
University of Puerto Rico
Ŕıo Piedras Campus

Faculty of Natural Sciences
Department of Mathematics

A GO-UP CONSTRUCTION AND

APPLICATIONS

By

Eddie Arrieta Arrieta

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR
OF PHILOSOPHY IN MATHEMATICS AT THE UNIVERSITY

OF PUERTO RICO, RÍO PIEDRAS CAMPUS

16 July, 2021

APPROVED BY THE DOCTORAL DISSERTATION
COMMITTEE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN MATHEMATICS
AT THE UNIVERSITY OF PUERTO RICO

RÍO PIEDRAS CAMPUS

ADVISOR:

Heeralal Janwa, Ph.D.
University of Puerto Rico, Ŕıo Piedras.

READERS:

Bud Mishra, Ph.D.
New York University

Harold F. Mattson Jr, Ph.D.
Syracuse University

Ivelisse Rubio Canabal, Ph.D.
University of Puerto Rico, Ŕıo Piedras.

Puhua Guan, Ph.D.
University of Puerto Rico, Ŕıo Piedras.

Abstract of the Ph.D Thesis Presented to the Graduate School
of the University of Puerto Rico, Ŕıo Piedras Campus in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in Mathematics

A GO-UP CONSTRUCTION AND APPLICATIONS

By

Eddie Arrieta Arrieta

16 July 2021

Chair: Heeralal Janwa Ph.D.
Major Department: Mathematics

Given a code C over the finite field Fq, where q is a power of a prime number,

some constructions exist that permit us to obtain a new code from C over Fq or over

a subfield of Fq, for example as subfield subcodes. However, in some important ap-

plications, one needs codes over an extension field, such as quantum error-correcting

codes (QECC). In these applications, the codes in the extension fields need only be

additive. In this dissertation, we propose a novel technique that we call Go-Up

(GU) construction that allows us to obtain an additive or a linear code over Fqm

from a collection of codes over Fq. We show under what condition is this code a

self-orthogonal or self-dual code, under various forms (Euclidean, or Hermitian, or

Trace Hermitian, or alternating). We use these additive self-orthogonal codes to

construct quantum-stabilizer codes. As a result, we give explicit classes of codes

where we obtain new quantum error-correcting codes.

Under certain conditions, we show that the GU of two classical Goppa codes

is a Goppa code. As a consequence, we obtain quantum error-correcting codes

from classical Goppa codes. So far, research on QECC from Goppa codes has been

iii

limited. Also, the decoding of QECC is limited. Our result might allow fast decoding

of QECC from GU of Goppa codes via Patterson’s O(n, log n) decoding algorithm.

Independent of the GU construction, we show under what conditions are clas-

sical Goppa code self-orthogonal. Using this fact, we obtain binary and quaternary

QECC directly from Goppa codes. We compare our results on QECC to those

obtained for QECC from BCH codes by Beth and Grassl, and by Sarvepalli et al.

The third theme of our thesis is to construct few weights codes. Such codes

have applications in cryptography, association schemes, Steiner systems, t-designs,

strongly regular graphs, finite group theory, finite geometries, among other disci-

plines. The theory and construction of two-weight linear codes have been carried

out by Calderbank and Kantor, among others. Tonchev and Jungnickel, and Ding et

al. have done pioneering work on three-weight codes. We use our GU code construc-

tion to obtain two-weight, three-weight and few-weights linear codes. Consequently,

we give elementary construction of class RT1 of two-weight codes by Calderbank

and Kantor. We also obtain new classes of three-weight codes.

iv

Copyright © 2021

by

Eddie Arrieta Arrieta

To My Parents, to Geli and to Mompox, the place that does not exist.

ACKNOWLEDGMENTS

I feel I must express, as a person and as a student, my gratitude to many

who have directly or indirectly contributed to bringing this dissertation into shape.

First of all, I would like to gratefully acknowledge my advisor, Dr. Heeralal Janwa

for providing me with a lot of comments and advice, reading each original report,

pointing out weaknesses, and suggesting improvements.

I have special gratitude towards the Program of Formative Academic Experi-

ences, and the Dean of Graduate Studies and Investigation for the financial support.

This dissertation would not have been possible without the undiminishing sup-

port from my parents, to whom I am deeply grateful for their faith and prayers.

On a personal note, I thank Mr. Ambassador Carlos A Forero for his comments

on English grammar.

vii

TABLE OF CONTENTS
page

ABSTRACT . iii

ACKNOWLEDGMENTS . vii

LIST OF ABBREVIATIONS AND SYMBOLS x

1 INTRODUCTION . 1

2 BACKGROUND AND PRELIMINARY RESULTS 8

2.1 BASIC DEFINITIONS . 8
2.1.1 TWO-WEIGHT CODES 17

2.2 SEPARABLE AND INSEPARABLE GOPPA CODES AND THEIR
PARAMETERS: SOME PRELIMINARY RESULTS 24

2.2.1 A SPECIAL CASE . 30
2.3 BASICS OF QUANTUM ERROR-CORRECTING CODES . . . 33

2.3.1 BINARY STABILIZER CODES 39
2.3.2 NONBINARY STABILIZER CODES 47

3 GO-UP CONSTRUCTION AND APPLICATIONS 52

3.1 THE GO-UP CONSTRUCTION 53
3.2 THE GO-UP OF A GOPPA CODE 68
3.3 DUAL OF THE AMALGAMATED CODE 74
3.4 AN INTERESTING SPECIAL CASE 80
3.5 APPLICATIONS . 84

3.5.1 TWO-WEIGHT CODES FROM THE GO-UP CONSTRUC-
TION . 84

3.5.2 AN ELEMENTARY CONSTRUCTION OF A CLASS OF
TWO-WEIGHT CODES WITH PARAMETERS OF (RT1)
OF CALDERBANK AND KANTOR 88

3.5.3 GO-UP OF A TWO-WEIGHT CODES 90
3.5.4 THREE-WEIGHT CODES FROM ANTIPODAL CODES 92

4 QUANTUM CODES FROM THE GO-UP CONSTRUCTION 102

4.1 A REFORMULATION OF BINARY STABILIZER CODES AND
NEW CONSTRUCTIONS OF QUANTUM ERROR-CORRECTING
CODES FROM THE GO-UP CONSTRUCTION 102

4.2 NON-BINARY STABILIZER CODES 113

viii

4.3 OPEN PROBLEMS AND FUTURE DIRECTIONS 116

REFERENCES . 118

ix

LIST OF ABBREVIATIONS AND SYMBOLS

Symbol Meaning See

|v >∗ The adjoint of a ket, called bra Equation (2.2)

σx, σz Bit and phase error Pauli matrix Table 2–4

Γ(L, g(x)) Goppa code with support L and polynomial

g(x)

Definition 2.7

(A,B)F Frobenius inner product of matrices A and

B

Equation (2.9)

H Hilbert space Definition 2.9

U Unitary operator or quantum evolution Definition 2.10

Q Quantum error-correcting code Definition 2.12

Bn(q) Nice Error Basis in n qubits Equation (2.14)

ξn The error group associated with the nice er-

ror basis Bn(q)

Equation (2.16)

[[n, k, d]]q Quantum stabilizer code with dimension qk

and minimum distance d over Fq

Definition 2.16

GU(C0, · · · , Cm−1) amalgamation of the m linear codes Ci Definition 3.1

GU(m,C0) Self-amalgamation of m copies of C0 Definition 3.1

Γ̂(L, g) Self-amalgamated Goppa code Theorem 3.2

Sk(q) The general Simplex code Lemma 3.4

x

CHAPTER 1

INTRODUCTION

Quantum error-correcting codes are a key ingredient to implement information

processing based on quantum mechanic [13, 14, 25, 31]. In the late 1990′s Gottes-

man [25] and independently Calderbank et al., [14] proposed a method to construct

quantum codes from classical codes. This method is commonly referred to a stabi-

lizer codes. Theses codes are the most studied class of quantum codes together with

the so called CSS construction introduced by Shor et al., [15] and independently by

Steane [48]. In this thesis, we give a new construction of additive codes and, from

them, we construct quantum stabilizer codes.

Another important problem, still open, in quantum error-correcting codes is to give

fast decoding algorithms for error-correction. We give here, quantum stabilizer code

construction using Goppa codes. Since Goppa codes have a fast decoding algorithm

by Petterson [40], our quantum stabilizer codes have a promise of fast decoding.

This thesis also addresses with few weights codes, they are interesting in clas-

sical coding theory and have application to finite group theory, finite geometry,

cryptography and other research areas in discrete mathematics. In particular, two

and three-weight codes are closely related to strongly regular graphs, secret sharing

schemes, and projective point sets. Delsarte was the first to investigate the relation-

ship between projective sets, graphs and linear codes in the early 1970′s [16, 18–

20, 22, 49]. Two-weight codes can be used to construct secret sharing schemes, an

interesting subject in cryptography introduced by Blackley [10] and Shamir [46].

1

2

This dissertation presents a systematic method to construct few-weights codes

(linear and additive) over a finite extension of the finite field Fq. The theory of

additive codes gives rich dividends, for example in the construction of quantum

stabilizer codes [14, 23, 32, 51]. We get quaternary additive codes with optimal

parameters, the quaternary case is of special interest because of a close link to the

theory of quantum stabilizer codes [23, 51]. In addition, we get optimal parameters

for single quantum state codes, such a code might be useful for example in testing

whether certain storage locations for qubits are decohering faster than they should

[14].

Another important problem is to be able to construct quantum Stabilizer codes

solely based on Euclidean self-orthogonality (most of the constructions need to

have Trance Hermitian orthogonality or alternating duality conditions). From our

method, we are able to construct stabilizer codes using Euclidean self-orthogonal

codes and for the first time we use Goppa code to construct stabilizer codes. These

codes could, for the first time, yield fast decodable quantum stabilizer codes using

Patterson’s O(n log n) algorithm for the classical Goppa codes.

Given a code C over the finite field Fq, where q is a power of a prime number,

some constructions exist that permit us to obtain a new code from C over Fq

or over a subfield of Fq, such as subfield subcodes. However, in some important

applications, one needs codes over an extension field, for example, in quantum error-

correcting codes. We present a new and elegant technique that we call Go-Up

construction, which allows us to obtain an additive or a linear code over Fqm from

any set of m linear codes over Fq.

We have found a nice relation between our Go-Up construction and important

topics in coding theory such as:

a. Binary and nonbinary quantum error correcting codes.

b. Two, three and few-weights codes.

3

c. Frobenius invariant codes.

In fact, the initial code C could have some particular properties, namely:

• If C = Γ(g(x), L) is a q−ary Goppa code, we study the properties of the go-up

built code, getting - under some conditions - a code that is also a Goppa code over

Fq2 .

• If C is constant weight, as the simplex code, then the new one is two-weight linear

code, see Theorem 3.6. Table 3–9 shows a family of two-weight codes over F4.

Comparing our technique with the construction given by Calderbank et al., in [16],

where they get a new two-weight code from a given two-weight code by changing

the underlying field, we observe that our method uses elementary tools to obtain

two-weight codes. For example, when the initial code is the general simplex code

Sk(q), we get a two-weight code with the same parameters as the code obtained in

Example RT1 from [16].

• If C is a binary two-weight code, we apply our construction to it and we obtain

a linear code over F4, which is almost a six-weight code, see Theorem 3.7. For

example, if C is the first-order Reed-Muller code, the new one is just three-weight,

and Table 3–10 shows us its weight distribution. We observe that our construction

permits us to get examples of three-weight codes in an easier way comparing with

the method used by K. Ding et al., in [22].

• If C is a q−ary antipodal two-weight linear code, see Theorem 2.7, and applying

to C our construction, we obtain a three-weight linear code over Fq2 . Theorems

3.8 and 3.9 give the weight distribution of the new code.

• If C is a binary Euclidean self-orthogonal code, we construct a stabilizer group of

unitary operators from the built code. We use a polynomial basis of F4 over F2

obtaining as a result that our new code is Euclidean self-orthogonal as C is, in

contrast with the seminal work [14] where they use self-orthogonality with respect

to the Trace Hermitian inner product and a normal basis.

4

• If C is a Euclidean self-orthogonal code over Fq, we found that the Euclidean

duality for our new code over Fq2 is the same as the trace-alternating duality used

in the work [31]. Then, we can obtain a nonbinary stabilizer code without the need

to verify alternating self-orthogonality of the built code from C. We just need to

begin with classical self-orthogonality and many types of codes are classically self-

orthogonal.

The new code, in general, is obtained from m codes in Fnq , and using a polyno-

mial or normal basis of Fqm over Fq. Indeed, we can use any basis, always resulting

in an additive code, see Definitions 3.1 and 3.2. When the m codes are linear, the

resulting new code is linear over Fqm if and only if they are equal, see Lemma 3.1. In

the linear and binary case, if m = 2 and C0 is Euclidean self-orthogonal or self-dual,

the generated code is also Euclidean self-orthogonal or self-dual, with the additional

property that Euclidean duality is equivalent with the Trace Euclidean, Hermitian,

and Trace Hermitian duality. See Proposition 3.7.

In the linear and q−ary scenario with q − 3 divisible by 4, for example the

Mersenne prime numbers, if m = 2 we get the same equivalence among the dualities,

being this last fact a general version of the Theorem 3 from work [14], see Theorem

3.5.

On the other hand, if we take a code C over Fqm that is Frobenius invariant,

that is, for any codeword x = (x1 · · ·xn) in C we have xq = (xq1 · · ·xqn) is also

a codeword of C, and C0 being its subfield subcode over Fq, the code C can be

obtained from C0 through our Go-Up construction using the Delsarte’s theorem,

as it is proved in Lemma 3.2 and Theorem 3.1.

This dissertation is structured as follows: Chapter 2 introduces some basic

concepts about coding theory; the principal references are the books [6, 7, 9, 38, 39,

41, 50]. We begin with some definitions and theorems about error-correcting codes.

5

In the first section, we introduce some basic facts about projective geometry and two-

weight codes. It ends with Theorem 2.8 which gives a relation between projective

sets and two-weight codes. Section 2.2 starts with basic properties of Goppa codes

and their relation with BCH codes. This section ends with Proposition 2.3, where

we got a lower bound for the minimum distance of a binary Goppa code when its

polynomial has the form g(x) = xlh(x) over F2m and h(x) being separable such that

h(0) 6= 0. Section 2.3 introduces the basics of quantum stabilizer codes. We have

introduced Hilbert spaces, facts about simultaneously diagonalizable operators, and

stabilizer codes, see Definition 2.13. In the end, we define the concepts of nice error

basis and the error group associated with the error basis. In this section the principal

references are [1, 3, 5, 13, 24, 25, 31, 33, 35, 42, 47], the books [27, 37, 43, 44] and

the seminal works [14, 15].

Chapter 3 introduces our Go-Up construction, we call it amalgamation. We

obtain Lemma 3.1, showing that, in general, an amalgamated code is not linear

over Fqm . We have found an equivalence between a Frobenius invariant linear code

over Fqm and a code obtained from our construction. Theorem 3.1 shows such

equivalence. Section 3.2 is devoted to study the Goppa codes to which we apply

our construction, getting Theorem 3.3, which shows that the amalgamation of a

Goppa code is also a Goppa code. Section 3.3 is dedicated to study the dual of

the amalgamated code. We obtain Theorem 3.4 and Proposition 3.6. In Section

3.4 we generalize Proposition 3.6 considering a prime q ≡ 3 (mod 4). Proposition

3.8 shows such generalization in this q−ary case. Theorem 3.5 is a general version

of the Theorem 3 of [14].

Section 3.5 contains the main results of Chapter 3. We discuss various ap-

plications. We construct two and three-weight linear or additive codes. First, we

obtain Theorem 3.6, where we begin with a constant weight binary code, and we

apply to it our construction. Second, applying our technique to a binary two-weight

6

code C, we get a code over F4 which is almost six-weight, see Theorem 3.7. When

C is the first-order generalized Reed-Muller code, we get a three-weight code over

Fq2 , see Theorem 3.8. We also obtain three-weight and few-weight additive codes,

see Theorem 3.10.

Chapter 4 is devoted to the study of stabilizer codes obtained from our con-

struction. In the first section, given an amalgamated code over F4, which is Eu-

clidean self-orthogonal, we get a quantum stabilizer code (see Proposition 4.1 and

Theorem 4.1).

Section 4.2 discusses that for an amalgamated code C in Fnq2 , the Euclidean

duality is the same as the trace-alternating duality considered in [31]. That allows

us to construct nonbinary stabilizer codes taking into account Euclidean duality and

Frobenius invariant codes, see Proposition 4.4 and Theorem 4.2. We give another

way to construct q-ary QECC. Calderbankd and Shor [14] obtain QECC from

binary quantum codes by showing that under their conditions, Hermitian and Trace

Hermitian inner products are equivalent. Using our Go-Up construction, we are

able to obtain the same equivalence of these inner products for q-ary codes when q

is a prime such that q ≡ 3 (mod 4), using Theorem 3.5. Therefore with our Go-Up

construction, we can obtain q-ary QECC.

Chapters 3 and 4 contain our main contributions. Some preliminary results

are presented on separable and inseparable Goppa codes in Chapter 2, see Propo-

sition 2.3. The following table summarizes the main results in this dissertation.

7

The main contributions

Theorem 3.1 C ⊂ Fnqm and Cq ⊂ C, C is linear over Fqm if and only if

C = GU(m, C0), C0 is the sub-field sub-code of C over Fq.

Theorem 3.4 Let Fq be a finite field of characteristic two. Take C0 and C1

linear codes over Fq, with C0 ⊂ C1. The additive code C =

C0 + δC⊥1 ⊂ Fnq2 is Trace Hermitian self-orthogonal.

Theorem 3.5 Take a prime q ≡ 3 (mod 4) and C a q2−linear code. Then

C ⊂ C⊥H if and only if C ⊂ C⊥TH

Theorem 3.6 C0 ⊂ Fnq constant weight and constant intersection code, Def-

inition 3.3. Then GU(2, C0) is two-weight.

Theorem 3.8 GU(2, Rq(1, k)) ⊂ Fq
k

q2 is a three-weight linear code. Rq(1, k) is

the first-order generalized Reed-Muller code over Fq.

Theorem 3.10 GU(Rq(1, k), C0) ⊂ Fq
k

q2 is a three-weight additive code, where

C0 = {(a ρ1a · · · ρq−2a 0) | a ∈ Sk(q)}.

Theorem 4.2 C an [n, k, d]q2 Euclidean self-orthogonal and Cq ⊂ C. Then C

yields an [[n, n− 2k,≥ d⊥]]q quantum stabilizer code.

Table 1–1

CHAPTER 2

BACKGROUND AND PRELIMINARY

RESULTS

In this chapter, we present basic definitions and known results about general

and quantum stabilizer codes that we will use in the subsequent chapters.

Section 2.1 begins with some definitions and theorems about error-correcting codes.

It ends with some facts about projective geometry and its relationship with two-

weight codes. Section 2.2 starts with basic properties of Goppa codes and their

relationship with BCH codes. This section ends with Proposition 2.3, where we got a

lower bound for the minimum distance of a binary Goppa code when its polynomial

has the form g(x) = xlh(x). Section 2.3 introduces the basics of quantum stabilizer

codes. We have introduced Hilbert spaces, facts about simultaneously diagonalizable

operators, and stabilizer codes. In the end, we define the concepts of nice error basis

and the error group associated with the basis error ξn.

2.1 BASIC DEFINITIONS

We give some general facts about coding theory. The principal references for

this section are the books [6, 7, 9, 38, 39, 41, 50] and the works [11, 16, 22, 53].

A sender starts with a message and encodes it to obtain codewords consisting

of sequences of symbols. These are transmitted over a noisy channel to the receiver.

Often the sequence of symbols that are received contains errors and therefore might

not be codewords. The receiver must decode, which means correct the errors, in

order to change what is received back to codeword and then recover the original

8

9

message, that is, we can encrypt encoding and adding errors. After that, we can

decrypt correcting the errors.

The symbols used to construct the codewords belong to an alphabet. A code

that uses an alphabet consisting of q symbols is called q−ary code. If A is an

alphabet, a code is a random subset of An where n is called the length of the code.

In general, decoding (decrypting) could be a time-consuming procedure, therefore,

the most useful codes are subsets of An satisfying additional conditions. The most

common is to require A to be a finite field, Fq, so that An is a vector space of

dimension n, and require the code C to be a subspace of this vector space. In this

case, we call k the dimension of C over Fq.

To decode, we need to put a measure on how close two vectors are to each

other. This measure is given by the Hamming distance. Let u, v be two vectors

in An, the Hamming distance d(u,v) is the number of places where the two vectors

differ. For example, if we use binary vectors and we have u = (1 0 1 0 1 0 1 0) and

v = (1 0 1 1 1 0 0 0),

d(u,v) = 4.

As another example, suppose we are working with the usual English alphabet, then

d(decode,vector) = 4.

The importance of the Hamming distance d(u,v) is that it measures the minimum

number of “errors” needed for u to be changed to v.

The minimum distance of a code C is defined by

d = min{d(u,v) : u,v ∈ C,u 6= v}.

If C ⊂ Fnq is a subspace, for u and v in C, u− v = c ∈ C. Then we get that

d = min{d(0, c) : c ∈ C, c 6= 0}.

10

This number is very important because it gives the smallest number of errors needed

to change one codeword into another. If a codeword is transmitted over a noisy

channel, errors are introduced into some of the entries of the vector. We can correct

these errors by finding the codeword whose Hamming distance from the received

vector is as small as possible. This is called nearest neighbor decoding.

We say that a code can detect up to t errors if changing a codeword in at most

t places can not change it to another codeword, that is, given a codeword u we have

B(u, t) ∩ C = ∅,

where B(u, t) = {v ∈ Fnq : d(u,v) ≤ t}.

Theorem 2.1. A code C can detect up to t errors if

d ≥ t+ 1

and a code C can correct up to t errors if

d ≥ 2t+ 1

Proof. Suppose that d ≥ t+ 1, if a codeword u is sent and t errors or fewer occur,

then the received message v can not be a different codeword because

d(u,v) ≤ t < t+ 1

then v is not an element of C.

Suppose that d ≥ 2t+1. Assume that the codeword u is sent and the received word

v has t or fewer errors, that is, d(u,v) ≤ t. Let x ∈ C −{u}, then d(x,v) ≥ t+ 1

because if d(x,v) ≤ t we obtain

t+ t ≥ d(u,v) + d(v,x) ≥ d(u,x) ≥ 2t+ 1

11

That is, 2t ≥ 2t + 1 a contradiction. Thus d(v,x) ≥ t + 1, i.e. decoding v we

obtain u by nearest neighbor decoding.

We observe that one way to find the nearest neighbor is to calculate the distance

between the received message and each of the codewords, then select the codeword

with the smallest Hamming distance. In practice, this is impractical for large codes.

In general, the decoding problem is challenging, and considerable research effort is

devoted to looking for fast decoding algorithms.

A q-ary code C of length n, with M codewords and minimum distance d is

called an (n, M, d)q code. If C is a linear code of dimension k, we write [n, k, d]q.

Definition 2.1. If we have an (n, M, d)q code, then we define the information rate

R as

R =
logq(M)

n
.

For example, if C is a binary linear code of dimension k, we obtain M = 2k and

then

R =
log2(2

k)

n
=
k

n
.

The code rate R represents the ratio of the number of input data symbols to the

number of transmitted code symbols. It is an important parameter to consider when

implementing real-world systems, as it represents what fraction of the bandwidth

is being used to transmit actual data. We would like for M , for qk in the linear

case, to be large so that the code rate, R, will be as close to one as possible. This

optimization allows us to use bandwidth efficiently when transmitting messages over

a noisy channel. Unfortunately, increasing d tends to increase n or decrease M .

Theorem 2.2 (R. Singleton 1964). Let C be an (n, M, d)q code. Then

M ≤ qn+1−d.

12

If C is an [n, k, d]q code, qk ≤ qn+1−d, i.e, k ≤ n+ 1− d.

Proof. For a codeword a = (a1 a2 · · · an), let a′ = (ad ad+1 · · · an). If b 6= c are

two codewords then they differ in at least d places. Since b′ and c′ are obtained

by removing d − 1 entries from b and c, they must differ in at least one place. So

b′ 6= c′. Therefore, the number M of codewords u equals the number of vectors u′

obtained in this way. There are at most qn−(d−1) vectors u′ since there are n−(d−1)

positions in these vectors. This implies that

M ≤ qn−(d−1) = qn+1−d

as required.

a. The code rate R of an (n, M, d)q code is at most 1− d−1
n

. Since we have R =
logq(M)

n

and M ≤ qn+1−d, then logq(M) ≤ logq(q
n+1−d) = n+ 1− d; that is,

R ≤ n+ 1− d
n

= 1− d− 1

n
.

b. If we take the number d
n
, called the relative minimum distance, the above

observation implies that if d
n

is large, the code rate R, is forced to be small.

c. In the linear case of a code C of dimension k: For given n and d, the larger

the k, the better the code, because we may think of each codeword as having k

information symbols and n − k checks. So, large k with respect to n makes an

efficient code.

d. Given a code C of minimum distance d: the larger, the better because we can

correct up to bd−1
2
c errors.

e. The Singleton bound can be rewritten as

qd ≤ qn+1

M

or

d ≤ n+ 1− k

13

in the linear case with dimension k.

Definition 2.2. A code that satisfies the Singleton bound with equality is called

MDS code (Maximum Distance Separable).

a. We observe that if C is an MDS code, C has the largest possible value of d for a

given M and n, in the linear case d = n+ 1− k; and, if C is an MDS code,

R = 1− d− 1

n
.

b. The only binary MDS codes are the trivial codes, i.e. [n, 1, n]2, the

repetition code, [n, n− 1, , 2]2, the parity check code and [n, n, 1]2, the universal

code.

In fact:

Let C ⊂ Fn2 be an MDS−code with G = [Ik|A] a generator matrix, where A ∈

Mk×(n−k)(F2). Since d = (n − k) + 1 all the entries of A are not zero, i.e. all the

entries of A are ones. If A has at least two rows, taking r1 and r2, the first two

rows of G, r1+r2 ∈ C and ω(r1+r2) = 2 because r1+r2 = (1 0 · · · 0 1 1 · · · 1)+

(0 1 · · · 0 1 1 · · · 1) = (1 1 0 · · · 0). Then d ≤ 2, 0 ≤ n − k + 1 ≤ 2. That is,

n = k or n = k + 1. Thus, C has parameters [n, n, 1]2 or [n, n− 1, 2]2. If A has

one row, k = 1, d = n− 1 + 1 = n, and the code has parameters [n, 1, n]2.

The following is a geometric interpretation that is useful in error correcting.

A Hamming sphere of radius t centered at a codeword c is denoted by B(c, t) and

defined by

B(c, t) = {u ∈ Fnq : d(c,u) ≤ t} = B(c, t).

We calculate the number of vectors in B(c, t).

Lemma 2.1. Let C be an (n, M, d)q code. Then

|B(c, t)| =
t∑
i=0

(
n

i

)
(q − 1)i.

14

In the binary case we have

|B(c, t)| =
t∑
i=0

(
n

i

)
.

Proof. First we calculate the number of vectors that are at distance 1 from the

codeword c. These vectors are the ones that differ from c in exactly one location.

There are n possible locations and q − 1 ways to make an entry different. Thus,

the number of vectors that have Hamming distance of 1 from c is n(q − 1). Now

let’s calculate the number of vectors that have Hamming distance m from c. There

are
(
n
m

)
ways in which we can choose m locations to differ from the values of c.

For each of these m locations, there are q− 1 choices for symbols different from the

corresponding symbol of c. Hence, there are(
n

m

)
(q − 1)m

vectors that have Hamming distance of m from c. Including the vector c itself and

using the identity
(
n
0

)
= 1, we get(

n

0

)
+

(
n

1

)
(q − 1) +

(
n

2

)
(q − 1)2 + · · ·+

(
n

t

)
(q − 1)t = |B(c, t)|.

We may now state the Hamming bound, which is also called the sphere pack-

ing bound.

Theorem 2.3 (Hamming bound). Let C be an (n, M, d)q code with

d ≥ 2t+ 1.

Then

M ≤ qn

t∑
i=0

(
n

i

)
(q − 1)i

.

15

Proof. Around each codeword c we place a Hamming sphere of radius t. Since the

minimum distance of the code is d ≥ 2t+ 1, these spheres do not overlap. The total

number of vectors in all of the Hamming spheres can not be greater than qn. Thus,

we get

(number of codewords)× (number of elements per sphere) ≤ qn

i.e

M
t∑
i=0

(
n

i

)
(q − 1)i ≤ qn

An (n,M, d)q code with d = 2t + 1 that satisfies the Hamming bound with

equality is called a perfect code. A perfect t−error correcting code is one such

that the M Hamming spheres of radius t with center at the codewords cover the

entire space of q−ary n−tuples.

a. If we call Vt(n) =
t∑
i=0

(
n

i

)
(q−1)i, MVt(n) ≤ qn. Then logq(M)+logq(Vt(n)) ≤ n,

i.e.

R ≤ 1−
logq(Vt(n))

n
.

Example 2.1. The following is an interesting example, which is a perfect linear

code with d = 3, that is, it can correct one error, see [9]. A code defined by a binary

parity check matrix with m rows and 2m − 1 distinct nonzero columns is a binary

Hamming code. If m = 3, n = 23 − 1 = 7 and a parity check matrix is

H =

0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 .

16

Generally, for each m ≥ 3 there is a binary Hamming code with parameters

n = 2m − 1, k = 2m − 1−m, d = 3, which is perfect code because

2n

1∑
i=0

(
n

i

) =
2n

1 + 2m − 1
=

2n

2m
= 2n−m = 2k.

We observe that the above parity check matrix is in standard form, that is,

H = (P t|In−k) = (P t|I3). Then a generator matrix is given by G = (Ik|P) = (I4|P),

that is,

G =

1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

.

Theorem 2.4. In a binary Hamming code, every word in Fn2 is either a codeword

or is at a distance 1 from exactly one codeword.

Proof. There are 2k codewords, and given a codeword c we know

|B(c, t)| =
t∑
i=0

(
n

i

)
(q − 1)i.

Since q = 2 and t = 1 because d = 3, we have

|B(c, 1)| =
(
n

0

)
+

(
n

1

)
= 1 + n.

Then 2k|B(c, 1)| = 2k(1+n) = 2k+2kn = 2k+2k(2m−1) = 2k+m = 2n. This means

that the 2k codewords c determine disjoint neighborhoods |B(c, 1)| that completely

cover Fn2 , as claimed.

The following theorem describes a very simple way to correct one error in some

circumstances.

17

Theorem 2.5. Let C ⊆ Fn2 be a linear code defined by a parity check matrix H.

Suppose that a one-bit error is made in transmitting a codeword, the receiver word

being z. Then the error has occurred in the ith bit of z, where i is determined by

the fact that S = Hzt is equal to the ith column of H.

Proof. Suppose that the codeword sent is c and the error is made in the ith bit.

Then the received word is

z = c+ e

where e = (

1︷︸︸︷
0 · · · 1︸︷︷︸

i

· · ·
n︷︸︸︷
0). Since c is a codeword, Hct = 0. Then

S = Hzt = Het = (h1i h2i · · ·hni)t,

which is the ith column of H.

Assuming that not more than one-bit error is made in transmitting each code-

word, the following procedure can be used:

Hzt = 0?

YES NO

z is a codeword Hzt = ith column?

YES NO

Correct ith bit More than 1 bit error made

Table 2–1

2.1.1 TWO-WEIGHT CODES

Let C ⊂ Fnq be an [n, k, d]q code. There exists an integer r ≥ 1 such that

C \ {0} = ∪ri=1Cwi
, where Cwi

= {u ∈ C : ω(u) = wi}, and we call Awi
= |Cwi

|. For

example, let C ⊂ Fn4 be given by Table 3–2. Then C = {0} ∪Cw1 ∪Cw2 , where Cw1

is given by Table 2–2 and Cw2 by Table 2–3.

18

Cw1

(0 δ δ δ δ 0 0) (δ 0 δ δ 0 δ 0) (δ δ 0 δ 0 0 δ) (δ δ 0 0 δ δ 0)

(δ 0 δ 0 δ 0 δ) (0 δ δ 0 0 δ δ) (0 0 0 δ δ δ δ) (0 1 1 1 1 0 0)

(0 δ2 δ2 δ2 δ2 0 0) (1 0 1 1 0 1 0) (δ2 0 δ2 δ2 0 δ2 0) (1 1 0 1 0 0 1)

(δ2 δ2 0 δ2 0 0 δ2) (1 1 0 0 1 1 0) (δ2 δ2 0 0 δ2 δ2 0) (1 0 1 0 1 0 1)

(δ2 0 δ2 0 δ2 0 δ2) (0 1 1 0 0 1 1) (0 δ2 δ2 0 0 δ2 δ2) (0 0 0 1 1 1 1)

(0 0 0 δ2 δ2 δ2 δ2)

Table 2–2

Cw2

(δ 1 δ2 δ2 1 δ 0) (δ δ2 1 δ2 1 0 δ) (δ δ2 1 1 δ2 δ 0) (δ 1 δ2 1 δ2 0 δ)

(0 δ2 δ2 1 1 δ δ) (0 1 1 δ2 δ2 δ δ) (1 δ δ2 δ2 δ 1 0) (δ2 δ 1 δ2 0 1 δ)

(δ2 δ 1 1 δ δ2 0) (δ2 0 δ2 1 δ 1 δ) (1 δ δ2 1 0 δ2 δ) (1 0 1 δ2 δ δ2 δ)

(1 δ2 δ δ2 δ 0 1) (δ2 1 δ δ2 0 δ 1) (δ2 δ2 0 1 δ δ 1) (δ2 1 δ 1 δ 0 δ2)

(1 δ2 δ 1 0 δ δ2) (1 1 0 δ2 δ δ δ2) (1 δ2 δ δ δ2 1 0) (δ2 1 δ δ 1 δ2 0)

(δ2 δ2 0 δ 1 1 δ) (δ2 1 δ 0 δ2 1 δ) (1 δ2 δ 0 1 δ2 δ) (1 1 0 δ δ2 δ2 δ)

(1 δ δ2 δ δ2 0 1) (δ2 0 δ2 δ 1 δ 1) (δ2 δ 1 δ 1 0 δ2) (δ2 δ 1 0 δ2 δ 1)

(1 δ δ2 0 1 δ δ2) (1 0 1 δ δ2 δ δ2) (0 δ2 δ2 δ δ 1 1) (δ 1 δ2 δ 0 δ2 1)

(δ δ2 1 δ 0 1 δ2) (δ δ2 1 0 δ δ2 1) (δ 1 δ2 0 δ 1 δ2) (0 1 1 δ δ δ2 δ2)

(0 δ δ δ2 δ2 1 1) (δ 0 δ δ2 1 δ2 1) (δ δ 0 δ2 1 1 δ2) (δ δ 0 1 δ2 δ2 1)

(δ 0 δ 1 δ2 1 δ2) (0 δ δ 1 1 δ2 δ2)

Table 2–3

From [7], [16] and [22] we have the following definition.

Definition 2.3. An [n, k, d]q code C such that C \ {0} = ∪ri=1Cwi
is called a

r−weight code. The sequence 1, Aw1 , Aw2 , · · · , Awr is called the weight distribution

of C. In addition, if C is a two-weight code such that w1 = d and w2 = n, the code

is called antipodal.

19

Table 2–2 and Table 2–3 give us an example of a 2−weight code over F4. The

simplex code Sk(q) ⊂ Fnq of dimension k with n = qk−1
q−1 and d = qk−1 is an example

of a one-weight code, that is, each nonzero codeword has weight w1 = qk−1, see [7]

Section 2.5 and Section 3.4.

Now, our formulation of linear codes is via the axiomatic approach introduced

by Assmus and Mattson in [4]. In this formulation, a linear code C of length n and

dimension k over Fq will be viewed as a pair (V,Λ), in which V is a k−dimensional

vector space over Fq and Λ = (λ1 · · · λn) is an n−tuple of (possibly repeated)

linear functionals in the dual space V ∗ of V . The members of Λ are the coordinate

functionals of C and a vector v ∈ V is encoded as the codeword

c = Λ(v) = (λ1(v) · · · λn(v))

One assumes that Λ satisfies the coding axiom, i.e.,

v → c

is one-to-one, that is, λi(v) = 0 for all i, implies v = 0. The weight of the codeword

c is

ω(c) = |{i | λi(v) 6= 0}|,

where v → c, see [30] and [52].

The q-ary simplex code of length n = qk−1
q−1 and dimension k, denoted by Sk(q), is

then obtained by taking Λ to comprise one nonzero element of each one-dimensional

subspace of V ∗. One can show that these q-ary simplex codes are constant weight

with minimum distance d = qk−1 and weight distribution A0 = 1, Ad = qk − 1.

Definition 2.4. [52] If C = (V,Λ), the r−fold replication of C is (V, rΛ), where rΛ

is the multiset in which each member of Λ appears r times (up to scalars).

The constant weight linear codes over Fq were characterized as a replication of

some q−ary simplex code of dimension k-possibly with added 0−coordinates (up to

20

monomial equivalence). Subsequently, Tonchev et al., [30], characterized all antipo-

dal two-weight linear codes with the minimal number of full weight codewords as

a replication of the first-order generalized Reed-Muller codes Rq(1, k) (up to mono-

mial equivalence). One can define the q-ary Reed-Muller codes via extended cyclic

codes, via finite geometries, via polynomial codes, or via a recursive construction

(see Peterson and Weldon [41] and Hoffman and Pless [28]).

In [52], Ward gives a proof of the Proposition 2.1 using the axiomatic approach

in [4]. The characterization of one-weight linear codes was first proved by W. W.

Peterson [41] in 1961. There were several more proofs of it published in the 1960s,

all independently of each other and of the first [54].

Proposition 2.1. Let C be a one-weight code over Fq. Then C is equivalent to a

replicated simplex code, possibly with added 0−coordinates.

Borges, Rifa, and Zinoviev [12] proved the following result.

Theorem 2.6. Let C ⊂ Fnq be an [n, k + 1, d]q antipodal linear two-weight code.

Then, up to monomial equivalence, C has a generator matrix of the form:

G =

 1 1

M 0

 ,

where M generates a one-weight code E with length n−1, dimension k, and distance

d = w1, such that for every codeword a in the code spanned by (M 0), all symbols

which occur in a occur exactly n− d times each.

Example 2.2. The first-order Reed-Muller code C = R(1, m) ⊂ F2m

2 is an antipodal

linear two-weight code with w1 = 2m−1 and w2 = n = 2m. In the particular case of

C = R(1, 3), a generator matrix for C is given by

21

G =

1 1 1 1 1 1 1 1

1 0 0 1 1 1 0 0

0 1 0 1 0 1 1 0

0 0 1 0 1 1 1 0

=

 1 1

G(S3(2)) 0

 ,

where G(S3(2)) is a generator matrix of the binary simplex code of dimension 3.

In [30], Tonchev et al., proved the following result.

Theorem 2.7. Let C be any antipodal linear two-weight code over Fq and assume

that C contains no linearly independent codewords of full weight. Then C is, up to

monomial equivalence, a replication of some first-order generalized Reed-Muller code

over Fq.

From [7], let Fkq be the space of the k−tuples, a k−dimensional vector space over

Fq. It makes sense, intuitively, to view the one-dimensional subspaces of Fkq as points

and the two-dimensional subspaces as lines. The main reason is that any two points

are on precisely one common line (two different one-dimensional subspaces generate

a two-dimensional subspace) and it is a familiar axiom in geometry. Observe the

shift in dimension: we view one-dimensional subspaces as points (zero-dimensional

geometric objects), two-dimensional subspaces as lines (one-dimensional geometric

objects) and so forth. Consequently, the geometry derived from Fkq is considered

to be (k − 1)−dimensional: PG(k − 1, q), the (k − 1)−dimensional projective

geometry. It has k − 1 types of objects, from points (one-dimensional subspaces)

to hyperplanes ((k-1)-dimensional vector subspaces).

Example 2.3. Considering k = 3, we get the projective plane PG(2, q). For each

a ∈ F3
q, with a 6= 0 and for any r ∈ F∗q, we observe that ra represents the same

one-dimensional subspace generate by a. Then we have q3−1
q−1 = q2 + q + 1 one-

dimensional subspaces in F3
q, i.e., we obtain q2 + q + 1 points in PG(2, q). Now,

given a and b in F3
q, with a 6= sb and s ∈ F ∗q , H = {ra + sb | r, s ∈ Fq} is

22

a two-dimensional subspace in F3
q. We observe that, ra and sb are two different

one-dimensional subspaces in H, i.e., they are two different points. But a + sb is

other one-dimensional subspace in H. This gives us another q − 1 one-dimensional

subspaces in H. Then, we have (q− 1) + 1 + 1 = q+ 1 one-dimensional subspaces in

H. Thus, PG(2, q) has q2 + q + 1 points (one-dimensional subspaces in F3
q), q + 1

points in each line and q2 + q + 1 lines (two-dimensional subspaces in F3
q). The

smallest projective plane is PG(2, 2) (7 points, 7 lines, 3 points in each line), this

binary projective plane is also known as the Fano plane. In general, PG(k − 1, q)

has qk−1
q−1 points and equally many hyperplanes.

From [16] we have:

Definition 2.5. A projective (n, k, h1, h2) set O is a proper, non-empty set of n

points of the projective space PG(k − 1, q) with the property that every hyperplane

meets O in h1 points or in h2 points.

Remark: Given G a k × n generator matrix of a linear code C ⊂ Fnq , if we

denote by A = {v1,v2, · · · ,vn} the set (it is possible that A is a multiset in PG(k-

1,q), i.e., there are two columns generating the same one-dimensional subspace) of

the n columns of G, then for any codeword c ∈ C there is a ∈ Fkq such that

c = aG = (a · v1,a · v2, · · · ,a · vn) .

That is, there is a linear functional fa ∈ `(Fkq ,Fq) where fa(x) = a · x = a1x1 +

· · ·+ akxk, i.e.,

c = (fa(v1), · · · , fa(vn))

and we can define

C = {(fa(v1) · · · fa(vn)) | a ∈ Fkq}. (2.1)

Since dim(C) = k and the row rank is equal to the column rank, we get that the

columns of G span Fkq . We know H = ker(fa) = {x ∈ Fkq | fa(x) = 0} is a

(k− 1)−dimensional subspace in Fkq , that is, it is a hyperplane in PG(k− 1, q) and

23

we observe that

ω(c) = |{i | vi /∈ ker(fa)}|,

i.e., the Hamming weight of the codeword c = aG is equal to the number of columns

in G outside H. Therefore, if ω(c) = d, there are n− d columns of G inside H. If C

is a constant weight code, with common weight w1, then any hyperplane H contains

n−w1 columns of the generator matrix G and the other w1 columns are outside H.

From [7] we have

Definition 2.6. A linear code [n, k]q is called projective if it has a generator matrix

G whose columns generate different points in PG(k − 1, q), i.e., if no two columns

of G are dependent over Fq.

Example 2.4. From [7], let q be a prime power and Mk(q) be a matrix with entries

in Fq such that its columns are representatives for the one-dimensional subspaces of

Fkq . This means that there is no 0 column, no two columns are multiples of each

other, and Mk(q) is maximal with these properties, meaning that, for every nonzero

k−tuple, some nonzero multiple of it is a column of Mk(q). The number of columns

is then |PG(k− 1, q)| = qk−1
q−1 . We remember that the Hamming code Hk(q) is the

code with check matrix a k × qk−1
q−1 −matrix Mk(q). Then the q−ary simplex code of

dimension k is given by Sk(q) = Hk(q)
⊥, i.e., Sk(q) is a [q

k−1
q−1 , k, q

k−1]q projective

code.

From [16] we have

Theorem 2.8. The code C defined by (2.1) is a projective two-weight [n, k]q code

with weights w1 and w2 if and only if {≺ vi � | i = 1, · · · , n} is a projective

(n, k, n− w1, n− w2) set that spans PG(k − 1, q).

Proof. Let a be any nonzero vector in Fkq . If H = ker(fa) = {x ∈ Fkq | fa(x) = a ·

x = 0} then n−|H∩{v1, · · · ,vn}| is the weight of the codeword c = (fa(v1) · · · fa(vn)).

Observe that, since dim(C) = k and the row rank is equal to column rank, the

columns of G span Fkq , i.e., {≺ vi � | i = 1, · · · , n} spans PG(k − 1, q).

24

2.2 SEPARABLE AND INSEPARABLE GOPPA CODES AND THEIR
PARAMETERS: SOME PRELIMINARY RESULTS

We present some properties of the Goppa code Γ(L, g(x)), see [38], [39] and

[41]. It is defined by the Goppa polynomial g(x) of degree t over the extension field

Fqm , where q is a prime power, and an accessory subset L of Fqm . Let

g(x) = g0 + g1x+ · · ·+ gtx
t ∈ Fqm [x] and L = {α1, · · · , αn} ⊂ Fqm

be such that g(αi) 6= 0 for all αi ∈ L. With a vector c = (c1 · · · cn) in Fnq we

associate the function

Rc(x) =
n∑
i=1

ci
x− αi

where 1
x−αi

is the unique polynomial such that (x − αi) 1
x−αi

≡ 1 (mod g(x)). We

observe that

1

x− αi
=
g(αi)− g(x)

x− αi
g(αi)

−1 (mod g(x))

Definition 2.7. The Goppa code Γ(L, g(x)) ⊂ Fnq consists of all vectors c =

(c1 · · · cn) such that

Rc(x) ≡ 0 (mod g(x)).

Before identifying some properties of the Goppa codes, we give a definition of

the BCH code and its relation with the Goppa code, see [39].

Definition 2.8. Let b be a nonnegative integer and α ∈ Fqm be a primitive nth root

of unity. A BCH code over Fq of length n and designed distance d, 2 ≤ d ≤ n, is a

cyclic code defined by the roots αb, αb+1, · · · , αb+d−2 of the generator polynomial. If

mi(x) denotes the minimal polynomial of αi over Fq, the generator polynomial of a

BCH code has form

g(x) = lcm(mb(x),mb+1(x), · · · ,mb+d−2(x)) ∈ Fqm .

Some special cases of the general definition are also important, see [36]. If b = 1,

the corresponding BCH codes are called narrow-sense BCH codes.

25

If n = qm − 1, the BCH codes are called primitive.

If n = q − 1, a BCH code of length n over Fq is called a Reed-Solomon code.

Proposition 2.2. A narrow-sense BCH code is a Goppa code.

Proof. Let C =≺ g(x) � be a narrow-sense BCH code of length n and α, α2, · · · , αd−1

be the powers of α used to calculate g(x), where α ∈ Fqm and ord(α) = n. Then

(c0 c1 · · · cn−1) ∈ C if and only if c0 +c1αj +c2α
2
j + · · ·+cn−1α

n−1
j = u(αj)g(αj) = 0

for 1 ≤ j ≤ d− 1. We write αj = αj. For each j we write

sj =
n−1∑
i=0

riα
i
j

with r = (r0 r1 · · · rn−1) ∈ Fnq . Then r ∈ C if and only if sj = 0 for each j. We

define the polynomial

s(x) = s1 + s2x+ · · ·+ sd−1x
d−2 =

d−1∑
j=1

sjx
j−1

and obtain that r ∈ C if and only if s(αj) = 0 for each j. Now,

s(x) =
d−1∑
j=1

(
n−1∑
i=0

riα
i
j

)
xj−1 =

n−1∑
i=0

ri

(
d−1∑
j=1

αij x
j−1

)

and

d−1∑
j=1

αij x
j−1 =

d−1∑
j=1

αij xj−1 = αi+α2ix+· · ·+αi(d−1)xd−2 = αi
(
1 + αix+ · · ·+ αi(d−2)xd−2

)
.

That is,

d−1∑
j=1

αij x
j−1 = αi

[
(αix)d−1 − 1

αix− 1

]
=
αi(d−1)xd−1 − 1

x− α−i
≡ 1

x− α−i
(mod xd−1).

Thus,

s(x) ≡
n−1∑
i=0

ri
x− α−i

(mod xd−1)

26

and therefore r ∈ C if and only if

0 = s(x) ≡
n−1∑
i=0

ri
x− α−i

(mod xd−1).

We can conclude that a narrow-sense BCH code is a Goppa code with g(x) = xd−1

and L = {α−i : 0 ≤ i ≤ n− 1} ⊂ Fqm .

Theorem 2.9. The Goppa code Γ(L, g(x)) of size n and polynomial of degree t is

a linear code over Fq such that k ≥ n−mt and d ≥ t+ 1.

Proof. If we define 1
x−αi

= g(αi)−g(x)
x−αi

g(αi)
−1 (mod g(x)) we can see 1

x−αi
as a poly-

nomial pi(x) ∈ Fqm [x] modulo g(x) of degree t− 1. We write

pi(x) = ai1 + ai2x+ · · ·+ aitx
t−1 (mod g(x)).

Then

0 =
n∑
i=1

ci pi(x) =
n∑
i=1

[
ai1ci + ai2xci + · · ·+ aitx

t−1ci
]
.

Therefore
n∑
i=1

aijci = 0 for 1 ≤ j ≤ t and aij ∈ Fqm

We obtain the n× t matrix

A =

a11 a12 a13 · · · a1t

a21 a22 a23 · · · a2t
...

...
...

...
...

an1 an2 an3 · · · ant

.

Then we can rewrite the definition of a Goppa code:

Γ(L, g(x)) = {c ∈ Fnq : cA = 0}.

27

Therefore, Γ(L, g(x)) is a linear code over Fq of length n and can be defined by t

linear equations over Fqm , but since

aij =
m∑
k=1

bk(ij)βk,

where bk(ij) ∈ Fq and {β1, · · · ,βm} is a basis of Fqm over Fq, Γ(L, g(x)) reduces to

no more that mt linear equations over Fq and the dimension of the code must be at

least n−mt, i.e., k ≥ n−mt.

Now that we know the code is linear, we can use the fact that for a linear code,

the minimum distance is equal to the Hamming minimum weight of the nonzero

codewords. We assume c ∈ Γ(L, g(x)), c 6= 0, d(c) = w. We can write c =

(c1 c2 · · · cw 0 · · · 0) doing permutation if necessary. Then

Rc(x) =
n∑
i=1

ci
x− αi

=
w∑
i=1

ci

∏w
k=1 i 6=k(x− αk)∏w
k=1(x− αk)

.

Since the denominator has no common factor with g(x), because g(αi) 6= 0 for all

i, g(x) must be a divisor of the numerator. But the numerator has degree less or

equal than w − 1, so it follows that

w − 1 ≥ t

and then the minimum distance d = w ≥ t+ 1. Thus,

d (Γ(L, g(x))) ≥ t+ 1,

i.e., Γ(L, g(x)) can detect up to t errors.

We want the minimum distance of the code to be as large as possible; from

Theorem 2.1 a code can correct t errors if d ≥ 2t+ 1. There is a special case where

the lower bound on d can be increased. That is the case where Γ(L, g(x)) is a binary

code, g(x) ∈ F2m [x].

28

Theorem 2.10. Let Γ(L, g(x)) be a binary Goppa code with a separable polynomial

g(x) of degree t. Then

d ≥ 2t+ 1.

Proof. We have L = {α1, · · · , αn} ⊂ F2m . Let c ∈ Γ(L, g(x)) with c 6= 0 and

d(c) = w. Now, we know from the previous proof that

n∑
i=1

ci
x− αi

≡ 0 (mod g(x))⇔ g(x) | f(x),

where

f(x) =
w∑
i=1

ci

w∏
k=1 i 6=k

(x− αk) =
w∑
i=1

w∏
k=1 i 6=k

(x− αk)

because ci ∈ F2 and ci 6= 0. But
w∑
i=1

w∏
k=1 i 6=k

(x−αk) is the derivative of the function∏w
k=1(x−αk) and a binary derivative can only have terms with even exponents, thus

f(x) = a0 + a2x
2 + a4x

4 + · · ·+ a2ux
2u, with 2u ≤ w − 1.

But, for a ∈ F2m , we know a2
m

= a. Then (a2
m

)
1
2 = a

1
2 , i.e., a2

m−1
= a

1
2 and

a2
m−1 ∈ F2m . Thus we can rewrite

f(x) =
(
b0 + b2x+ b4x

2 + · · ·+ b2ux
u
)2
,

where bi = a
1
2 . So g(x) divides h2(x) where h(x) = b0 + b2x+ bx2 + · · ·+ b2ux

u, i.e.,

h2(x) = g(x)q(x). Since g(x) is separable, g(x) = (x− d1)(x− d2) · · · (x− dt) with

di 6= dj if i 6= j. Then x− di | h(x) for each i. That is, (x− d1)(x− d2) · · · (x− dt) |

h(x), i.e., g(x) | h(x).

Therefore, t ≤ u, i.e., 2t ≤ 2u ≤ w − 1. Thus

d ≥ 2t+ 1,

and a binary Goppa code with a separable polynomial of degree t can correct up to

t errors.

29

To decode, one needs a parity check matrix H of the code. We know c ∈

Γ(L, g(x)) if and only if
n∑
i=1

aijci = 0, 1 ≤ j ≤ t

The parity check matrix H satisfies cH t = 0, thus H t = A.

We are going to determine the factors aij of the matrix A. We know

pi(x) = (x− αi)−1 = −g(x)− g(αi)

x− αi
g−1(αi).

Calling g(x) = g0 + g1x+ g2x
2 + · · ·+ gtx

t and hi = g−1(αi), we obtain

pi(x) = −g0 + g1x+ g2x
2 + · · ·+ gtx

t − g0 − g1αi − g2α2
i − · · · − gtαti

x− αi
hi.

That is,

pi(x) = −g1(x− αi) + g2(x
2 − α2

i) + · · ·+ gt(x
t − αti)

x− αi
hi,

pi(x) = −
[
g1 + g2(x− αi) + · · ·+ gt

(
xt−1 + xt−2αi + · · ·+ x2αt−3i + xαt−2i + αt−1i

)]
hi,

pi(x) = −
[(
g1 + g2αi + · · ·+ gtα

t−1
i

)
hi +

(
g2 + · · ·+ gtα

t−2)hix+ · · ·+ gthix
t−1] .

Thus,

ai1 = −
(
g1 + g2αi + · · ·+ gtα

t−1
i

)
hi

ai2 = −
(
g2 + · · ·+ gt−1α

t−3
i + gtα

t−2
i

)
hi

...
...

ai t−1 = − (gtαi + gt−1)hi

ai t = −gthi

Since A = H t, i.e., H = At, we obtain that H = CXY where

30

C = −

gt gt−1 gt−2 · · · g1

0 gt gt−1 · · · g2

0 0 gt · · · g3
...

...
...

...
...

0 0 0 · · · gt

X =

αt−11 αt−12 αt−13 · · · αt−1n

αt−21 αt−22 αt−23 · · · αt−2n

...
...

...
...

...

α1 α2 α3 · · · αn

1 1 1 · · · 1

Y =

h1 0 0 · · · 0

0 h2 0 · · · 0

...
...

...
...

...

0 0 0 · · · hn

.

We observe that C ∈Mt(Fqm), X ∈Mt×n(Fqm) and Y ∈Mn(Fqm), and since C

is invertible, another parity check matrix of the code is H ′ = XY .

2.2.1 A SPECIAL CASE

We do not have a specific reference for the Proposition 2.3, which is probably

known, but we include it here. We want to find a parity check matrix of a Goppa

code when g(x) = xlh(x), h(0) 6= 0, and deg(h(x)) = t. In this case deg(g(x)) = l+t,

and a parity check matrix is given by

31

H =

αt−11 αt−12 αt−13 · · · αt−1n

αt−21 αt−22 αt−23 · · · αt−2n

...
...

...
...

...

α1 α2 α3 · · · αn

1 1 1 · · · 1

α−11 α−12 α−13 · · · α−1n
...

...
...

...
...

α−l1 α−l2 α−l3 · · · α−ln

h−1(α1) 0 0 · · · 0

0 h−1(α2) 0 · · · 0

...
...

...
...

...

0 0 0 · · · h−1(αn)

.

Putting another row of ones in H we obtain the same code, and we can write

H =

αt−11 αt−12 αt−13 · · · αt−1n

αt−21 αt−22 αt−23 · · · αt−2n

...
...

...
...

...

α1 α2 α3 · · · αn

1 1 1 · · · 1

1 1 1 · · · 1

α−11 α−12 α−13 · · · α−1n
...

...
...

...
...

α−l1 α−l2 α−l3 · · · α−ln

h−1(α1) 0 0 · · · 0

0 h−1(α2) 0 · · · 0

...
...

...
...

...

0 0 0 · · · h−1(αn)

.

If we call C1 = Γ(L, h(x)), C = Γ(L, xlh(x)), and H1 a parity check matrix of

C1,

H =

H1

· · ·

AB

 ,

32

where

A =

1 1 1 · · · 1

α−11 α−12 α−13 · · · α−1n
...

...
...

...
...

α−l1 α−l2 α−l3 · · · α−ln

B =

h−1(α1) 0 0 · · · 0

0 h−1(α2) 0 · · · 0

...
...

...
...

...

0 0 0 · · · h−1(αn)

.

Calling C0 = {c ∈ Fnq : ABct = 0} we obtain C = C1 ∩ C0. Then d ≥ 2t + 1

in the binary case when h(x) is a separable polynomial. We would like to have

d ≥ 2(t + l) + 1 in the binary case where h(x) is separable over F2m , however we

have:

Proposition 2.3. Let g(x) = xlh(x) be a polynomial over F2m, where h(x) is sep-

arable and such that h(0) 6= 0. Then the minimum distance d of Γ(L, g(x)) is such

that:

d ≥
{
l + 2t+ 1 if l is even

l + 2t+ 2 if l is odd.

Proof. From Theorem 2.10 we have f(x) = a0 + a1x
2 + a4x

4 + · · · + a2ux
2u with

2u ≤ w − 1. Since zl|f(x), a0 = 0 and f(x) = a1ix
l+e1 + a2ix

l+e2 + · · · + arix
l+er ,

where l + ej is an even number. If l is an even number, each ej is an even number

too and

f(x) = xl (a1ix
e1 + a2ix

e2 + · · ·+ arix
er)

Calling f1(x) = a1ix
e1 + a2ix

e2 + · · ·+ arix
er , we can write

f1(x) =
(
b1ix

e1/2 + · · · brixer/2
)2

= b(x)2,

where bji = a2ji . Then

f(x) = xlb(x)2.

33

Since h(x)|f(x) and h(0) 6= 0, h(x)|b(x)2 and therefore h(x)|b(x) because h(x) is

separable. That is, t ≤ er/2, 2t ≤ er and then l + 2t ≤ l + er ≤ w − 1. Thus

w ≥ l + 2t+ 1,

if l is even.

If l is an odd number, since all the powers of f(x) are even, we can write

f(x) = xl+1 (ai1x
e1 + · · ·+ airx

er) ,

where each ej is an even number. Then we can write f(x) = xl+1b(x)2. Again,

2t ≤ er and l + 1 + 2t ≤ er + l + 1 ≤ w − 1. That is,

w ≥ l + 2t+ 2,

if l is an odd number.

From Theorem 2.1, the binary Goppa code Γ(L, xlh(x)) can correct up t+ l+1
2

errors.

2.3 BASICS OF QUANTUM ERROR-CORRECTING CODES

In this section, we have some general facts about quantum codes and linear

algebra. The principal references are [1, 3, 5, 13, 24, 25, 31, 33, 35, 42, 47], the

books [27, 37, 43, 44] and the seminal works [14, 15].

From [44], see Theorem 8.10, we have the fact.

Theorem 2.11. Let V be a finite dimensional vector space. An operator T ∈

Hom(V) is diagonalizable if and only if there is a basis for V that consists entirely

of eigenvectors of T ; that is, if and only if

V = Vλ1 ⊕ · · · ⊕ Vλk ,

where λ1, · · · , λk are the distinct eigenvalues of T .

34

Given a family S ⊂ Hom(V) of diagonalizable operators on a finite-dimensional

vector space V, it is necessary that S be a commuting family to find a basis B of

V such that all the matrices [T]B, T ∈ S, are diagonal. That follows from the fact

that all diagonal matrices commute. From [27], see Theorem 6.8, we have:

Theorem 2.12. Let S be a commuting family of diagonalizable operators on a finite-

dimensional vector space V. There exists an ordered basis for V such that every

operator in S is represented in that basis by a diagonal matrix.

Definition 2.9. Let V be a vector space over a field F, where F = R or F = C. An

inner product on V is a function

(., .) : V× V→ F

such that:

a. For all v ∈ V, (v,v) ∈ R and

(v,v) ≥ 0 and (v,v) = 0↔ v = 0.

In this case, we say that (., .) is positive defined.

b. For F = C,

(u,v) = (v,u)

and for F = R

(u,v) = (v,u).

That is, (., .) is conjugate symmetric or symmetric.

c. For all element u and v in V and any scalars r, s ∈ F

(ru+ sv,w) = r(u,w) + s(v,w)

and we say that (., .) is linear in the first coordinate.

35

We say that V is an inner product space. If in addition V is a complete space in

the metric defined by the norm

||v|| =
√

(v,v),

meaning that all Cauchy sequence converge, V is called a Hilbert space and is

denoted by H.

We will take V as a finite-dimensional space, where the completeness condition

always holds and inner product spaces are equivalent to Hilbert spaces. Indeed, we

will take V = Cm for some integer m ≥ 2.

Theorem 2.13. Let H be a finite dimensional inner product space and let f ∈

Hom(H, F). Then there exists a unique vector x ∈ V for which f(v) = (v,x).

Proof. If f is the zero functional, we can take x = 0. Let us assume that f 6= 0.

Then K = ker(f) has codimension 1 and since K is finite dimensional, H is the

orthogonal direct sum of K and K⊥, i.e.,

H =< w > �K

for w ∈ K⊥. We observe that if f(v) = (v,x) and x ∈ K, then in particular

0 = f(x) = (x,x) and so x = 0 because (., .) is defined positive. Therefore we have

x = αw for some α ∈ F and f(v) = (v,x) if and only if

f(v) = (v, αw),

and since v ∈ V has the form v = βw + k for β ∈ F and k ∈ K, this is equivalent

to f(βw) = (βw, αw) or

f(w) = α(w,w) = α||w||2.

36

Hence, we can take α = f(w)
||w||2 and

x =
f(w)

||w||2
w.

Theorem 2.14. Let H and H1 be finite dimensional inner product spaces over F and

let T ∈ Hom(H, H1). Then, there is a unique linear function T ∗ ∈ Hom(H1, H)

defined by the condition

(T (u),v) = (u, T ∗(v))

for all u ∈ H and v ∈ H1. T
∗ is called the adjoint of T .

Proof. For a fixed v ∈ H1, consider the function fv : H→ F defined by

fv(u) = (T (u),v).

Then fv ∈ Hom(H, F) and, by Theorem 2.13, there exists a unique vector x ∈ H

for which

fv(u) = (u,x)

for all u ∈ H. Hence, if T ∗(v) = x then

(T (u),v) = (u, T ∗(v))

for all u ∈ H. Now, since

(u, T ∗(rv + sw)) = (T (u), rv + sw) = r(T (u),v) + s(T (u),w)

= r(u, T ∗(v)) + s(u, T ∗(w)) = (u, rT ∗(v)) + (u, sT ∗(w))

= (u, rT ∗(v) + sT ∗(w))

for all u ∈ H, we get that

T ∗(rv + sw) = rT ∗(v) + sT ∗(w).

37

Hence T ∗ ∈ Hom(H1, F) and is unique.

a. We say that T ∈ Hom(H) is self-adjoint (or Hermitian) if T ∗ = T , T is unitary

(or Orthogonal in the real case) if TT ∗ = T ∗T = I, and T is normal if TT ∗ = T ∗T .

Given T a normal operator on H, if λ and µ are distinct eigenvalues of T and Hλ is

the eigenspace of λ and Hµ the eigenspace of µ, then Hλ ⊥ Hµ, because for u ∈ Hλ

and v ∈ Hµ,

λ(u,v) = (T (u),v) = (u, T ∗(v)) = (u, µv) = µ(u,v),

and since λ 6= µ we get (u,v) = 0.

b. When T is unitary and λ is an eigenvalue, then |λ| = 1 because

(u,u) = (u, T ∗T (u)) = (T (u), T (u)) = λλ(u,u).

That is λλ = |λ|2 = 1.

From [44], see Theorem 10.13, we have:

Theorem 2.15. Let H be a finite dimensional inner product space over C. Then an

operator T on H is normal if and only if H has an orthonormal basis B consisting

entirely of eigenvectors of T ; that is,

H = Hλ1 � · · · �Hλk

where {λ1, · · · , λk} is the spectrum of T . Put another way, T is normal if and only

if it is diagonalizable.

Let H be a finite dimensional inner product space over C. We can associate

any vector v ∈ H with an element of Hom(C, H) called ket, denoted |v >, and

defined by

|v >: C→ H, α→ αv

38

We regard |v > as the vector itself. The adjoint of a ket, |v >∗, is called bra and

denoted by < v|. Then < v| ∈ Hom(H, C) and, by Theorem 2.13, we can write

< v| : H→ C, u→ (u,v). (2.2)

Using this notation, the composition < u| ◦ |v > is an element of Hom(C, C) for

any elements u and v in H defined by

< u| ◦ |v >=< u|v >= (v,u).

On the other hand, the composition |u > ◦ < v| = |u >< v| is an operator on H.

For example, if H is N dimensional over C, H ∼= CN , an element u ∈ H is represented

by the N−tuple of its component with respect to a specified orthonormal basis:

u→ (u1, · · · , uN)t,

and then

< u|v > = v1u
∗
1 + · · ·+ vNu

∗
N (2.3)

is the Hermitian inner product and

|u >< v| = (u1, · · · , uN)t(v1, · · · , vN)

is an N ×N complex matrix. The matrix |u >< v| is known as the outer product

of |u > and |v >. The outer product of |u > with itself is called density matrix or

density operator.

If u ∈ H is such that < u|u >= u1u
∗
1 + · · ·uNu∗N = |u1|2 + · · ·+ |uN |2 = 1, we

say that u is a normalized vector. Given a Hilbert space H, any physical state can

be represented by a normalized vector |u >, which is unique up to a phase factor;

that is, any two vectors |u > and |v > such that |v >= r|u >, with r ∈ C and

|r| = 1, represent the same state. We say that H is the state space of the system.

39

Definition 2.10. Let H be a space state and U a mapping that takes as input state

|u > and output a different state U |u >. Then U is a unitary operator which is

unique up to a phase factor.

Unitary evolution implies reversibility; that is, we can determine the input

state of an evolution given the output state and knowledge of the evolution because

unitary operators have an inverse. And since (Uu, Uv) = (u, U∗Uv) = (u,v), the

unitary evolution preserves the unit norm constrain.

2.3.1 BINARY STABILIZER CODES

It is known that any channel comes with an underlying alphabet, where the

letters of the alphabet are the smallest unit of information that can be sent across

the channel. In classical error-correcting codes, the alphabet can be the finite field

Fq. In the quantum scenario, the analogous to Fq is a finite-dimensional Hilbert

space H, we take H = Cq or in particular H = C2 in the binary case, see [34], and

[45].

Definition 2.11. The basic unit of quantum information is the quantum bit,

coined as qubit by Schumacher [45], and its state space is the two state space C2.

The basis states are denoted in the Dirac notation by |0 > and |1 >, where |0 > is

the column vector
(
1
0

)
∈ C2 and |1 > is the column

(
0
1

)
∈ C2. With this notation a

qubit is any system whose state vector |u > can be written as |u >= u1|0 > +u2|1 >

where u1, u2 ∈ C and |u1|2 + |u2|2 = 1 .

An important difference with respect to bits is that qubits can be in super-

position, any linear combination, of the basis states subject to the normalization

requisite. The state space for n qubits is the tensor product of n copies of the state

space C2, i.e., is the Hilbert space C2n ∼= C2 ⊗ · · · ⊗ C2. An orthonormal basis for

the state space of n qubits is given by B = {|a1a2 · · · an >:= |a > | a ∈ Fn2}; that

40

is, a general quantum state for n qubits is given by

∑
a∈Fn

2

λa|a > and
∑
a∈Fn

2

|λa|2 = 1,

where |a1a2 · · · an >= |a1 > ⊗ · · · ⊗ |an > is the tensor product of the individual

states |ai >. We remember that the tensor product is an associative operation and(
a1
a2

)
⊗
(
b1
b2

)
= (a1b1 a1b2 a2b1 a2b2)

t .

Example 2.5. For n = 3, the state space for three qubits is C23 and an orthonormal

basis is given by

B = {|000 >, |100 >, |010 >, |001 >, |110 >, |101 >, |011 >, |111 >}

= {|a1a2a3 > |a = (a1 a2 a3) ∈ F3
2},

where

|000 > =

(
1

0

)
⊗
(

1

0

)
⊗
(

1

0

)
= (

(
1

0

)
⊗
(

1

0

)
)⊗

(
1

0

)
= (1000)t ⊗

(
1

0

)
= (10000000)t,

|100 > =

(
0

1

)
⊗
(

1

0

)
⊗
(

1

0

)
= (

(
0

1

)
⊗
(

1

0

)
)⊗

(
1

0

)
= (0010)t ⊗

(
1

0

)
= (00001000)t,

and so on.

Example 2.6.a. If |u >= |0 >, the quantum state |1 > is an evolution of |0 >

because U = σx is such that σx|0 >= |1 >, where

σx =

 0 1

1 0

is the bit error Puali Matrix or the NOT gate, the unitary operator which

flips the basis states |0 > and |1 >.

41

Indeed,

σx|0 >=

 0 1

1 0

 1

0

 =

 0

1

 = |1 >

and

σx|1 >=

 0 1

1 0

 0

1

 =

 1

0

 = |0 > .

Let

σz =

 0 1

1 0

be the phase error Puali matrix. Then

σz|0 >=

 1 0

0 −1

 1

0

 =

 1

0

 = |0 >

and

σz|1 >=

 1 0

0 −1

 0

1

 = −

 0

1

 = −|1 > .

Let

σy =

 0 −i

i 0

 = iσxσz

be the bit and phase error Puali matrix. Then

σy|0 >= i|1 > σy|1 >= −i|0 > .

In this example, an important case is when the input quantum state is |0 > or |1 >

and the output quantum state is |+ >= 1√
2
(|0 > +|1 >) or |− >= 1√

2
(|0 > −|1 >)

respectively. In this case we can take the unitary transformation given by the

unitary matrix U = 1√
2
H2 where

H2 =

 1 1

1 −1

42

is the second order Hadamard matrix, because

U |0 >= |+ > and U |1 >= |− > .

Also observe that

σz|+ >= |− > σz|− >= |+ >

and

σx|+ >= |+ > σx|− >= −|− > .

That is, a phase error σz in the basis {|0 >, |1 >}, corresponds to a bit error in

the rotated basis {|+ >= 1√
2
(|0 > +|1 >), |− >= 1√

2
(|0 > −|1 >)}. See [15] and

[34].

Table 2–4 summarizes the action of the Pauli matrices on the state basis for a

single qubit.

|u > σx σy σz

|0 > |1 > i|1 > |0 >

|1 > |0 > −i|0 > −|1 >

Table 2–4

From Table 2–4 we have σy = iσxσz. Then, in binary quantum context, we have

two types of error: σx causes bit error and σz causes phase error.

b. If the initial quantum state is given by |v >= |0101 >∈ C24, the state −|1111 > is

an evolution of |v > because

−|1111 >= σx ⊗ I ⊗ σx ⊗ σz|0101 >= U |0101 > .

Observe that we may write U = −1U1 where U1 = σx ⊗ σz ⊗ σx ⊗ I and again

U1|0101 >= −|1111 > .

43

Remember that unitary evolution is unique up to a phase factor. In the first

case we can write the unitary transformation as

Û := i0UaVb,

where

a = (1 0 1 0)

and

b = (0 0 0 1)

that is, we have bit error, σx, at the first and third positions of the input state

and phase error, σz, at the fourth position. If no error at a position, the identity

matrix, we put zero at the respective place. Then

Ua|v >= |v + a >

and

Vb|v >= (−1)b·v|v >,

where b · v means the usual inner product between elements of F4
2 and Û |v >=

(−1)b·v|v + a >, see [14] and [34].

The loss of coherence, called decoherence, caused by vibrations, tempera-

ture fluctuations, electromagnetic waves, and other interactions with the outside

environment, destroys the quantum property of the superposition. For this reason,

decoherence represents a challenge for the practical realization of quantum comput-

ers, since such machines require the coherence of states to be preserved and that

decoherence is managed to perform quantum computation. The preservation of

coherence and mitigation of decoherence effects are thus related to the concept of

quantum error correction, see [15].

44

Definition 2.12. A quantum error-correcting code, Q, with rate k
n

is a unitary

mapping of C2k onto a 2k-dimensional subspace of C2n. The subspace itself will be

called the quantum error-correcting code.

From Table 2–4, we can see that a bit error in an individual qubit corresponds

to applying σx to that qubit, and a phase error to the matrix σz. In view of the

linearity of quantum mechanics, if we can correct errors E and E1, we can correct

any linear combination of them, rE + sE1, where r, s ∈ C. That is, we only need

to consider whether the code can correct a basis of errors. For example, on a two

dimensional Hilbert space, a qubit, the most commonly used basis of error operators

consists of the four matrices

B = {I2, σx, σy, σz}. (2.4)

If we make the assumption that noise on each qubit is independent, it

is possible to decompose an error on the system into a tensor product of n single

qubit errors. The set B is an orthonormal basis of linear operators, where the

inner product of operators E and E1 is given by (E,E1) = 1
2
Tr(E

t
E1), see [14] and

[25]. The set describing the possible errors in n qubits is the tensor product of the

elements in B, i.e., ξn = {irw1 ⊗ · · · ⊗ wn|wi ∈ B, r ∈ Z}, which is a subgroup of

the unitary group U(2n). The weight of an operator of this form is the number

of qubits on which it differs from the identity. For example, if E = σx⊗ I2⊗σz⊗σx,

the weight of E ∈ ξ4, is three. In general, since the quantum evolution is unitary

and unique up to a phase factor, we can write each element of ξn uniquely in the

form (see [14])

E = irUaVb, (2.5)

where a, b ∈ Fn2 , Ua, Vb ∈ ξn and defined by

45

Ua|u > = |u+ a > (2.6)

Vb|u > = (−1)u·b|u > (2.7)

E|u > = (−1)u·b|u+ a >, (2.8)

where u · b means the Euclidean inner product. That is, there are bit errors, σx, in

the qubits for which aj = 1 and phase errors, σz, in the qubits for which bj = 1.

By uniqueness, up to a phase factor, of writing each element of ξn we associate

to the unitary operator UaVb the element (a, b) ∈ F2n
2 to which we associate the

element ϕ(a, b) = a+ δb = (a1 + δb1, · · · , an+ δbn) ∈ Fn4 where ϕ is a bijective map,

δ ∈ F4 \ F2 and δ2 = δ + 1, see Definition 3.1.

Let E = irUaVb and E1 = ir1UcVd be given by (2.5). We get that

EE1|v >= Eir1(−1)d·v|v + c >= ir+r1(−1)d·v+b·v+b·c|v + c + a >

and

E1E|v >= ir1+r(−1)b·v+d·v+d·a|v + a + c > .

Then EE1 = E1E if and only if

d · v + b · v + b · c = b · v + d · v + a · d

for any |v >; that is,

a · d = b · c.

Since we are in characteristic two, EE1 = E1E if and only if a · d + b · c = 0, but

writing a + δb from E and c + δd from E1, then EE1 = E1E if and only if a + δb

and c + δd are orthogonal with respect to Trace Hermitian inner product, defined

by,

(a+ δb) ·TH (c+ δd) = Tr[(a+ δb) ·H (c+ δd)] = a · d+ b · c

46

see Equation (3.14) which is a particular case of the Equation (3.5). Thus a subgroup

S of ξn is commutative if and only if its image S through ϕ in Fn4 is self-orthogonal

with respect to Trace Hermitian inner product. From Theorem 2.12, if S ⊂ S⊥TH
,

the elements of S can be simultaneously diagonalizable and, from Theorem 2.15,

this induces a decomposition of C2n into orthogonal eigenspaces. From [3, 25, 31]

we have:

Definition 2.13. The stabilizer S is some abelian subgroup of ξn and the coding

space Q ⊂ C2n is the space of vectors fixed by S. That is

Q =
⋂
E∈S

{|v >∈ C2n|E|v >= |v >}.

Q is called a stabilizer code and it is the space with all eigenvalues +1.

From Definition 2.13, S is the set of errors, E, that have no effect on the encoded

state, S is the analog of the zero subgroup in the classical coding case. When S is self-

orthogonal, we get that for all E ∈ S and all E1 ∈ ϕ−1(S
⊥TH

) = S⊥TH , EE1 = E1E.

Then S⊥TH \S is the set of the undetectable errors. Observe that Q is invariant

under the elements of S⊥TH . On the other hand, the errors which fail to commute

with some element of S move codewords into an orthogonal subspace to the code,

so can be detected by Q, see [5].

Definition 2.14. Let Q ⊂ C2n be a quantum code and E,E1 ∈ ξn be two errors.

The code can correct them if and only if E(|u >) 6= E1(|v >) for all |u >, |v >∈ Q;

i.e, E−1E1(|v >) /∈ Q. That is,

0 =< u|E−1E1|v >=< u|E∗E1|v >= (E1|v >,E|u >).

A quantum code Q has minimum distance d if and only if it can detect all

error in ξn of weight less than d, but can not detect some error of weight d. When Q

is a subspace of C2n with dimension 2k and minimum distance d we say that Q is an

[[n, k, d]]2 quantum code, and it is pure to t if and only if its stabilizer subgroup

47

S does not contain nonscalar matrices of weight less than t. When t = d, we say

that Q is pure, see [31].

The following theorem from [14] is useful to us when we apply our construction

to stabilizer codes.

Theorem 2.16. Suppose C is an additive self-orthogonal subcode of Fn4 with respect

to the Trace Hermitian inner product, containing 2n−k vectors, such that there are

no vectors of weight less that d in C⊥TH \ C. Then, any eigenspace of ϕ−1(C) is a

quantum error correcting code with parameters [[n, k, d]]2.

2.3.2 NONBINARY STABILIZER CODES

Let q = pm be a power of a prime p and let Fq be the finite field with q elements.

The trace function from Fq to Fp, is defined by

tr(α) =
m−1∑
i=0

αq
i

.

Definition 2.15. A q−ary quantum code Q of length n is a qk dimensional subspace

of Cqn.

The Hilbert space Cqn is identified with the n−fold tensor product of the Hilbert

space Cq, and Cq is thought of as the state space of a q−ary system in the same

way as the values 0 and 1 can be thought of as the possible states of a bit in a bit

string, see [3].

Given two complex or real n×m matrices A and B, the Frobenius inner product

is given by

(A,B)F =
∑
i,j

bijai,j = Tr
(
A
t
B
)
. (2.9)

When A and B are n× 1 column vectors, the Frobenius inner product corresponds

to the Hermitian inner product, see (2.3).

48

In order to select an appropriate error model in a q−ary quantum stabilizer

code, we take H to be a complex Hilbert space of dimension m. We want to find a

basis of the complex vector space Hom(H,H) representing a discrete set of errors.

Such a basis contains m2 complex linear independent operators, B = {E1, · · · , Em2},

with the following properties:

a. It is a set of unitary operators and I ∈ B.

b. Taking the matrix representation and the Frobenius inner product, B is a set of

orthonormal unitary operators, that is, (Ei, Ej)F = mδi,j. Taking Ei = I, we get

(I, Ej)F = Tr(Ej) = 0 for all Ej 6= I ∈ B.

c. Since the set of unitary operators is a group under composition, we take B such

that EiEj = wijEi?j for some operation ? on the set of indices. Observe that

I = (EiEj)
t
(EiEj) = wijwijEi?j

t
Ei?j = |wij|2I,

then |wij|2 = 1.

In this case B is called a nice error basis. Now, since each Ei is a unitary

operator, |det(Ei)| = 1. If in addition, we take each Ei such that det(Ei) = 1, the

basis B is called a very nice error basis. For example, taking H = C2, (2.4) is

a nice error basis for Hom(C2,C2) and

B = {I2, iσx, iσy, iσz} (2.10)

is a very nice error basis, see [33].

Taking H = Cq, for a, b ∈ Fq, we define the unitary operators Ua, Vb and E on Cq

by

Ua|x > = |x+ a >, (2.11)

Vb|x > = wtr(bx)|x >, (2.12)

Eab|x > = = UaVb|x >= wtr(bx)|x+ a >, (2.13)

49

where w = exp(2πi/p) is a primitive pth root of unity and tr denotes the trace

operation from the extension Fq to its prime field Fp. Then

B1(q) = {Eab : a, b ∈ Fq}

is a nice error basis on Cq, compare with (2.4). For a = (a1 · · · an) ∈ Fnq , we write

Ua = Ua1 ⊗ · · · ⊗ Uan for the tensor products of n error operators. The set

Bn(q) = {Eab = UaVb : a, b ∈ Fnq } (2.14)

is a nice error basis on the Hilbert space Cqn , see [31, 33].

Since

EabEcd = wtr(b·c)Ua+cVb+d = wtr(b·c)Ea+c b+d, (2.15)

the set

ξn = {wrEab : a, b ∈ Fnq , r ∈ Fp} (2.16)

is a finite group of order pq2n, called the error group associated with the nice error

basis Bn(q), see [3] and [31].

Given an abelian subgroup S of the error group, a q−ary stabilizer code Q is

defined as

Q =
⋂

Eab∈S

{|v >∈ Cqn|Eab|v >= |v >}.

An important property of a stabilizer code Q is that it contains all joint eigenvectors

of S with eigenvalue 1. Now, we take the centralizer of S in ξn

{E ∈ ξn : EE1 = E1E ∀E1 ∈ S},

and let SZ(ξn) be the group generated by the abelian subgroup S and the center of

ξn, Z(ξn). From [31], we have the following fact

Proposition 2.4. Suppose that S is the stabilizer group of a stabilizer code Q of

dimension dim Q > 1. An error E in ξn is detectable by the quantum code Q if and

50

only if either E is an element of SZ(ξn) or E does not belong to the centralizer of

S in ξn.

In particular, a stabilizer code Q with stabilizer S, can detect all errors in ξn

that are scalar multiples of elements in S or that do not commute with some element

of S. From Equation (2.15) we have

Proposition 2.5. Two elements E = wrEab and E1 = wr1Ecd of the error group

ξn satisfy the relation

E1E = wtr(a·d−b·c)EE1.

In particular, the elements E and E1 commute if and only if tr(a · d− b · c) = 0.

When q = p, we get tr(a ·d−b ·c) = a ·d−b ·c and if q = p = 2 it corresponds

to Equation (3.14). The weight of an element Eab ∈ ξn is the number of nonidentity

tensor components and the weight of a scalar multiple of the identity matrix is zero.

Definition 2.16. A quantum code Q has minimum distance d if and only if it can

detect all errors in ξn of weight less than d, but can not detect some error of weight

d. A q−ary stabilizer code of length n, dimension qk and minimum distance d is

denoted [[n, k, d]]q.

In order to get a relation between additive or linear codes in Fnq2 with stabilizer

codes, we define a bijective map ϕ that takes an element (a, b) ∈ F2n
q to a vector

aα + bαq ∈ Fnq2 , where {α, αq} is a normal basis of Fq2 over Fq, see Definition 3.2.

For x = aα + bαq and y = cα + dαq in Fnq2 , we define an alternating form by

x ∗a y = tr

(
x · yq − xq · y
α2q − α2

)
= tr (b · c− a · d) . (2.17)

It is alternating form in the sense that x ∗a x = 0. This alternating form is bilinear

over Fp, i.e., it is a sympletic inner product. From [31], Theorem 15, we have the

following fact:

51

Theorem 2.17. An [[n, k, d]]q stabilizer code exists if and only if there exists

an additive subcode D of Fnq2 of cardinality qn/qk = qn−k such that D is ∗a−self-

orthogonal and the weight of D⊥a \ D is d if k > 0, and the weight of D⊥a is d if

k = 0.

CHAPTER 3

GO-UP CONSTRUCTION AND

APPLICATIONS

In this chapter, we present a new code construction technique that permits us to

get additive codes, two-weight and three-weight codes. Section 3.1 introduces this

technique that we call Go-Up construction. We present an equivalence between a

Frobenius invariant linear code over Fqm and a code obtained from our construction.

Theorem 3.1 shows such an equivalence. Section 3.2 is dedicated to study the

Goppa codes to which we apply our construction, getting Theorem 3.3, showing

that the amalgamation of a Goppa code is also a Goppa code. Section 3.3 is

devoted to study the dual of the amalgamated code. We obtain Proposition 3.5 and

Theorem 3.4. In Section 3.4 we generalize Proposition 3.6 and Theorem 3 from

[14] when q is prime such that q ≡ 3 (mod 4). Proposition 3.8 and Theorem 3.5

show such generalization in this q−ary case. Section 3.5 contains the main results

from this chapter. We discuss various applications. First, we obtain a family of two-

weight codes, see Table 3–9 and Theorem 3.6. Second, from a binary two-weight

code C and applying our technique to it, we get a code over F4 which is almost

six-weight. See Theorem 3.7. When C is the first-order generalized Reed-Muller

code we get a three-weight code over Fq2 , see Theorem 3.8 , its Corollary 3.2 and,

Theorem 3.10.

52

53

3.1 THE GO-UP CONSTRUCTION

We begin this section defining a Go-Up construction, we call it amalgamation.

We recall that

Fqm = Fq[x]/(p(x)),

where p(x) ∈ Fq[x] is a degree m monic irreducible polynomial over Fq. We recall

from Galois theory, that a finite field with qm elements is unique up to isomorphism.

However, the multiplicative and additive structures depend upon the specific irre-

ducible or primitive polynomials p(x). Hence, the combinatorial structure and the

complexity of computations depend on the choice of p(x).

To illustrate this, when m = 2, we write p(x) = x2 + βx + α and δ ∈ Fq2 \ Fq

such that p(δ) = 0, that is,

δ2 = −α− δβ. (3.1)

For λ = λ1 + δλ2 and θ = θ1 + δθ2 in Fq2 ,

λθ = (λ1 + δλ2) (θ1 + δθ2) = (λ1 + λ2x) (θ1 + θ2x) (mod p(x))

= λ1θ1 − λ2αθ2 + δ (λ2θ1 + (λ1 − λ2β)θ2) .

For example, if p(x) = x2 + x+ 1, that is, α = 1 and β = 1, we get

λθ = λ1θ1 − λ2θ2 + δ (λ2θ1 + (λ1 − λ2)θ2) .

For the binary case, x2 + x + 1 is irreducible over F2 and we take δ ∈ F4 such that

δ2 + δ + 1 = 0. Then

λθ = λ1θ1 + λ2θ2 + δ (λ2θ1 + (λ1 + λ2)θ2) .

For a = (a1 . . . an), b = (b1 . . . bn) in Fnq , we define

a+̂b = (a1 + δb1 . . . an + δbn) := (a1b1 . . . anbn) ∈ Fnq2 .

54

For example, a = (0 1 1) ∈ F3
2 and b = (1 1 0) ∈ F3

2,

a+̂b = (01 11 10) = (δ δ2 1) ∈ F3
4

and

b+̂a = (10 11 01) = (1 δ2 δ).

We write for a, b in Fnq

a+̂b = a + δb ∈ Fnq2 .

Let x = a+̂b, y = c+̂d be elements of Fnq2 and

tr : Fq2 → Fq, x→ x+ xq

be the trace of Fq2 over Fq. If we take δ being a primitive element of Fq2 , i.e., p(x)

is a primitive polynomial, the set {1, δ} is a basis, polynomial basis, of Fq2 over Fq

because the matrix

A =

 1 δ

1 δq

is such that det(A) = δq − δ 6= 0. If δq − δ = 0 then δq−1 = 1 which is not possible,

because δ is primitive and q − 1 < q2 − 1.

Observe that the linear operator

Lδ : Fq2 → Fq2 , x→ δx

has the matrix

[Lδ] =

 0 −α

1 −β

as a representation over the polynomial basis. Then

tr(δ) = δ + δq = tr[Lδ] = −β

55

and

N(δ) = δδq = δq+1 = det[Lδ] = α.

Therefore we get:

a. Euclidean inner product

x ·y =
∑
i

xiyi = (a+δb) ·(c+δd) = (a ·c−αb ·d)+δ(b ·c+a ·d−βb ·d). (3.2)

It is bilinear over Fq2 and symmetric. By linearity, for any subset C of Fnq2 ,

C⊥ =
{
y = c+ δd ∈ Fnq2 | x · y = 0 ∀x ∈ C

}
is linear over Fq2 .

b. Trace Euclidean inner product

x ·T y = tr[(a + δb) · (c + δd)] = 2(a · c− αb · d) + (δ + δq)(b · c + a · d− βb · d).

That is,

x ·T y = 2(a · c− αb · d)− β(b · c + a · d− βb · d). (3.3)

In general, it is not linear over Fq2 because the trace is not. But, since

x ·T (δy) = tr(x · (δy)) = tr((δx) · y) = δx ·T y,

if C ⊂ Fnq2 is linear over Fq2 , then

C⊥T =
{
y = c+ δd ∈ Fnq2 | x ·T y = 0 ∀x ∈ C

}
is linear over Fq2 .

c. Hermitian inner product

x ·H y =
∑
i

xiyi = (a + δb) · (c + δqd) = a · c + δqa · d + δb · c + δq+1b · d

= a · c + (δq + δ − δ)a · d + δb · c + αb · d.

56

That is,

x ·H y = (a + δb) · (c + δqd) = (a · c + αb · d− βa · d) + δ(b · c− a · d). (3.4)

Since (δx) ·H y = δ(x ·H y) and x ·H (δy) = δ(x ·H y) = δq(x ·H y), “·H” is linear in

the first coordinate and has conjugate linearity in the second. From the conjugate

linearity we get that for any subset C of Fnq2

C⊥H =
{
y = c+ δd ∈ Fnq2 | x ·H y = 0 ∀x ∈ C

}
is linear over Fq2 .

d. Trace Hermitian inner product

x ·TH y = tr[x ·H y] = 2(a · c + δq+1b · d) + (δ + δq)(b · c− a · d).

That is,

x ·TH y = 2(a · c + αb · d) + β(a · d− b · c). (3.5)

It is not linear over Fq2 by property of the trace. But, since x ·TH (δy) = tr(x ·H

(δy)) = tr((δx) ·H y) = (δx) ·TH y, if C ⊂ Fnq2 is linear over Fq2 then

C⊥TH =
{
y = c+ δd ∈ Fnq2 | x ·TH y = 0 ∀x ∈ C

}
is linear over Fq2 .

Definition 3.1. Let q be a power of a prime number p, take linear codes Ci in Fnq

with 0 ≤ i ≤ m − 1, and {1, δ, · · · , δm−1} a polynomial basis of Fqm over Fq. We

define the Go-Up code over Fqm, denoted GU(C0, C1, · · · , Cm−1), by setting it equal

to {
a0 + δa1 + · · ·+ δm−1am−1 | ai ∈ Ci, 0 ≤ i ≤ m− 1

}
.

This definition is in a sense gluing or amalgamating the m codes C ′is. When all the

m codes are the same code C0, we denote the Go-Up code by GU(m, C0).

57

Example 3.1. We take the dual of the binary Hamming code, that is, C0 is the

simplex code with parameters [7, 3, 4]2. The code GU(2, C0) = GU(2, S3(2)) is

given by Table 3–2.

C0 = S3(2)

(0 0 0 0 0 0 0) (0 1 1 1 1 0 0) (1 0 1 1 0 1 0) (1 1 0 1 0 0 1)

(1 1 0 0 1 1 0) (1 0 1 0 1 0 1) (0 1 1 0 0 1 1) (0 0 0 1 1 1 1)

Table 3–1

C0+̂C0

(0 0 0 0 0 0 0) (0 δ δ δ δ 0 0) (δ 0 δ δ 0 δ 0) (δ δ 0 δ 0 0 δ)

(δ δ 0 0 δ δ 0) (δ 0 δ 0 δ 0 δ) (0 δ δ 0 0 δ δ) (0 0 0 δ δ δ δ)

(0 1 1 1 1 0 0) (0 δ2 δ2 δ2 δ2 0 0) (δ 1 δ2 δ2 1 δ 0) (δ δ2 1 δ2 1 0 δ)

(δ δ2 1 1 δ2 δ 0) (δ 1 δ2 1 δ2 0 δ) (0 δ2 δ2 1 1 δ δ) (0 1 1 δ2 δ2 δ δ)

(1 0 1 1 0 1 0) (1 δ δ2 δ2 δ 1 0) (δ2 0 δ2 δ2 0 δ2 0) (δ2 δ 1 δ2 0 1 δ)

(δ2 δ 1 1 δ δ2 0) (δ2 0 δ2 1 δ 1 δ) (1 δ δ2 1 0 δ2 δ) (1 0 1 δ2 δ δ2 δ)

(1 1 0 1 0 0 1) (1 δ2 δ δ2 δ 0 1) (δ2 1 δ δ2 0 δ 1) (δ2 δ2 0 δ2 0 0 δ2)

(δ2 δ2 0 1 δ δ 1) (δ2 1 δ 1 δ 0 δ2) (1 δ2 δ 1 0 δ δ2) (1 1 0 δ2 δ δ δ2)

(1 1 0 0 1 1 0) (1 δ2 δ δ δ2 1 0) (δ2 1 δ δ 1 δ2 0) (δ2 δ2 0 δ 1 1 δ)

(δ2 δ2 0 0 δ2 δ2 0) (δ2 1 δ 0 δ2 1 δ) (1 δ2 δ 0 1 δ2 δ) (1 1 0 δ δ2 δ2 δ)

(1 0 1 0 1 0 1) (1 δ δ2 δ δ2 0 1) (δ2 0 δ2 δ 1 δ 1) (δ2 δ 1 δ 1 0 δ2)

(δ2 δ 1 0 δ2 δ 1) (δ2 0 δ2 0 δ2 0 δ2) (1 δ δ2 0 1 δ δ2) (1 0 1 δ δ2 δ δ2)

(0 1 1 0 0 1 1) (0 δ2 δ2 δ δ 1 1) (δ 1 δ2 δ 0 δ2 1) (δ δ2 1 δ 0 1 δ2)

(δ δ2 1 0 δ δ2 1) (δ 1 δ2 0 δ 1 δ2) (0 δ2 δ2 0 0 δ2 δ2) (0 1 1 δ δ δ2 δ2)

(0 0 0 1 1 1 1) (0 δ δ δ2 δ2 1 1) (δ 0 δ δ2 1 δ2 1) (δ δ 0 δ2 1 1 δ2)

(δ δ 0 1 δ2 δ2 1) (δ 0 δ 1 δ2 1 δ2) (0 δ δ 1 1 δ2 δ2) (0 0 0 δ2 δ2 δ2 δ2)

Table 3–2: GU(2, S3(2))

We observe that GU(2, S3(2)) is a two-weight code and is linear over F4.

58

Example 3.2. Let C0 = S3(2) and C1 = H3(2), where we use the following matrix

as a parity check matrix for the Hamming code.

H =

0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

Since H3(2) = S3(2) ∪ (a+ S3(2)), we have

GU(C0, C1) = S3(2) + δH3(2) = (S3(2) + δS3(2)) ∪ (S3(2) + δ(a+ S3(2)))

Taking a = (1 1 1 1 0 0 0 0), Table 3–3 gives the elements of a+ S3(2).

a+ S3(2)

(1 1 1 0 0 0 0) (1 0 0 1 1 0 0) (0 1 0 1 0 1 0) (0 0 1 1 0 0 1)

(0 0 1 0 1 1 0) (0 1 0 0 1 0 1) (1 0 0 0 0 1 1) (1 1 1 1 1 1 1)

Table 3–3: a+ S3(2)

The elements of S3(2) + δS3(2) are given in Table 3–2 and the elements of

S3(2) + δ(a+ S3(2)) are given in Table 3–4.

59

S3(2) + δ(a+ S3(2))

(δ δ δ 0 0 0 0) (δ 0 0 δ δ 0 0) (0 δ 0 δ 0 δ 0) (0 0 δ δ 0 0 δ)

(0 0 δ 0 δ δ 0) (0 δ 0 0 δ 0 δ) (δ 0 0 0 0 δ δ) (δ δ δ δ δ δ δ)

(δ δ2 δ2 1 1 0 0) (δ 1 1 δ2 δ2 0 0) (0 δ2 1 δ2 1 δ 0) (0 1 δ2 δ2 1 0 δ)

(0 1 δ2 1 δ2 δ 0) (0 δ2 1 1 δ2 0 δ) (δ 1 1 1 1 δ δ) (δ δ2 δ2 δ2 δ2 δ δ)

(δ2 δ δ2 1 0 1 0) (δ2 0 1 δ2 δ 1 0) (1 δ 1 δ2 0 δ2 0) (1 0 δ2 δ2 0 1 δ)

(1 0 δ2 1 δ δ2 0) (1 δ 1 1 δ 1 δ) (δ2 0 1 1 0 δ2 δ) (δ2 δ δ2 δ2 δ δ2 δ)

(δ2 δ2 δ 1 0 0 1) (δ2 1 0 δ2 δ 0 1) (1 δ2 0 δ2 0 δ 1) (1 1 δ δ2 0 0 δ2)

(1 1 δ 1 δ δ 1) (1 δ2 0 1 δ 0 δ2) (δ2 1 0 1 0 δ δ2) (δ2 δ2 δ δ2 δ δ δ2)

(δ2 δ2 δ 0 1 1 0) (δ2 1 0 δ δ2 1 0) (1 δ2 0 δ 1 δ2 0) (1 1 δ δ 1 1 δ)

(1 1 δ 0 δ2 δ2 0) (1 δ2 0 0 δ2 1 δ) (δ2 1 0 0 1 δ2 δ) (δ2 δ2 δ δ δ2 δ2 δ)

(δ2 δ δ2 0 1 0 1) (δ2 0 1 δ δ2 0 1) (1 δ 1 δ 1 δ 1) (1 0 δ2 δ 1 0 δ2)

(1 0 δ2 0 δ2 δ 1) (1 δ 1 0 δ2 0 δ2) (δ2 0 1 0 1 δ δ2) (δ2 δ δ2 δ δ2 δ δ2)

(δ δ2 δ2 0 0 1 1) (δ 1 1 δ δ 1 1) (0 δ2 1 δ 0 δ2 1) (0 1 δ2 δ 0 1 δ2)

(0 1 δ2 0 δ δ2 1) (0 δ2 1 0 δ 1 δ2) (δ 1 1 0 0 δ2 δ2) (δ δ2 δ2 δ δ δ2 δ2)

(δ δ δ 1 1 1 1) (δ 0 0 δ2 δ2 1 1) (0 δ 0 δ2 1 δ2 1) (0 0 δ δ2 1 1 δ2)

(0 0 δ 1 δ2 δ2 1) (0 δ 0 1 δ2 1 δ2) (δ 0 0 1 1 δ2 δ2) (δ δ δ δ2 δ2 δ2 δ2)

Table 3–4: S3(2) + δ(a+ S3(2))

Finally, the 27 = 128 codewords of GU(S3(2), H3(2)) are given by Tables 3–

2 and 3–4. Observe that for any x = a + δb in S3(2) + δH3(2), we get ω(x) ∈

{3, 4, 5, 6, 7}.

Example 3.3. Take C0 = F2
3 = {(0 0), (1 0), (2 0), (1 1), (2 2), (0 1), (0 2), (1 2), (2 1)}

and C1 = {(0 0), (1 1), (2 2)}, where p(x) = x2 − x − 1 is irreducible over F3 and

δ2 = δ + 1, i.e., {1, δ} is a polynomial basis of F32 over F3 . Then, GU(C0, C1)

60

GU(C0, C1)

(0 0) (1 0) (2 0) (1 1) (2 2)

(0 1) (0 2) (1 2) (2 1) (δ δ)

(δ2 δ) (2 + δ δ) (δ2 δ2) (2 + δ 2 + δ) (δ δ2)

(δ 2 + δ) (δ2 2 + δ) (2 + δ δ2) (2δ 2δ) (1 + 2δ 2δ)

(2δ2 2δ) (1 + 2δ 1 + 2δ) (2δ2 2δ2) (2δ 1 + 2δ) (2δ 2δ2)

(1 + 2δ 2δ2) (2δ2 1 + 2δ)

Table 3–5

is an additive code over F32. We observe that a generator matrix of C0 is

G =

 1 0

0 1

and generator matrix over F3 of GU(C0, C1) is

G1 =

1 0

0 1

δ δ

 .

Example 3.4. Consider C0 = S2(3), the simplex code of dimension 2 over F3,

p(x) = x2−x−1 an irreducible polynomial over F3 and δ ∈ F32 such that δ2 = δ+1.

Its elements are shown in Table 3–6.

C0 = S2(3)

(0 0 0 0) (1 0 1 1) (2 0 2 2)

(0 1 1 2) (0 2 2 1) (1 1 2 0)

(1 2 0 2) (2 1 0 1) (2 2 1 0)

Table 3–6

61

Let C1 = {(0 0 0 0), (1 0 1 1), (2 0 2 2)} be a subcode of S2(3). Table 3–7 shows

the elements of the additive code GU(C0, C1) over F32.

GU(C0, C1)

(0 0 0 0) (1 0 1 1) (2 0 2 2) (0 1 1 2)

(0 2 2 1) (1 1 2 0) (1 2 0 2) (2 1 0 1)

(2 2 1 0) (δ 0 δ δ) (δ2 0 δ2 δ2) (2 + δ 0 2 + δ 2 + δ)

(δ 1 δ2 2 + δ) (δ 2 2 + δ δ2) (δ2 1 2 + δ δ) (δ2 2 δ 2 + δ)

(2 + δ 1 δ δ2) (2 + δ 2 δ2 δ) (2δ 0 2δ 2δ) (1 + 2δ 0 1 + 2δ 1 + 2δ)

(2δ2 0 2δ2 2δ2) (2δ 1 1 + 2δ 2δ2) (2δ 2 2δ2 1 + 2δ) (1 + 2δ 1 2δ2 2δ)

(1 + 2δ 2 2δ 2δ2) (2δ2 1 2δ 1 + 2δ) (2δ2 2 1 + 2δ 2δ)

Table 3–7

We observe that a generator matrix of S2(3) is given by

G =

 1 0 1 1

0 1 1 2

and then a generator matrix of the additive code GU(C0, C1) (this code is linear

over F3) is given by

G1 =

1 0 1 1

0 1 1 2

δ 0 δ δ

 .

We observe that GU(C0, C1) is an additive two-weight code.

Lemma 3.1. GU(C0, · · · , Cm−1) is additive over Fqm with minimum distance

d = min {d0, · · · , dm−1}

and q(k0+···+km−1) codewords over Fq. In addition, GU(C0, · · · , Cm−1) is linear over

Fqm if and only if GU(C0, · · · , Cm−1) = GU(m, C0) and if C0 is an [n, k0, d0]q

linear code, then GU(m, C0) is an [n, k0, d0]qm linear code.

62

Proof. Given x ∈ GU(C0, · · · , Cm−1),

x =
m−1∑
i=0

δiai =

(
m−1∑
i=0

δiai1 · · ·
m−1∑
i=0

δiain

)
(3.6)

That is

x =

(
1 δ · · · δm−1

)

a01 · · · a0n

a11 · · · a1n
...

...
...

a(m−1)1 · · · a(m−1)n

. (3.7)

Then, we can see that the weight of x is the number of nonzero columns of the

m×n matrix in Equation (3.7), that is, the minimum distance of GU(C0, · · · , Cm−1)

is

d = min {d0, · · · , dm−1} ,

where di is the minimum distance of Ci.

Now, for x =
m−1∑
i=0

δiai and y =
m−1∑
i=0

δibi in GU(C0, · · · , Cm−1), from Equation

(3.6), we get that x+y =
m−1∑
i=0

δi(ai + bi) ∈ GU(C0, · · · , Cm−1). Then GU(C0, · · · , Cm−1)

is an additive code over Fqm .

On the other hand, let p(x) = xm + rm−1x
m−1 + · · ·+ r1x+ r0 be an irreducible

polynomial of degree m over Fq such that p(δ) = 0, that is, δm = −r0 − r1δ − · · · −

rm−1δ
m−1. Then

δx =
m−1∑
i=0

δi+1ai =
m−2∑
i=0

δi+1ai −

(
m−1∑
i=0

δiri

)
am−1 (3.8)

= (−r0am−1) + δ (a0 − r1am−1) + · · ·+ δm−1 (am−2 − rm−1am−1) . (3.9)

If δx ∈ GU(C0, · · · , Cm−1), we get that am−1 ∈ C0, i.e., Cm−1 ⊂ C0. Since

a0 − r1am−1 ∈ C1, then C0 ⊂ C1. Continuing, we obtain that am−2 − rm−1am−1 ∈

63

Cm−1, i.e., Cm−2 ⊂ Cm−1. That is, Cm−1 ⊂ C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cm−2 ⊂ Cm−1.

Thus, C0 = C1 = C2 = · · · = Cm−2 = Cm−1 and GU(C0, · · · , Cm−1) = GU(m, C0).

If x ∈ GU(m, C0), from Equation (3.8), δx ∈ GU(m, C0). Then GU(m, C0)

is linear over Fqm and if C0 is an [n, k0, d0]q linear code, then |GU(m, C0)| =

qk0qk0 · · · qk0 = (qm)k0 , i.e., dimFqm
(GU(m, C0)) = k0.

In most quantum code constructions, only additivity of the constituent codes is

needed. Indeed, for the construction of stabilizer codes, we just need additive codes.

The theory of additive codes is much richer than that of linear codes. Linearity

gives us linear quantum codes for m = 2. Therefore Lemma 3.1 is important for the

construction of stabilizer codes.

Example 3.5. Let C0 be the repetition code with parameters [2m, 1, 2m] and

C1 be the first-order Reed-Muller code with parameters [2m, m + 1, 2m−1]. Then

GU(C0, C1) is an additive code over F4 with parameters (2m, 2m+2, 2m−1).

Example 3.6.a. Let C0 = Sm(2) be the binary simplex code with parameters [2m −

1, m, 2m−1] and C1 the code obtained by puncturing R(1, m), i.e., C1 has param-

eters [2m−1, m+1, 2m−1−1]. The additive code over F4 given by GU(Sm(2), C1)

has parameters (2m − 1, 22m+1, 2m−1 − 1).

b. Let C0 be obtained extending the Hamming code Hm(2), i.e., C0 has parameters

[2m, 2m − m − 1, 4] and let C1 = R(1, m). The additive code over F4 given by

GU(C0, C1) has parameters (2m, 22m , 4) for all m ≥ 3.

Observe that when m = 3, we obtain an additive quaternary code with optimal

parameters, i.e., we get that GU(C0, C1) has parameters (8, 28, 4). See Table 1

in [8].

Proposition 3.1. If β0 = {a1, · · · , ak0} is a basis of C0 over Fq, the sets β1 =

{a1, · · · , ak0} and β2 =
{
0+̂a1, · · · ,0+̂ak0

}
are bases of GU(2, C0) over Fq2.

64

Proof. Consider αi = (ri, si) = ri + δsi ∈ Fq2 , 1 ≤ i ≤ k0, such that

∑
i

αi(ai+̂0) = 0.

Since αi(ai+̂0) = (ri + δsi)(ai + δ0) = riai + δsiai, we get

0 =
∑
i

αi
(
ai+̂0

)
=
∑
i

(riai + δsiai) =
∑
i

riai + δ
∑
i

siai.

But,
∑

i riai = (x1 · · · xn) ∈ Fnq and
∑

i siai = (y1 · · · yn) ∈ Fnq , imply that

0 =
∑
i

αi(ai+̂0) = (x1 + δy1 · · · xn + δyn) .

Since xj ∈ Fq, yj ∈ Fq for 1 ≤ j ≤ n, and δ ∈ Fq2 \ Fq. Then, xj = 0 and yj = 0

for all j, that is,
∑

i riai = 0 and
∑

i siai = 0. From this we get ri = 0, ∀i and

si = 0 ∀i. Thus, αi = 0, ∀i and β1 is linear independent over Fq2 . Now, given

any a+̂b ∈ GU(2, C0), there are scalars ri and si, 1 ≤ i ≤ k0, in Fq such that

a =
∑
i

riai and b =
∑
i

siai

because β0 is a basis of C0 over Fq.

Then,

a+̂b =
∑
i

riai+̂
∑
i

siai =
∑
i

(riai+̂siai) =
∑
i

(ri, si)(a+̂0).

From this, there are scalars αi = ri + δsi, 1 ≤ i ≤ k0, in Fq2 such that

a+̂b =
∑
i

αi(ai+̂0).

Thus, β1 is a basis of GU(2, C0) over Fq2 .

On the other hand, if there are scalars αi = (ri, si) = ri + δsi ∈ Fq2 , 1 ≤ i ≤ k0,

such that ∑
i

αi(0+̂ai) = 0

65

Since αi(0+̂ai) = (ri + δsi) (0 + δai) = −αsiai + δ(ri − siβ)ai,

0 =
∑
i

αi(0+̂ai) =
∑
i

−αsiai+̂
∑
i

(ri − siβ)ai =
∑
i

−αsiai + δ
∑
i

(ri − siβ)ai.

That is,
∑

i siai = 0 and
∑

i(ri − siβ)ai = 0. Then, si = 0 and ri = 0, ∀i. From

this, β2 is linearly independent over Fq2 and we conclude that β2 is another basis of

GU(2, C0) over Fq2 .

Remark: From Proposition 3.1, if G is a generator matrix of C0, then G and

δG are generator matrices of GU(2, C0). Observe that the linear code C0 + δ0 is

the subfield subcode of GU(2, C0) = C0 + δC0 over Fq.

Proposition 3.2. If C0 and C1 are cyclic codes over Fq, then C = GU(C0, C1) is

an additive cyclic code over Fq2.

Proof. Let a = (a1 · · · an) ∈ C0 and b = (b1 · · · bn) ∈ C1. By definition,

a + δb = (a1 + δb1 · · · an + δbn) ∈ C and (a + δb)(x) = (a1 + δb1) + (a2 + δb2)x +

· · ·+ (an + δbn)xn−1 ∈ Fq2 . Then

x(a+ δb)(x) = (a1 + δb1)x+ · · ·+ (an−1 + δbn−1)x
n−1 + (an + δbn)xn

= (a1x+ · · ·+ anx
n) + δ (b1x+ · · ·+ bnx

n) .

From this,

x(a + δb)(x) = xa(x) + δxb(x) ∈ C0 + δC1

because C0 and C1 are cyclic codes.

Let C0 ⊂ Fnq be a linear code and C = GU(m, C0). Given x ∈ C, x =

a0 + δa1 + · · · + δm−1am−1, where {1, δ, · · · , δm−1} is an Fq-basis of Fqm and

66

ai ∈ C0, 0 ≤ i ≤ m− 1. Then,

xq = a0 + δqa1 + · · ·+ δq(m−1)am−1.

Since δqj ∈ Fqm , with 1 ≤ j ≤ m− 1, δqj = α0j + α1jδ + · · ·+ α(m−1j)δ
m−1 for some

αij ∈ Fq, we get that xq ∈ C. Thus, Cq ⊂ C, that is, C is Frobenius invariant.

On the other hand, let C ⊂ Fnqm be a linear code and C0 its sub-field sub-

code over Fq. From Lemma 3.1, GU(m, C0) is a linear code over Fqm . Then

a0 + δa1 + · · · + δm−1am−1 is an element of C. Therefore GU(m, C0) ⊂ C. If in

addition Cq ⊂ C, we get that for x ∈ C, x + xq + · · · + xqm−1
= tr(x) ∈ C. Thus

dimFq(tr(C)) ≤ dimFqm
(C) and from Delsarte’s theorem

dim(tr(C)) = dim((C⊥)0)
⊥ = n− dim(C⊥)0 ≥ n− dim(C⊥) = dim(C) ≥ dim(C0).

Thus

dimFq (tr(C)) = dimFqm
(C) and dimFq(C0) = dimFqm

(C).

Also dimFqm
(GU(m, C0)) = dimFq(C0) = k0 and we obtain that

C = GU(m, C0).

We get then

Lemma 3.2. Let C ⊂ Fnqm be a Frobenius invariant linear code. Then C =

GU(m, C0), where C0 is the sub-field sub-code of C over Fq.

We can summarize the above argument in the following theorem, which gives us

a nice relation between amalgamated codes and Frobenius invariant codes.

Theorem 3.1. Given C ⊂ Fnqm and Cq ⊂ C, C is linear over Fqm if and only

if C = GU(m, C0), where C0 is the sub-field sub-code of C over Fq. Since C is

Frobenius invariant, tr(C) =
{
tr(x) = x+ xq + · · ·+ xqm−1 | x ∈ C

}
= C0.

Now, we will define the amalgamation operation taking a normal basis of Fqm

over Fq. For example, if δ ∈ Fq2 is a primitive element, then {δ, δq} is a basis

67

because the matrix

A =

 δ δq

δq δq
2

is such that det(A) = δδ − δ2q 6= 0. If δ2 − δ2q = 0 then δ2q−2 = 1, which is not

possible because δ is primitive and 2q − 2 < q2 − 1.

If we call p(x) = x2 + βx + α = (x− δ)(x− δq) the minimum polynomial of δ over

Fq, we get that p(x) = x2 + βx + α is irreducible over Fq and tr(δ) = δ + δq = −β

and N(δ) = δδq = α.

Definition 3.2. Let q be a power of a prime number p, take m linear codes Ci in

Fnq , and let
{
δ, δq, · · · , δqm−1

}
be a normal basis of Fqm over Fq. We define a code

over Fqm, denoted NGU (C0, · · · , Cm−1), by

NGU (C0, · · · , Cm−1) =
{
δa0 + δqa1 + · · ·+ δq

m−1

am−1 | ai ∈ Ci, 0 ≤ i ≤ m− 1
}
.

When all the m codes are the same code C0 we denote NGU (C0, · · · , Cm−1) by

NGU (m, C0).

a. Using a normal basis
{
δ, δq, · · · , δqm−1

}
of Fqm over Fq, then

NGU(C0, · · · , Cm−1) =
{
δa0 + δqa1 + · · ·+ δq

m−1

am−1 | ai ∈ Ci
}
,

and given x ∈ NGU(C0, · · · , Cm−1) we can write

x =
m−1∑
i=0

δq
i−1

ai =

(
m−1∑
i=0

δq
i−1

ai1 · · ·
m−1∑
i=0

αq
i−1

ain

)

i.e.,

x =

(
δ δq · · · δq

m−1

)

a01 · · · a0n

a11 · · · a1n
...

...
...

a(m−1)1 · · · a(m−1)n

. (3.10)

68

Again, NGU(C0, · · · , Cm−1) is an additive code over Fqm and the weight of the

codeword x is the number of nonzero columns of the m × n matrix in Equation

(3.10).

We observe that for a normal basis {δ, δ2} of F4 over F2 if C0 and C1 are

two linear codes in Fn2 , then δa + δ2b = δ(a + δb), that is, in the binary case

NGU(C0, C1) = δGU(C0, C1).

3.2 THE GO-UP OF A GOPPA CODE

Now, we apply the Go-Up construction in the Goppa codes context. We know

F4 is an extension field of F2 and F4m is an extension field of F2m . We consider

L = {α1, · · · , αn} ⊆ F2m and g(x) ∈ F2m [x] separable polynomial. With the same L

and the same g(x), we take C = Γ(L, g)F4 ⊆ Fn4 . We call C0 = Γ(L, g) ⊆ Fn2 , and

we know, see Theorem 2.10,

d0 ≥ 2t+ 1,

where t = deg(g(x)), and dimF2C0 = k0 ≥ n−mt. Then C1 = Γ̂(L, g) = GU(2, C0)

is a linear code over F4 with the same parameters as the binary Goppa code. That

is, it is possible to construct a code over F4 with the same capability to correct errors

as C0 = Γ(L, g) ⊆ Fn2 .

For a+ δb = (a1 + δb1 · · · an + δbn) ∈ Γ̂(L, g) we have,

∑
i

ai
x− αi

≡ 0 (mod g(x))
∑
i

bi
x− αi

≡ 0 (mod g(x)).

Taking m an even number, we have a+ δb ∈ Γ(L, g)F4 because, in this case, F4 is a

subfield of F2m and then we may write

∑
i

ai + δbi
x− αi

=
∑
i

ai
x− αi

+ δ
∑
i

bi
x− αi

≡ 0 (mod g(x)).

That is,

Γ̂(L, g) = GU (2 ; Γ(L, g)F2) ⊂ Γ(L, g)F4 .

69

We summarize this in the following theorem:

Theorem 3.2. Given L = {α1, · · · , αn} ⊆ F2m, g(x) ∈ F2m [x] and m be an even

number. Then GU(2 ; Γ(L, g)F2) is a quaternary linear subcode of Γ(L, g(x))F4 with

the same parameters as its subfield subcode.

With this Go-Up construction we obtain a subcode of Γ(L, g)F4 with the same

parameters as Γ(L, g)F2 . The natural question is if it is possible to obtain equality,

that is, under what conditions Γ̂(L, g) = Γ(L, g), i.e., when GU(2 ; Γ(L, g)F2) is a

Goppa code.?

We begin with a particular case, see Definition 2.8, taking β ∈ Fq a primitive

nth root of unity, n|(q − 1) and α = β
q−1
n , let L0 = {α0, α1, · · · , αn−1} ⊂ Fq. For

k ≤ n, we let

Pk = {f(x) ∈ Fq[x] | deg(f(x)) ≤ k − 1}

and we know

RS(n, k) =
{

(f(α0), f(α1), · · · , f(αn−1)) | f(x) ∈ Pk
}
⊂ Fnq

is a cyclic code because for c = (f(α0) f(α1) · · · f(αn−1)) ∈ RS(n, k),

xc =
(
f(αn−1) f(α0) · · · f(αn−2)

)
=
(
f1(α

0) f1(α
1) · · · f1(αn−1)

)
,

where f1(x) = f(α−1x) ∈ Pk, i.e., xc ∈ RS(n, k). We know RS(n, k) is MDS code,

i.e., d−1 = n−k and we can also see the RS(n, k) as a Goppa code with polynomial

xd−1 and support set L =
{
α0, α−1, · · · , α−(n−1)

}
⊂ Fq, i.e., RS(n, k) = Γ(L, xd−1),

see Proposition 2.2. Then a parity check matrix of RS(n, k) is given by

H =

α0(d−2) α−(d−2) · · · α−(n−1)(d−2)

...
...

...
...

α0 α−1 · · · α−(n−1)

1 1 · · · 1

α0 0 · · · 0

0 αd−1 · · · 0

...
...

...
...

0 0 · · · α(n−1)(d−1)

.

70

That is,

H =

1 α1 α2 · · · α(n−1)

...
...

...
...

...

1 αd−2 α2(d−2) · · · α(n−1)(d−2)

1 αd−1 α2(d−1) · · · α(n−1)(d−1)

.

On the other hand, if we take a cyclic code C over Fq of length n with generator

polynomial g(x) = (x − α)(x − α2) · · · (x − αd−1) with d ≥ 2, a polynomial word

p(x) = c0 + c1x+ · · ·+ cn−1x
n−1 is such that p(x) ∈ C if and only if g(x)|p(x) if and

only if p(αj) = 0 for 1 ≤ j ≤ d− 1. That is, p(x) ∈ C if and only if

1 α1 α2 · · · α(n−1)

...
...

...
...

...

1 αd−2 α2(d−2) · · · α(n−1)(d−2)

1 αd−1 α2(d−1) · · · α(n−1)(d−1)

c0

c1
...

cn−1

= H(c0 c1 · · · cn−1)t = 0.

Then, C =
{
c ∈ Fnq | Hct = 0

}
= RS(n, k) with d − 1 = n − k. If we take

RS(n, k) ⊂ Fnq2 and L0 = {α0, α, · · · , αq−2}, where α is a primitive element for F∗q,

i.e., we take n = q − 1 and observe that (q − 1)|(q2 − 1). Then,

RS(n, k) = Γ(L, xd−1) =

{
c ∈ Fnq2 |

n−1∑
i=0

ci
x− α−i

≡ 0 (mod xd−1)

}
.

For c ∈ Γ(L, xd−1), c = a+̂b = (a0 + δb0 · · · an−1 + δbn−1) for some a,b ∈ Fnq .

From this,

n−1∑
i=0

ci
x− α−i

=
n−1∑
i=0

ai + δbi
x− α−i

=
n−1∑
i=0

ai
x− α−i

+ δ
n−1∑
i=0

bi
x− α−i

=
n−1∑
i=0

aipi(x) + δ
n−1∑
i=0

bipi(x),

71

where pi(x) = −g(x)−g(α−i)
x−α−i g−1(α−i) (mod g(x)), i.e., we can see 1

x−α−i as a polyno-

mial, over Fq modulo g(x) = xd−1, of degree d − 2. We write pi(x) = a0i + a1ix +

· · ·+ ad−2ix
d−2 ∈ Fq[x] and then

n−1∑
i=0

ci
x− α−i

=
n−1∑
i=0

ai
(
a0i + · · ·+ ad−2ix

d−2)+ δ

n−1∑
i=0

bi
(
a0i + · · ·+ ad−2ix

d−2)
=

(
n−1∑
i=0

aia0i + δ

n−1∑
i=0

bia0i

)
+ · · ·+

(
n−1∑
i=0

aiad−2i + δ

n−1∑
i=0

biad−2i

)
xd−2

Since c = a+̂b ∈ Γ(L, xd−1) and we obtain a polynomial of degree at most

d− 2, then(
n−1∑
i=0

aia0i + δ
n−1∑
i=0

bia0i

)
+ · · ·+

(
n−1∑
i=0

aiad−2i + δ
n−1∑
i=0

biad−2i

)
xd−2 = 0.

That is
n−1∑
i=0

aiaji + δ
n−1∑
i=0

biaji = uji + δvji = 0

for 0 ≤ j ≤ d − 2, uji =
n−1∑
i=0

aiaji and vji =
n−1∑
i=0

biaji. If vji 6= 0, then δ =
uji
vji
∈ Fq

which is not possible because δ ∈ Fq2 \ Fq. Therefore, vji = 0 and uji = 0 and we

conclude that
n−1∑
i=0

aipi(x) = 0 and
n−1∑
i=0

bipi(x) = 0.

That is

n−1∑
i=0

ai
x− α−i

≡ 0 (mod xd−1) and
n−1∑
i=0

bi
x− α−i

≡ 0 (mod xd−1).

This implies

c = a + δb ∈ Γ(L, xd−1)Fq + δΓ(L, xd−1)Fq = RS(n, k)Fq + δRS(n, k)Fq

72

and

Γ
(
L, xd−1

)
Fq2
⊂ Γ(L, xd−1)Fq + δΓ(L, xd−1)Fq .

We summarize this in the following proposition.

Proposition 3.3. Let α ∈ Fq be a primitive nth root of unity and L = {α0, α1, · · · , αn−1}.

Then,

Γ(L, xd−1)Fq2
= GU(2, Γ(L, xd−1)Fq).

a. Another way to see that it is as follows: If we take d− 1 consecutive powers of α

and d− 1 = n− k, we know RS(n, k) has a parity check matrix given by

H =

1 α1 α2 · · · α(n−1)

...
...

...
...

...

1 αd−2 α2(d−2) · · · α(n−1)(d−2)

1 αd−1 α2(d−1) · · · α(n−1)(d−1)

.

For c = a+ δb ∈ Fnq2 , c ∈ RS(n, k)Fq2
if and only if Hct = 0, i.e.,

0 = 1(a1 + δb1) + αj(a2 + δb2) + · · ·+ αj(n−1)(an + δbn)

=
(
1a1 + αja2 + · · ·+ αj(n−1)an

)
+ δ

(
1b1 + αjb2 + · · ·+ αj(n−1)bn

)
⇒ Hat + δHbt = 0

⇒ Hat = 0 and Hbt = 0,

because 1a1 + αja2 + · · ·+ αj(n−1)an ∈ Fq and 1b1 + αjb2 + · · ·+ αj(n−1)bn ∈ Fq.

Then, RS(n, k)Fq2
⊂ RS(n, k)Fq + δRS(n, k)Fq and we conclude that

RS(n, k)Fq2
= GU(2, RS(n, k)Fq)

as the above proposition says.

73

In general, we have:

Theorem 3.3. Let m be an even number, L = {α1, · · · , αn} ⊂ Fqm be such that

αi ∈ Fq, 1 ≤ i ≤ n, and g(x) = g0 + g1x + · · · + ctx
t ∈ Fqm [x] be such that gj ∈ Fq,

1 ≤ j ≤ t. Then,

Γ(L, g(x))Fq2
= GU(2, Γ(L, g(x))Fq).

Proof. Given c = a+ δb ∈ Γ(L, g(x))Fq + δΓ(L, g(x))Fq ,

n∑
i=1

ci
x− αi

=
n∑
i=1

ai + δbi
x− αi

=
n∑
i=1

ai
x− αi

+ δ

n∑
i=1

bi
x− αi

≡ 0 (mod g(x))

then

Γ(L, g(x))Fq + δΓ(L, g(x))Fq ⊂ Γ(L, g(x))Fq2
.

On the other hand, we observe that Fq2 is a subfield of Fqm because m is an even

number. We know pi(x) = −g(x)−g(αi)
x−αi

g−1(αi) = a0i+a1ix+ · · · at−1ixt−1 ∈ Fq[x] and

a parity check matrix for Γ(L, g(x))Fq2
is given by

H =

a01 a02 a03 · · · a0n
...

...
...

...
...

at−11 at−12 at−13 · · · at−1n

 .

Given c = a + δb ∈ Fnq2 , c ∈ Γ(L, g(x))Fq2
if and only if Hct = 0, i.e., for all

0 ≤ j ≤ t− 1,

0 = aj1(a1 + δb1) + aj2(a2 + δb2) + · · ·+ ajn(an + δbn)

= (aj1a1 + aj2a2 + · · ·+ ajnan) + δ (aj1b1 + aj2b2 + · · ·+ ajnbn)

⇒ Hat + δHbt = 0

⇒ Hat = 0 and Hbt = 0,

74

since aj1a1 + aj2a2 + · · ·+ ajnan ∈ Fq and aj1b1 + aj2b2 + · · ·+ ajnbn ∈ Fq.

From this a, b ∈ Γ(L, g(x))Fq , i.e., Γ(L, g(x))Fq2
⊂ Γ(L, g(x))Fq +δΓ(L, g(x))Fq .

Thus

Γ (L, g(x))Fq2
= GU(2, Γ(L, g(x))Fq).

Remark: Since Γ(L, g(x))Fq2
is self-amalgamated, then it is Frobenius invari-

ant. From Theorem 3.1 we obtain the other direction

Proposition 3.4. Let m be an even number, L = {α1, · · · , αn} ⊂ Fqm and g(x) =

g0 + g1x+ · · ·+ ctx
t ∈ Fqm [x] be such that for any codeword c ∈ Γ(L, g(x))Fq2

, cq is

also a codeword. Then,

Γ(L, g(x))Fq2
= GU(2, Γ(L, g(x))Fq).

3.3 DUAL OF THE AMALGAMATED CODE

We remember that for a linear code C ⊂ Fnq , the set C⊥ =
{
x ∈ Fnq : x · y = 0 ∀y ∈ C

}
is the dual of C with respect to the Euclidean inner product. We know C⊥ is linear

over Fq and

dim(C) + dim(C⊥) = n.

That is, C⊥ is a [n, n−k] linear code, where k = dim(C). The linear code C is called

self-dual if C⊥ = C, and it is called self-orthogonal or weakly self-dual if C ⊆ C⊥.

We observe that C⊥ is exactly the set of all parity checks on C. If β = {a1, · · · ,ak}

is a basis of C over Fq and G = [a1, · · · ,ak] is a generator matrix of C, then

C⊥ =
{
b ∈ Fnq : Gbt = 0

}
.

That is, G is a parity check matrix of C⊥.

75

Now, suppose that C0 is an [n, k0, d0] linear code over Fq. We know by Lemma

3.1 that C = GU(m, C0) is an [n, k0, d0] linear code over Fqm . We want to study

the duality of the linear code GU(m, C0).

Proposition 3.5. Let C0 ⊂ Fnq be a linear code and m be an even number. Then,

GU(m, C0)
⊥ = GU(m, C⊥0) = GU(m, C0)

⊥TH

and

C0 ⊂ C⊥0 → GU(m, C0) ⊂ GU(m, C0)
⊥

C0 = C⊥0 → GU(m, C0) = GU(m, C0)
⊥.

Proof. Given y ∈ GU(m, C⊥0), we write y =
m−1∑
i=0

δibi where bi ∈ C⊥0 . Writing

x =
m−1∑
i=0

δiai ∈ GU(m, C0), and since xi =
m−1∑
j=0

δjaji and yi =
m−1∑
k=0

δkbki, from

Equation (3.7) we get

x · y =
n∑
i=1

xiyi =
(
a0 + δa1 + · · ·+ δm−1am−1

)
·
(
b0 + δb1 + · · ·+ δm−1bm−1

)
=

(
m−1∑
k=0

δka0 · bk

)
+ δ

(
m−1∑
k=0

δka1 · bk

)
+ · · ·+ δm−1

(
m−1∑
k=0

δkam−1 · bk

)
= 0

That is, GU(m, C⊥0) ⊂ GU(m, C0)
⊥. But |GU(m, C⊥0)| = qn−k0qn−k0 · · · qn−k0 =

(qm)n−k0 = |GU(m, C0)
⊥|, i.e., GU(m, C0)

⊥ = GU(m, C⊥0). Observe that if

C0 ⊂ C⊥0 , GU(m, C0) ⊂ GU(m, C0)
⊥.

On the other hand, we want to find the Hermitian dual of the code C ⊂ Fnqm . In

this case y = y
√
qm , that is, we take m to be an even number and the Frobenius

automorphism with fixed field Fqm/2 . Then, y = (b0 + δb1 + · · · + δ(m−1)bm−1),

because bj ∈ Fnq and we get

x ·H y := x · y = (a0 + δa1 + · · ·+ δm−1am−1) · (b0 + δb1 + · · ·+ δ(m−1)bm−1) = 0,

76

because each ai · bj = 0 for 0 ≤ i, j ≤ m− 1. Therefore

x ·TH y = tr(x ·H y) = 0,

where

tr : Fqm → Fqm/2 , x→ x+ xq
m/2

is the trace of Fqm over Fqm/2 . That is, GU(m, C0)
⊥ ⊂ GU(m, C0)

⊥TH and they

have the same size.

Theorem 3.4. Let Fq be a finite field of characteristic two and consider two different

linear codes over Fq, C0 and C1, such that C0 ⊂ C1. Let δ ∈ Fq2 \ Fq be as defined

in Equation (3.1). Then, the additive code C = GU(C0, C
⊥
1) ⊂ Fnq2 is Trace

Hermitian self-orthogonal.

Proof. From Lemma 3.1, C = GU(C0, C
⊥
1) is an additive nonlinear code over Fq2 .

Given y = c+ δd ∈ C1 + δC⊥0 and any x = a+ δb ∈ C, from Equation (3.5),

x ·TH y = 2(a · c + αb · d) + β(a · d− b · c) = β(a · d− b · c) = β(0) = 0.

Then

C1 + δC⊥0 ⊂ (C0 + δC⊥1)⊥TH

But

|(C0 + δC⊥1)⊥TH | = q2n−(k0+n−k1) = qn−(k0−k1),

and

|C1 + δC⊥0 | = qk1qn−k0 = qn−(k0−k1).

That is, C⊥TH = (C0 + δC⊥1)⊥TH = C1 + δC⊥0 and since C0 ⊂ C1, C ⊂ C⊥TH , i.e., C

is Trace Hermitian self-orthogonal.

77

Example 3.7. Let C0 be the repetition code with parameters [2m, 1, 2m]. Then C⊥0

has parameters [2m, 2m − 1, 2]. Let C1 = R(1, m) with C⊥1 = R(m− 2, m) which

has parameters [2m, 2m −m − 1, 4]. We have C0 ⊂ C1 and C = C0 + δC⊥1 is an

additive and Trace Hermitian self-orthogonal code over F4 with parameters

(2m, 22m−m, 4). Observe that C⊥TH = C1 + δC⊥0 has parameters (2m, 22m+m, 2).

Example 3.8. We take C0 and C1 as Example 3.7. Since C0 ⊂ C⊥1 , from Theorem

3.4, we let C = C0 +δC1, an additive code with parameters (2m, 2m+2, 2m−1). Then

C ⊂ C⊥TH . Observe that for c+ δd in C⊥1 + δC⊥0 , (a+ δb) · (c+ δd) = a ·d+b ·c =

0 + 0 = 0 and

|C⊥1 + δC⊥0 | = 22m−m−122m−1 = 22m+1−m−2 = |C⊥TH |.

That is C⊥TH = C⊥1 + δC⊥0 , which has parameters (2m, 22m+1−m−2, d).

Lemma 3.3. Let Fq be a finite field of characteristic two and consider a linear code

C0 ⊂ Fnq . The additive code C = GU(C0, C
⊥
0) ∈ Fnq2 is Trace Hermitian self-dual.

Proof. From Lemma 3.1, if C⊥0 6= C0, C = C0 + δC⊥0 is an additive nonlinear code

over Fq2 . For y = c+ δd and x = a+ δb in C0 + δC⊥0 , from Equation (3.5),

x ·TH y = 2(a · c + αb · d) + β(a · d− b · c) = β(a · d− b · c) = β(0) = 0,

i.e., C ⊂ C⊥TH . But

|C⊥TH | = q2n−(k0+n−k0) = qn

and

|C| = |C0 + δC⊥0 | = qk0qn−k0 = qn.

That is, C⊥TH = C.

Example 3.9. Let C0 = Sk(2) be the binary simplex code of dimension k, this linear

code has parameters [2k − 1, k, 2k−1]. Now, C⊥0 = Sk(2)⊥ = Hk(2), the binary

Hamming code with parameters [2k − 1, 2k − 1 − k, 3]. Then the additive code

78

over F4 given by GU(Sk(2), Hk(2)) is Trace Hermitian self-dual with parameters

(2k − 1, 22k−1, 3), see Example 3.2.

Now, we take the particular case q = 2 and δ ∈ F4 a root of x2 + x+ 1, that is,

α = 1 and β = 1, see Equation (3.1). Then tr(δ) = δ + δ2 = 1 and the conjugate of

δ is δ = δ2 = δ+ 1. Given a+ δb and c+ δd in Fn4 , from Equation (3.2) to Equation

(3.5) we obtain

a. Euclidean inner product

(a+ δb) · (c+ δd) = (a · c+ b · d) + δ(a · d+ b · c+ b · d). (3.11)

b. Trace Euclidean inner product

(a+δb)·T (c+δd) = tr[(a·c+b·d)+δ(a·d+b·c+b·d)] = a·d+b·c+b·d. (3.12)

c. Hermitian inner product

(a+δb)·H (c+δd) = (a+δb)·(c+δ2d) = (a·c+b·d+a·d)+δ(a·d+b·c). (3.13)

d. Trace Hermitian inner product

(a+ δb) ·TH (c+ δd) = tr[(a+ δb) ·H (c+ δd)] = a · d+ b · c. (3.14)

We have to say, as in Theorem 3 of [14], that the following is true

Proposition 3.6. Let C ⊂ Fn4 be a linear code, C⊥ the dual of C with respect to

Euclidean inner product and C⊥T the dual of C with respect to the Trace Euclidean

inner product. Then C is self-orthogonal with respect to one of them if and only if

it is self-orthogonal with respect to the other.

Proof. Let x ∈ C and y ∈ Fn4 . Now we can write x = a + δb, for some a, b ∈ Fn2

and y = c+ δd for some c, d ∈ Fn2 . We know

x · y = (a+ δb) · (c+ δd) = (a · c+ b · d) + δ(a · d+ b · c+ b · d)

79

and

x ·T y = tr(x · y) = tr((a · c+ b · d) + δ(a · d+ b · c+ b · d)) = a · d+ b · c+ b · d.

If y ∈ C⊥, x · y = 0 for all x ∈ C, then a · c+ b · d = 0 and a · d+ b · c+ b · d = 0.

That is, x ·T y = 0 for all x ∈ C and then y ∈ C⊥T .

On the other hand, if y = c+ δd ∈ C⊥T , from Equation (3.3) and Equation (3.12),

a · d+ b · c+ b · d = 0.

Since C is linear, C⊥T is linear over F4. We get that δ2y ∈ C⊥T , and

x·T δ2y = tr(δ2x·y) = tr(δ2(a·c+b·d)+(a·d+b·c+b·d)) = tr(δ(a·c+b·d)+(a·d+b·c+a·c)).

That is

x ·T δ2y = a · c+ b · d = 0.

Since x · y = (a + δb) · (c + δd) = (a · c + b · d) + δ(a · d + b · c + b · d), we get,

x · y = 0 for all x ∈ C. That is, y ∈ C⊥ and we get C⊥ = C⊥T .

Proposition 3.7. Let C0 ⊂ Fn2 be an [n, k, d] linear code. If C0 is self-orthogonal

with respect to the Euclidean inner product, then C = GU(2, C0) ⊂ Fn4 is such that

C ⊂ C⊥ = C⊥TH ,

C ⊂ C⊥ = C⊥H ,

C ⊂ C⊥ = C⊥T .

Proof. From Proposition 3.5, we obtain that C⊥ = C⊥TH = C⊥T = C⊥H and, since

C0 is self-orthogonal, we get that C is also self-orthogonal.

80

3.4 AN INTERESTING SPECIAL CASE

We consider a prime q ≡ 3 (mod 4), observe that the Mersenne prime num-

bers are example of such integer q.

Taking q in this particular form we may obtain a general version of the Theorem 3

of [14]: First, we observe the following known result that follows from quadratic

reciprocity (see Chapter 5, Ireland and Rosen [29]).

a. For any prime q, such that q ≡ 3 (mod 4), the polynomial x2 + 1 is irreducible

over Fq.

b. In this case, the irreducible polynomial has the form p(x) = x2 + 1, that is, α = 1

and β = 0, see Equation (3.1). If δ ∈ Fq2 is such that δ2 + 1 = 0, δ2 = −1, the set

{1, δ} is a basis, polynomial basis, of Fq2 over Fq because the the matrix

A =

 1 δ

1 δq

is such that det(A) = δq − δ = −2δ 6= 0. If −2δ = 0 then 2|q which is not possible.

Observe that δq = (δ2)mδ = (−1)mδ = −δ because m is odd. That is, the conjugate

of δ over Fq is −δ. Also, we get that the trace of δ is zero because

tr(δ) = δ + δq = δ − δ = 0 = −β.

Now, for a+ δb, c+ δd in Fnq2 , since in this case α = 1 and β = 0, from Equation

(3.2) to Equation (3.5) we get:

a. Euclidean inner product

(a+ δb) · (c+ δd) = (a · c− b · d) + δ(a · d+ b · c). (3.15)

b. Trace Euclidean inner product

(a+δb) ·T (c+δd) = tr[(a ·c−b ·d)+δ(a ·d+b ·c)] = 2(a ·c−b ·d). (3.16)

81

c. Hermitian inner product

(a+δb) ·H (c+δd) = (a+δb) ·(c−δd) = (a ·c+b ·d)+δ(b ·c−a ·d). (3.17)

d. Trace Hermitian inner product

(a+ δb) ·TH (c+ δd) = tr[(a+ δb) ·H (c+ δd)] = 2(a · c+ b · d). (3.18)

Proposition 3.8. Take q a prime such that q = 2m + 1 with m odd. Let C ⊂ Fnq2

be a linear code, C⊥ the dual of C with respect to Euclidean inner product, and

C⊥T the dual of C with respect to the Trace Euclidean inner product. Then, C is

self-orthogonal with respect to one of them if and only if it is self-orthogonal with

respect to the other.

Proof. Let y = c+ δd ∈ C⊥, for all a+ δb ∈ C, from Equation (3.15),

(a+ δb) · (c+ δd) = (a · c− b · d) + δ(a · d+ b · c) = 0.

Then, a · c− b · d = 0 and 2(a · c− b · d) = 0. That is,

(a+ δb) ·T (c+ δd) = 0.

Thus, y ∈ C⊥T and

C⊥ ⊂ C⊥T .

On the other hand, if y = c + δd ∈ C⊥T , for any a + δb ∈ C, and from Equation

(3.16),

(a+ δb) ·T (c+ δd) = 2(a · c− b · d) = 0.

That is, a · c− b · d = 0. Since C⊥T is linear over Fq2 , δy ∈ C⊥T and

(a+ δb) ·T (δ y) = (a+ δb) ·T (δ c− d) = −2(a · d+ b · c) = 0,

82

i.e, a · d+ b · c = 0. Then,

0 = (a · c− b · d) + δ(a · d+ b · c) = (a+ δb) · (c+ δd).

and we obtain that y ∈ C⊥. Thus

C⊥ = C⊥T .

The following result is a general version of the Theorem 3 of [14].

Theorem 3.5. Let q be a prime such that q ≡ 3 (mod 4), C ⊂ Fnq2 be a linear code,

C⊥H the dual of C with respect to Hermitian inner product, and C⊥TH the dual of C

with respect to the Trace Hermitian inner product. Then, C is self-orthogonal with

respect to one of them if and only if it is self-orthogonal with respect to the other.

Proof. Let y = c+ δd ∈ C⊥H , for all a+ δb ∈ C, from equation (3.17),

(a+ δb) ·H (c+ δd) = (a · c+ b · d) + δ(b · c− a · d) = 0.

Then, 2(a · c+ b · d) = 0. That is,

(a+ δb) ·TH (c+ δd) = 0,

and we get that

C⊥H ⊂ C⊥TH .

On the other hand, if

y = c+ δd ∈ C⊥TH

for any a+ δb ∈ C, from Equation (3.18) we obtain

0 = (a+ δb) ·TH (c+ δd) = 2(a · c+ b · d).

83

That is, a · c + b · d = 0. Now, δ y = δ c − d ∈ C⊥TH because C is linear and

therefore C⊥TH is also linear. Then,

0 = (a+ δb) ·TH (δ y) = tr[(a+ δb) · (−d− δc)] = 2(b · c− a · d),

i.e., b · c−a ·d = 0. Thus, (a+ δb) ·H (c+ δd) = (a · c+ b ·d) + δ(b · c−a ·d) = 0,

and we get

C⊥H = C⊥TH .

84

3.5 APPLICATIONS

Linear codes with few weights have applications in cryptography, association

schemes, designs, strongly regular graphs, finite group theory, finite geometries,

among other disciplines. For a comprehensive survey of two-weight codes, see [16],

and for three and few-weights codes see [17, 21, 22]. We use our GU code con-

struction to obtain two-weight, three-weight, and few-weights codes. Consequently,

we also give an elementary construction of the two-weight codes in Calderbank and

Kantor [16], of three-weight codes and few-weights codes given by Ding [22], and by

Tonchev and Jungnickel [17].

3.5.1 TWO-WEIGHT CODES FROM THE GO-UP CONSTRUCTION

Let C0 ⊂ Fn2 be an [n, k, d]2 linear code such that for all a 6= 0 ∈ C0, ω(a) = w1.

That is, C0 has the following weight distribution: A0 = 1 and Aw1 = 2k−1, i.e., C0 is

a one-weight code. The binary simplex code with parameters [2k − 1, k, 2k−1]2

is an example of a code C0, see Proposition 2.1.

We want to calculate Âi = | {x ∈ GU(2, C0) : ω(x) = i} |. We know Â0 = 1.

Now, calculating Âw1 = | {a+ δb ∈ C | ω(a+ δb) = w1} | we observe that for a 6= 0

the codewords of the form a+ δ0 ∈ C have weight w1, same for 0 + δb with b 6= 0.

If a 6= 0, the codewords a+ δa also have weight w1. Therefore,

Âw1 = 3Aw1 = 3(2k − 1).

The other codewords have weight 3w1

2
, because, if a 6= b and both are different

to zero, then

ω(a+ b) = w1 = ω(a) + ω(b)− 2ω(a ∗ b) = 2w1 − 2ω(a ∗ b),

i.e., ω(a ∗ b) = w1

2
. Thus,

ω(a+ δb) = ω(a) + ω(b)− ω(a ∗ b) = 2w1 −
w1

2
=

3w1

2

85

for all a 6= 0, b 6= 0 and a 6= b. Then

Â 3w1
2

= 22k − 3Aw1 − 1

= 22k − 3(2k − 1)− 1

= 22k − 2k − 2(2k) + 2

= 2k(2k − 1)− 2(2k − 1)

= Aw1(Aw1 − 1).

Remark: Since ω(a ∗ b) is an integer and we have obtained ω(a ∗ b) = w1

2
,

then w1 is even. When C0 is the binary simplex code with k ≥ 3, GU(2, C0) is

Euclidean self-orthogonal and GU(2, C0)
⊥ = C⊥0 + δC⊥0 .

Table 3–8 gives the weight distribution of GU(2, C0).

i Âi

0 1

w1 3Aw1

3w1

2
Aw1(Aw1 − 1)

Table 3–8: Weight Distribution of a Two-Weight Code over F4

Let C0 ⊂ Fnq be a one-weight code, i.e., for a ∈ C0 \ {0}, ω(a) = w1 and

Aw1 = | {a ∈ C0 : ω(a) = w1} |

Definition 3.3. Given C0 ⊂ Fnq a linear code. We say that C0 has the property of

constant intersection if for any a, b in C0 \ {0} with b 6= λa and λ ∈ F∗q, we

have ω(a ∗ b) = I is a constant number, where a ∗ b = (c1 · · · cn) and ci = aibi if

and only if ai + bi = 0 with ai 6= 0 and bi 6= 0. Otherwise ci = 0.

86

For example, when q = 2 and C0 is the binary simplex code, I = w1

2
. In general,

we have

Lemma 3.4. The simplex code Sk(q) with parameters [q
k−1
q−1 , k, q

k−1] has the prop-

erty of constant intersection with I = w1

q
= qk−2.

Proof. If a and b in Sk(q) are different nonzero elements with b = λa for some

λ ∈ F∗q such that 1 + λ 6= 0, then a+ b = (1 + λ)a 6= 0 and

ω(a+ b) = ω(a) = qk−1.

From this

ω(a+ δb) = ω(a) = qk−1.

If 1 + λ = 0, a+ b = 0, but, since

ω(a+ δb) = ω(a+ b) + ω(a ∗ b), (3.19)

we get that

ω(a+ δb) = 0 + qk−1 = qk−1.

Let a and b be nonzero elements of Sk(q) with b 6= λa, λ ∈ F∗q. Let aj 6= 0,

bj 6= 0 be such that aj + bj = 0, λaj + λbj = 0 for any λ ∈ F∗q. Then, there exists

Pj = (x1j · · · xkj) ∈ PG(k − 1, q) where aj = xrj, bj = xsj. Since for any λ ∈ F∗q

λ Pj generates the same one-dimensional subspace, we may take either aj = 1 and

bj = q− 1 or aj = q− 1 and bj = 1. If either aj = 1 and bj = q− 1 or aj = q− 1 and

bj = 1, the other k − 2 entries of Pj can take any value from Fq, i.e., we have qk−2

possible value for the other entries. We have each Pj, taken as a representative of

the one-dimensional subspace of Fkq , appears one time as a column in the standard

generator matrix of Sk(q), we get qk−2 points of the projective geometry such that

xrj + xsj = 0. Thus,

ω(a ∗ b) = qk−2.

87

Theorem 3.6. Let C0 ⊂ Fnq be a one-weight linear code with the property of

constant intersection. Then, GU(2, C0) is a linear two-weight code over Fq2

and its weight distribution is given by Âw1 = (q+1)Aw1 and Âw2 = Aw1(Aw1−q+1),

where Aw1 = | {a ∈ C0 : ω(a) = w1} | = qk − 1.

Proof. Let a and b be linearly independent over Fq, i.e., b /∈ {αa | α ∈ Fq}. Then,

from Equation (3.19),

ω(a+ δb) = ω(a+ b) + ω(a ∗ b) = w1 + I = w2.

In the case of Sk(q), from Lemma 3.4,

w2 = qk−1 + qk−2 = qk−2(q + 1) =
q + 1

q
w1

for all q ≥ 2. We get (qk − 1)(qk − q) linearly independent sets of the form {a, b},

that is,

Âw2 = (qk − 1)(qk − q) = Aw1(Aw1 − q + 1).

If the set {a, b} is linearly dependent over Fq, b ∈ {αa | α ∈ Fq}, then ω(a+δαa) =

w1. From this, GU(2, C0) is a two-weight linear code with

Âw1 = q2k − Aw2 − 1

= q2k − (qk − 1)(qk − q)− 1

= qk+1 + qk − q − 1

= qk(q + 1)− (q + 1)

= (q + 1)(qk − 1) = (q + 1)Aw1 .

88

3.5.2 AN ELEMENTARY CONSTRUCTION OF A CLASS OF TWO-
WEIGHT CODES WITH PARAMETERS OF (RT1) OF CALDER-
BANK AND KANTOR

As a consequence of Theorem 3.6, we derive the following infinite class of two-

weight linear codes that have the same parameters as the codes given by Calderbank

and Kantor [16]. To construct their class of two-weight codes RT1, they use relatively

deep results from finite geometries. We derive our class as an immediate corollary.

Corollary 3.1. There exists a two-weight code over Fq2 with parameters [q
k−1
q−1 , k, q

k−1, (q+

1)qk−2]

Proof. Take C0 = Sk(q) in Theorem 3.6.

As stated, the class of two-weight codes with the parameters of Corollary 3.1

are also obtained by Calderbank and Kantor in [16] from a construction they called

RT1. That construction uses some deep properties of finite projective geometry and

rank 3− permutation groups. We get the same parameters with the amalgamation

of the simplex code; our construction is much more elementary. It is possible that

the two-weight codes with these parameters are unique. In that case, the codes we

obtain can be equivalent to those obtained in [16].

Example 3.10. Let C0 = Sk(2) ⊂ Fn2 be the binary k−dimensional simplex code

which is a code with parameters [2k − 1, k, 2k−1]. We obtain, from Theorem 3.6,

Table 3–9 of two-weight codes over F4.

89

k [2k − 1, k, 2k−1]4 Weight Distribution

2 [3, 2, 2]4 Â0 = 1 Â2 = 9 Â3 = 6

3 [7, 3, 4]4 Â0 = 1 Â4 = 21 Â6 = 42

4 [15, 4, 8]4 Â0 = 1 Â8 = 45 Â12 = 210

5 [31, 5, 16]4 Â0 = 1 Â16 = 93 Â24 = 930

6 [63, 6, 32]4 Â0 = 1 Â32 = 189 Â48 = 3906

7 [127, 7, 64]4 Â0 = 1 Â64 = 381 Â96 = 16002

8 [255, 8, 128]4 Â0 = 1 Â128 = 765 Â192 = 64770

9 [511, 9, 256]4 Â0 = 1 Â256 = 1533 Â384 = 260610

10 [1023, 10, 512]4 Â0 = 1 Â512 = 3069 Â768 = 1045506

Table 3–9: Examples of two-weight codes over F4

Example 3.11. Let C0 = S2(3) be the simplex code with parameters [4, 2, 3]. A

generator matrix is given by

G =

 1 0 1 1

0 1 1 2

 .

Then S2(3) = {α(1 0 1 1) + λ(0 1 1 2) | α, λ ∈ F3} and its elements are shown

in Table 3–6.

We get that, for a, b ∈ S2(3), ω(a+ δb) ∈ {3, 4}, Â3 = 32 and Â4 = 48.

Proposition 3.9. If C0 ⊂ Fnq is a projective code, then GU(2, C0) is a projective

code.

Proof. LetG be a generator matrix of C0. Then no two columns ofG are Fq−dependent.

From Proposition 3.1 any two columns of G are Fq2−independent. Then GU(2, C0)

is also a projective code.

Remark: If C0 is a constant weight and projective code, from Theorems 2.8

and 3.6 we get a projective (n, k, n− w1, n− q+1
q
w1) set. If we take C0 = Sk(q), we

90

get a projective set with parameters(
qk − 1

q − 1
, k,

qk−1 − 1

q − 1
,
qk−2 − 1

q − 1

)
.

3.5.3 GO-UP OF A TWO-WEIGHT CODES

Let C0 ⊂ Fn2 be an [n, k, d] linear code such that for all a 6= 0 ∈ C0, either

ω(a) = w1 or ω(a) = w2. We take

Cwi
= {a ∈ C0 | ω(a) = wi} ,

where i = 1, 2. Observe that

C0 = {0} ∪ Cw1 ∪ Cw2 .

We suppose that w2 and w1 are even numbers with w1 < w2. Then w2 = w1 + s for

some even number s.

a. For a ∈ Cw1 , a+ δ0, 0+ δa and a+ δa are elements of GU(2, C0) with Hamming

weight w1. Then Âw1 ≥ 3Aw1 . But if a ∈ Cw1 and b ∈ Cw2 , ω(a+ δb) ≥ w2 6= w1.

If a and b are elements of Cw2 , ω(a+ δb) ≥ w2 6= w1. Thus,

Âw1 = 3Aw1 .

b. For a ∈ Cw2 , a+ δ0, 0+ δa and a+ δa are elements of GU(2, C0) with Hamming

weight w2. Then Âw2 ≥ 3Aw2 .

c. Let a ∈ Cw1 and b ∈ Cw1 with a 6= b. Since a + b ∈ C0, either ω(a + b) = w1 or

ω(a+ b) = w2. In the first case,

w1 = ω(a+ b) = w1 + w1 − 2ω(a ∗ b).

That is, ω(a ∗ b) = w1

2
. Then,

ω(a+ δb) = 2w1 −
w1

2
=

3w1

2
.

91

If ω(a+ b) = w2, then

w2 = 2w1 − 2ω(a ∗ b),

i.e., 2ω(a ∗ b) = w1 − (w2 − w1) = w1 − s and we obtain

ω(a+ δb) = 2w1 −
w1 − s

2
=

3w1

2
+
s

2
.

We observe that in this second case, we can have ω(a ∗ b) = 0. In this case,

w2 = 2w1 and ω(a+ δb) = w2.

d. Given a ∈ Cw1 and b ∈ Cw2 , we have either ω(a + b) = w1 or ω(a + b) = w2. If

ω(a+ b) = w1,

w1 = w1 + w2 − 2ω(a ∗ b),

i.e., ω(a ∗ b) = w2

2
. Then

ω(a+ δb) = w1 + w2 −
w2

2
= w1 +

w1 + s

2
=

3w1

2
+
s

2
.

In the second case,

w2 = w1 + w2 − 2ω(a ∗ b).

That is, ω(a ∗ b) = w1

2
and we obtain

ω(a+ δb) = w1 + w2 −
w1

2
= w1 +

w1

2
+ s =

3w1

2
+ s.

e. If a and b are elements of Cw2 with a 6= b, then either ω(a+b) = w1 or ω(a+b) =

w2. In the first case,

w1 = 2w2 − 2ω(a ∗ b),

i.e., ω(a ∗ b) = w1

2
+ s and then

ω(a+ δb) = 2w1 + 2s− w1

2
− s =

3w1

2
+ s.

For the last case,

w2 = 2w2 − 2ω(a ∗ b),

92

that is, ω(a ∗ b) = w2

2
Then

ω(a+ δb) = 2w2 −
w2

2
=

3w2

2
.

We have

Theorem 3.7. Let C0 ⊂ Fn2 be an [n, k, d] linear code with two weights w1 and w2,

where both are even, with w1 < w2 and w2 = w1 + s for some even number s. Then

for all a+ δb ∈ GU(2, C0) \ {0},

ω(a+ δb) ∈
{
w1, w2,

3w1

2
,

3w2

2
,

3w1

2
+
s

2
,

3w1

2
+ s

}
,

where

Âw1 = 3Aw1 and Âw2 ≥ 3Aw2 .

Remark: In the particular case when C0 ⊂ Fn2 is the binary first order Reed-

Muller code R(1,m) with parameters [2m, m + 1, 2m−1], which is a two-weight

code with w1 = 2m−1 and w2 = 2m = 2w1, GU(2, C0) ⊂ F2m

4 is a three-weight

code and for all a+ δb ∈ GU(2, C0) \ {0},

ω(a+ δb) ∈
{

2m−1, 2m−1 + 2m−2, 2m
}
.

We observe that our construction permits us to get examples of a three-weight code

in an easier way comparing with the method used by K. Ding et al., in [22].

3.5.4 THREE-WEIGHT CODES FROM ANTIPODAL CODES

We get three-weight codes over Fq2 from the first-order generalized Reed-Muller

code over Fq, Rq(1, k), with parameters [qk, k + 1, (q − 1)qk−1], see Theorem 2.7.

Foundation: Let C ⊂ Fnq be an antipodal linear two-weight code and C0 ⊂ Fnq

be the one-weight linear code generated by (M 0), see Theorem 2.6. Then,

C = C0 ∪ (a1 + C0) ∪ · · · ∪ (aq−1 + C0)

93

with ai ∈ C \ C0 and 1 ≤ i ≤ q − 1, i.e., ω(ai) = n.

We suppose that C contains no codewords of full weight which are linearly inde-

pendent, i.e., ai = λ(1 · · · 1) = λ1 for some λ ∈ F∗q, where ω(1 · · · 1) = n. We

get

C = ∪λ∈Fq(λ1 + C0),

and for all a ∈ C0 \ {0} and for all λ ∈ Fq,

λ1 + a ∈ Cw1 = {b ∈ C | ω(b) = w1}

because otherwise, for some λ ∈ F∗q and some a ∈ C0 \ {0}

λ1 + a ∈ Cw2 .

That is, λ1+a = α1 for some α ∈ F∗q and a = (α−λ)1 ∈ Cw2 , which is not possible.

Now, for each λ ∈ F∗q, each x ∈ C0, from Equation (3.19),

n = ω(x+ δλ1) = ω(x+ λ1) + ω(x ∗ λ1),

i.e., ω(x ∗ λ1) = n − d. Then, | {i | xi = −λ, x ∈ C0 \ {0}} | = n − d. In words,

we have each x ∈ C0 \ {0} contains n − d times each λ ∈ F∗q. That is, d = w1 =

(q − 1)(n− d), i.e.,

n =
qd

q − 1

and we get that (q − 1) | d. From Proposition 2.1, w1 = rqk−1, where r is the

replication number of Sk(q), i.e., w1 = qk−1(q − 1)w for some integer w ≥ 1.

Since n = qd
q−1 , we obtain

n =
q

q − 1
qk−1(q − 1)w = qkw.

Thus, C is a [qkw, k + 1, (q − 1)qk−1w] code, see Theorem 2.7.

We apply our construction to the linear code C with parameters [qk, k+1, (q−

1)qk−1].

94

Since x ∈ C0 \ {0} contains n − d times each λ ∈ F∗q, the number of zero

coordinates is qk − (q− 1)qk−1 = qk−1 = n− d, i.e., x 6= 0 contains n− d times each

element of Fq. We observe that given a ∈ Sk(q) \ {0} and F∗q = {1, ρ1, · · · , ρq−2},

if ai 6= 0 then F∗q = {ai, ρ1ai, · · · , ρq−2ai}. Therefore, from Proposition 2.1, we can

write

x = (a ρ1a · · · ρq−2a 0),

where a ∈ Sk(q) \ {0}. That is, given y ∈ C, there is λ ∈ Fq and b ∈ Sk(q), such

that

y = λ1 + (b ρ1b · · · ρq−2b 0).

Theorem 3.8. Let C ⊂ Fnq be a [qk, k + 1, (q − 1)qk−1] antipodal linear two-

weight code that contains no linearly independent codewords of full weight. Then,

GU(2, C) is a three-weight code, where w1 = d = (q − 1)qk−1, w2 = q+1
q
w1, and

w3 = n.

Proof. Given x, y ∈ C, from Lemma 3.1,

x+ δy = (1 δ)

 x1 · · · xn

y1 · · · yn

and

ω(x+ δy) = n− | {i | xi = 0 = yi} |.

Since C0 = {(a ρ1a · · · ρq−2a 0) | a ∈ Sk(q)},

C = {λ1 + x | λ ∈ Fq, x ∈ C0} = ∪λ(λ1 + C0).

Let x = α1 + (a ρ1a · · · ρq−2a 0) and y = λ1 + (b ρ1b · · · ρq−2b 0), where

a, b ∈ Sk(q) \ {0} and {a, b} is a linearly independent set over Fq. We want to

calculate | {i : | xi = 0 = yi} |.

95

Since {a, b} is a linearly independent set, (a ρ1a · · · ρq−2a 0) and (b ρ1b · · · ρq−2b 0)

are two linearly independent elements of C0, we can take them as the first two rows

of a generator matrix of C0. We set the elements of the column j of the form

(−α − λ c3j · · · ckj) ∈ Fk
q , where (c3j · · · ckj) ∈ Fk−2

q . We obtain qk−2 such

columns, i.e., | {i : | xi = 0 = yi} | = qk−2. Then

ω(x+ δy) = n− qk−2 =
q + 1

q
(q − 1)qk−1. (3.20)

On the other hand, let x = α1 + (a ρ1a · · · ρq−2a 0) and y = λ1 +

(b ρ1b · · · ρq−2b 0), with a 6= 0, b 6= 0, and {a, b} linearly dependent. Let

b = ra, for some r ∈ F∗q. If λ = rα, i.e., y = rx then

ω(x+ δy) = ω(x) = w1 = (q − 1)qk−1.

If λ 6= rα, when xi = 0, yi 6= 0, then

ω(x+ δy) = n.

We observe that ω(α1+δy) = n = ω(x+δλ1) for all α, λ ∈ F∗q and for all x, y ∈ C.

Therefore, for all x, y ∈ C

ω(x+ δy) ∈
{

0, w1,
q + 1

q
w1, n

}
.

Corollary 3.2. The weight distribution of GU(2, C) is

Âw1 = (q + 1)Aw1 ,

Âw2 = Aw1(Aw1 − q2 + q),

and

Ân = (q2 − 1)(Aw1 + 1),

96

where Aw1 = | {x ∈ C | ω(x) = w1} | = qk+1 − q.

Proof. Since C = ∪λ(λ1 + C0), we get

GU(2, C) = ∪λ, α(α1 + C0 + δ(λ1 + C0)).

Let x = α1+(a ρ1a · · · ρq−2a 0) and y = λ1+(b ρ1b · · · ρq−2b 0) be two elements

in C such that a, b ∈ Sk(q) \ {0} and {a, b} is a linearly independent set over Fq,

i.e., b /∈ {0, a, ρ1a, · · · , ρq−2a}. Then, the number of codewords y is qk − q for a

fixed λ ∈ Fq. The number of codewords x is qk− 1 for a fixed α, and from Equation

(3.20), ω(x+ δy) = w2. Therefore, (qk − 1)(qk − q) codewords for each λ. That is,

we obtain

q(qk − 1)(qk − q) (3.21)

codewords of weight w2 for a fixed α. Thus, for any α and any λ,

Âw2 = q[q(qk − 1)(qk − q)] = (qk+1 − q)(qk+1 − q2) = Aw1(Aw1 − q2 + q). (3.22)

On the other hand, observe that for any λ ∈ F∗q and for all x ∈ C, ω(x+δλ1) =

n, which gives qk+1(q − 1) codewords of weight n. Now, for any λ ∈ F∗q and for all

x ∈ C \ {λ1}, again ω(λ1 + δx) = n, from which we get (q − 1)(qk+1 − (q − 1))

codewords of weight n.

If we take x = α1 + (a ρ1a · · · ρq−2a 0), y = λ(a ρ1a · · · ρq−2a 0) with

a 6= 0 and λ 6= 0, we know ω(x+ δy) = n. Then we obtain (q − 1)[(q − 1)(qk − 1)]

codewords of weight n, we get the same number taking x = λ(a ρ1a · · · ρq−2a 0)

and y = α1 + (a ρ1a · · · ρq−2a 0).

When x = α1 + (a ρ1a · · · ρq−2a 0) with a 6= 0 and α 6= 0, y = α1 +

λ(a ρ1a · · · ρq−2a 0) with λ 6= 0 and λ 6= 1, we have (q − 1)[(q − 2)(qk − 1)]

codewords of weight n.

Finally, taking x = α1+(a ρ1a · · · ρq−2a 0) and y = λ1+r(a ρ1a · · · ρq−2a 0)

with α, r, λ ∈ F∗q, λ 6= α, λ 6= rα, i.e., y 6= rx and x 6= 0, we get ω(x + δy) =

97

n, which gives us (qk − 1)(q − 2) codewords, for fixed λ and α. Then, we get

(q − 1)[(q − 2)[(q − 2)(qk − 1)]].

Thus, letting ∆ = qk − 1, we have

Ân = (q−1)qk+1+(q−1)
(
qk+1 − q + 1

)
+2(q−1)2∆+(q−1)(q−2)∆+(q−1)(q−2)2∆.

That is,

Ân = (q2 − 1)(Aw1 + 1). (3.23)

Therefore,

Âw1 = q2k+2 − 1− Ân − Âw2 = (q + 1)Aw1 . (3.24)

Equations (3.22), (3.23) and (3.24) prove the corollary.

Now, we take C1 as the r−fold replication of the two-weight linear code in

Theorem 3.8. If y ∈ C1 \ {0}, then there exists x ∈ C \ {0} such that

y = (x α1x · · · αr−1x).

Since

ω(x) ∈
{
w1 = (q − 1)qk−1, w2 =

q + 1

q
w1, w3 = qk

}
,

we get

ω(y) ∈
{
w1 = r(q − 1)qk−1, w2 =

q + 1

q
w1, w3 = rqk

}
.

That is,

Theorem 3.9. Let C ⊂ Fnq be a [rqk, k + 1, r(q − 1)qk−1] antipodal linear two-

weight code that contains no linearly independent codewords of full weight. Then,

GU(2, C) is a three-weight code, where w1 = d = r(q − 1)qk−1, w2 = q+1
q
w1 and

w3 = rqk = n.

98

Example 3.12.a. Taking the binary case, C = R(1, 2), and GU(2, R(1, 2)) has

43 = 64 codewords with the following weight distribution:

Â0 = 1,

Â2 = 6 + 2× 6 = 3× 6 = 3(23 − 2) = 3A2,

Â22 = 1 + 8 + 2× 6 = 3× 6 + 3 = 3(23 − 2) + 3 = 3A2 + 3,

Â3 = 6× 4 = (23 − 2)(23 − 4) = A2(A2 − 2).

We observe that 3 = 22−1 + 22−2.

b. Taking k = 3, computing the 44 = 256 codewords of GU(2, R(1, 3) we get the

following weight distribution:

Â0 = 1,

Â22 = 42 = (24 − 2)× 2 + (24 − 2) = 2A2 + A2 = 3A22 ,

Â23 = 45 = (24 − 2)× 2 + 24 + 1 = (24 − 2)× 2 + 24 − 2 + 3 = 3A22 + 3,

Â6 = 168 = (24 − 2)(24 − 4) = (24 − 2)(24 − 2− 2) = A22(A22 − 2),

where 6 = 23−1 + 23−2.

c. In general, GU(2, R(1, k)) has 4k+1 codewords and, from Corollary 3.2, its weight

distribution is given by Table 3–10.

w Âw

0 1

n
2

3An
2

= 3(2k+1 − 2)

3n
4

An
2
(An

2
− 2) = (2k+1 − 2)(2k+1 − 4)

n 3(An
2

+ 1) = 3(2k+1 − 1)

Table 3–10: Weight Distribution of GU(2, R(1, k))

99

Theorem 3.10. Using the notation of the Theorem 3.8, GU(C,C0) is an additive

three-weight code with

w1 = (q − 1)qk−1, w2 =
q + 1

q
w1, w3 = n = qk

and its weight distribution is

Âw1 = 2Aw1 , Âw2 =
1

q
Aw1

(
Aw1 − q2 + q

)
, Âw3 = (q − 1)(Aw1 + 1),

where Aw1 = qk+1 − q.

Proof. Since

C = {α1 + x | α ∈ Fq, x ∈ C0} = ∪α∈Fq(α1 + C0)

we have

GU(C,C0) = ∪α(α1 + C0 + δC0).

From Theorem 3.8, GU(C,C0) is a three-weight additive code, with

w1 = (q − 1)qk−1, w2 =
q + 1

q
w1, w3 = n = qk.

From Equation (3.21),

Âw2 = q(q − 1)(qk − q) =
1

q
Aw1(Aw1 − q2 + q).

On the other hand, let {a, b} ⊂ Sk(q) \ {0} be a linearly dependent set over Fq,

i.e., b = λa for some λ ∈ F∗q. Then, for x = α1 + (a ρ1a · · · ρq−2a 0) ∈ C and

y = λ(a ρ1a · · · ρq−2a 0) ∈ C0, we have

ω(x+ δy) = n

and we get (qk−1)(q−1) codewords for a fixed α, i.e., we obtain (q−1)(qk−1)(q−1)

codewords with weight n. In addition, when a = 0, ω(α1 + δy) = n, this gives

100

(q − 1)qk codewords. That is,

Âw3 = (q − 1)(qk − 1)(q − 1) + (q − 1)qk = (q − 1)(Aw1 + 1).

Thus,

Âw1 = q2k+1 − 1− Âw3 − Âw2 = 2(qk+1 − q).

Example 3.13. Taking q = 2, C0 = {(a 0) | a ∈ Sk(2)}. Then GU(R(1, k), C0)

is an additive three-weight code, with w1 = 2k−1, w2 = 3
2
w1, and w3 = n = 2k. Its

weight distribution is Âw1 = 2Aw1, Âw2 = 1
2
Aw1(Aw1−2), and Âw3 = Aw1 + 1, where

Aw1 = 2k+1 − 2.

From Theorem 2.6, we can write R(1, k) = C0 ∪ (1 + C0). Then

GU(R(1, k), C0) = GU(C0, C0) ∪ (1 + C0 + δC0). (3.25)

We know, for any nonzero x ∈ GU(C0, C0), ω(x) ∈
{

2k−1, 2k−1 + 2k−2
}

, see The-

orem 3.6.

On the other hand, let x = 1 + (a 0) ∈ 1 +C0 and y = (b 0) ∈ C0. If {a, b} is

a linearly independent set, from Equation (3.20),

ω(x+ δy) = n− 2k−2 = 2k−1 + 2k−2.

But, if {a, b} is a linearly dependent set, we have

• If a = b, then ω(1 + (a 0) + δ(a 0)) = n = 2k.

• If a = 0 and b 6= 0, then ω(1 + δ(b 0)) = n = 2k.

• If a 6= 0 and b = 0, then ω(1 + (a 0) + δ0) = 2k−1.

Therefore, for any nonzero x, y in GU(R(1, k), C0),

ω(x+ δy) ∈
{

2k−1, 2k−1 + 2k−2, 2k
}

101

Considering Equation (3.25) and when {a, b} ⊂ Sk(2) is a linearly independent or

not, we get that Âw1 = 2(2k+1−2), Âw2 = 1
2
(2k+1−2)(2k+1−4), and Âw3 = 2k+1−1.

An observation: We note that taking k = 3 we obtain the optimal parameters

of the quaternary additive code of length 8, i.e., the additive code GU(R(1, 3), C0)

has parameters [23, 27, 22], see Table 1 in [8] .

CHAPTER 4

QUANTUM CODES FROM THE GO-UP

CONSTRUCTION

In this chapter we present a relation between our construction and quantum

stabilizer codes. In the first section, given a code over F4 that is Euclidean self-

orthogonal, we get a quantum stabilizer code. See Proposition 4.1, Theorem 4.1

and their applications. In these theorems, our choice of Euclidean duality is impor-

tant. In Section 4.2 we show that for an amalgamated code C in Fnq2 , Euclidean

duality is the same as the trace-alternating duality considered in [31]. We use this

result to construct nonbinary additive stabilizer codes using Euclidean duality and

Frobenius invariant codes, see Theorem 4.2. We give another way to construct q-ary

QECC. Calderbankd and Shor [14] obtain QECC from binary quantum codes by

showing that under their conditions, Hermitian and Trace Hermitian inner products

are equivalent. Using our Go-Up construction, we are able to obtain the same

equivalence of these inner products for q-ary codes when q is a prime such that

q ≡ 3 (mod 4), using Theorem 3.5. Therefore, with our Go-Up construction, we

can obtain q-ary QECC.

4.1 A REFORMULATION OF BINARY STABILIZER CODES AND
NEW CONSTRUCTIONS OF QUANTUM ERROR-CORRECTING
CODES FROM THE GO-UP CONSTRUCTION

We recall a postulate of quantum physics which states that quantum evolution

is unitary, that is, if we have some arbitrary quantum operator U that takes as input

state |u > and output a different state U |u >, then we may describe U as a unitary

operator, see Definition 2.10.

102

103

We define

ξn = {irw1 ⊗ · · · ⊗ wn|wj ∈ {I, σx, σz, σy} , r ∈ Z4} ,

a subgroup of the unitary group U(2n), ξn is the tensor product of all possible qubit

errors, that is, ξn describes a set of discrete errors in n qubits.

Since wj ∈ {I, σx, σz, σy} and r ∈ Z4, |ξn| = 4 × 4n = 22n+2. The center of

ξn is Z(ξn) = {irI|r ∈ Z4}, hence |Z(ξn)| = 4. Taking ξn = ξn/Z(ξn), we have

|ξn| = 22n+2/4 = 22n. Indeed we have

ξn ∼= F2n
2

via identification

I ↔ (00) σx ↔ (10)

σz ↔ (01) σy ↔ (11),

where multiplication of matrices in ξn corresponds to the addition of vectors in F2n
2 .

That is, ξn is an abelian group of order 22n and therefore a binary vector space.

Observe that to each element of ξn corresponds a vector a + δb ∈ Fn4 and two

such vectors x = a + δb and y = c + δd come from commutative operators if and

only if x ·TH y = a · d+ b · c = 0, see Proposition 2.5 and Equation (3.14).

Example 4.1.a. Taking n = 1, let ξ1 = {irw|w ∈ {I, σx, σz, σy}, r ∈ Z4}.

σxσz =

 0 1

1 0

 1 0

0 −1

 =

 0 −1

1 0

 = −i

 0 −i

i 0

 = −iσy

that is,

σxσz ≡ σy

in ξ1, and we can see using the identification that

(10) + (01) = (11).

104

b. Taking n = 2, let ξ2 = {irw1 ⊗ w2|wj ∈ {I, σx, σz, σy} , r ∈ Z4}

(σx ⊗ σy)(σx ⊗ σz) =

0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0

0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

=

0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

.

That is,

(σx ⊗ σy)(σx ⊗ σz) = i

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

= i(I ⊗ σx).

Then,

(σx ⊗ σy)(σx ⊗ σz) ≡ I ⊗ σx

in ξ2 and we observe that by identification we get

(1 0 1 1) + (1 0 0 1) = (0 0 1 0).

Definition 4.1. Given S = {E = irUaVb ∈ ξn | a+ δb ∈ Fn4 , r ∈ Z4}, the central-

izer of S in ξn with respect to the Trace Hermitian inner product is defined by

S⊥TH = {E1 = ir1UcVd ∈ ξn | c+ δd ∈ Fn4 , r1 ∈ Z4 and a · d = b · c}

the subset of all unitary operators in ξn which commute with all the elements of S.

Now, we are going to show a fruitful relation between binary quantum stabilizer

codes and our Go-Up construction.

Proposition 4.1. Let C0 ⊂ Fn2 be an [n, k, d] Euclidean self-orthogonal linear

code. Then, C = GU(2, C0) ⊂ Fn4 is Euclidean self-orthogonal and we get an

[[n, n− 2k, d]]2 quantum stabilizer code, where d is the Hamming minimum weight

of C⊥0 \ C0.

105

Proof. For any two elements from

S = {E = irUaVb | a+ δb ∈ GU(2, C0), r ∈ Z4}

E = irUaVb and E1 = ir1UcVd, from Equations (2.6), (2.7) and (2.8), we have

EE1|v >= Eir1(−1)d·v|v + c >= ir+r1(−1)d·v+b·v+b·c|v + c + a >

and

E1E|v >= ir1+r(−1)b·v+d·v+d·a|v + a + c > .

Then,

EE1 = E1E

when

d · v + b · v + b · c = b · v + d · v + a · d

for any |v >, that is, when

a · d = b · c.

Since C0 ⊂ C⊥0 ,

a · d = 0 = b · c,

and we have proven that the operators E and E1 commute.

We observe that EE1|v >= ir+r1(−1)(b+d)·v+b·c|v + a + c >= isUa+cVb+d|v >,

because b · c = 0, where s = r + r1 ∈ Z4, then EE1 ∈ S. Since E−1 = i−rUaVb,

E−1 ∈ S and E = U0V0 ∈ S is the identity element, we get that S is an abelian

subgroup of ξn such that S = GU(2, C0) ⊂ Fn4 has 22k = 2n−(n−2k) codewords and

it is an Euclidean self-orthogonal linear code by Proposition 3.5.

Now, from Proposition 3.7, we can take

S⊥TH =
{
g = irUaVb ∈ ξn|a+ δb ∈ C⊥0 + δC⊥0

}
,

106

where for any g = irUaVb and g1 = ir1UcVd in S⊥TH ,

gg1|v >= ir+r1(−1)d·v+b·v+b·c|v + c + a >= (−1)b·cir+r1Ua+cVb+d|v > .

If b ·c is even, (−1)b·c = 1 and gg1 ∈ S⊥TH . If b ·c is odd number, (−1)b·c = −1 = i2,

and again gg1 ∈ S⊥TH . That is, S⊥TH is the subgroup of ξn such that for all g ∈ S⊥TH

and any E ∈ S, gE = Eg. Since C ⊂ C⊥, S ⊂ S⊥TH . We take

S⊥TH
= C⊥0 + δC⊥0 = C⊥

having 2n−k2n−k = 22n−2k vectors over F4.

Now, we take C⊥0 + δC⊥0 \ C0 + δC0 =
{
a+ δb ∈ C⊥0 + δC⊥0 |a, b ∈ C⊥0 \ C0

}
.

We know

ω(a+ δb) = ω(a) + ω(b)− ω(a ∗ b),

where a ∗ b = (c1 · · · cn) is such that cj = 1 if and only if aj = bj = 1.

If d = dist(C⊥0 \ C0), for all a + δb ∈ C⊥ \ C, we have ω(a + δb) ≥ d, i.e., there

is no word v ∈ C⊥ \ C such that ω(v) < d. Thus, from Theorem 2.16, we get an

[[n, n− 2k, d]]2 linear quantum code.

Observe that in Proposition 4.1 we are using Theorem 2.16, where C ⊂

Fn4 is self-orthogonal with respect to the Trace Hermitian inner product, but we

can take C = GU(2, C0) ⊂ Fn4 being Euclidean self-orthogonal because of

Proposition 3.7.

Theorem 4.1. Let C ⊂ Fn4 be an [n, k, d]4 Euclidean self-orthogonal linear code

such that C2 ⊂ C. Then, C yields an [[n, n − 2k, ≥ d⊥]]2 quantum stabilizer code

that is pure to d.

Proof. Let C0 be the sub-field sub-code of C. Letting q = 2, from Lemma 3.2,

C = GU(2, C0),

107

and from Proposition 3.5,

C⊥ = GU(2, C⊥0).

Since C ⊂ C⊥, C0 is Euclidean self-orthogonal and dist(C⊥ \ C) ≥ dist(C⊥) = d⊥,

now we apply Proposition 4.1.

a. We have a quantum stabilizer code mapping n− 2k qubits to n qubits. From this,

n− 2k ≥ 0, that is,

k

n
≤ 1

2

i.e., the rate of the linear code C0, R, is R ≤ 1
2
.

Example 4.2. If C0 = R(1,m) is the first-order Reed-Muller code of parameters

[2m, m + 1, 2m−1], we have C0 is self-orthogonal because C⊥0 = R(m − 2,m), C⊥0

has parameters [2m, 2m −m− 1, 4], and m+1
2m
≤ 1

2
for all m ≥ 3. That is,

RR(1,m) ≤
1

2
∀ m ≥ 3.

Thus, from the first-order Reed-Muller code, C0 = R(1,m), we obtain the binary

quantum code with parameters [[2m, 2m − 2m − 2, 4]]2. We obtain d = 4 because

d = dist(C⊥0 \ C0) = dist(C⊥0) = 4, for all m ≥ 3. Since the parameters satisfy the

quantum Singleton bound

2(d− 1) ≤ n− k.

In this case, n− k = 2m+ 2, that is,

4 ≤ m+ 2.

For m = 3, we obtain [[8, 0, 4]]2 from the Euclidean self-dual binary code C0 =

R(1, 3). Another form to see that d = 4, when m = 3, is because d ≤ 5 and it

is known that, except for trivial codes, codes with d ≤ 2, there are only two binary

quantum MDS codes, [[5, 1, 3]]2 and [[6, 0, 4]]2. See Theorem 24 from [14].

108

We observe that we are using the Euclidean inner product in contrast with the

seminal work [14] where they use the Trace Hermitian inner product.

Example 4.3. Consider Hk(2), the binary Hamming code with parameters [2k −

1, 2k−1−k, 3], and C0 as its dual with parameters [2k−1, k, 2k−1], i.e., C0 = Sk(2)

the binary simplex code of dimension k. Since the columns of a parity check matrix

for a binary Hamming code consist of all possible nonzero binary words of length k,

that is, all the elements of Fk2 \ {0}, because Sk(2) is a projective code; we can take

α a primitive element of F2k and such parity check matrix is given by

H = [α2k−2, · · · , α, 1]

changing the order if necessary. Then

HH t =
2k−2∑
i=0

(
αi
)2

=

2k−2∑
i=0

αi

2

,

because the characteristic is 2. But
2k−2∑
i=0

αi = 0 because 0 = αp
r − α = α(α −

1)(αp
r−2 + · · ·+ α + 1) with α 6= 0 and α− 1 6= 0, in our case p = 2. Thus,

HH t = 0 (4.1)

and since H is a generator matrix of Sk(2), the binary simplex code of dimension k

is Euclidean self-orthogonal with rate k
2k−1 ≤

1
2

for all k ≥ 3. That is,

RC0 ≤
1

2
∀ k ≥ 3

and since dist(Hk(2) \ Sk(2)) = 3, we obtain a binary stabilizer code of parameters

[[2k − 1, 2k − 1 − 2k, 3]]. These parameters satisfy the quantum Singleton bound,

i.e.,

3− 1 ≤ 1

2
(2k − 1− (2k − 1− 2k)) = k.

109

For the particular case k = 3, consider C⊥0 as the binary Hamming code of

parameters [7, 4, 3]. We know C0 ⊂ C⊥0 . If we take a parity check matrix of C⊥0

given by

H =

0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 ,

then C0 = {c = (a1 a2 a3)H | ai ∈ F2} = S3(2).

Thus, we obtain the linear quantum code with parameters [[7, 1, 3]] which maps

7− 2(3) = 1 qubits into 7 qubits, see [15].

An observation: Consider the Goppa code Γ(L, g(x)) with parameters [n, k ≥

n−mt, d]2. Since k ≥ n−mt, k
n
≥ 1− mt

n
. If k

n
≤ 1

2
, 1− mt

n
≤ 1

2
, that is, 2mt ≥ n.

Thus, if RΓ(L,g(x)) ≤ 1
2

then 2mt ≥ n, or equivalent if 2mt < n, then RΓ(L,g(x)) >
1
2
.

Corollary 4.1. We take h(x) = xt, L = {1, α, · · · , αn−1} ⊂ F2m , where α ∈ F2m

and ord(α) = n. If t < n
2
, then we will obtain a linear quantum code with parameters

[[n, n− 2kΓ(L,xt)⊥ , d]]2, where d = dist(Γ(L, xt) \ Γ(L, xt)⊥).

Proof. A parity check matrix of Γ(L, h(x)) is given by

H =

1 αt−1 α2(t−1) · · · α(n−1)(t−1)

1 αt−2 α2(t−2) · · · α(n−1)(t−2)

...
...

... · · · ...

1 α α2 · · · αn−1

1 1 1 · · · 1

h−1(1) · · · 0

...
...

...

0 · · · h−1(αn−1)

 .

110

Then,

H =

1 α−1 α−2 · · · α−(n−1)

1 α−2 α−4 · · · α−2(n−1)

...
...

... · · · ...

1 α−t α−2t · · · α−(n−1)t

and

(HH t)ij = h−1(1)h−1(1)+h−1(α)αih−1(α)αj+· · ·+h−1(αn−1)α(n−1)ih−1(αn−1)α(n−1)j

i.e., (HH t)ij = 1 + α−(i+j) + (α−(i+j))2 + · · · + (α−(i+j))n−1, where 2 ≤ i + j ≤ 2t.

Since t < n
2
, α−(i+j) 6= 1 and

(HH t)ij = (α−(i+j) − 1)−1((α−(i+j))n − 1) = 0.

Thus, HH t ≡ 0 and

Γ(L, xt)⊥ ⊂ Γ(L, xt).

Taking

d = dist(Γ(L, xt) \ Γ(L, xt)⊥)

and C0 = Γ(L, xt)⊥, we get the stabilizer group C = GU(2, C0) which permits us

to construct a linear quantum code with parameters [[n, n− 2kΓ(L,xt)⊥ , d]]2.

Now we consider different codes.

Proposition 4.2. Let C0 ⊂ Fn2 be an [n, k, d] Euclidean self-orthogonal linear

code. The additive code C = C0 + δC⊥0 ⊂ Fn4 is self-dual with respect to the Trace

Hermitian inner product and we get a pure [[n, 0, d]]2 quantum stabilizer code.

Proof. We define

S =
{
E = irUaVb ∈ ξn|a + δb ∈ C0 + δC⊥0 , r ∈ Z4

}

111

which has |C0 + δC⊥0 | = 2k2n−k = 2n elements. For E = irUaVb and E1 = ir1UcVd

in S, we have

EE1|v >= ir+r1(−1)(b+d).v+b.c|v + a + c >= isUa+cVb+d|v >

and

E1E|v >= ir+r1(−1)(b+d).v+a.d|v + a + c >= isUa+cVb+d|v >= EE1|v > .

Since EE1 ∈ S and E−1 = i−rUaVb ∈ S, we get that S is an abelian subgroup of ξn

and S = C0 + δC⊥0 = C.

Since C0 ⊂ C⊥0 , C⊥TH = C0 + δC⊥0 = C and we apply the Theorem 2.16 wtih

k = 0 to get a single quantum state pure code with parameters [[n, 0, d]]2.

Example 4.4. From Example 3.9 we have the additive code C = Sk(2) + δHk(2).

Then we get a single quantum state code with parameters [[2k − 1, 0, 2k−1]]2.

An observation: This is the same result as the one obtained in Theorem 9

from the seminal work [14], by taking C1 = C0 = C2. However, there, they use a

normal basis {δ, δ2} of F4 over F2, while here we use a polynomial basis {1, δ},

where δ2 = δ + 1.

Proposition 4.3. Given C0 an [n, k0, d0]2 code and C1 an [n, k1, d1]2 code such

that C0 ⊂ C⊥1 , we get an [[n, n − (k0 + k1), d]]2 quantum stabilizer code, with

d = dist
{
GU(C⊥1 , C

⊥
0) \GU(C0, C1)

}
.

Proof. We define

S = {E = irUaVb ∈ ξn|a + δb ∈ C0 + δC1, r ∈ Z4} .

That is, S = C0 + δC1. For any two elements of S, E = irUaVb and E1 = ir1UcVd

we have

EE1|v >= Eir1(−1)d·v|v + c >= ir+r1(−1)d·v+b·v+b·c|v + c + a >

112

and

E1E|v >= ir1+r(−1)b·v+d·v+d·a|v + a + c > .

Then,

EE1 = E1E

when

d · v + b · v + b · c = b · v + d · v + a · d

for any |v >, that is, when

a · d = b · c.

Since C0 ⊂ C⊥1 ,

a · d = 0 = b · c

and we have proven that the operators E and E1 commute and S ⊂ S⊥TH
.

We observe that EE1|v >= ir+r1(−1)(b+d)·v+b·c|v + a + c >= isUa+cVb+d|v >,

because b · c = 0, where s = r + r1 ∈ Z4, then EE1 ∈ S. Since E−1 = i−rUaVb,

E−1 ∈ S and E = U0V0 ∈ S is the identity element, we get that S is an abelian

subgroup of ξn.

In this case we take

S⊥TH =
{
g = irUaVb ∈ ξn|a + δb ∈ C⊥1 + δC⊥0

}
.

Since k0 = dim(C0) and k1 = dim(C1), we get that |S| = 2k0+k1 = 2n−(n−k0−k1).

But

C⊥1 + δC⊥0 \ C0 + δC1 =
{
a + δb ∈ C⊥1 + δC⊥0 | a ∈ C⊥1 \ C0, b ∈ C⊥0 \ C1

}
.

Then, d = min
{
dist(C⊥1 \ C0), dist(C

⊥
0 \ C1)

}
= dist(C⊥1 +δC⊥0 \C0 +δC1). Thus,

by Theorem 2.16 , we get an [[n, n− (k0 + k1), d]]2 additive quantum code.

113

Example 4.5. From Example 3.5 we have the additive code C = GU(C0, C1), where

C0 is the repetition code with parameters [2m, 1, 2m] and C1 the first-order Reed-

Muller code with parameters [2m, m + 1, 2m−1]. Since C0 ⊂ C1 ⊂ C⊥1 , we get a

[[2m, 2m −m− 2, d]]2 additive quantum code.

4.2 NON-BINARY STABILIZER CODES

Given a, b, c and d in Fnq , let x = aα1 + bα2 and y = cα1 + dα2 in Fnq2 where

{α1, α2} is a basis of Fq2 over Fq and the matrix

A =

 α1 α2

αq1 αq2

is such that det(A) = α1α

q
2 − α

q
1α2 6= 0.

Then,

x · yq = (aα1 + bα2) · (αq1c+ αq2d) = α1α
q
1a · c+ α1α

q
2a · d+ α2α

q
1b · c+ α2α

q
2b · d

and

xq · y = (aαq1 + bαq2) · (cα1 + dα2) = α1α
q
1a · c+ αq1α2a · d+ α1α

q
2b · c+ α2α

q
2b · d.

That is,

x · yq − xq · y
α1α

q
2 − α

q
1α2

=
(a · d− b · c)(α1α

q
2 − α

q
1α2)

α1α
q
2 − α

q
1α2

= a · d− b · c.

We define,

x ? y = tr

(
x · yq − xq · y
α1α

q
2 − α

q
1α2

)
= tr(a · d− b · c). (4.2)

Then, x ? x = 0.

Since tr is linear over Fp and −1 ∈ Fp we get that x ? y = −(y ? x). For r ∈ Fp,

(rx) ? y = r(x ? y) by linearity of tr and for z = vα1 +wα2 ∈ Fnq2 we have

(x + z) ? y = x ? y + z ? x and x ? (y ? z) = x ? y + x ? z.

114

Therefore, “?” is an alternating and bilinear form over Fp, i.e., it is a sympletic

inner product.

Observe that for q = p, a prime number,

x ? y = a · d− b · c

which corresponds, for p = 2, to Equation (3.14), the symplectic inner product

obtained in [14].

Observe that x ? y = −(x ∗a y), where “∗a” is given by Equation (2.17), see [31].

Therefore, given any basis of Fq2 over Fq, x ⊥? y if and only if x ⊥∗a y, and

according to Equation (3.5), if Fq has characteristic 2 and x ⊥H y, then x ⊥∗a y.

That is, if C ⊂ Fnq2 is an additive code such that C ⊂ C⊥H , then C ⊂ C⊥? .

In particular, for a polynomial basis of Fq2 over Fq, {1, δ}, given x = a + δb

and y = c+ δd in Fnq2

x ? y = tr

(
x · yq − xq · y

δq − δ

)
.

Proposition 4.4. Let Fq be a finite field of characteristic 2. Take two differ-

ent linear codes over Fq, C0 and C1, such that C0 ⊂ C1. Then, the additive

code GU(C0, C
⊥
1) yields an [[n, k1 − k0, d]]q quantum stabilizer code with d =

dist(GU(C1, C
⊥
0) \GU(C0, C

⊥
1)).

Proof. From Lemma 3.1, C = GU(C0, C
⊥
1) is an additive and nonlinear code over

Fq2 . From Theorem 3.4,

C ⊂ C⊥TH = GU(C1, C
⊥
0),

and from Equation (4.2)

C⊥TH ⊂ C⊥? .

Observe that |C| = qn−(k1−k0). Then, we define the stabilizer group as S =
{
Eab ∈ ξn | a+ δb ∈ GU(C0, C

⊥
1)
}

and we apply Theorem 2.17.

115

Lemma 4.1. Let C0 ∈ Fnq be an Euclidean self-orthogonal code. Then, the trace-

alternating duality for C = GU(2, C0) is the same as Euclidean duality.

Proof. If we take C0 ⊂ Fnq and C1 ⊂ Fnq such that C0 ⊂ C⊥1 , where C⊥1 is the

Euclidean dual of C1, then C0 + δC1 ⊂ (C0 + δC1)
⊥? = (C0 + δC1)

⊥∗a . Because in

this case a · d = 0 = b · c. Therefore, C = C0 + δC1 is self-orthogonal with respect

to the form ?. In particular, if C0 = C1, that is, C0 is Euclidean-self-orthogonal, the

linear code GU(2, C0) is ?−self-orthogonal and

GU(2, C0)
⊥? = GU(2, C⊥0) = GU(2, C0)

⊥.

This follows by taking y = cα1 + dα2 ∈ GU(2, C⊥0), for any x = aα1 + bα2 ∈

GU(2, C0),

x ? y = tr(a · d− b · c) = tr(0− 0) = 0.

Thus,

GU(2, C⊥0) ⊂ GU(2, C0)
⊥? .

But |GU(2, C⊥0)| = q2n−2k0 = |GU(2, C0)
⊥? |. Then,

GU(2, C0)
⊥∗a = GU(2, C0)

⊥? = GU(2, C0)
⊥.

Therefore, we just need to establish classical Euclidean duality for our construc-

tion and work with classical self-orthogonal codes.

Similar to Theorem 4.1, we can get

Theorem 4.2. Let C ⊂ Fnq2 be an [n, k, d]q2 Euclidean, i.e., classical self-orthogonal

code, that is Frobenius invariant. Then, C yields an [[n, n − 2k, ≥ d⊥]]q quantum

stabilizer code that is pure to d.

Proof. Let C ⊂ Fnq2 be a linear code and C0 its sub-field sub-code over Fq. From

Lemma 3.1,

GU(2, C0) = {a+ δb | a, b ∈ C0}

116

is a linear code over Fq2 . From Theorem 3.1 and taking m = 2, we get

C = GU(2, C0).

From Proposition 3.5 and Lemma 4.1, C ⊂ C⊥ = GU(2, C0)
⊥ = GU(2, C⊥0) =

C⊥? and, applying Theorem 2.17, we obtain an [[n, n − 2k, ≥ d⊥]]q quantum

stabilizer code.

Remark: Theorem 4.1 and Theorem 4.2 are important because, using them,

we do not need to verify alternating or Hermitian self-orthogonality of the code C to

construct quantum stabilizer codes, see Corollary 19 in [31], we just need to begin

with classical self-orthogonal, i.e., Euclidean self-orthogonal codes. There are many

classes of codes that are classically self-orthogonal.

4.3 OPEN PROBLEMS AND FUTURE DIRECTIONS

We have shown applications of our GU construction considering two linear

codes, that is, we have studied the additive or linear code GU(C0, C1). Therefore,

our first aim is to study the code GU(C0, C1, · · · , Cm−1) when m ≥ 3. For example,

we know from Lemma 3.1 that GU(C0, C1, · · · , Cm−1) is an additive nonlinear code

when any two of the linear codes Ci, 0 ≤ i ≤ m− 1, are different. Then,

• Can we find an explicit formula for the weight distribution of such additive code

when m ≥ 3, as we found for m = 2?

• Can we find optimal additive or linear code when m ≥ 3 as we got with m = 2?

• How to use our two-weight and three-weight codes with secret sharing schemes,

along the lines of [2, 22, 46].?

• Construct strongly regular graphs from our two-weight codes.

• Establish whether our two-weight codes constructed via the generalized Simplex

codes and GU construction are equivalent to the RT1 codes of Calderbank and

Kantor [16].

117

• When is the additive code GU(C0, C1, · · · , Cm−1) a few-weight code, given that

the linear codes Ci have few weights, such as the simplex code or the first order

Reed-Muller code.?

• If m ≥ 3, under what conditions is the additive GU(C0, C1, · · · , Cm−1) code self-

orthogonal.?

In Chapter 4 we gave an application of the GU codes to construct quantum

stabilizer codes using Euclidean self-orthogonality. With respect to our quantum

codes, we want to study quantum maximum distance separable codes (QMDS);

that is, a quantum code [[n, k, d]]q satisfying

d =
n− k

2
+ 1.

From [26], we have the following interesting questions:

• Can we construct QMDS code [[q2 + 1, q2 + 1− 2d, d]]q for q even?

• Are there QMDS codes that are not related to classical MDS codes?

• Prove, disprove, or refine the QMDS conjecture, which is: The length of any

QMDS code [[n, k, d]]q with d ≥ 3 is bounded by n ≤ q2 + 1, with the exception

of [[q2 + 2, q2 − 4, 4]]q for q = 2m, when n ≤ q2 + 2.

We are also interested in:

• Construct QECC from separable and non-separable Goppa codes.

In the thesis, I have partial results on the minimum distance. We would like to

improve these results and also prove results on the dimension.

• Study Shor’s factorization algorithm (1994). (Shor’s algorithm could be used to

break public-key cryptography schemes, such as the widely used RSA scheme.)

REFERENCES

[1] Salah A Aly, Andreas Klappenecker, and Pradeep Kiran Sarvepalli. On Quan-

tum and Classical BCH Codes. IEEE Transactions on Information Theory,

53(3):1183–1188, 2007.

[2] Alexei Ashikhmin and Alexander Barg. Minimal vectors in linear codes. IEEE

Transactions on Information Theory, 44(5):2010–2017, 1998.

[3] Alexei Ashikhmin and Emanuel Knill. Nonbinary Quantum Stabilizer Codes.

IEEE Transactions on Information Theory, 47(7):3065–3072, 2001.

[4] E.F Assmus Jr and Harold F Mattson. Error-correcting codes: An axiomatic

approach. Information and Control, 6(4):315–330, 1963.

[5] H. Barnum, C. Crepeau, D. Gottesman, A. Smith, and A. Tapp. Authentication

of Quantum Messages. IEEE Press, pages 449–458, 2002.

[6] Elwyn Berlekamp. Algebraic Coding Theory. McGraw-Hill, Inc, 1968.

[7] J. Bierbrauer. Introduction to CODING THEORY. CRC Press Taylor Francis

Group, second edition, 2017.

[8] Jürgen Bierbrauer, Daniele Bartoli, Giorgio Faina, Stefano Marcugini, and Fer-

nanda Pambianco. The nonexistence of an additive quaternary [15, 5, 9]-code.

Finite Fields and Their Applications, 36:29–40, 2015.

[9] Norman L Biggs. Codes: An Introduction to Information Communication and

Cryptography. Springer, 2008.

[10] George Robert Blakley. Safeguarding cryptographic keys. In Managing Require-

ments Knowledge, International Workshop on, pages 313–313. IEEE Computer

Society, 1979.

118

119

[11] Kenneth Bogart, Don Goldberg, and Jean Gordon. An Elementary Proof of

the Macwilliams Theorem on Equivalence of Codes. Information and Control,

37(1):19–22, 1978.

[12] Joaquim Borges, Josep Rifa, and Victor A Zinoviev. On q-ary Linear Com-

pletely Regular Codes with ρ = 2 and Antipodal dual. Advances in Mathematics

of Communications, 4(4):567, 2010.

[13] A Calderbank, P Shor, N Sloane, and E Rains. Quantum Error Correction and

Orthogonal Geometry. Physical Review Letters, 78(3):405–408, 1997.

[14] A Robert Calderbank, Eric M Rains, PM Shor, and Neil JA Sloane. Quantum

Error Correction Via Codes Over GF(4). IEEE Transactions on Information

Theory, 44(4):1369–1387, 1998.

[15] A Robert Calderbank and Peter W Shor. Good Quantum Error-Correcting

Codes Exist. Physical Review A, 54(2):1098–1106, 1996.

[16] Robert Calderbank and William M Kantor. The Geometry of Two-Weight

Codes. Bulletin of the London Mathematical Society, 18(2):97–122, 1986.

[17] Dean Crnkovic, Andrea Svob, and Vladimir D Tonchev. Cyclotomic Trace

Codes. Algorithms, 12(8):168, 2019.

[18] Ph Delsarte. Two-weight linear codes and strongly regular graphs. MBLE.

Laboratoire de Recherches, 1971.

[19] Ph Delsarte. Weights of linear codes and strongly regular normed spaces. Dis-

crete Mathematics, 3(1-3):47–64, 1972.

[20] Philippe Delsarte. An algebraic approach to the association schemes of coding

theory. Philips Res. Rep. Suppl., 10:vi+–97, 1973.

[21] Cunsheng Ding, Jinquan Luo, and Harald Niederreiter. Two-weight Codes

Punctured from Irreducible Cyclic Codes. In Coding And Cryptology, pages

119–124. World Scientific, 2008.

120

[22] Kelan Ding and Cunsheng Ding. A Class of Two-Weight and Three-Weight

Codes and Their Applications in Secret Sharing. IEEE Transactions on Infor-

mation Theory, 61(11):5835–5842, 2015.

[23] Ying Dong, Dan Hu, Sixia Yu, et al. Breeding quantum error-correcting codes.

Physical Review A, 81(2):022322, 2010.

[24] Daniel Gottesman. Theory of Fault-Tolerant Quantum Computation. Physical

Review A, 57(1):127–137, 1998.

[25] Daniel Eric Gottesman. Stabilizer Codes and Quantum Error Correction. PhD

thesis, California Institute of Technology, 1997.

[26] Markus Grassl, M Rötteler, and T Beth. On quantum mds codes. In Proc. Int.

Symp. Inform. Theory, Chicago, USA, page 356, 2020.

[27] K Hoffman and Kunze R. Linear Algebra. Prentice-Hall, Inc., second edition,

1971.

[28] W Cary Huffman and Vera Pless. Fundamentals of Error-Correcting Codes.

Cambridge university press, 2010.

[29] Kenneth Ireland and Michael Rosen. A classical introduction to modern number

theory, volume 84 of Graduate Texts in Mathematics. Springer-Verlag, New

York, second edition, 1990.

[30] Dieter Jungnickel and Vladimir D Tonchev. On bonisolis theorem and the block

codes of Steiner triple systems. Designs, Codes and Cryptography, 86(3):449–

462, 2018.

[31] Avanti Ketkar, Andreas Klappenecker, Santosh Kumar, and Pradeep Kiran

Sarvepalli. Nonbinary Stabilizer Codes Over Finite Fields. IEEE Transactions

on Information Theory, 52(11):4892–4914, 2006.

[32] Jon-Lark Kim and Vera Pless. Designs in additive codes over gf (4). Designs,

Codes and Cryptography, 30(2):187–199, 2003.

121

[33] E Knill. Non-binary unitary error bases and quantum codes. Technical report,

Los Alamos National Lab., NM (United States), 1996.

[34] Piyush P Kurur. Quantum Error Correcting Codes: An introduction. Indian

Institute of Technology Kanpur, 2005.

[35] Giuliano G La Guardia. Constructions of New Families of Nonbinary Quantum

Codes. Physical Review. A, 80(4), 2009.

[36] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their

Applications. Cambridge university press, 1994.

[37] Wilde Mark M. From Classical to Quantum Shannon Theory. Cambridge

University Press, 2019.

[38] Robert J McElliece. The Theory of Information and Coding. Addison-Wesley

Publishing Company Inc, 1977.

[39] FJ McWilliams and NJA Sloane. The Theory of Error-Correcting Codes. North-

Holland Amsterdam, 1977.

[40] Nicholas Patterson. The algebraic decoding of goppa codes. IEEE Transactions

on Information Theory, 21(2):203–207, 1975.

[41] William Wesley Peterson and Edward J Weldon. Error-Correcting Codes. The

Massachusetts Institute of Technology, second edition, 1972.

[42] Eric M Rains. Nonbinary Quantum Codes. IEEE Transactions on Information

Theory, 45(6):1827–1832, 1999.

[43] Joseph M Renes. Quantum Information Theory. In Lecture Notes, 2015.

[44] Steven Roman. Advanced Linear Algebra. Springer, second edition, 2005.

[45] Benjamin Schumacher. Quantum Coding. Physical Review A, 51(4):2738, 1995.

[46] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–

613, 1979.

[47] Peter W Shor. Fault-Tolerant Quantum Computation. In Proceedings of 37th

Conference on Foundations of Computer Science, pages 56–65. IEEE, 1996.

122

[48] Andrew M Steane. Simple quantum error-correcting codes. Physical Review A,

54(6):4741, 1996.

[49] Douglas R. Stinson. An explication of secret sharing schemes. Designs, Codes

and Cryptography, 2(4):357–390, 1992.

[50] W Trappe and L.C. Washinton. Introduction to Cryptography with Coding

Theory. Pearson Prentice Hall, second edition, 2006.

[51] Zlatko Varbanov. Some new results for additive self-dual codes over gf (4).

Serdica Journal of Computing, 1(2):213–227, 2007.

[52] Harold N Ward. An Introduction to Divisible Codes. Designs, Codes and

Cryptography, 17(1):73–79, 1999.

[53] Harold N Ward and Jay A Wood. Characters and the Equivalence of Codes.

Journal of Combinatorial Theory, Series A, 73(2):348–352, 1996.

[54] Edwin Weiss. Addendum: Linear codes of constant weight. SIAM Journal on

Applied Mathematics, 15(1):229, 1967.

A GO-UP CONSTRUCTION AND APPLICATIONS

Eddie Arrieta Arrieta
eddie.arrieta@upr.edu
Departament of Mathematics
Chair: Heeralal Janwa Ph.D.
Grade: Doctorate in Mathematics
Date of Graduation:16 July 2021

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ABBREVIATIONS AND SYMBOLS
	INTRODUCTION
	BACKGROUND AND PRELIMINARY RESULTS
	BASIC DEFINITIONS
	TWO-WEIGHT CODES

	SEPARABLE AND INSEPARABLE GOPPA CODES AND THEIR PARAMETERS: SOME PRELIMINARY RESULTS
	A SPECIAL CASE

	BASICS OF QUANTUM ERROR-CORRECTING CODES
	BINARY STABILIZER CODES
	NONBINARY STABILIZER CODES

	GO-UP CONSTRUCTION AND APPLICATIONS
	THE GO-UP CONSTRUCTION
	THE GO-UP OF A GOPPA CODE
	DUAL OF THE AMALGAMATED CODE
	AN INTERESTING SPECIAL CASE
	APPLICATIONS
	 TWO-WEIGHT CODES FROM THE GO-UP CONSTRUCTION
	AN ELEMENTARY CONSTRUCTION OF A CLASS OF TWO-WEIGHT CODES WITH PARAMETERS OF (RT1) OF CALDERBANK AND KANTOR
	GO-UP OF A TWO-WEIGHT CODES
	THREE-WEIGHT CODES FROM ANTIPODAL CODES

	 QUANTUM CODES FROM THE GO-UP CONSTRUCTION
	A REFORMULATION OF BINARY STABILIZER CODES AND NEW CONSTRUCTIONS OF QUANTUM ERROR-CORRECTING CODES FROM THE GO-UP CONSTRUCTION
	NON-BINARY STABILIZER CODES
	OPEN PROBLEMS AND FUTURE DIRECTIONS

	REFERENCES

