, . . . , k} such that Ri0(X, Y, Z) is
absolutely irreducible.

�

The following theorem extend Proposition 11 for any j > 2.

Theorem 60. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−je, e ≡ 3 (mod 4),
and j ≥ 2. If φf (X, Y, Z) is not absolutely irreducible, then φf (X, Y, Z) has at most 5 factors.
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Proof: Assume that φf (X, Y, Z) =
∏6

i=1Ri(X, Y, Z)) is the product of 6 factors. Notice that
by lemma 22 and lemma 20 3(DG(φf )) ≥ 3(2n−j + 1) > 3(2n−j − 1) = ν(1,1,1)(φ2n−je). By
theorem 47 and lemma 22 DG(Ri) ≥ DG(φf ) ≥ 2n−j + 1. By proposition 10 then we can
conclude that deg(Ri) ≥ DG(Ri) ≥ 2n−j + 1. Now consider P (X, Y, Z) =

∏3
i=1Ri(X, Y, Z)

and Q(X, Y, Z) =
∏6

i=4Ri(X, Y, Z). We write P and Q as sums of homogeneous terms:
φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s + t = 2k − 2. Without loss of
generality assume that s ≥ t. Then,

PsQt = φ2n+1,

Since φ2k+1 is equal to the product of different linear factors, (Ps, Qt) = 1. Then, equating
the terms of degree s+ t− 1 gives PsQt−1 + Ps− 1Qt = 0. Hence, we have Ps | Ps−1Qt and
this implies that Ps | Ps−1. Therefore, Ps−1 = 0 and Qt−1 = 0 as Ps 6= 0.

Similarly, equating the terms of degree > 2n−je− 3 we get:
Ps−2 = Qt−2 = 0

. . .

Ps−d+1 = Qt−d+1 = 0

and
φ2n−je(X, Y, Z) = PsQt−d + Ps−dQt.

Notice that ν(1,1,1)(Ps) = deg(Ps) ≥ 3DG(φf ) > ν(1,1,1)(φ2n−je) and ν(1,1,1)(Qt) = deg(Qt) ≥
3DG(φf ) > ν(1,1,1)(φ2n−je). By lemma 1 we get ν(1,1,1)(φ2n−je) ≥ min(PsQt−d, Ps−dQt) >
ν(1,1,1)(φ2n−je) which is a contradiction. Therefore, φf (X, Y, Z) can not have more than 5
factors. �

Theorem 61. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−3e, e ≡ 3 (mod 4).
If is not a power of 3 or n = 2n13n2 , with n1, n2 ≥ 1 then φf (X, Y, Z) contains an absolutely
irreducible factor defined over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

We have two possible cases when n is a prime power and when n is not a prime power.
Let assume that n = pm for p 6= 3 prime. We have two possible cases n = 2k, where k ≥ 1.
Notice that φ5(X, Y, Z) | φ2n+1. Suppose that φf (X, Y, Z) is irreducible, then by Corollary 7
m(φf ) | m(φ5) i.e. m(φf ) | 2. Therefore, either m(φf ) = 1 or m(φf ) = 2. If m(φf ) = 1, then
φf (X, Y, Z) is absolutely irreducible. Suppose m(φf ) = 2, then there exists an absolutely
irreducible polynomial H(X, Y, Z) ∈ Fq[X, Y, Z] such that

φf (X, Y, Z) =
∏

γ∈Gal(Fq2/Fq)

γ(H(X, Y, Z)).
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Now we have deg(H) = deg(α(H)), α ∈ Gal(Fq2/Fq), α not the identity. Let P (X, Y, Z) =
H(X, Y, Z) and Q(X, Y, Z) = α(H(X, Y, Z)). We write P and Q as sums of homogeneous
terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s + t = 2k − 2. Without loss of
generality assume that s ≥ t. Then,

PsQt = φ2n+1,

and
φ2n−3e = PsQt−a + Ps−aQt.

By Lemma 21 we have ν(1,1,1)(Ps) = ν(1,1,1)(Qt) = (2n − 2)/2 = 2n−1 − 1. Computing
ν(1,1,1)(φ2n−3e) = (2n−3 − 1)(3) ≥ min(ν(1,1,1)(PsQt−a)ν(1,1,1)(Ps−aQt)) ≥ 2n−1 − 1 > (2n−3 −
1)(3) which is a contradiction. Suppose that φf (X, Y, Z) =

∏k
i=1Ri(X, Y, Z), whereRi(X, Y, Z) ∈

Fq[X, Y, Z] is an irreducible non-constant polynomial for i = 1, . . . , k. Notice that since n is
a power of two, then we have by Corollary 7, m(Ri) = 2bi for bi ∈ {1, . . . , n}, i = 1, . . . , k
and bi ≥ 0. If for some i0 ∈ {1, . . . , k} we have m(Ri0) = 1, then Ri0(X, Y, Z) is absolutely
irreducible. Therefore, we can assume without loss of generality that m(Ri) > 1 for every
i ∈ {1, . . . , k}. Then there exists polynomials Hi(X, Y, Z) ∈ Fq2 [X, Y, Z], i = 1, . . . , k such
that

φf (X, Y, Z) =
k∏
i=1

∏
γ∈Gal(Fq2/Fq)

γ(Hi(X, Y, Z)).

Now we have deg(Hi) = deg(α(Hi)), α ∈ Gal(Fq2/Fq), α not the identity and i =

1, 2, . . . , k. Let P (X, Y, Z) =
∏k

i=1Hi(X, Y, Z) and Q(X, Y, Z) =
∏k

i=1 α(Hi(X, Y, Z)). We
write P and Q as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s + t = 2k − 2. Without loss of
generality assume that s ≥ t. Then,

PsQt = φ2n+1,

and
φ2n−3e = PsQt−a + Ps−aQt.

By Lemma 21 we have ν(1,1,1)(Ps) = ν(1,1,1)(Qt) = (2n − 2)/2 = 2n−1 − 1. Computing
ν(1,1,1)(φ2n−3e) = (2n−3 − 1)(3) ≥ min(ν(1,1,1)(PsQt−a)ν(1,1,1)(Ps−aQt)) ≥ 2n−1 − 1 > (2n−3 −
1)(3) which is a contradiction.

Suppose that n = pm, where p > 3 is a prime number. Assume that φf (X, Y, Z) is
irreducible over Fq, then there exist an absolutely irreducible polynomial H(X, Y, Z) ∈
Fqp [X, Y, Z] such that

φf (X, Y, Z) =

p∏
i=1

γi(H(X, Y, Z)),
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where γ ∈ Gal(Fqp/Fq) is a generator of Gal(Fqp/Fq). Notice that deg(α(H)) = deg(β(H))

for every α, β ∈ Gal(Fqp/Fq). Define P (X, Y, Z) =
∏(p−1)/2

i=1 γi(H(X, Y, Z)) and Q(X, Y, Z) =∏p
i=(p−1)/2+1 γ

i(H(X, Y, Z)). We write P and Q as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s + t = 2k − 2. Without loss of
generality assume that s ≥ t. Then,

PsQt = φ2n+1,

and
φ2n−3e = PsQt−a + Ps−aQt.

By Lemma 21 we have ν(1,1,1)(Ps) = 2n−2
p

(p−1
2

) = ( (p−1)
p

)(2n−1−1) ≥ 4
5
(2n−1−1) = 2n+1−4

5
and

ν(1,1,1)(Qt) > ν(1,1,1)(Ps). Computing ν(1,1,1)(φ2n−3e) = (2n−3 − 1)(3) ≥ min(ν(1,1,1)(PsQt−a),

ν(1,1,1)(Ps−aQt)) ≥ 2n+1−4
5

> (2n−3 − 1)(3) which is a contradiction.
Suppose that φf (X, Y, Z) =

∏k
i=1Ri(X, Y, Z), where Ri(X, Y, Z) ∈ Fq[X, Y, Z] is an ir-

reducible non-constant polynomial for i = 1, . . . , k. Notice that since n is a power a prime
power, then by Corollary 7, m(Ri) = pbi for bi ∈ {1, . . . , n}, i = 1, . . . , k and bi ≥ 0. If
for some i0 ∈ {1, . . . , k} we have m(Ri0) = 1, then Ri0(X, Y, Z) is absolutely irreducible.
Therefore, we can assume without loss of generality that m(Ri) > 1 for every i ∈ {1, . . . , k}.
Then there exists polynomials Hi(X, Y, Z) ∈ Fqp [X, Y, Z], i = 1, . . . , k such that

φf (X, Y, Z) =
k∏
i=1

∏
γ∈Gal(Fqp/Fq)

γ(Hi(X, Y, Z)). (15)

Now we rewrite Equation 15 as follows. Let σ ∈ Gal(Fqp/Fq) be a generator. Define
Wi(X, Y, Z) =

∏k
b=1 γ

i(Hb(X, Y, Z)) for i = 1, 2, . . . , p. Then we have deg(Wi) = deg(W1), for
i = 1, 2, . . . , p. Let P (X, Y, Z) =

∏(p−1)/2
i=1 Hi(X, Y, Z) andQ(X, Y, Z) =

∏p
i=(p−1)/2+1 α(Hi(X, Y, Z)).

We write P and Q as sums of homogeneous terms:
φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s + t = 2k − 2. Without loss of
generality assume that s ≥ t. Then,

PsQt = φ2n+1,

and
φ2n−3e = PsQt−a + Ps−aQt.

By Lemma 21 we have ν(1,1,1)(Ps) = 2n−2
p

(p−1
2

) = ( (p−1)
p

)(2n−1−1) ≥ 4
5
(2n−1−1) = 2n+1−4

5
and

ν(1,1,1)(Qt) > ν(1,1,1)(Ps). Computing ν(1,1,1)(φ2n−3e) = (2n−3 − 1)(3) ≥ min(ν(1,1,1)(PsQt−a),

ν(1,1,1)(Ps−aQt)) ≥ 2n+1−4
5

> (2n−3 − 1)(3) which is a contradiction.
Suppose that n is not a prime power and n 6= 2k13k2 for some k1, k2 ≥ 1. Suppose that

φf (X, Y, Z) is irreducible then by Theorem 50 φf (X, Y, Z) is absolutely irreducible. Suppose
that φf (X, Y, Z) =

∏k
i=1Ri(X, Y, Z), where Ri(X, Y, Z) ∈ Fq[X, Y, Z] is an irreducible non-

constant polynomial for i = 1, . . . , k. If there is an i0 ∈ {1, . . . , k} such that m(Ri0) = 1,
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then we have an absolutely irreducible factor defined over Fq. Since n is not a prime power
there exists two primes p1, p2, p1 6= p2 such that p1p2 | n and p1 + p2 > 5. Then there exists
two different factors Ri1(X, Y, Z), Ri2(X, Y, Z), i1, i2 ∈ {1, . . . , k} such that m(Ri1) = pb11 ,
m(Ri2) = pb22 , with b1, b2 ≥ 1. Then there exist polynomials H1(X, Y, Z) ∈ Fqp1 [X, Y, Z],
H2(X, Y, Z) ∈ Fqp2 [X, Y, Z] such that

Ri1(X, Y, Z) =
∏

σ∈Gal(Fqp1 /Fq)

σ(H1(X, Y, Z)),

and
Ri2(X, Y, Z) =

∏
γ∈Gal(Fqp2 /Fq)

γ(H2(X, Y, Z)).

Now we can write φf (X, Y, Z) as follows,

φf (X, Y, Z) = R(X, Y, Z)(
∏

σ∈Gal(Fqp1 /Fq)

σ(H1(X, Y, Z)))(
∏

γ∈Gal(Fqp2 /Fq)

γ(H2(X, Y, Z)))

which is a contradiction with Theorem 60. Therefore, φf (X, Y, Z) contains an absolutely
irreducible factor defined over Fq. �

Notice that in the case f(X) = X2n+1 + h(X) ∈ Fq[X], where deg(h) = 2n−3e, e ≡ 3
(mod 4), we only have two cases either e = 3 or e = 7. If e = 3, then DG(φf ) = 2n +
2 − 2n−3(3) > 2n + 2 − 2n−3(4) = 2n−1 + 2. Therefore, this case is already solved by Aubry
McGuire and Rodier in [2].

3.4. Case when deg(h) = 2n−je, where e ≡ 1 (mod 4). Define ρd(X, Y ) = φd(X, Y, Y ).

Lemma 24. Let d = 1 + 2km, where k ≥ 2 and m > 1 is odd. Then ν(1,1,1)(φd) ≤ ν(1,1)(ρd).

Proof: Let G(X, Y, Z) = φd(X+ 1, Y + 1, Z+ 1). Writing G(X, Y, Z) in homogeneous terms
we obtain

G(X, Y, Z) = Gd(X, Y, Z) +Gd−1(X, Y, Z) + · · ·+Ga(X, Y, Z) (16)
where Gi is either 0 or a homogeneous polynomial of degree i. Now intersecting G(X, Y, Z)
with the plane Y = Z, we obtain

F (X, Y ) = G(X, Y, Y ) = Gd(X, Y, Y ) +Gd−1(X, Y, Y ) + · · ·+Ga(X, Y, Y ). (17)
It is clear by Equations 16 and 17 that deg(TG) ≤ deg(TF ). Notice that F (X, Y ) = ρd(X +
1, Y + 1). Therefore, ν(1,1)(ρd) ≥ ν(1,1,1)(φd).

�

Lemma 25. Let f(X) = X2n+1 +h(X) ∈ Fq[X], where deg(h) = 2n−je, j ≥ 4, e = 2km+ 1,
k ≥ 2 and m > 1 odd. Then, DG(φf ) ≥ 2n−j+k − 2n−j + 1.

Proof: Notice that if k ≥ j, then it is clear that deg(h) > 2n + 1 which is a contradiction
with the degree of f . Therefore, we have that k < j. For fix j ≥ 4, we have that the maximum
possible value of e is given by e = 2k(2j−k−1). Therefore, DG(φf ) ≥ 2n+1−2n−j(2k(2j−k−
1) + 1) = 2n + 1− (2n − 2n−j+k + 2n−j) = 2n−j+k − 2n−j + 1. �
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Lemma 26. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where d = deg(h) = 2n−je, j ≥ 4,
e = 2km+ 1, k ≥ 2 and m > 1 odd. Then ν(1,1,1)(φd) ≤ 3(2n−j − 1) + 2n−j+k − 2n−j+1.

Proof: By Equation 3 and Lemma 1 we have that ν(1,1,1)(φd) = (2n−j − 1)ν(1,1,1)(φ6) +
2n−jν(1,1,1)(φe) Then by lemma 24 ν(1,1,1)(φd) ≤ 3(2n−j − 1) + 2n−jν(1,1)(ρ2km+1). By Lemma
11 we can deduce that ν(1,1)(ρ2km+1) = 2k−2. Therefore, ν(1,1,1)(φd) ≤ 3(2n−j−1)+2n−j+k−
2n−j+1. �

Theorem 62. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where d = deg(h) = 2n−je, j ≥ 4,
e = 2km + 1, k ≥ 2 and m > 1 odd. Then φf (X, Y, Z) can have up to 5 factors (non
constant).

Proof: To show it can have up to 5 factors is enough to show that if φf (X, Y, Z) is the
product of 6 factors then you have a contradiction. Assume on the contrary that φf (X, Y, Z)
can be written as the product of 6 nonconstant factors, i.e.

φf (X, Y, Z) =
6∏
i=1

Ri(X, Y, Z)

Notice that by Theorem 13 we have that (φ2n+1, φe) = 1, thus (φ2n+1, φ2n−je) = 1. By
Corollary 15 and Lemma 25 we have that deg(Ri) ≥ DG(φf ) ≥ 2n−j+k−2n−j+1. Notice that,
2n−j+k > 2(2n−j−1), 2n−j+k−2n−j > 2n−j−1. Therefore, 3DG(φf ) ≥ 3(2n−j+k−2n−j+1) =
2n−j+k + 2n−j+k + 2n−j+k−2n−j+1−2n−j + 1 > 2(2n−j−1) + 2n−j−1 + 2n−j+k−2n−j+1 + 1 =
ν(1,1,1)(φd) + 1. Define P (X, Y, Z) =

∏3
i=1Ri(X, Y, Z) and Q(X, Y, Z) =

∏6
i=4Ri(X, Y, Z).

We write P and Q as sums of homogeneous terms:
φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pi and Qi are zero or homogeneous of degree i, s+t = 2n−2. Without loss of generality
assume that s ≥ t. Then,

PsQt = φ2n+1,

and
φd = PsQt−a + Ps−aQt.

By Lemma 21 and the previous discussion we have ν(1,1,1)(Ps) ≥ ν(1,1,1)(φd) + 1, ν(1,1,1)(Qt) ≥
ν(1,1,1)(φd)+1. Computing ν(1,1,1)(φd) ≥ min(ν(1,1,1)(PsQt−a)ν(1,1,1)(Ps−aQt)) ≥ ν(1,1,1)(φd)+1
which is a contradiction. �

Proposition 20. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where d = deg(h) = 2n−je, j ≥ 4,
e = 2km + 1, k ≥ 2 and m > 1 odd. If n = 2l φf (X, Y, Z) contain an absolutely irreducible
factor defined over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible. Notice that φ2n+1 contains an irreducible fac-
tor R(X, Y, Z) defined over Fq with m(R) = 2. By Corollary 7 we have that m(φf ) |
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m(R) so we have that either m(φf ) = 2 or m(φf ) = 1. If m(φf ) = 2, i.e. φf (X, Y, Z) =
P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z)Q(X, Y, Z) ∈ Fq2 [X, Y, Z]. Then by theorem 41 we
have that deg(P ) = deg(Q) = 2n−1−1. Notice that φ2n+1(X, Y, Z) = tP (X, Y, Z)tQ(X, Y, Z).
Now by lemma 21 we have that ν(1,1,1)(tP ) = ν(1,1,1)(tQ) = deg(tP ) = 2n−1 − 1.

Notice that 2ν1,1,1(φ2n−je ≤ 2(3(2n−j − 1) + 2n−j+k − 2n−j+1) < 8(2n−j − 1) + 2n−j + k +
1)− 2n−j+2 = 2n−j + 2n−j+k+1− 8 < 2n− 2 (since j > k+ 1 otherwise you get a contratiction
with deg(f) > deg(h)). Therefore, ν(1,1,1)(tP ) = ν(1,1,1)(tQ) > ν(1,1,1)(φ2n−je). We write P and
Q as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

By Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(PsQt−d), ν(1,1,1)(Ps−dQt)) > ν(1,1,1)(φ2n−je) which is
a contradiction. Therefore, m(φf ) = 1 and φf (X, Y, Z) is absolutely irreducible.

Suppose that φf (X, Y, Z) factors over Fq with factorization

φf (X, Y, Z) =
k∏
i=1

Ri(X, Y, Z), (18)

where Ri(X, Y, Z) ∈ Fq[X, Y, Z] is irreducible non constant polynomial for i = 1, . . . , k.
Notice that for each tRi

(X, Y, Z), there exists an irreducible polynomialWi(X, Y, Z) such that
m(Wi) = 2ki , where ki ≥ 1 for each i = 1, . . . , k. By Corollary 7 we have that m(Ri) | m(Wi)
for each i = 1, . . . , k. Therefore, m(Ri) = 2ai , where 0 ≤ ai ≤ ki for every i = 1, . . . , k. If
there exists a i0 such that m(Ri0) = 1, then we have an absolutely irreducible factor defined
over Fq. So we can assume that m(Ri) = 2ai , where 1 ≤ ai ≤ ki for each i = 1, . . . , k. Now for
every i = 1, . . . , k by Theorem 41 there exist an absolutely irreducible factor hi(X, Y, Z) ∈
Fq2ai [X, Y, Z], ci ∈ Fq such that

Ri(X, Y, Z) = ci
∏

α∈Gal(F
q2

ai )/Fq)

σ(hi(X, Y, Z)), (19)

Combining Equations 18 and 19 we obtain the following equation:

φf (X, Y, Z) =
k∏
i=1

ci
∏

α∈Gal(F
q2

ai )/Fq)

σ(hi(X, Y, Z)). (20)

Notice that |Gal(Fq2ai )/Fq)| = 2ai and that for every α, β ∈ Gal(Fq2ai )/Fq) we have that
deg(α(hi)) = deg(β(hi)). Let γi be a generator of Gal(Fq2ai )/Fq), define gi(X, Y, Z) =∏2a1−1

r=1 γri (hi(X, Y, Z)) and fi(X, Y, Z) =
∏2ai

r=2ai−1+1 γ
r
i (hi(X, Y, Z)). Then using this defi-

nitions we can rewrite Equation 20 as



© 2021 Carlos A. Agrinsoni Santiago
64/93

φf (X, Y, Z) =
k∏
i=1

cigi(X, Y, Z)fi(X, Y, Z)

Notice that deg(fi) = deg(gi). Define P (X, Y, Z) =
∏k

i=1 gi(X, Y, Z) and Q(X, Y, Z) =∏k
i=1 cifi(X, Y, Z), then φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), with deg(P ) = deg(Q) =

2n−1 − 1. Notice that φ2n+1(X, Y, Z) = tP (X, Y, Z)tQ(X, Y, Z). Now by lemma 21 we have
that ν(1,1,1)(tP ) = ν(1,1,1)(tQ) = deg(tP ) = 2n−1 − 1.

Notice that 2ν1,1,1(φ2n−je = 6(2n−j−1) ≤ 9(2n−4−1) = 2n−1+2n−4−9 < 2n−2. Therefore,
ν(1,1,1)(tP ) = ν(1,1,1) > ν(1,1,1)(φ2n−je). We write P and Q as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

By Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(PsQt−d), ν(1,1,1)(Ps−dQt)) > ν(1,1,1)(φ2n−je) which
is a contradiction. Therefore, there exist an i0 ∈ {1, . . . , k} such that m(Ri0) = 1. Thus,
φf (X, Y, Z) contains an absolutely irreducible component defined over Fq. �

Proposition 21. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where d = deg(h) = 2n−je, j ≥ 4,
e = 2km+1, k ≥ 2 and m > 1 odd. If n = pl, where p > 6 is prime, then φf (X, Y, Z) contain
an absolutely irreducible factor defined over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible over Fq. By factorization in Equation 1 φ2n+1

contains an irreducible factor P (X, Y, Z) ∈ Fq[X, Y, Z] with m(P ) = p. By Corollary 7
m(φf ) | p but p prime implies that either m(φf ) = 1 or m(φf ) = p. If m(φf ) = p, then
φf (X, Y, Z) factor into p factors which is a contradiction of Theorem 62. Therefore,m(φf ) = 1
and φf (X, Y, Z) is absolutely irreducible.

Suppose that φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z) is irreducible and
P (X, Y, Z), Q(X, Y, Z) are non constant polynomials. Since P (X, Y, Z) is non constant poly-
nomial, then tP (X, Y, Z) contains an irreducible factor P1(X, Y, Z) ∈ Fq[X, Y, Z] withm(P1) =
pk, for some k ≥ 1. By Corollary 7 m(φf ) | pk but p prime implies that either m(φf ) = 1
or m(φf ) = pk1 , where 1 ≤ k1 ≤ k. If m(φf ) = pk1 , then φf (X, Y, Z) factor into pk1 factors
which is a contradiction of Theorem 62. Therefore, m(P ) = 1 and P (X, Y, Z) is absolutely
irreducible. �

Proposition 22. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where d = deg(h) = 2n−je, j ≥ 4,
e = 2km + 1, k ≥ 2 and m > 1 odd. If n is odd, n > 6 and n is not a prime power, then
φf (X, Y, Z) contain an absolutely irreducible factor defined over Fq.
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Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible over Fq. Since n is not a prime power there exist
at least two primes p1, p2 (p1 6= p2) such that p1p2 | n, then by Theorem 50 φf (X, Y, Z) is
absolutely irreducible.

Suppose that φf (X, Y, Z) factors over Fq and let p1, p2 be prime numbers such that p1p2 | n
with p1 6= p2. Let

φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z)R(X, Y, Z),

where P (X, Y, Z), Q(X, Y, Z) are irreducible non constant polynomials and tP (X, Y, Z) con-
tains an irreducible factor of φ2p1+1(X, Y, Z). If tP (X, Y, Z) also contain an irreducible fac-
tor of φ2p2+1(X, Y, Z), then by Corollary 11 P (X, Y, Z) is absolutely irreducible. There-
fore, we can assume without loss of generality that (tP (X, Y, Z), φ2p2+1(X, Y, Z)) = 1. Now
we can assume without loss of generality that tQ(X, Y, Z) contains an irreducible factor
of φ2p2+1(X, Y, Z). Now by Corollary 7 we have that m(P ) | p1 and m(Q) | p2. If either
m(P ) = 1 or m(Q) = 1, then φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Assume that m(P ) = p1 and m(Q) = p2, then φf (X, Y, Z) have a factorization
with at least p1 + p2 > 5 factors which is a contradiction with Theorem 62. Therefore, ei-
ther m(P ) = 1 or m(Q) = 1 and thus, φf (X, Y, Z) contains an absolutely irreducible factor
defined over Fq. �

Proposition 23. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where d = deg(h) = 2n−je, j ≥ 4,
e = 2km + 1, k ≥ 2 and m > 1 odd. If n is a power of 5, then φf (X, Y, Z) contain an
absolutely irreducible factor defined over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible. Notice that φ2n+1 contains an irreducible factor
R(X, Y, Z) defined over Fq with m(R) = 5. By Corollary 7 we have that m(φf ) | m(R) so we
have that either m(φf ) = 5 or m(φf ) = 1. If m(φf ) = 5, i.e. φf (X, Y, Z) =

∏5
i=1Ri(X, Y, Z),

where Ri(X, Y, Z) ∈ Fq5 [X, Y, Z]. Then by theorem 41 we have that deg(Ri) = (2n − 2)/5

for i = 1, . . . , 5. Notice that φ2n+1(X, Y, Z) =
∏5

i=1 tRi
(X, Y, Z). Now by lemma 21 we have

that ν(1,1,1)(tRi
) = deg(tRi

) = (2n − 2)/5.
Define P (X, Y, Z) = R1(X, Y, Z)R2(X, Y, Z) and Q(X, Y, Z) =

∏5
i=3Ri(X, Y, Z).

We write P and Q as sums of homogeneous terms:
φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.
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Notice that 5ν1,1,1(φ2n−je = 5(3(2n−j−1)+2n−j+k−2n−j+1) = 24(2n−j)−15−2n−j+5(2n−j+k−
2n−j+1) = 2n−j+4−15−2n−j+2n−j+k+2−2n−j+3+2n−j+k−2n−j+1. The maximum multiplicity
is attained when k = j − 2 so we have 5ν1,1,1(φ2n−je = 5(3(2n−j − 1) + 2n−j+k − 2n−j+1) ≤
2n−j+4− 15− 2n−j + 2n− 2n−j+3 + 2n−2− 2n−j+1 = 2n + 2n−2 + 2n−j+3− 2n−j+1− 2n−j− 15 <
2n+1 − 15 < 4(2n−1 − 1) that is 5ν(1,1,1)(φd) < 2n+1 − 4. Now by Lemma 1, ν(1,1,1)(2n−je) ≥
min(ν(1,1,1)(PsQt−d), ν(1,1,1)(Ps−dQt)) = ν(1,1,1)(Ps) = (2

5
(2n − 2)) > ν(1,1,1)(φ2n−je) which is a

contradiction. Therefore, m(φf ) = 1 and φf (X, Y, Z) is absolutely irreducible.
Suppose that φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z), Q(X, Y, Z) ∈ Fq[X, Y, Z],

P (X, Y, Z) and Q(X, Y, Z) are non constant polynomials and P (X, Y, Z) is irreducible. Since
P (X, Y, Z) is non constant then there exists an irreducible polynomial W (X, Y, Z) such that
W (X, Y, Z) | tP (X, Y, Z). By Equation 1 m(W ) = 5k where k ≥ 1 and by Corollary 7 we
have m(P ) | m(W ). Therefore, m(P ) is either m(P ) = 1 or m(P ) = 5k1 , where 1 ≤ k1 ≤ k.
If m(P ) = 5k1 , then by theorem 41 P (X, Y, Z) factors into 5k1 factors and we obtain that
φf (X, y, Z) has a factorization with at least 5k1 + 1 factors which is a contradiction with
Proposition 11. Therefore,m(P ) = 1 and thus, φf (X, Y, Z) contains an absolutely irreducible
factor defined over Fq.

�

Proposition 24. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where d = deg(h) = 2n−je, j ≥ 4,
e = 2km+ 1, k ≥ 2 and m > 1 odd. If n is even, and p | n is a prime p > 3, then φf (X, Y, Z)
contain an absolutely irreducible factor defined over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible over Fq. Since n is not a prime power there exist at
least two primes 2, p (p 6= 2) such that 2p | n, then by Theorem 50 φf (X, Y, Z) is absolutely
irreducible.

Suppose that φf (X, Y, Z) factors over Fq and let
φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z)R(X, Y, Z),

where P (X, Y, Z), Q(X, Y, Z) are irreducible non constant polynomials and tP (X, Y, Z) con-
tains φ22+1(X, Y, Z). If tP (X, Y, Z) also contain an irreducible factor of φ2p+1(X, Y, Z), then
by Corollary 11 P (X, Y, Z) is absolutely irreducible. Therefore, we can assume without loss
of generality that (tP (X, Y, Z), φ2p+1(X, Y, Z)) = 1. Without loss of generality we can as-
sume that tQ(X, Y, Z) contains an irreducible factor of φ2p+1. By Corollary 7 we have that
m(P ) | 2 and m(Q) | p, then we have that either m(P ) = 1 (respectively m(Q) = 1) or
m(P ) = 2 (respectively m(Q) = p). If either m(P ) = 1 or m(Q) = 1, then φf (X, Y, Z)
contains an absolutely irreducible factor defined over Fq. We can assume that m(P ) = 2 and
m(Q) = p, then φf (X, Y, Z) have a factorization with at least 2 + p > 6 factors which is a
contradiction of Theorem 62.

�
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Proposition 25. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where d = deg(h) = 2n−je, j ≥ 4,
e = 2km + 1, k ≥ 2 and m > 1 odd. If n is a power of 3, then φf (X, Y, Z) contain an
absolutely irreducible factor defined over Fq.

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible. Notice that φ2n+1 contains an irreducible factor
R(X, Y, Z) defined over Fq with m(R) = 3. By Corollary 7 we have that m(φf ) | m(R) so we
have that either m(φf ) = 3 or m(φf ) = 1. If m(φf ) = 3, i.e. φf (X, Y, Z) =

∏3
i=1Ri(X, Y, Z),

where Ri(X, Y, Z) ∈ Fq3 [X, Y, Z]. Then by theorem 41 we have that deg(Ri) = (2n − 2)/3

for i = 1, 2, 3. Notice that φ2n+1(X, Y, Z) =
∏3

i=1 tRi
(X, Y, Z). Now by lemma 21 we have

that ν(1,1,1)(tRi
) = deg(tRi

) = (2n − 2)/3.
Define P (X, Y, Z) = R1(X, Y, Z) and Q(X, Y, Z) =

∏3
i=2Ri(X, Y, Z). We write P and Q

as sums of homogeneous terms:
φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

Notice that 3ν1,1,1(φ2n−je) = 3(3(2n−j − 1) + 2n−j+k − 2n−j+1) = 9(2n−j − 1) + 3(2n−j+k) −
3(2n−j+1) = 2n−j+3 + 2n−j+k+1 + 2n−j+k − 2n−j+2 − 2n−j+1 + 2n−j − 9 < 2n − 2. Therefore,
ν(1,1,1)(tRi

) > ν(1,1,1)(φ2n−je). Now by Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(PsQt−d), ν(1,1,1)(Ps−dQt)) >
ν(1,1,1)(φ2n−je) which is a contradiction. Therefore, m(φf ) = 1 and φf (X, Y, Z) is absolutely
irreducible.

Suppose that φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z)R(X, Y, Z), where P (X, Y, Z), Q(X, Y, Z),
R(X, Y, Z) ∈ Fq[X, Y, Z], P (X, Y, Z) and Q(X, Y, Z) are non constant irreducible polynomi-
als. Since P (X, Y, Z) is non constant then there exists an irreducible polynomial W (X, Y, Z)
such that W (X, Y, Z) | tP (X, Y, Z). By Equation 1 m(W ) = 3k where k ≥ 1 and by
Corollary 7 we have m(P ) | m(W ). Therefore, m(P ) is either m(P ) = 1 or m(P ) = 3k1 ,
where 1 ≤ k1 ≤ k. Similarly, there exists an irreducible polynomial V (X, Y, Z) such that
V (X, Y, Z) | tQ(X, Y, Z). By equation 1, m(V ) = 3a, where a ≥ 1 and by Corollary7 we have
m(Q) | m(V ). Therefore, m(Q) = 1 or m(Q) = 3a1 , where 1 ≤ a1 ≤ a. If either m(P ) = 1 or
m(Q) = 1, then you have an absolutely irreducible factor defined over Fq. So we can assume
that m(P ),m(Q) > 1, then by Theorem 41 P (X, Y, Z) factors into at least 3 factors. Sim-
ilarly, Q(X, Y, Z) factors into at least 3 factors. Therefore, φ(X, Y, Z) have a factorization
into at least 6 factors which is a contradiction with Theorem 62. �

Proposition 26. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where d = deg(h) = 2n−je, j ≥ 4,
e = 2km+1, k ≥ 2 andm > 1 odd. If 6 | n, then φf (X, Y, Z) contain an absolutely irreducible
factor defined over Fq.



© 2021 Carlos A. Agrinsoni Santiago
68/93

Proof: If φ2n+1(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φ2n+1(X, Y, Z) do not contain an
absolutely irreducible factor defined over Fq.

If n is divisible by any prime p different than 2 and 3, then by Proposition 24 φf (X, Y, Z)
contains an absolutely irreducible factor defined over Fq. So we can assume that n is only
divisible by 2 and 3, i.e. n = 2n13n2 , where n1, n2 ≥ 1.

Suppose that φf (X, Y, Z) is irreducible over Fq. Since n is not a prime power there exist
at least two primes 2, 3 such that 6 | n, then by Theorem 50 φf (X, Y, Z) is absolutely
irreducible.

Suppose that φf (X, Y, Z) factors over Fq and let
φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z)R(X, Y, Z),

where P (X, Y, Z), Q(X, Y, Z) are irreducible non constant polynomials and tP (X, Y, Z) con-
tains φ22+1(X, Y, Z). If tP (X, Y, Z) also contain an irreducible factor of φ23+1(X, Y, Z), then
by Corollary 11 P (X, Y, Z) is absolutely irreducible. Therefore, we can assume without loss
of generality that (tP (X, Y, Z), φ23+1(X, Y, Z)) = 1. Without loss of generality we can assume
that tQ(X, Y, Z) contains an irreducible factor of φ23+1.By Corollary 7 we have that m(P ) | 2
and m(Q) | 3, then we have that either m(P ) = 1 (respectively m(Q) = 1) or m(P ) = 2
(respectively m(Q) = 3). If either m(P ) = 1 or m(Q) = 1, then φf (X, Y, Z) contains an
absolutely irreducible factor defined over Fq. We can assume that m(P ) = 2 and m(Q) = 3.
If R(X, Y, Z) is a non constant polynomial then we get a contradiction with Theorem 62
(2 factors from P , 3 factors from Q and 1 factor from R). Therefore, we can assume that
φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z).

Suppose that deg(P ) ≥ deg(Q), then deg(P ) ≥ 2n−1 − 1. We write P and Q as sums of
homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

Notice that by Lemmas 21, 25 and m(Q) = 3, we have ν(1,1,1)(Qt) = deg(Qt) ≥ 3DG(φf ) >
ν(1,1,1)(φ2n−je). Similarly, by Lemma 21 we have that ν(1,1,1)(Ps) > ν(1,1,1)(φ2n−je. Now by
Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(PsQt−d), ν(1,1,1)(Ps−dQt)) > ν(1,1,1)(φ2n−je) which is a
contradiction. Therefore, m(φf ) = 1 and φf (X, Y, Z) is absolutely irreducible.

Suppose that deg(Q) ≥ 2n−1−1. Sincem(Q) = 3, then there existsR1(X, Y, Z), R2(X, Y, Z),
R3(X, Y, Z) ∈ Fq3 [X, Y, Z] such thatQ(X, Y, Z) =

∏3
i=1Ri(X, Y, Z) and deg(R1) = deg(R2) =

deg(R3) ≥ 2n−1−1
3

. DefineA(X, Y, Z) = R1(X, Y, Z)R2(X, Y, Z) andB(X, Y, Z) = R3(X, Y, Z)·
P (X, Y, Z). We write A(X, Y, Z) and B(X, Y, Z) as sums of homogeneous terms:

φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),
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where Aj and Bj are zero or homogeneous of degree j, s+ t = 2k − 2. Then
φ2n+1 = AsBt,

and
φ2n−je = AsBt−a + As−aBt.

Notice that 3ν(1,1,1)(φ2n−je) < 2n − 2, which implies by Lemma 21 that ν(1,1,1)(φ2n−je) <
ν(1,1,1)(As). By Lemma 21 and Lemma 25 we have ν(1,1,1)(Bt) = deg(Bt) ≥ 3DG(φf ) >
ν(1,1,1)(φ2n−je). By Lemma 1, ν(1,1,1)(2n−je) ≥ min(ν(1,1,1)(AsBt−d), ν(1,1,1)(As−dBt)) > ν(1,1,1)(φ2n−je)
which is a contradiction. Thus, φf (X, Y, Z) contains an absolutely irreducible component de-
fined over Fq. �

Theorem 63. Let f(X) = X2n+1 + h(X) ∈ Fq[X], where d = deg(h) = 2n−je, j ≥ 4,
e = 2km + 1, k ≥ 2 and m > 1 odd. Then φf (X, Y, Z) contains an absolutely irreducible
factor defined over Fq.
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4. Completion of the Kasami-Welch Case with Even Degree-gap and Some
Progress in the Odd Degree-gap Case

This chapter is divided into two sections. In the first section, we investigate the case when
the second term has even degree. We show in Theorem 68 that if the second term of the
polynomial with degree d and ν(1,1,1)(φd) < 2n−2 then φf contain an absolute irreducible
factor defined over Fq and thus f(X) is not exceptional APN. In the second section we proof
an analogue of Theorem 68 (see Theorem 70). Using this theorem we show the remaining
case of the exceptional APN conjecture with Kasami-Welch degree and the second term with
odd degree (see Corollary 23).

The next theorem extends the knowledge we have from equation 2. In fact the next theorem
prove that φd(X, Y, Z) ∈ F2[X, Y, Z], where d = 22k−2k+1 contains an absolutely irreducible
factor defined over every proper subfield of F2k except F2. This is an analogue of the Gold
Case.

Theorem 64. Let f(X) = Xd ∈ F2, where d = 22k − 2k + 1. If k > 1 then, φd(X, Y, Z)
contains an absolutely irreducible factor defined over every proper subfield of F2k except from
F2. Moreover, if H(X, Y, Z) ∈ F2t [X, Y, Z] is absolutely irreducible and divides φd(X, Y, Z)
then,

∏
σ∈Gal(F2t/F2)

σ(H(X, Y, Z)) also divides φd(X, Y, Z).

Proof: If k is a prime number then, F2k only has F2 as a subfield and therefore the theorem
do not apply to this case. Therefore, we can assume without loss of generality that k is not
prime. Let β be a primitive element of F2k then, we can rewrite equation 2 as

φd(X, Y, Z) =
2k−2∏
i=1

Pβi(X, Y, Z).

Let t > 1 be any divisor of k then, there exists n > 1 such that βn is a primitive element of
F2t . Let σ0 be the Frobenius automorphism of F2.
Claim: Q(X, Y, Z) =

∏t
i=1 σ

i
0(Pβn(X, Y, Z)) ∈ F2[X, Y, Z].

Notice that σ0(Pβj(X, 0, 1) = σ0((X + βj)2
k+1) = (X + σ0(β

j))2
k+1 = Pσ(βj)(X, 0, 1), for

every j ∈ {1, . . . , 2k − 2}. Since the Frobenius automorphism is a generator of the group
Gal(F2k/F2), we only need to show that σ0(Q(X, Y, Z)) = Q(X, Y, Z). But σ0(Q(X, Y, Z)) =
σ0(
∏t

i=1 σ
i
0(Pβn(X, Y, Z))) =

∏t
i=1 σ

i+1
0 (Pβn(X, Y, Z)) =

∏t+1
i=2 σ

i
0(Pβn(X, Y, Z)) =

∏t+1
i=2 Pσi

0(β
n)(X, Y, Z).

Since βn is a primitive element of F2t we have that σt+1
0 (Pβn) = σ0(Pσt

0(β
n)(X, Y, Z)) =

σ0(Pβn(X, Y, Z)). Therefore,

σ0(Q(X, Y, Z)) =
t+1∏
i=2

Pσi
0(β

n)(X, Y, Z) =
t∏
i=1

Pσi
0(β

n)(X, Y, Z) = Q(X, Y, Z)

Therefore the claim is true.
Now by lemma 6 we know there exists r > 1 and an absolutely irreducible polynomial

h(X, Y, Z) ∈ Fqr [X, Y, Z] such that
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Q(X, Y, Z) =
∏

α∈Gal(F2r/F2)

α(h(X, Y, Z)

where α act on the coefficients of h(X, Y, Z). Since factorization into absolutely irreducible
factors is unique up to associates and ordering we can conclude that r = t (i.e. you must
have the same number of absolutely irreducible factors). Therefore, Q(X, Y, Z) (and thus
φd(X, Y, Z)) contains an absolutely irreducible factor defined over F2t .

�

Theorem 65. Let f(X) = X22n1n2−2n1n2+1 + h(X) ∈ Fq[X], where (n1, n2) = 1, n1, n2 > 1.
If φf (X, Y, Z) is irreducible over Fq then, φf (X, Y, Z) is absolutely irreducible.

Proof: Suppose φf (X, Y, Z) is irreducible over Fq and (n1, n2) = 1, n1, n2 > 1, then by
corollary 11 φf (X, Y, Z) is absolutely irreducible. �

Theorem 66. Let f(X) = X22k−2k+1 + h(X) ∈ Fq[X], and deg(h) < 22k − 2k + 1. Let p be
the greatest prime that divide k. If DG(φf ) > (22k−2k−2)/p then, φf (X, Y, Z) ∈ Fq[X, Y, Z]
contains an absolutely irreducible factor defined over Fq.

Proof: If φ22k−2k+1(X, Y, Z) contain an absolutely irreducible factor defined over Fq then, by
lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq. Therefore, we
can assume that φ22k−2k+1(X, Y, Z) do not contain an absolutely irreducible factor defined
over Fq. Assume that φf (X, Y, Z) is irreducible defined over Fq. Let ψφ(X, Y, Z) be the
reverse polynomial of φf (X, Y, Z) then, by lemma 13 ψφ(X, Y, Z) is also irreducible over Fq.
By lemma 6 there exists an integer r > 1 and absolutely irreducible polynomial h(X, Y, Z) ∈
Fqr [X, Y, Z] and c ∈ Fq such that

ψφ(X, Y, Z) =
∏

σ∈Gal(Fqr/Fq)

σ(h(X, Y, Z)). (21)

Let T (X, Y, Z) be the tangent cone of ψφ(y, y, z) ∈ Fq[X, Y, Z] then, there exists t(X, Y, Z) ∈
Fqr [X, Y, Z] such that

T (X, Y, Z) =
∏

σ∈Gal(Fqr/Fq)

σ(t(X, Y, Z)).

By theorem 64, φ22k−2k+1(X, Y, Z) contains an absolutely irreducible factor defined over
Fqp (is the minimum extension of Fq that contain F2p as a subfield). By lemma 4 T (X, Y, Z)
contains a reduced absolutely irreducible polynomial defined over Fqp and by theorem 42
ψφ(X, Y, Z) contains an absolutely irreducible factor defined over Fqp . Since the factorization
in equation 21 is unique up to associates and ordering wee obtain that p | r.

By lemma 13 we obtain that there exists an absolutely irreducible polynomial g(X, Y, Z) ∈
Fqr [X, Y, Z] and c ∈ Fq such that

φf (X, Y, Z) =
∏

β∈Gal(Fqr/Fq)

β(g(X, Y, Z)).

Now each factor β(g(X, Y, Z)) have degree (22k − 2k − 2)/r. Since r = ps, we have
by theorem 47 that for each β ∈ Gal(Fqr/Fq), DG(β(g(X, Y, Z))) ≥ (22k − 2k − 2)/p ≥
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(22k − 2k − 2)/r = deg(β(g(X, Y, Z))). This implies that φf (X, Y, Z) is the product of ho-
mogeneous polynomials which is a contradiction. Therefore r = 1. Thus, φf (X, Y, Z) is
absolutely irreducible.

Similarly assume that φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z) ∈ Fq[X, Y, Z], where P (X, Y, Z)
is an irreducible polynomial (not homogeneous) defined over Fq such that the highest ho-
mogeneous form of P (X, Y, Z) contains an absolutely irreducible factor defined over Fqp . We
can make a similar argument as with φf (X, Y, Z) to obtain that P (X, Y, Z) is absolutely
irreducible over Fq.

�

4.1. Kasami Welch Case when the second term is even degree.

Lemma 27. Let f(X) = Xd ∈ Fq[X], where d = 22n − 2n + 1. If P (X, Y, Z)Q(X, Y, Z) |
φf (X, Y, Z) and deg(P ) = deg(Q), then ν(1,1,1)(P ) = ν(1,1,1)(Q).

Proof: This follows directly from the fact that every absolutely irreducible factor R(X, Y, Z)
of φf (X, Y, Z) have the same degree and ν(1,1,1)(R) = 1. �

Lemma 28. Let f(X) = Xd + h(X), where d = 22n − 2n + 1 deg(h) = 2n−je, where e ≡ 3
(mod 4). Then (φ2n+1, φh) = 1. Moreover, φf (X, Y, Z) is not divisible by any homogeneous
polynomial.

For the rest of this section assume that j ≥ 4.

Proposition 27. Let f(X) = Xd + h(X), where d = 22n − 2n + 1 deg(h) = 2n−je, where
e ≡ 3 (mod 4). If n = 2m, then φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq.

Proof: If φd(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φd(X, Y, Z) do not contain an abso-
lutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible. By Theorem 64 φd(X, Y, Z) contains an irre-
ducible factor R(X, Y, Z) such that m(R) = 2. By Corollary 7 we obtain m(φf ) | 2 .i.e.
m(φf ) = 1 or m(φf ) = 2. If m(φf ) = 2, then by theorem 41 we can write φf (X, Y, Z) =
P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z), Q(X, Y, Z) ∈ Fq2 [X, Y, Z] and deg(P ) = deg(Q).
We write P and Q as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = d. Then
φd = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

Notice that deg(Ps) = deg(Qt). By lemma 27 we have ν(1,1,1)(P ) = ν(1,1,1)(Q). By lemma
1 we have 2n − 2 = ν(1,1,1)(φd) = ν(1,1,1)(P ) + ν(1,1,1)(Q) = 2ν(1,1,1)(P ). Therefore we
have that ν(1,1,1)(P ) = 2n−1 − 1. Similarly we have that 3(2n−j − 1) = ν(1,1,1)(φ2n−je) ≥
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min(PsQt−a, Ps−aQt) ≥ 2n−1 − 1 > 3(2n−3 − 1) > 3(2n−j − 1) = ν(1,1,1)(φ2n−je) which is a
contradiction. Therefore m(φf ) = 1 and hence φf (X, Y, Z) is absolutely irreducible.

Suppose that

φf (X, Y, Z) =
k∏
i=1

Ri(X, Y, Z), (22)

where Ri(X, Y, Z) ∈ Fq[X, Y, Z] is irreducible for i = 1, . . . , k. By Theorem 64 every factor
R(X, Y, Z) of φd(X, Y, Z) have the property m(R) is a power of two. So we can conclude
by Corollary 7 that m(Ri) = 2ki , where ki ≥ 0 with i = 1, . . . , k. If there exists an i0 such
that m(Ri0) = 1, then φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq.
So we can assume that ki ≥ 1 for i = 1, . . . , k. By Theorem 41 there exists an absolutely
irreducible factor hi(X, Y, Z), ci ∈ Fq such that

Ri(X, Y, Z) = ci
∏

α∈Gal(F
q2

ki
/Fq)

σ(hi(X, Y, Z)). (23)

Combining Equations 22 and 23 we obtain:

φf (X, Y, Z) =
k∏
i=1

ci
∏

σ∈Gal(F
q2

ki
/Fq)

σ(hi(X, Y, Z)). (24)

Now let γi be a generator of Gal(F
q2

ki /Fq) for i = 1, . . . , k and define Gi = |Gal(F
q2

ki /Fq)|.
We can rewrite Equation 24 as

φf (X, Y, Z) =
k∏
i=1

ci

Gi∏
b=1

γbi (hi(X, Y, Z))

Notice that by Theorem 41 every factor of Ri(X, Y, Z) have the same degree for i = 1, . . . , k.
Define P (X, Y, Z) =

∏k
i=1

∏Gi/2
b=1 γbi (hi(X, Y, Z) andQ(X, Y, Z) =

∏k
i=1 ci

∏Gi

b=Gi/2+1 γ
b
i (Hi(X, Y, Z)).

It is clear that deg(P ) = deg(Q). That is φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z). We write P
and Q as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = d. Then
φd = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

Notice that deg(Ps) = deg(Qt). By lemma 27 we have ν(1,1,1)(P ) = ν(1,1,1)(Q). By lemma
1 we have 2n − 2 = ν(1,1,1)(φd) = ν(1,1,1)(P ) + ν(1,1,1)(Q) = 2ν(1,1,1)(P ). Therefore we
have that ν(1,1,1)(P ) = 2n−1 − 1. Similarly we have that 3(2n−j − 1) = ν(1,1,1)(φ2n−je) ≥
min(PsQt−a, Ps−aQt) ≥ 2n−1 − 1 > 3(2n−3 − 1) > 3(2n−j − 1) = ν(1,1,1)(φ2n−je) which is a
contradiction. Therefore, there exists at least one i0 such that m(Ri0) = 1. �
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Lemma 29. Let n ≥ 3 and j ≥ 4. Then,
n− 1

n
(2n−1 − 1) > 3(2n−j − 1).

Proof: We will prove that the function f(x) = x−1
x

(2x−1 − 1)− 3(2x−j − 1) satisfy f(x) > 0

for x ≥ 3. Notice that f(x) ≥ x−1
x

(2x−1 − 1)− 3(2x−4 − 1) for every x ≥ 3. We just need to
prove that g(x) = x−1

x
(2x−1−1)−3(2x−4−1) > 0 for x ≥ 3. Taking the derivative we obtain

g′(X) =
2x−4(5x2 ln(2)− 8x ln(2)) + 2x−1 − 1

x2

It is clear that g′(x) > 0 for x ≥ 3 and g(3) = 3.5. So we can conclude that n−1
n

(2n−1 − 1) >
3(2n−j − 1). �

Lemma 30. Let n ≥ 4, p | n be an odd prime and j ≥ 4. Then,
p− 1

p
(2n−1 − 1) > 3(2n−j − 1).

Proof: Notice that p−1
p

(2n−1 − 1) > 2
3
(2n−1 − 1). Hence, it is enough to show that f(x) =

2
3
(2x−1 − 1) − 3(2x−4 − 1) is an increasing function for x ≥ 3 and f(3) > 0.(f(x) being

increasing and f(3) > 0 implies that f(x) = 2
3
(2x−1 − 1) > 3(2x−4 − 1) ≥ 3(2x−j − 1)) Now

taking the derivative we obtain

f ′(x) =
7

3
· 2x−4 ln(2) > 0.

Therefore, p−1
p

(2n−1 − 1) > 3(2n−j − 1). �

Proposition 28. Let f(X) = Xd + h(X), where d = 22n − 2n + 1 deg(h) = 2n−je, e ≡ 3
(mod 4) and j ≥ 4. If n = pm, where p is an odd prime, then φf (X, Y, Z) contains an
absolutely irreducible factor defined over Fq.

Proof: If φd(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φd(X, Y, Z) do not contain an abso-
lutely irreducible factor defined over Fq.

Suppose that φf (X, Y, Z) is irreducible. By Theorem 64 φd(X, Y, Z) contains an irreducible
factor R(X, Y, Z) such that m(R) = p. By Corollary 7 we obtain m(φf ) | p .i.e. m(φf ) = 1 or
m(φf ) = 2. If m(φf ) = p, then by theorem 41 there exists h(X, Y, Z) ∈ Fqp [X, Y, Z], c ∈ Fq
such that

φf (X, Y, Z) =

p∏
i=1

σi(h(X, Y, Z)),

where σ is a generator ofGal(Fqp/Fq) and deg(α(h)) = deg(β(h)) for every α, β ∈ Gal(Fqp/Fq).
Define P (X, Y, Z) =

∏(p−1)/2
i=1 σi(h(X, Y, Z)) and Q(X, Y, Z) =

∏p
i=(p−1)/2+1 σ

i(h(X, Y, Z)).
We write P and Q as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),
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where Pj and Qj are zero or homogeneous of degree j, s+ t = d. Then
φd = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

Notice that deg(Ps) < deg(Qt). By lemma 1 we have 2n−2 = ν(1,1,1)(φd) = pν(1,1,1)(tσ(h)),
then ν(1,1,1)(tσ(h)) = (2n−2)/p. Therefore ν(1,1,1)(Ps) = ((2n−2)/p)((p−1)/2) = (p−1)(2n−1−
1)/p and ν(1,1,1)(Qt) = ν(1,1,1)(Ps) + 1. Similarly, we have that 3(2n−j − 1) = ν(1,1,1)(φ2n−je) ≥
min(PsQt−a, Ps−aQt) ≥ (p − 1)(2n−1 − 1)/p. By lemma 30 we have (p − 1)(2n−1 − 1)/p >
3(2n−j − 1) = ν(1,1,1)(φ2n−je) which is a contradiction. Therefore m(φf ) = 1 and hence
φf (X, Y, Z) is absolutely irreducible.

Suppose that

φf (X, Y, Z) =
k∏
i=1

Ri(X, Y, Z), (25)

where Ri(X, Y, Z) ∈ Fq[X, Y, Z] is irreducible for i = 1, . . . , k. By Theorem 64 every factor
R(X, Y, Z) of φd(X, Y, Z) have the property m(R) is a power of p. So we can conclude by
Corollary 7 that m(Ri) = pki , where ki ≥ 0 with i = 1, . . . , k. If there exists an i0 such
that m(Ri0) = 1, then φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq.
So we can assume that ki ≥ 1 for i = 1, . . . , k. By Theorem 41 there exists an absolutely
irreducible factor hi(X, Y, Z) ∈ F

qp
ki , ci ∈ Fq such that

Ri(X, Y, Z) = ci
∏

α∈Gal(F
qp

ki
/Fq)

σ(hi(X, Y, Z)). (26)

Combining Equations 25 and 26 we obtain:

φf (X, Y, Z) =
k∏
i=1

ci
∏

σ∈Gal(F
q2

ki
/Fq)

σ(hi(X, Y, Z)). (27)

Now let γi be a generator of Gal(F
qp

ki /Fq) for i = 1, . . . , k and define Gi = |Gal(F
qp

ki /Fq)|.
We can rewrite Equation 27 as

φf (X, Y, Z) =
k∏
i=1

ci

Gi∏
b=1

γbi (hi(X, Y, Z)) (28)

Define Wa(X, Y, Z) =
∏k

i=1 ci
∏apki−1

b=(a−1)(pki−1)+1
γbi (hi(X, Y, Z)) for a = 1, . . . , p. Notice that

deg(Wa1) = deg(Wa2) for a1, a2 ∈ {1, . . . , p}. Now we can rewrite Equation 28 as

φf (X, Y, Z) =

p∏
a=1

Wa(X, Y, Z)

Define P (X, Y, Z) =
∏(p−1)/2

i=1 Wi and Q(X, Y, Z) =
∏p

i=(p−1)/2+1Wi. We write P and Q as
sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),



© 2021 Carlos A. Agrinsoni Santiago
76/93

where Pj and Qj are zero or homogeneous of degree j, s+ t = d. Then
φd = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.

Notice that deg(Ps) < deg(Qt). By lemma 1 we have 2n − 2 = ν(1,1,1)(φd) = pν(1,1,1)(tVa),
then ν(1,1,1)(tVa) = (2n−2)/p. Therefore ν(1,1,1)(Ps) = ((2n−2)/p)((p−1)/2) = (p−1)(2n−1−
1)/p and ν(1,1,1)(Qt) = ν(1,1,1)(Ps) + 1. Similarly, we have that 3(2n−j − 1) = ν(1,1,1)(φ2n−je) ≥
min(PsQt−a, Ps−aQt) ≥ (p − 1)(2n−1 − 1)/p. By lemma 30 we have (p − 1)(2n−1 − 1)/p >
3(2n−j − 1) = ν(1,1,1)(φ2n−je) which is a contradiction.

�

Lemma 31. Let f(X) = xd + h(X), where d = 22n− 2n + 1 deg(h) = 2n−je, e ≡ 3 (mod 4)
and j ≥ 4. Then every irreducible factor R(X, Y, Z) ∈ Fq[X, Y, Z] of φf (X, Y, Z) is either
absolutely irreducible or ν(1,1,1)(tR) < 2n−2.

Proof: If φd(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φd(X, Y, Z) do not contain an abso-
lutely irreducible factor defined over Fq.

Let φf (X, Y, Z) = R(X, Y, Z)Q(X, Y, Z). If tR(X, Y, Z) contains irreducible factorsW1(X, Y, Z),
W2(X, Y, Z) such that m(W1) = p1, m(W2) = p2, and (p1, p2) = 1, then φf (X, Y, Z) is ab-
solutely irreducible by Theorem 65. Therefore, we can assume that m(tR) = w. Thus, by
Corollary 7 m(R) | w.

Let p | w be a prime number. Assume that ν(1,1,1)(tR) > (2n−j − 1)(3). If ν(1,1,1)(tR) <
2n−1 − 1, then ν(1,1,1)(tQ) = ν(1,1,1)(φd) − ν(1,1,1)(tR) ≥ 2n−1 − 1. We write R and Q as sums
of homogeneous terms:

φf (X, Y, Z) = (Rs +Rs−1 + · · ·+R0)(Qt +Qt−1 + · · ·+Q0),

where Rj and Qj are zero or homogeneous of degree j, s+ t = d. Then
φd = RsQt,

and
φ2n−je = RsQt−a +Rs−aQt.

Then we have ν(1,1,1)(φ2n−je) = (2n−j − 1)(3) ≥ min(ν(1,1,1)(RsQt−a), ν(1,1,1)(Rs−aQt)) >
(2n−j − 1)(3), which is a contradiction. Therefore, ν(1,1,1)(tR) ≥ 2n−1 − 1.

Assume that ν(1,1,1)(tR) ≥ 2n−1 − 1. If p = 2, then we have

R(X, Y, Z) = V1(X, Y, Z)V2(X, Y, Z)

where V1(X, Y, Z), V2(X, Y, Z) ∈ Fq2 [X, Y, Z] are conjugates. Therefore deg(V1) = deg(V2),
thus by Lemma 27 ν(1,1,1)(tV1) = ν(1,1,1)(tV2) ≥ 2n−2−1. Define A(X, Y, Z) = V1(X, Y, Z) and
B(X, Y, Z) = V2(X, Y, Z)Q(X, Y, Z), then φf (X, Y, Z) = A(X, Y, Z)B(X, Y, Z). We write A
and B as sums of homogeneous terms:

φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),
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where Aj and Bj are zero or homogeneous of degree j, s+ t = d. Then
φd = AsBt,

and
φ2n−je = AsBt−a + As−aBt.

Then we have ν(1,1,1)(φ2n−je) = (2n−j − 1)(3) ≥ min(ν(1,1,1)(AsBt−a), ν(1,1,1)(As−aBt)) >
2n−2 − 1, which is a contradiction. Therefore, ν(1,1,1)(tR) ≤ (2n−j − 1)(3).

If p > 3, then we have

R(X, Y, Z) =
∏

σ∈Gal(Fqp/Fq)

σ(H(X, Y, Z))

whereH(X, Y, Z) ∈ Fqp [X, Y, Z]. Therefore deg(α(H)) = deg(β(H)), for all α, β ∈ Gal(Fqp/Fq)
thus by Lemma 27 ν(1,1,1)(tα(H)) = ν(1,1,1)(tβ(H)) ≥ (2n−1 − 1)/p. Let γ ∈ Gal(Fqp/Fq) be a
generator. Then,

R(X, Y, Z) =

p∏
i=1

γi(H(X, Y, Z))

Define A(X, Y, Z) =
∏(p−1/2)

i=1 γi(H(X, Y, Z)) and B(X, Y, Z) = Q(X, Y, Z)·∏p
i=(p−1)/2+1 γ

i(H(X, Y, Z)), then φf (X, Y, Z) = A(X, Y, Z)B(X, Y, Z). We write A and B
as sums of homogeneous terms:

φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),

where Aj and Bj are zero or homogeneous of degree j, s+ t = d. Then
φd = AsBt,

and
φ2n−je = AsBt−a + As−aBt.

Notice that ν(1,1,1)(As) ≥ p−1
2

(2
n−1−1
p

) ≥ p−1
p

(2n−2 − 1) ≥ 4
5
(2n−2 − 1) = 2n−4

5
> (2n−4 −

1)(3) ≥ (2n−j − 1)(3). Moreover, ν(1,1,1)(Bt) > ν(1,1,1)(As). Then we have ν(1,1,1)(φ2n−je) =
(2n−j − 1)(3) ≥ min(ν(1,1,1)(AsBt−a), ν(1,1,1)(As−aBt)), which is a contradiction. Therefore,
ν(1,1,1)(tR) ≤ (2n−j − 1)(3).

If p = 3, then we have

R(X, Y, Z) =
∏

σ∈Gal(Fq3/Fq)

σ(H(X, Y, Z))

whereH(X, Y, Z) ∈ Fq3 [X, Y, Z]. Therefore deg(α(H)) = deg(β(H)), for all α, β ∈ Gal(Fq3/Fq)
thus by Lemma 27 ν(1,1,1)(tα(H)) = ν(1,1,1)(tβ(H)) ≥ (2n−1 − 1)/3. Let γ ∈ Gal(Fqp/Fq) be a
generator. Then,

R(X, Y, Z) =
3∏
i=1

γi(H(X, Y, Z))
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Define A(X, Y, Z) =
∏2

i=1 γ
i(H(X, Y, Z)) and B(X, Y, Z) = Q(X, Y, Z) γ3(H(X, Y, Z)),

then φf (X, Y, Z) = A(X, Y, Z)B(X, Y, Z). We write A and B as sums of homogeneous terms:
φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),

where Aj and Bj are zero or homogeneous of degree j, s+ t = d. Then
φd = AsBt,

and
φ2n−je = AsBt−a + As−aBt.

Notice that ν(1,1,1)(As) ≥ (2
n−2
3

) > (2n−4 − 1)(3) ≥ (2n−j − 1)(3). Let c = ν(1,1,1)(tQ),
then ν(1,1,1)(Bt) = c + 2n−2−c

3
= 2n−2

3
+ 2c

3
> (2n−4 − 1)(3) ≥ (2n−j − 1)(3). Then we have

ν(1,1,1)(φ2n−je) = (2n−j−1)(3) ≥ min(ν(1,1,1)(AsBt−a), ν(1,1,1)(As−aBt)) > (2n−j−1)(3), which
is a contradiction. Therefore, ν(1,1,1)(tR) ≤ (2n−j − 1)(3).

�

Proposition 29. Let f(X) = xd + h(X), where d = 22n − 2n + 1 deg(h) = 2n−je, e ≡ 3
(mod 4) and j ≥ 4. If n is not prime, then φf (X, Y, Z) contains an absolutely irreducible
factor defined over Fq.

Proof: If φd(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φd(X, Y, Z) do not contain an abso-
lutely irreducible factor defined over Fq.

If φf (X, Y, Z) is irreducible then by Theorem 65 φf (X, Y, Z) is absolutely irreducible.
Let φf (X, Y, Z) =

∏k
i=1Ri(X, Y, Z), where Ra(X, Y, Z) ∈ Fq[X, Y, Z] is irreducible for a =

1, . . . , k. If for some b ∈ {1, . . . , k} tRb
(X, Y, Z) contains two irreducible factors W1(X, Y, Z),

W2(X, Y, Z) such that m(W1) = p1, m(W2) = p2, and (p1, p2) = 1, then φf (X, Y, Z) is
absolutely irreducible by Theorem 65. If one of the Ra(X, Y, Z) is absolutely irreducible
then φf (X, Y, Z) contains an absolutely irreducible factor. Therefore, we can assume that
m(tRa) > 1 for all a ∈ {1, . . . , k}. By lemma 31 ν(1,1,1)(tRa) < (2n−j − 1)(3). Let k1 be
the least integer such that ν(1,1,1)(

∏k1
i=1 tRi

) > (2n−j − 1)(3). By the definition of k1 we
have that ν(1,1,1)(

∏k1−1
i=1 tRi

) < (2n−j − 1)(3) and by Lemma 31 ν(1,1,1)(tRk1
) < (2n−j − 1)(3).

Therefore, ν(1,1,1)(
∏k1

i=1 tRi
) < (2n−j+1 − 1)(3) < 2n−1 − 1. Similarly ν(1,1,1)(

∏k
i=k1+1 tRi

) =

2n − 2− ν(1,1,1)(
∏k1

i=1 tRi
) ≥ 2n − 2− 2n−1 + 1 = 2n−1 − 1.

Define P (X, Y, Z) =
∏k1

i=1Ri and Q(X, Y, Z) =
∏k

i=K1+1Ri. We write P and Q as sums
of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = d. Then
φd = PsQt,

and
φ2n−je = PsQt−a + Ps−aQt.
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Notice that ν(1,1,1)(φ2n−je) = (2n−j − 1)(3) ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt)) >
(2n−j − 1)(3) which is a contradiction.

�

Theorem 67. Let f(X) = xd+h(X) ∈ Fq[X], where d = 22n−2n+1 deg(h) = 2n−je, e ≡ 3
(mod 4) and j ≥ 4. Then, φf (X, Y, Z) contains an absolutely irreducible factor defined over
Fq.

Lemma 32. Let f(X) = xd + h(X), where d = 22n − 2n + 1, e = deg(h) and ν(1,1,1)(φe) <
2n−2 − 1. Then every irreducible factor R(X, Y, Z) ∈ Fq[X, Y, Z] of φf (X, Y, Z) is either
absolutely irreducible or ν(1,1,1)(tR) < 2n−2.

Proof: If φd(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φd(X, Y, Z) do not contain an abso-
lutely irreducible factor defined over Fq.

Let φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z), Q(X, Y, Z) ∈ Fq[X, Y, Z] non
constant polynomials and P (X, Y, Z) be irreducible. If m(P ) = 1, then P (X, Y, Z) is abso-
lutely irreducible. Therefore, m(P ) > 1. It is enough to show that for every m(P ) = p, p
prime the condition is satisfied. Assume that 2n−2 − 1 < ν(1,1,1)(tP ) < 2n−1 − 1. We write
P (X, Y, Z) and Q(X, Y, Z) as sums of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = d. Then
φd = PsQt,

and
φe = PsQt−a + Ps−aQt.

Since ν(1,1,1)(tP ) < 2n−1 − 1, then ν(1,1,1)(tQ) = ν(1,1,1)(φd)− ν(1,1,1)(tP ) ≥ 2n−1 − 1. Then we
have ν(1,1,1)(φe) ≤ 2n−2 − 1 ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt)) > 2n−2 − 1, which is a
contradiction. Therefore, ν(1,1,1)(tP ) ≥ 2n−1 − 1. Assume that ν(1,1,1)(tR) ≥ 2n−1 − 1.

If p = 2, then we have
P (X, Y, Z) = V1(X, Y, Z)V2(X, Y, Z)

where V1(X, Y, Z), V2(X, Y, Z) ∈ Fq2 [X, Y, Z] are conjugates. DefineA(X, Y, Z) = V1(X, Y, Z)
and B(X, Y, Z) = V2(X, Y, Z)Q(X, Y, Z), then φf (X, Y, Z) = A(X, Y, Z)B(X, Y, Z). We
write A and B as sums of homogeneous terms:

φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),

where Aj and Bj are zero or homogeneous of degree j, s+ t = d. Then
φd = AsBt,

and
φe = AsBt−a + As−aBt.
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Since V1, V2 are conjugates then deg(V1) = deg(V2), thus by Lemma 27 ν(1,1,1)(tV1) =
ν(1,1,1)(tV2) ≥ 2n−2. Then we have ν(1,1,1)(φe) ≤ 2n−2−1 ≥ min(ν(1,1,1)(AsBt−a), ν(1,1,1)(As−aBt)) >
2n−2 − 1, which is a contradiction. Therefore, ν(1,1,1)(tP ) ≤ 2n−2 − 1.

If p > 3, then we have

P (X, Y, Z) =
∏

σ∈Gal(Fqp/Fq)

σ(H(X, Y, Z))

whereH(X, Y, Z) ∈ Fqp [X, Y, Z]. Therefore deg(α(H)) = deg(β(H)), for all α, β ∈ Gal(Fqp/Fq),
thus by Lemma 27 ν(1,1,1)(tα(H)) = ν(1,1,1)(tβ(H)) ≥ (2n−1 − 1)/p. Let γ ∈ Gal(Fqp/Fq) be a
generator. Then,

P (X, Y, Z) =

p∏
i=1

γi(H(X, Y, Z))

DefineA(X, Y, Z) = Q(X, Y, Z)
∏(p−1/2)

i=1 γi(H(X, Y, Z)) andB(X, Y, Z) =
∏p

i=(p−1)/2+1 γ
i(H(X, Y, Z)),

then φf (X, Y, Z) = A(X, Y, Z)B(X, Y, Z). We write A(X, Y, Z) and B(X, Y, Z) as sums of
homogeneous terms:

φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),

where Aj and Bj are zero or homogeneous of degree j, s+ t = d. Then
φd = AsBt,

and
φe = AsBt−a + As−aBt.

Notice that ν(1,1,1)(Bt) ≥ (2n−1−1)/2 ≥ 2n−2. Computing ν(1,1,1)(As), we obtain ν(1,1,1)(As) =
p−1
2p

(2n − 2 − ν(1,1,1)(tQ)) + ν(1,1,1)(tQ) = (p−1)(2n−1−1)
p

+ p+1
2p
ν(1,1,1)(tQ) ≥ 4

5
(2n−1 − 1) +

p+1
2p
ν(1,1,1)(tQ) = 2n+1−4

5
+ p+1

2p
ν(1,1,1)(tQ) ≥ 2n−2. Then we have ν(1,1,1)(φe) ≤ 2n−2 − 1 ≥

min(ν(1,1,1)(AsBt−a), ν(1,1,1)(As−aBt)) ≥ 2n−2 > 2n−2−1, which is a contradiction. Therefore,
ν(1,1,1)(tP ) ≤ 2n−2 − 1.

If p = 3, then we have

P (X, Y, Z) =
∏

σ∈Gal(Fq3/Fq)

σ(H(X, Y, Z))

whereH(X, Y, Z) ∈ Fq3 [X, Y, Z]. Therefore deg(α(H)) = deg(β(H)), for all α, β ∈ Gal(Fq3/Fq)
thus by Lemma 27 ν(1,1,1)(tα(H)) = ν(1,1,1)(tβ(H)) ≥ (2n−1 − 1)/3. Let γ ∈ Gal(Fqp/Fq) be a
generator. Then,

P (X, Y, Z) =
3∏
i=1

γi(H(X, Y, Z))

Define A(X, Y, Z) =
∏2

i=1 γ
i(H(X, Y, Z)) and B(X, Y, Z) = Q(X, Y, Z)H(X, Y, Z), then

φf (X, Y, Z) = A(X, Y, Z)B(X, Y, Z). We write A and B as sums of homogeneous terms:
φf (X, Y, Z) = (As + As−1 + · · ·+ A0)(Bt +Bt−1 + · · ·+B0),
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where Aj and Bj are zero or homogeneous of degree j, s+ t = d. Then
φd = AsBt,

and
φe = AsBt−a + As−aBt.

Notice that ν(1,1,1)(As) ≥ 2
3
(2n−1 − 1) = (2

n−2
3

) > 2n−2 − 1. Let c = ν(1,1,1)(tQ), then
ν(1,1,1)(Bt) = c + 2n−2−c

3
= 2n−2

3
+ 2c

3
> (2n−4 − 1)(3) ≥ (2n−j − 1)(3). Then we have

ν(1,1,1)(φe) ≤ 2n−2 − 1 ≥ min(ν(1,1,1)(AsBt−a), ν(1,1,1)(As−aBt)) ≥ 2n−2 > 2n−2 − 1, which is a
contradiction. Therefore, ν(1,1,1)(tR) ≤ 2n−2 − 1.

�

Theorem 68. Let f(X) = xd + h(X), where d = 22n− 2n + 1, e = deg(h) and ν(1,1,1)(φe) <
2n−2 − 1. Then every irreducible factor φf (X, Y, Z) contains an absolutely irreducible factor
defined over Fq.

Proof: Assume that φf (X, Y, Z) is irreducible, then by lemma 32 φf (X, Y, Z) is absolutely
irreducible. Suppose that

φf (X, Y, Z) =
k∏
i=1

Ri(X, Y, Z)

where Ri(X, Y, Z) ∈ Fq[X, Y, Z] is a non-constant irreducible polynomial for i ∈ {1, . . . , k}.
If one of the Ri(X, Y, Z) is absolutely irreducible then we are done, so we can assume with-
out loss of generality that every Ri(X, Y, Z) is not absolutely irreducible for i ∈ {1, . . . , k}.
By Lemma 32 we have ν(1,1,1)(tRi

) < 2n−2 for every i ∈ {1, . . . , k}. Define P (X, Y, Z) =∏w
i=1Ri(X, Y, Z), where w is the minimum number such that ν(1,1,1)(tP ) > 2n−2 (i.e. ν(1,1,1)(

∏w−1
i=1 (tRi

)) <

2n−2). Define Q(X, Y, Z) =
∏k

i=w+1Ri(X, Y, Z). We write P (X, Y, Z) and Q(X, Y, Z) as sums
of homogeneous terms:

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0),

where Pj and Qj are zero or homogeneous of degree j, s+ t = d. Then
φd = PsQt,

and
φe = PsQt−a + Ps−aQt.

Notice that ν(1,1,1)(Ps) < 2 ∗ (2n−2) = 2n−1 and ν(1,1,1)(Qt) = 2n − 2− ν(1,1,1)(Ps) ≤ 2n − 2−
(2n−1− 1) = 2n−1− 1 > 2n−2. Therefore, ν(1,1,1)(φe) ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt) <
2n−2 which is a contradiction. Thus, there exists an i0 ∈ {1, . . . , k} such that Ri0(X, Y, Z) is
absolutely irreducible.

�

4.2. A generalization of the case 1 (mod 4).

Theorem 69. Let the Kasami-Welch degree polynomial f(x) = x2
2k−2k+1 + h(x) ∈ Fq[x],

where d = deg(h) ≡ 2m−1 + 1( (mod 2m)). If d < 22k − (2m− 1)(2k)− 1, 2 ≤ m < k− 1 and
(φ22k−2k+1, φd) = 1, then φ(x, y) is absolutely irreducible, and f(x) can not be exceptional
APN.
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Proof: Supposing that φ(x, y) factors as P (x, y)Q(x, y) and using the same divisibility ar-
guments as before, we get the system:

PsQt =
∏

Pα(x, y), α ∈ F2k − F2, (29)

PsQt−e + Ps−eQt = adφd(x, y) (30)
where s ≥ t and s + t = 22k − 2k − 2. Let p = (1, 1) and let us consider the following two
cases to prove the theorem.
Let t > (2m−2)(2k+1). Then using theorem 8 and the fact that Pα are absolutely irreducible
polynomials of degree 2k + 1, from Equation 30 we have that mp(Qt) > 2m − 2, mp(Ps) >
2m−2. This implies also thatmp(φd(x, y)) = mp(PsQt−e+Ps−eQt) ≥ min(mp(Ps),mp(Qt)) >
2m − 2. Contradicting that mp(φd) = 2m − 2 (for d ≡ 2m−1( (mod 2m)), mp(φd) = 2m − 2
). On the other hand, let t ≤ (2m − 2)(2k + 1). Since d < 22k − (2m − 1)(2k) − 1, then
e > 22k − 2k + 1− (22k − (2m − 1)(2k)− 1) > (2m − 2)(2k + 1) and t < e.
The equation 30 becomes Ps−eQt = adφd(x, y), which contradicts the relatively prime hy-
pothesis. �

Theorem 70. Let f(X) = xd + h(X) ∈ Fq[X], where d = 22n − 2n + 1 e = deg(h) < d. If
ν(1,1,1)(φe) < 2n−2, then φf (X, Y, Z) contain an absolutely irreducible factor define over Fq.

Proof: If φd(X, Y, Z) ∈ Fq[X, Y, Z] contains an absolutely irreducible factor defined over
Fq[X, Y, Z], then by lemma 19 φf (X, Y, Z) contains an absolutely irreducible factor defined
over Fq. Without loss of generality we can assume that φd(X, Y, Z) do not contain an abso-
lutely irreducible factor defined over Fq.

Suppose that φf (X, y, Z) is irreducible over Fq. By Lemma 6, there exist an integer r ≥ 1,
c ∈ Fq and an absolutely irreducible polynomial h(X, Y, Z) ∈ Fqr [X, Y, Z] such that

φf (X, Y, Z) = c
r∏
i=1

σ(h(X, Y, Z), (31)

where σ is a generator ofGal(Fqr/Fq). If r is even then define P (X, Y, Z) =
∏r/2

i=1 σ
i(h(X, Y, Z))

and Q(X, Y, Z) =
∏r

i=r/2+1 σ
i(h(X, Y, Z)). Substituting P (X, Y, Z) and Q(X, Y, Z) in Equa-

tion 31 and writing P (X, Y, Z), Q(X, Y, Z) as the sum of homogeneous terms we obtain

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0), (32)
where Pi is either a form of degree i or 0 (respectively Qj is either a form of degree j or
0). By the factorization given in Equation 2 we have (Ps, Qt) = 1. Equating the terms of
degree s + t − 1, we get PsQt−1 + Ps−1Qt = 0, which implies that Ps−1 = Qt−1 = 0 (since
Ps, Qt are relatively prime and Ps | Ps−1Qt). In the same fashion, equating the terms of
degree s+ t− 2, s+ t− 3, ..., e− 2 we get Ps−1 = Qt−1 = 0, Ps−2 = Qt−2 = 0, Ps−3 = Qt−3 =
0, ..., Ps−(a−1) = Qt−(a−1) = 0. We obtain the following system of equations:

φd(X, Y, Z) = PsQt (33)
and

φe(X, Y, Z) = PsQt−a + Ps−aQt (34)
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By Lemma 6 deg(α(h)) = deg(β(h)), which implies that deg(P ) = deg(Q) (i.e s = t) and
by Lemma 27 we have ν(1,1,1)(Ps) = ν(1,1,1)(Qt) = 2n−1 − 1. We have 2n−2 > ν(1,1,1)(φe) ≥
min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt)) ≥ 2n−1 − 1 which is a contradiction. Therefore, r can
not be even.

Assume that r is odd. If r = 1, then φf (X, Y, Z) is absolutely irreducible. If r = 3, define
P (X, Y, Z) = σ(h(X, Y, Z) and Q(X, Y, Z) = σ2(h(X, Y, Z))σ3(h(X, Y, Z)). Using the same
factorization as in Equations 32, 33 and 34. By Lemma 6 and Lemma 27 we have ν(1,1,1)(Qt) >
ν(1,1,1)(Ps) = (2n−2)/3 ≥ 2n−2. We have 2n−2 > ν(1,1,1)(φe) ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt)) ≥
(2n − 2)/3 which is a contradiction.

If r > 3, define P (X, Y, Z) =
∏(r−1)/2

i=1 σi(h(X, Y, Z)) andQ(X, Y, Z) =
∏r

i=(r−1)/2+1 σ
i(h(X, Y, Z)).

Using the same factorization as in Equations 32, 33 and 34. By Lemma 6 and Lemma 27 we
have ν(1,1,1)(Qt) > ν(1,1,1)(Ps) = r−1

2
2n−2
r

> 2
3
(2n−1 − 1) = 2n−2

3
. Therefore, we have the same

contradiction as in the previous case. Hence, if φf (X, Y, Z) is irreducible then φf (X, Y, Z) is
absolutely irreducible.

Assume that φf (X, Y, Z) is reducible over Fq, then let

φf (X, Y, Z) =
m∏
j=1

Rj(X, Y, Z), (35)

where Ri(X, Y, Z) ∈ Fq[X, Y, Z] is irreducible over Fq for i = 1, . . . ,m and ν(1,1,1)(tRi
) ≥

ν(1,1,1)(tRk
), whenever i ≤ k. If ν(1,1,1)(tR1) < 2n−2, then define P (X, Y, Z) =

∏`
i=1Ri(X, Y, Z),

where ` is the least integer such that
∑`

i=1 ν(1,1,1)(tRi
) ≥ 2n−2. DefineQ(X, Y, Z) =

∏m
i=`+1Ri(X, Y, Z).

Using the same factorization as in Equations 32, 33 and 34. By the definition of ` we
have ν(1,1,1)(Ps) =

∑`
i=1 ν(1,1,1)(tRi

) ≥ 2n−2. Similarly, by the definition of ` we also have
ν(1,1,1)Qt > 2n−2. We have 2n−2 > ν(1,1,1)(φe) ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt)) > 2n−2

which is a contradiction. Therefore, ν(1,1,1)(tR1) ≥ 2n−2.
If
∑m

i=2 ν(1,1,1)(tRi
) ≥ 2n−2, then define P (X, Y, Z) = R1(X, Y, Z) and Q(X, Y, Z) =∏m

i=2Ri(X, Y, Z). Using the same factorization as in Equations 32, 33 and 34 we obtain
that 2n−2 > ν(1,1,1)(φe) ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt)) ≥ 2n−2 which is a contradic-
tion. Therefore, we can assume that

∑m
i=2 ν(1,1,1)(tRi

) < 2n−2.
By Lemma 6 there exists an integer r ≥ 1, c ∈ Fq and an absolutely irreducible polynomial

h(X, Y, Z) ∈ Fqr [X, Y, Z] such that

R1(X, Y, Z) = c
r∏
i=1

σ(h(X, Y, Z), (36)

where σ is a generator ofGal(Fqr/Fq). If r is even then define P (X, Y, Z) =
∏r/2

i=1 σ
i(h(X, Y, Z))

and Q(X, Y, Z) = (
∏r

i=r/2+1 σ
i(h(X, Y, Z)))(

∏m
i=2Ri(X, Y, Z)). Using the same factorization

as in Equations 32, 33 and 34. By Lemma 6 and Lemma 27 we have ν(1,1,1)(Qt) > ν(1,1,1)(Ps) >
1
2
(2n−1 − 1) > 2n−2. We have 2n−2 > ν(1,1,1)(φe) ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt)) >

2n−2 which is a contradiction. Therefore, we can assume r is odd.
If r = 1, thenR1(X, Y, Z) is absolutely irreducible. Assume that r > 3. Define P (X, Y, Z) =∏(r−1)/2
i=1 σi(h(X, Y, Z)) and
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Q(X, Y, Z) = (
∏r

i=(r−1)/2+1 σ
i(h(X, Y, Z)))(

∏m
i=2Ri(X, Y, Z)). Using the same factorization

as in Equations 32, 33 and 34. By Lemma 6 and Lemma 27 we have ν(1,1,1)(Qt) > ν(1,1,1)(Ps) >
r−1
2

2n−2n−2−2
r

> 2n−2n−2−2
3

> 2n−2−1. Therefore, we have 2n−2 > ν(1,1,1)(φe) ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt)) ≥
2n−2 which is a contradiction.

If r = 3, define P (X, Y, Z) =
∏2

i=1 σ
i(h(X, Y, Z)) andQ(X, Y, Z) = σ3(h(X, Y, Z))(

∏m
i=2Ri(X, Y, Z)).

Using the same factorization as in Equations 32, 33 and 34. By Lemma 6 and Lemma 27 we
have ν(1,1,1)(Ps) ≥ 2

3
(2n− 2n−2) = 2n−1. Let c = ν(1,1,1)(

∏m
i=2 tRi

), then ν(1,1,1)(Qt) = 2n−2−c
3

+

c = 2n−2
3

+2c
3
> 2n−2. Therefore, we have 2n−2 > ν(1,1,1)(φe) ≥ min(ν(1,1,1)(PsQt−a), ν(1,1,1)(Ps−aQt)) ≥

2n−2 which is a contradiction. Thus, R1(X, Y, Z) is absolutely irreducible. �

Corollary 23. Let f(X) = xd + h(X) ∈ Fq[X], where d = 22n − 2n + 1 e = deg(h) =
2j`+ 1 < d. If (`, 2n − 1) = 2n − 1, then φf (X, Y, Z) contain an absolutely irreducible factor
defined over Fq.

Proof: Notice that j ≤ n − 1, otherwise deg(h) ≥ deg(f) which is a contradiction. If
j < n − 1, then ν(1,1,1)(φe) = 2j − 2 ≤ 2n−2 − 2. By Theorem 70 φf (X, Y, Z) contain
an absolutely irreducible factor defined over Fq. If j = n − 1, then ` = 2n − 1, i.e. e =
2n−1(2n − 1) + 1 = 22n−1 − 2n−1 + 1. Let ψ(X, Y, Z) = (φd, φh) and p = deg(ψ). Define,

ρ(X, Y, Z) =
φ(X, Y, Z)

ψ(X, Y, Z)
,

then writing ρ(X, Y, Z) as the sum of homogeneous terms we obtain,

ρ(X, Y, Z) =
φd
ψ

+ ce
φe
ψ

+ ce−1
φe−1
ψ
· · ·+ c5.

φ5

ψ

Notice that deg(
φe
ψ

) = 22n−1− 2n−1− 2− p < 22n−2n−2−p
2

= deg(ρ). Therefore, by Lemma 18

ρ(X, Y, Z) is absolutely irreducible. Therefore, φ(X, Y, Z) contain an absolutely irreducible
factor defined over Fq.

�

Theorem 71. Let f(X) = xd + h(X) ∈ Fq[X], where d = 22n − 2n + 1 e = deg(h) < d. If
e ≡ 1 (mod 4), then φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq.

Proof: This follows directly from Theorem 36 and Corollary 23 �

Theorem 72. Let f(X) = xd + h(X) ∈ Fq[X], where d = 22n − 2n + 1 e = deg(h) < d. If e
is odd, then φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq.



© 2021 Carlos A. Agrinsoni Santiago
85/93

5. New Results in the Even Degree case of the Exceptional APN
Conjecture

This chapter is divided into two sections. The first section, work in the case when the
degree of the polynomial is on the form 2ne, where n ≥ 3 and e > 1 odd. This section
is divided again into two subsections. The first section address the case when e is either
Gold or Kasami-Welch exponent. We gave a factorization characterization when deg(h) ≡ 3
(mod 4) (see Lemma 33). Then we gave a conditional proof of the general case when certain
conditions are met (see ). In the second section we proof that is the highest odd degree term
is ≡ 3 (mod 4) then φf (X, y, Z) contain an absolute irreducible factor defined over Fq.

we use the concept of degree gap to provide bounds to guarantee the existence of absolute
irreducible factors. Later in the next two sections this bounds will be improve using the
multiplicity of the point (1, 1, 1) to give an upper bound in the number of factors φf (X, Y, Z)
can have in the remaining open cases in the literature. In the second section we prove the
case when the second term have odd degree. We use 17 develop in the previous chapter to
proof the remaining cases in the literature.

5.1. Case 2ne.

Theorem 73. Let f(X) = X2ne + h(X) ∈ Fq[x], where e is an odd number no Gold
or Kasami-Welch. If φf (X, Y, Z) is irreducible over Fq, then φf (X, Y, Z) it is absolutely
irreducible.

Proof: Suppose φf (X, Y, Z) is irreducible, then by corollary 11 φf (X, Y, Z) is absolutely
irreducible. �

5.1.1. Factorization for some cases of the form 2ne where e is a Gold or a Kasami-Welch
number.

Theorem 74. Let f(X) = X2ne + h(X) ∈ Fq[x] and n > 2. If deg(h(X)) = 2ne − 1 then
φf (X, Y, Z) is absolutely irreducible.

Proof: Assume that φf (X, Y, Z) = PQ where P,Q are non-constant polynomials. We can
write P,Q as the sum of homogeneous polynomials, let

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qr +Qr−1 + · · ·+Q0)

where Pi is either a form of degree i or 0 (respectively Qj is either a form of degree i or 0).
Now we have that φ2ne = PsQr and φ2ne−1 = PsQr−1 + Ps−1Qr. Since (1, 1, 1) is a rational
point for every absolutely irreducible factor of φ2ne(X, Y, Z) ([34], [12]) we have that (1, 1, 1)
is a rational point for Ps and Qr then it is also a rational point of φ2ne−1(X, Y, Z) but this
is a contradiction to a result from [34] which implies that (1, 1, 1) is not a rational point
for φh(X, Y, Z), when h ≡ 3 (mod 4) (In this case φh(X, Y, Z) correspond to the monomial
Xh). Therefore, φf (X, Y, Z) is absolutely irreducible. �

Lemma 33. Let f(X) = X2ne+h(X) ∈ Fq[x], where d = deg(h) ≡ 3 mod 4, 3 < e < 2ne−1.
If φf (X, Y, Z) factors then each highest degree form of each factor is divisible by φe and
φ6(X, Y, Z).
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Proof: Suppose that φf (X, Y, Z) = PQ where P,Q are non-constant polynomials. We can
write P,Q as the sum of homogeneous polynomials, let

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qr +Qr−1 + · · ·+Q0)

where Pi is either a form of degree i or 0 (respectively Qj is either a form of degree i or 0).
We have that φ2ne = PsQr. Assume that there exists an absolutely irreducible factor L from
φ2me such that L | Qr and L - Ps. First we will show that if

k∑
i=0

Ps−iQr−k+i = 0

for every k = {1, 2, . . . ,m} then L | Qr−m+i for every i ∈ {0, 1, 2 . . . ,m}. In order to prove
this we will do strong induction over k.
Case k = 1: We have

1∑
i=0

Ps−iQr−k+i = PsQr−1 + Ps−1Qr = 0.

Then PsQr−1 = Ps−1Qr and L | PsQr−1. Since L - Ps and L is absolutely irreducible we can
conclude that L | Qr−1.
Induction Hypothesis: Suppose that for every k < m we have that

k∑
i=0

Ps−iQr−k+i = 0

then L | Qr−k for every k < m.
Case k = m: We have that

k∑
i=0

Ps−iQr−k+i = 0

for every k ≤ m. For k = m we have
m∑
i=0

Ps−iQr−k+i = 0

so we obtain;

PsQr−m =
m∑
i=1

Ps−iQr−k+i.

By induction hypothesis we have that L | Qr−k for every k < m. So we can rewrite it as
PsQr−m = LR

where R =
∑m

i=1 Ps−iQr−k+i.

L
. Since L - Ps and L is absolutely irreducible we can conclude that

L | Qr−m.
Now φd(X, Y, Z) =

∑t
i=0 Ps−iQr−t+i. By the previous argument we have that L | Qr−t+i for

every 1 < i ≤ t. So we can write φd(X, Y, Z) = PsQr−t +
∑t

i=1 Ps−iQr−t+i = PsQr−t + LR0.
Since (1, 1, 1) is a rational point for every absolutely irreducible factor of φ2ne(X, Y, Z) ([34],
[12]) we have that (1, 1, 1) is a rational point for Ps and L then it is also a rational point of
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φd(X, Y, Z) but this is a contradiction to a result from [34] which implies that (1, 1, 1) is not
a rational point for φd(X, Y, Z), when d ≡ 3 (mod 4). �

5.1.2. Even-Gold and Even Kasami-Wech cases.

Theorem 75. Let f(X) = X2me+h(X), where e = 2j+1 or e = 22j−2j+1 with j containing
a prime number p in his factorization such that p - 2m − 1. If φf (X, Y, Z) is irreducible over
Fq then φf (X, Y, Z) is absolutely irreducible.

Proof: Suppose φf (X, Y, Z) is irreducible over Fq. Notice that φe(X, Y, Z) contains a reduced
irreducible factor R(X, Y, Z) ∈ Fq[X, Y, Z] such that (m(R), 2m − 1) = 1. Therefore, by
corollary 11 φf (X, Y, Z) is absolutely irreducible. �

Theorem 76. Let f(X) = X2ne + h(X) ∈ Fq[X], where e, d = deg(h) ≡ 3 (mod 4) and
n ≥ 2. If R(X, Y, Z) is a factor of φf (X, Y, Z), then either R(X, Y, Z) is absolutely irreducible
or tR(X, Y, Z) is divisible by φ6(X, Y, Z) · φe(X, Y, Z).

Proof: Suppose that φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z), where P (X, Y, Z), Q(X, Y, Z) ∈
Fq[X, Y, Z]. If tp(X, Y, Z) (respectively tQ(X, Y, Z)) contains a reduced absolutely irreducible
term, then by Corollary 5 P (X, Y, Z) contains an absolutely irreducible factor (respectively
Q(X, Y, Z)). We can assume tp(X, Y, Z) and tQ(X, Y, Z) do not contains any reduced ab-
solutely irreducible terms. Without loss of generality let A = A(X, Y, Z) be an absolutely
irreducible factor such that A(X, Y, Z) | tP (X, Y, Z) but A - tQ(X, Y, Z). Writing P (X, Y, Z)
and Q(X, Y, Z) as the sum of homogeneous terms we obtain

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0)

where Pi and Qi are either homogeneous polynomials of degree i or 0. Then
φ2ne(X, Y, Z) = PsQt

and

φd(X, Y, Z) =
r∑
i=0

Ps−iQt−r+i (37)

Now equating the terms of degree 2ne − 4 we obtain 0 = PsQt−1 + Ps−1Qt, i.e. PsQt−1 =
Ps−1Qt. Notice that A2 | φ2ne(X, Y, Z) and (A,Qt) = 1 implies that A2 | Ps. Also, (A,Qt) = 1
and A2 | Ps, implies that A2 | Ps−1. Now we can continue this process to obtain that A2 | Ps−j
for j = 0, 1, . . . , r − 1. So we can rewrite Equation 37 as

φd(X, Y, Z) = A2(W ) +QtPs−r

By Bezout’s Theorem there exists at least one point a ∈ Fq such that νa(A) ≥ 1 and νa(Qt) ≥
1. Since Qt do not contain any reduced absolutely irreducible factor, then νa(Qt) ≥ 2.
Therefore, νa(φd) ≥ min(νa(A

2W ), νa(QtPs−r)) ≥ 2 which is a contradiction with φd(X, Y, Z)
being a nonsingular. Thus, we can conclude that either a factor R(X, Y, Z) of φf (X, Y, Z) is
absolutely irreducible or tR(X, Y, Z) is divisible by φe(X, Y, Z)φ6(X, Y, Z).

�
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Lemma 34. Let f(X) = X2ne + h(X) ∈ Fq[X], where e is Gold or Kasami-Welch, the
highest odd degree term of h(x) is ≡ 3 (mod 4) and n ≥ 2. If R(X, Y, Z) is a factor of
φf (X, Y, Z), then tR(X, Y, Z) is divisible by φ6(X, Y, Z).

Proof: Let b be the degree of the highest odd term of h(x). If deg(h) ≡ 3 (mod 4), then by
Lemma 33 the first cone of each factor is divisible by φe(X, Y, Z) and φ6(X, Y, Z). Assume
that d = deg(h) 6≡ 3 (mod 4) i.e. deg(h) = 2ma, where m ≥ 1 and a is odd. Suppose that
φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z) where P,Q are non-constant polynomials. We can write
P,Q as the sum of homogeneous polynomials, let

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qr +Qr−1 + · · ·+Q0)

where Pi is either a form of degree i or 0 (respectively Qj is either a form of degree i or 0).
We have that φ2ne = PsQr. Assume that there exists an absolutely irreducible factor L from
φ6 such that L | Qr and L - Ps. First we will show that if

k∑
i=0

Ps−iQr−k+i = 0

for every k = {1, 2, . . . ,m} then L | Qr−m+i for every i ∈ {0, 1, 2 . . . ,m}. In order to prove
this we will do strong induction over k.
Case k = 1: We have

1∑
i=0

Ps−iQr−k+i = PsQr−1 + Ps−1Qr = 0.

Then PsQr−1 = Ps−1Qr and L | PsQr−1. Since L - Ps and L is absolutely irreducible we can
conclude that L | Qr−1.
Induction Hypothesis: Suppose that for every k < m we have that

k∑
i=0

Ps−iQr−k+i = 0

then L | Qr−k for every k < m.
Case k = m: We have that

k∑
i=0

Ps−iQr−k+i = 0

for every k ≤ m. For k = m we have
m∑
i=0

Ps−iQr−k+i = 0

so we obtain;

PsQr−m =
m∑
i=1

Ps−iQr−k+i.

By induction hypothesis we have that L | Qr−k for every k < m. So we can rewrite it as
PsQr−m = LR
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where R =
∑m

i=1 Ps−iQr−k+i.

L
. Since L - Ps and L is absolutely irreducible we can conclude that

L | Qr−m.
Now φd(X, Y, Z) =

∑t
i=0 Ps−iQr−t+i. By the previous argument we have that L | Qr−t+i

for every 1 < i ≤ t. So we can write φd(X, Y, Z) = PsQr−t +
∑t

i=1 Ps−iQr−t+i. Since L |
φd(X, Y, Z) and L |

∑t
i=1 Ps−iQr−t+i, then L | PsQr−t that is L | Qr−t.

We can continue doing this to obtain that L | Qt−j for j = 1, . . . , k − 1 and

φb(X, Y, Z) =
k∑
i=0

Ps−iQr−k+i.

Now we can rewrite this equation as follows

φb(X, Y, Z) = PsQr−k +
k∑
i=1

Ps−iQr−k+i.

By our previous argument we have L |
∑k

i=1 Ps−iQr−k+i, therefore ν(1,1,1)(
∑k

i=1 Ps−iQr−k+i) ≥
1 and ν(1,1,1)(PsQt−k) ≥ 1. Thus, ν(1,1,1)(φb) ≥ min(ν(1,1,1)(

∑k
i=1 Ps−iQr−k+i), ν(1,1,1)(PsQt−k)) ≥

1 which is a contradiction.
We can conclude that L | Ps. Therefore, φ6(X, Y, Z) divides the first cone of every factor.

�

5.2. Case 4e, when e is a Gold or a Kasami-Welch number.

Theorem 77. Let f(X) = X4e + h(X) ∈ Fq[x], where e > 3 is Gold or Kasami-Welch
number. If h = deg(h(X)) ≡ 3 (mod 4), then f(X) is not exceptionally APN.

Proof: Assume that φf (X, Y, Z) factor over Fq. Then by lemma 33 we know that φ6(X, Y, Z)φe(X, Y, Z)
divides the highest degree form of each factor. Since the multiplicity of φ6(X, Y, Z) is three
we only have two possible options φf (X, Y, Z) factor into three irreducible polynomials over
Fq or φf factor into two absolutely irreducible polynomials. If φf factor into three irreducible
polynomials. Applying the reverse φf (X, Y, Z) and the factors we obtain by lemma 4 that
each factor of ψφ(X, Y, Z) contains an absolutely irreducible factor of multiplicity 1 coming
from φ6(X, Y, Z). By theorem 42 this factors are absolutely irreducible over Fq. By lemma
13 this implies that φf (X, Y, Z) contains an absolutely irreducible factor defined over Fq. So
let assume that φf (X, Y, Z) factor into two different factors. Suppose that φf (X, Y, Z) = PQ
where P,Q are non-constant polynomials. We can write P,Q as the sum of homogeneous
polynomials, let

φf (X, Y, Z) = (Ps + Ps−1 + · · ·+ P0)(Qr +Qr−1 + · · ·+Q0)

where Pi is either a form of degree i or 0 (respectively Qj is either a form of degree i or 0). We
have that φ2ne = PsQr. Moreover we have that φ6(X, Y, Z)φe | Ps and φ6(X, Y, Z)φe | Qr.
Without loss of generality assume that φ6(X, Y, Z)2 - Ps, and that (x + y)2 - Ps. Taking
the reverse to both sides we obtain that ψφ(X, Y, Z) = ψPψQ and by lemma 4 the tangent
cone of ψP (X, Y, Z) contains an absolutely irreducible factor of multiplicity 1. By theorem
42 this factors are absolutely irreducible over Fq. By lemma 13 this implies that φf (X, Y, Z)
contains an absolutely irreducible factor defined over Fq.
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So we can assume that φf (X, Y, Z) is irreducible over Fq. Our goal now is show that
φf (X, Y, Z) do not satisfy theorem 40. Assume that there exists an extension such that
φf (X, Y, Z) factors into absolutely irreducible factors. Consider the lower extension in which
this happens. By lemma 13 ψφ(X, Y, Z) should also factor over this extension. By lemma
4 the tangent cone of ψφ(X, Y, Z) contain an absolutely irreducible factor of multiplicity
3. Using lemma 15 the order of the extension should divide 3 (i.e. the multiplicity of an
absolutely irreducible factor). Since 3 is prime we obtain that the extension is of order 3 i.e.
we have 3 factors. The first characterization of theorem 40 is not possible since that would
contradict lemma 33. The second characterization of theorem 40 is not possible due to the
number of factors. Finally, the third characterization of theorem 40 is not possible because
each factor has the same first cone up to associates.

Theorem 78. Let f(X) = X4e+h(X) ∈ Fq[X], where e is Gold or Kasami-Welch, the high-
est odd degree term of h(x) is ≡ 3 (mod 4) and n ≥ 2. Then φf (X, Y, Z) is not exceptional
APN.

Proof: Let φf (X, Y, Z) be reducible over Fq, then φf (X, Y, Z) = P (X, Y, Z)Q(X, Y, Z)
R(X, Y, Z), where P (X, Y, Z), Q(X.Y, Z) are non-constant irreducible polynomials and P (X, Y, Z),
Q(X, Y, Z), R(X, Y, Z) ∈ Fq[X, Y, Z]. By Lemma 34 φ6(X, Y, Z) | tP (X, Y, Z) and φ6(X, Y, Z) |
tQ(X, Y, Z). Notice that either φ2

6(X, Y, Z) - tP (X, Y, Z) or φ2
6(X, Y, Z) - tq(X, Y, Z). Without

loss of generality assume that φ2
6(X, Y, Z) - tP (X, Y, Z), then tP (X, Y, Z) contains a reduced

absolutely irreducible factor defined over Fq. By Corollary 5 P (X, Y, Z) is absolutely irre-
ducible. Therefore, φf (X, Y, Z) is not exceptional APN.

Suppose that φf (X, Y, Z) is irreducible, then by Corollary 6 3 | m(φf ), that is m(φf ) = 1
or m(φf ) = 3. If m(φf ) = 3, then

φf (X, Y, Z) =
∏

σ∈Gal(Fq3/Fq)

σ(H(X, Y, Z)), (38)

where H(X, Y, Z) ∈ Fq3 [X, Y, Z] is absolutely irreducible. Now we are going to show that
φf (X, Y, Z) do not satisfy neither of the conditions of theorem 40. Clearly by Equation 38 the
first cone of every factor must be divisible by φ6(X, Y, Z)φe(X, Y, Z). Therefore, conditions 1
and 2 are not satisfied. Moreover, the first cone of every factor is not square free. Therefore,
condition 3 is not satisfied. Therefore, φf (X, Y, Z) is not exceptional APN.

�

�
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