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Abstract 168 

 How sociality interacts with other behaviours is a long standing question in 169 

insect biology. Simultaneously, in chronobiology, there is an unanswered question 170 

concerning how sociality influences patterns of daily activity. Past studies have 171 

established the viability of utilizing hymenopterans to describe variable circadian 172 

behaviour. Here, we intend to take a step further and establish Halictid bees as a 173 

model for cross-species comparisons of circadian rhythms. To this effect, we 174 

describe four species of Halictid bees and compare the variability of their internal 175 

clocks. We found that variability in circadian rhythms parallel complexity in sociality. 176 

We also created a machine learning pipeline to facilitate describing heterogeneous 177 

locomotor activity data. The computational experiments showed that the bee 178 

locomotion dataset transformed by Symbolic Aggregate approXimation and 179 

classified by decision trees yielded the best results. With our findings, we expect to 180 

set the basis for finding the true influence of sociality on biological clocks.  181 
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Introduction 241 

Circadian rhythms are believed to be a universal mechanism of life (Helm and 242 

Visser 2010). They determine when flowers open, when animals are hungry, and 243 

even when the temperature of a mammal's body might be at their highest or their 244 

lowest. It has been stated that these biological clocks follow a circadian rhythm, 245 

which is approximately synchronized to Earth’s 24-hour rotation using signals from 246 

the environment (Roenneberg, T., et.al 2003). 247 

Drosophila melanogaster is the main model organism used for the study of 248 

circadian rhythms. Thanks to its controlled genetic stocks created for laboratories, 249 

we have been able to describe biological clocks at the molecular level (Dubowy C & 250 

Sehgal A. 2017). Nonetheless, the genetic homogeneity and ease of manipulation 251 

that makes fruit flies attractive models leaves them lacking when it comes to 252 

answering questions about individual differences in behavior. Learning how 253 

biological clocks work in organisms that deviate from the canon may allow us to 254 

answer questions that are currently left unanswered by the Drosophila model. One 255 

such question is on how sociality may affect daily activity patterns.  256 

The most studied model by far for cross-comparative studies in reference to 257 

sociality are Hymenopterans (ants, wasps and bees) and Isonopterans (Termites) 258 

(West-Eberhard 2003). Although they are not usually kept in captivity and their 259 

genetics are not as well-understood as Drosophila’s, the diversity of social 260 

behaviours is well-documented. Furthermore, past phylogenetic studies have found 261 

that the genes responsible for the circadian circuitry in the brain as found in 262 

Hymenopterans are more similar to those of mammals in contrast to Drosophila 263 
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(Rubin, et. al 2006 and Ingram, et. al 2012).  Their well-known behaviors and 264 

similarity with mammals makes Hymenopterans a model of interest for transferability 265 

and comparison for mammalian behaviours.  266 

Sociality in insects is defined as a spectrum, and, depending on the study, 267 

one might find that there are a myriad of definitions. The two biggest factors that 268 

influence those definitions are based on how an individual of a species may relate to 269 

other members of the same species, and the adaptations in behaviors concerning 270 

reproduction and brood care (Michener 1969, Toth and Rehan 2017). Here, we focus 271 

on four distinct levels of sociality: solitary, communal, primitively eusocial, and 272 

facultatively eusocial. These levels of sociality are individually defined in Table 1. To 273 

clarify, by facultatively eusocial insects we refer to primitively or strongly eusocial 274 

species whose life history suggest that they were originally solitary, or have evolved 275 

a solitary life cycle, or possess an adaptable developmental system that can express 276 

social or solitary behavior (Eickwort 1996). 277 

 278 
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Table 1: Levels of sociality as adapted from Michener (1969). 1 means present 

and 0 means absent. 

 Caste and 
Division of 

Labor 

Overlapping 
Generations 

Cooperative 
Work on 

Cells 

Structurally 
similar 

reproductive 
female caste 
(if present) 

may survive 
alone 

Progressive 
feeding 

Solitary 0 NA 0 1 0 

Communal 0 0 0 1 1 

Primitively 
eusocial 

1 1 1 1 0/1 

Strongly 
eusocial 

1 1 1 0 0/1 

 285 

Previous studies such as (Moore et al. 1998, Bloch et al. 2001, Giannoni-286 

Guzman et al. 2020)  have already begun establishing the use of honey bees as 287 

non-canonical subjects of study in circadian science. For example, Moore et al. 1998 288 

and Bloch et al. 2001 established that with age, the way circadian rhythms are 289 

expressed in bees change. Furthermore, in Giannoni-Guzman et al. 2020, it was 290 

found that even within the same age group and apparent caste, there is evidence of 291 

shift work, which influences the daily activity patterns of individuals within a hive and 292 

reflects in interindividual variation. The honey bee as a subject of study proves to be 293 

a powerful tool to answer questions that are too difficult to explore under the 294 

constraints of the typical Drosophila model. However, if one wishes to study the 295 

influence of sociality in circadian rhythms, Apis mellifera is a lacking model as due to 296 



 

 

 

 

15 

 

apparent lack of diversity, genus-level Apis are exclusively eusocial. One would have 297 

to compare them to members of different genera to extract any sort of meaningful 298 

conclusions on how varying levels of sociality may affect the expression of circadian 299 

phenotypes, as was done in Giannoni-Guzman et al. 2014. Ultimately, the optimal 300 

way to observe the relationship between sociality and circadian rhythms would be to 301 

observe a set of species with high levels of social plasticity. 302 

One such group of bees exist, the tribe Halictini, which in the past has been 303 

suggested as a subject of study for the interaction of socio-comparative studies 304 

(Schwarz et al. 2007, Bloch and Grozinger 2011, Toth and Rehan 2017). In the first 305 

chapter of this work, we describe and compare four different species of halictid bees 306 

whose social organization encompasses the spectrum of sociality. Systropha 307 

curvicornis (Scopoli) is a solitary species (Patiny and Michez 2007; Patiny et al. 308 

2008; Danforth et al. 2008) and Lasioglossum malachurum (Kirby) (L. malachurum) 309 

is an obligately eusocial species (Richards 2000; Wyman and Richards 2003) from 310 

Greece. Lasioglossum (Dialictus) ferrerii (Baker) is communal. Lasioglossum 311 

(Dialictus) enatum (Gibbs) has not been actively studied, but it is related to 312 

primitively eusocial species (Eickwort 1988), both of these last bees are from Puerto 313 

Rico. The bees from Greece were captured the same day and same time while 314 

visiting the flowers of Campanula arvensis, and in addition, were kept in the same 315 

environmental conditions in the laboratory. Similarly, the bees from Puerto Rico were 316 

captured at the same day and same time while they visited Momordica charantia, 317 

Sida acuta, and Bidens alba.   318 
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We found that although L. enatum and L. ferreiri highly related and share the 319 

same environment, there exist distinct differences in their behavior. Furthermore, as 320 

an overall observation, bees that are not solitary at the intraspecies level express 321 

individual differences in circadian behavior. Which begs the question: what causes 322 

these differences, if not the environment nor their species? Identifying the root 323 

causes of these intraspecies behavioral differences may give us insight into how 324 

biological clocks are entrained by non-environmental cues. 325 

The individual differences exhibited by L. malachurum galvanized an 326 

exploration towards a preprocessing in the traditional circadian analysis pipeline. 327 

Because these bees have such diverse expressions of circadian phenotypes, we 328 

found ourselves dividing the bees into discrete groups and describing the population 329 

by the use of subpopulations. This process was the manual equivalent of grouping 330 

individuals using machine learning. Once we were confident that the groups 331 

observed within the population of L. malachurum were discrete and informative for 332 

circadian purposes, we took the next step and designed a machine learning pipeline. 333 

In chapter 2, we explore the use of said Machine Learning (M.L) pipeline. 334 

Machine learning is a  subset of Artificial Intelligence. It is defined as the process of 335 

solving real-life problems by gathering data sets and using algorithms to create 336 

models based on those data sets (Burkov, 2019).   Although machine learning has 337 

many applications, we employed it for two distinct purposes: clustering and 338 

classification. Clustering is a type of unsupervised machine learning where 339 

algorithms are not given predetermined categories (labels) to group data into. The 340 

data, based on measurements of similarity, instead groups together naturally (Géron, 341 
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2018). Classification is a type of supervised learning where data already has the 342 

desired solutions (labels). A classification algorithm learns patterns from a labeled 343 

dataset and uses this information to classify new data into these same categories 344 

(Géron, 2018). 345 

The use of M.L in circadian science is usually relegated to the evaluation of 346 

genes and proteins (Agostinelli et. al 2016 and Anafi et. al 2014). It is our 347 

understanding that the use of M.L as a preprocessing step to locomotor analysis is a 348 

novel application of this tool, which presents the challenge of having to design a 349 

pipeline and workflow from scratch. 350 

Using common transformations for circadian analyses (Lomb Scargle 351 

Periodogram, Average of Daily Locomotor Activity and Autocorrelation) (Refinetti et. 352 

al 2007) we explored the natural grouping of the various transformations of the L. 353 

malachurum dataset. The approach was univariate, where we applied PAM or K-354 

means to just one of the transformations. This culminated in three different clustering 355 

results, one per transformation. None of the three transformations resulted in groups 356 

that were of circadian significance, and prompted us to explore the use of 357 

classification. We divided the data for L. malachurum into three broad categories, 358 

and then transformed the time series data using Symbolic Aggregate approXimation 359 

(SAX) for ease of analysis and dimensionality reduction. The data was transformed 360 

with different combinations of SAX parameters and were classified using K Nearest 361 

Neighbors, Decision Trees and Random Forest classification algorithms. Lastly, we 362 

compared the performance of all three algorithms.  Decision Trees achieved the best 363 

results, followed closely by K Nearest Neighbors.   364 
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We hypothesize that sociality is one of the keys to understanding the 365 

complexities of circadian rhythms. In this work, we meet our set goal by; First,  366 

describing four species of halictid bees with varying degrees of sociality. Second, by 367 

developing a preprocessing step using machine learning that is easily incorporated 368 

into the traditional circadian pipeline. This preprocessing step facilitates the grouping 369 

of individuals of L. malachurum into discrete groups once trained. While it stands to 370 

be seen if the process is transferable to other species, its effectiveness can 371 

nevertheless prove useful in future studies where L. malachurum is involved. All of 372 

the caveats notwithstanding, our findings can serve as the basis for a larger body of 373 

work that elucidates the true relationship between sociality and circadian rhythms.   374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 



 

 

 

 

19 

 

Chapter 1 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 
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Relationship Between Inter-individual Variation in Circadian Rhythm and 413 

Sociality: A case Study Using Halictid Bees 414 

 415 

Abstract: 416 

 The bee family Halictidae is considered to be an optimal model for the study 417 

of social evolution due to its remarkable range of social behaviors. Past studies in 418 

circadian rhythms suggest that social species may express more diversity in 419 

circadian behaviors than solitary species. However, these older studies did not make 420 

appropriate taxonomic comparisons. To further explore the link between circadian 421 

rhythms and sociality, we examine four halictid species with different degrees of 422 

sociality, three social species of Lasioglossum, one from Greece and two from 423 

Puerto Rico, and a solitary species of Systropha from Greece. Based on our 424 

previous observations, we hypothesized that species with greater degree of sociality 425 

will show greater inter-individual variation in circadian rhythms than solitary species. 426 

We observed distinct differences in their circadian behavior that parallel differences 427 

across sociality, where the most social species expressed the highest inter-individual 428 

variation. We predict that circadian rhythm differences will be informative of sociality 429 

across organisms. 430 

Introduction: 431 

Understanding the evolutionary link between solitary and eusocial lineages, 432 

and their adaptive behaviors, such as those expressed in reproduction and brood 433 

care, is a perennial question in insect evolutionary biology (Toth and Rehan 2017). 434 

Insects, and in particular hymenopterans, have been useful in observing how 435 
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sociality is related to other types of behaviors, such as competitor effects (Peters et 436 

al. 2017).  A potential behavior to be evaluated is circadian rhythms, as it has been 437 

proposed to be governed by demands arising from sociality not only in insects but 438 

also in mammals (Mistlberger 2004; Giannoni-Guzman et al. 2014; Beer and 439 

Helfrich-Förster 2020). 440 

Circadian rhythms can be viewed as a biological clock that most living 441 

organisms possess. These biological clocks regulate processes such as gene 442 

expression, behavior, body temperature, and sleep-wake patterns. Biological clocks 443 

follow a rhythm that is approximately synchronized to Earth’s 24-hour rotation using 444 

signals from the environment called zeitgebers. This process of synchronization 445 

needs active reestablishment, and it is called entrainment (Roenneberg et al. 2003). 446 

Circadian rhythms have been studied in a wide range of organisms, from 447 

plants, invertebrates, birds, and mammals (Helm and Visser 2010). The traditional 448 

model animal to study this phenomenon is the fruit fly, Drosophila melanogaster, 449 

where biological clocks are described at the molecular level (Dubowy and Sehgal 450 

2017). Although this model has been pivotal to the understanding of circadian 451 

rhythms, the lack of genetic diversity in the fruit fly reduces the relevance of the 452 

model because it limits questions regarding individual differences in rhythms.    453 

Past studies, such as those of Bloch et al. (2001) and Moore et al. (1998), 454 

revealed that the rhythmicity of honey bees changed with age. Additionally, 455 

Giannoni-Guzman et al. (2020) showed that foragers in the wild display discrete 456 

categories that suggest temporal shift work. An earlier study from Giannoni-Guzman 457 
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and colleagues (2014) compared the endogenous period of three different variants of 458 

honey bees (Apis mellifera carnica, Apis mellifera caucasica and Apis mellifera 459 

gAHB) as well as similarly sized insects from different orders and families. They 460 

found that honey bees and paper wasps (Polistes crinitus and Mischocyttarus 461 

phthisicus) had a larger degree of circadian period variation within the population in 462 

comparison to D. melanogaster. They mentioned several possible explanations for 463 

their observations, one of them being sociality. In a more recent study, Beer and 464 

Helfrich-Förster (2020) explore this connection further and note that the development 465 

of the circadian circuitry varies between an eusocial (Apis mellifera) and a solitary 466 

species (Osmia bicornis). In particular, they observe that eusocial individuals are 467 

born with an undeveloped circadian clock while the solitary individuals emerge with it 468 

fully developed, and attribute these differences to their opposite levels of sociality. 469 

However, because these two past studies were done with species spanning from 470 

different taxonomic groups, it would be difficult to support their claims without taking 471 

phylogeny into account. Nevertheless, these works do give a basis to ask how 472 

circadian rhythms vary and are an integral part of the survival strategy and 473 

organization of these animals. Moreover, it leads us to consider that the level of 474 

sociality in different organisms may play a role in their daily activity patterns. 475 

Specifically, one could suppose that complexity in levels of sociality of an insect may 476 

be reflected in individual differences in circadian rhythms of individuals of the same 477 

population. 478 

  Halictidae (Hymenoptera) is a bee family considered to be a great model for 479 

the study of social evolution due to its exceptional diversity in respect to social 480 
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behavior within and among species and populations (Schwarz et al. 2007). 481 

Lasioglossum Curtis is one of the two genera in the tribe Halictini that displays 482 

eusocial behavior, but also includes solitary representatives and a range of 483 

intermediate social categories (Danforth et al. 2003; Gibbs et al. 2012). Additionally, 484 

past studies have shown plasticity in the social behavior even among populations of 485 

the same species (Eickwort et al. 1996; Field 1996; Field et al. 2010; Richards et al. 486 

2003; Soucy and Danforth 2002; Richards 2000). Depending on environmental 487 

conditions such as elevation, latitude and seasonality, halictid bees might display 488 

different modes of sociality. Species with social nests may revert to solitary behavior 489 

at high latitudes and altitudes (Eickwort et al. 1996; Packer et al. 1983; Field et al. 490 

2010) or based on access to mates (Yanega 1988/1989). Jeanson et al. (2008) 491 

studied members of a solitary species, Lasioglossum (Ctenonomia) sp. NDA-1 and 492 

observed the results of having them nest in pairs. They observed that after some 493 

time together, the individuals in the nest started to show signs of division of labor. 494 

This plasticity and diversity of behavior, in addition to the close taxonomic relation, 495 

makes Halictidae an optimal model for observing the relationship between sociality 496 

and circadian rhythm (Bloch and Grozinger 2011).   497 

To better understand how social behaviors can be associated with circadian 498 

rhythms in insects, we have set out to document the rhythm in four species of halictid 499 

bees that span a gradient of social complexity. Systropha curvicornis (Scopoli) 500 

(Halictidae: Rophitinae), a solitary pollinator specialist (Grozdanić and Mučalica 501 

1966) considered ancestrally solitary within the family Halictidae (Patiny and Michez 502 

2007; Patiny et al. 2008; Danforth et al. 2008), and three species of Lasioglossum (L. 503 
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ferreri, L. enatum and L. malachurum), which were selected because of their varying 504 

levels of social behavior (Eickwort 1988; Wyman and Richards 2003; Gibbs 2018). 505 

Species of Lasioglossum likely had a common ancestor capable of eusocial nesting 506 

but have reverted multiple times to other levels of sociality (Danforth et al. 2003; 507 

Brady et al. 2006; Gibbs et al. 2012). Lasioglossum (Dialictus) ferrerii (Baker) and L. 508 

(Dialictus) enatum (Gibbs) is found in the Caribbean, whereas L. malachurum is 509 

found across Europe; the first species nests communally, that is, each individual 510 

contributes to nest construction and reproduction (Michener 1974; Eickwort 1988). 511 

Although L. enatum has not been thoroughly studied, this species is part of a species 512 

complex that includes weakly eusocial species. Namely, L. gemmatum (Smith) and 513 

L. parvum (Cresson) from Jamaica and the Bahamas, which exhibit reproductive 514 

division of labour (Eickwort 1988). There is no evidence of morphologically defined 515 

castes beyond reproductive status in these two species, and thus we assumed this is 516 

likely the case for L. enatum in Puerto Rico, where we conducted our experiments. In 517 

contrast, L. malachurum (Kirby) is an obligately eusocial species with a 518 

morphologically well-defined queen and worker castes (Richards 2000; Wyman and 519 

Richards 2003). Lasioglossum malachurum is known to display varying degrees of 520 

behaviors depending on location (Richards 2000). In Lesbos, Greece, where we 521 

studied this species, they were observed to exhibit a facultatively eusocial behavior 522 

(Wyman and Richards 2003).  523 

The social plasticity of Lasioglossum and its potential as a model for social 524 

evolution leads us to believe that observing this group of bees can give invaluable 525 

insight on how social behavior affects biological clocks. To test our idea, we captured 526 
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these wild bees as they were visiting flowers and observed them in the laboratory 527 

using constant conditions.  Based on these observations, we determined the variety 528 

of behaviors present, and made inferences on how they associate with their sociality. 529 

Methods and Materials: 530 

Study sites  531 

Puerto Rico: 532 

Lasioglossum ferrerii and L. enatum were captured using 15 mL falcon tubes from 533 

flowers at the Balneario de Luquillo parking lot (18.38706 N 65.72517W, 3 Meters) in 534 

Puerto Rico. This site is characterized by having many vine-type plants, high 535 

vegetation density, and it is further located right next to a road where Momordica 536 

charantia is quite abundant. (Figure 1.A and 1.B). Most bees were caught between 537 

8:00 and 12:00h at the flowers of Momordica charantia L. (Cucurbitaceae), Sida 538 

acuta Burm.fil. (Malvaceae), and Bidens alba (L.) DC.(Asteraceae). We also 539 

observed them visiting Euphorbia heterophylla, which has not been reported in 540 

previous literature. Collections took place during the months of December, January, 541 

March, and August. In total, we collected 36 bees, 26 of which were L. ferrerii and 10 542 

were L. enatum. 543 

Greece: 544 

Systropha curvicornis and L. malachurum bees were collected between 6:00 and 545 

9:00 h from flowers of Convolvulus arvensis (Convolvulaceae) that were growing on 546 

a recently cut wheat field in Skala Kallonis (39º 10’N 26º 20’E, 0 Meters) on the 547 
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Island of Lesbos, Greece. We used 15 mL falcon tubes to catch bees in the field, 548 

which would house the individual for the duration of the experiment. Sampling was 549 

conducted on July 3 of 2017. From this sampling 118 bees were L. malachurum and 550 

34 were S. curvicornis. 551 

Laboratory settings 552 

After collection in the falcon tubes, bees were provided with food that lasted for the 553 

whole of the observation period. The food recipe we used varied between the studies 554 

in Puerto Rico and Greece (As explained below). The main nutrient for both recipes 555 

was sugar, and are therefore nutritionally comparable. However, the agarose based 556 

recipe (Puerto Rico) was more convenient in terms of ease and speed of preparation 557 

due to the fact that an independent water system was not necessary.  558 

Food preparation varied by locations as follows: In Puerto Rico, for every 0.89 ml of 559 

water, 1 g of sucrose and 0.1 g of agarose were used. The water was heated in a 560 

stirring plate with a magnetic stirrer placed at the bottom. We added the sucrose first 561 

to the solution. The agarose was then incorporated upon its dissolution. We left the 562 

solution stirring until it turned into a lighter color while being mindful of not letting the 563 

solution overheat, as to avoid part of its volume being lost to evaporation. As a form 564 

of assurance, we made 3 ml more than what was expected to be used. After all 565 

solids were diluted, we quickly pipetted 1 ml into the bottom of a 15 ml centrifuge 566 

tube, being mindful of not letting it splash, as to preserve as much solution as 567 

possible. Once all of the tubes had their portion of the solution, they were allowed to 568 

reach room temperature, and were finally refrigerated. The final product was a gel 569 
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that could be kept refrigerated until the day it needed to be used as long as it did not 570 

dehydrate.  571 

 In Greece, captured S. curvicornis and L. malachurum were fed with ApiYem 572 

(Namik Kemal University with Kosgeb R&D Innovation Project) which is a food 573 

substitute composed of 78.5% sugar and 21.5% invert syrup. Food was placed in the 574 

cap-end of each tube and a damp cotton was placed in the other end of the tube to 575 

provide water to the bees. The water supply was refilled every 2–3 days. Resources 576 

were provided ad libitum during the complete running period of the experiment.   577 

Locomotor activity monitoring 578 

 Each bee was monitored individually for at least seven days in the falcon tube 579 

in which they were captured. The tubes were plugged using cotton balls to let air 580 

circulate. These tubes were then placed into TriKinetics’ Locomotion Activity 581 

monitors (LAM16) that, in turn, were put inside incubators that were set to constant 582 

conditions. In Greece, the temperature was 26°C, humidity was at 78%, and light 583 

conditions were constant darkness. In Puerto Rico, the temperature was 30°C, 584 

humidity was at 65%, and light conditions were constant darkness. The differences 585 

in the environmental chamber conditions were set to resemble the average daytime 586 

parameters at each location.  587 

Species Identification 588 

 The individuals caught in Puerto Rico were identified using Gibbs (2018). 589 

Samples collected in Greece were identified by an in-field expert, Victor H. Gonzalez 590 

(University of Kansas).  591 
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Data processing and analysis 592 

Circadian Analysis 593 

Circadian rhythm and locomotor activity for our subjects were analyzed using 594 

the MATLAB toolboxes developed in Jeffrey Hall’s laboratory (Levine et al. 2002). 595 

The outputs provided data on the individual’s locomotor activity throughout the 596 

experiment in the form of an actogram, average activity plot, and an autocorrelation 597 

that also calculates rhythm strength. 598 

 To test if the observed differences in circadian patterns across species, we 599 

applied a Brown-Forsythe one way ANOVA with a Dunnett's T3 multiple 600 

comparisons test using GraphPad Prism version 8.4.3 for Windows, GraphPad 601 

Software, San Diego, California, USA, www.graphpad.com. The variables taken into 602 

consideration for this were time, species, individuals, and interspecies variation.  603 

Results: 604 

During the Summer of 2017 on the 3rd of July between the hours of 6:00 am 605 

and 9:00 am, S. curvicornis and L. malachurum were caught as they visited the 606 

flowers of Convolvulus arvensis on the island of Lesbos. They were transported from 607 

the field to the laboratory and placed inside an incubator for 10 days of which 8 were 608 

in constant conditions (26 °C and 57% humidity) with the purpose of characterizing 609 

their intrinsic biological clock. During this collection, 118 bees were L. malachurum, 610 

although only 98 survived until the end, and 34 were S. curvicornis of which only 4 611 

females survived the study period. 612 
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 Figure 2.A illustrates the average of individuals evaluated under constant 613 

conditions of the Greek, solitary and specialist pollinator S. curvicornis. Its period 614 

runs slightly short at approximately 22 hours, with the peak of its activity in the early 615 

morning and an average rhythm strength of 4.4. The population average is 616 

consistent with the individuals examined, as illustrated in Figure 2.B; a randomly 617 

selected individual looks fairly similar to the activity plotted for the population 618 

average. The average for period was 22.75 with a standard deviation of 0.41, 619 

Rhythm Strength had an average of 4 and standard deviation of 0.707. 620 

The consistency displayed by our population of female S. curvicornis is contrasted 621 

with the diversity observed in the other 3 species analyzed in this study. This is 622 

especially true for the eusocial L. malachurum, for whom after careful evaluation of 623 

the data we had to create a classification schematic (Figure 3) to appropriately 624 

describe the phenotypes being displayed by the population. The population average 625 

shows that this species has a perfectly circadian 24-hour period under constant dark 626 

conditions. Peak average activity of L. malachurum is at 6:00 h, with no clear rest 627 

periods when all individuals are averaged. When examined individually, we found 628 

five distinct patterns of circadian activity patterns (Figure 3.A and Figure 4). These 629 

patterns can be divided into 2 large branches (Figure 3.A), those that are rhythmic 630 

and those that are arhythmic, i.e, individuals with uniform distribution of activity. 631 

Rhythmic individuals varied in the amplitude of their activity rhythm, and were 632 

therefore classified as strong or weakly rhythmic. Moreover, both strong and weak 633 

categories are subdivided into unimodal or bimodal based on the number of activity 634 

peaks per day. For example, a bimodal individual is active during two different 635 
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instances of the day, such as in the morning and in the afternoon (Figures 4.B and 636 

4.C), while a unimodal individual is mostly active during a set time of the day 637 

(Figures 4.D and 4.E). 638 

Strongly rhythmic individuals (either unimodal or bimodal) constituted 41% of 639 

individuals. These patterns are recognized by a strong Rhythm Strength 640 

(RS)(Figures 4.B.iii and 4.D.iii) on average higher than 2.67  and clear rest and 641 

active periods both in the double plotted actogram (Figures 4.B.i and 4.D.i) and the 642 

average activity plot(Figures 4.B.ii and 4.D.ii). Weak rhythmicity (Figure 4.C and 4.E) 643 

was observed in 21.6% of individuals and they were characterized by having RS 644 

values (Figure 4.C.iii and 4.E.iii) that average on 1.79, but their actograms (Figure 645 

4.C.i and 4.E.i) do not show a clear pattern of locomotor activity. Finally, 38% of 646 

individuals were arrhythmic. Both the double plotted actogram (Figure 4.F.i) and the 647 

average activity plot (Figure 4.F.ii)for arrhythmic bees do not have any discernible 648 

daily pattern of activity or inactivity. Often the autocorrelation (Figure 4.F.iii) does not 649 

return any values.   650 

On February 19, 2020, between 8:00 am and 10:00 am, at the Balneario de 651 

Luquillo (Figure 1.A and B), 36 bees were captured as they visited Bidens alba, 652 

Momordica charantia and Sida acuta. Bees were captured and monitored individually 653 

in one tube each (modified from Giannoni-Guzman et al. 2014). In the laboratory, the 654 

bees were placed inside an incubator for seven days in constant conditions so we 655 

could characterize their intrinsic biological clock.  656 
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Of the 36 bees captured, 26 were identified as Lasioglossum ferrerii (Figure 657 

1.C and 1.D) and ten as Lasioglossum enatum (Figure 1.E and 1.F). Only 22 L.  658 

ferrerii and 8 L. enatum survived the entire observation period and were used for 659 

analysis. The average peak of circadian activity for L. ferrerii is between 6:00–7:00 660 

(Figure 5.A.ii) with a 23-hour period (Figure 5.A. iii), making it rather short. 661 

Individuals fell into two categories: 50% were strongly rhythmic and 50% were 662 

weakly rhythmic (Figures. 5B and 5C). The peak of average activity for L. enatum is 663 

from the fifth to the seventh hours of the day, with a circadian period of 23.8 hours 664 

(Figure 6.Aiii), just slightly short of one day.  The average peak of activity for L. 665 

enatum was 6:00-7:00 (Figure 6.A.ii).  L. enatum also had three patterns of activity 666 

with similar characteristics to that of the umbrella categories for L. malachurum, and 667 

we saw it fit to categorize them in a similar fashion (Figure 6). 12.5% of the observed 668 

population fell into the strongly rhythmic category, 25% in the weak rhythmic 669 

category, and 62.5% in the arrhythmic category. 670 

 In summary, all four of the described species followed unique patterns of 671 

behavior (Figure 7.A) characterized by the amount of interindividual variation. 672 

Systropha curvicornis was the species with the least amount of observed 673 

interindividual variation in its daily activity patterns, followed by L. ferrerii with two 674 

distinct patterns of behavior, then L. enatum with 3, and lastly, L. malachurum with 5. 675 

Cross species comparison of observed circadian parameters. 676 

 Average activity was only significant between L. ferrerii and L. malachurum 677 

with a p-value of 0.0016 (Figure 7.B). Circadian Period (Figure 7.C) on the other 678 
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hand showed differences between S. curvicornis and L. ferrerii with a p-value of 679 

0.0102 as well as L. malachurum and L. ferrerii with a p-value of <0.0001. Lastly, 680 

with even more differences still, Rhythm Strength (Figure 7.D) presented differences 681 

between S. curvicornis and L. enatum (p-value = 0.0014), S. curvicornis and L. 682 

malachurum (p-value = 0.0177), L. ferrerii and L. enatum (p-value = 0.0056) and 683 

finally, L. ferrerii and L. malachurum (p-value = 0.0259).  684 

Discussion: 685 

 The solitary specialist, S. curvicornis as observed in this work, suggests that 686 

at least for the females, the population is consistent, displaying a single circadian 687 

activity phenotype (Figure 7.A). The activity of these bees is highly rhythmic, and 688 

shows little variation across samples with an average RS of 4.4 and the peak of 689 

activity appears to be near the hour 6 of the day. Overall, the species exhibits a short 690 

period phenotype under constant darkness. This high degree of rhythmicity might be 691 

due to S. curvicornis’ evolutionary history as a foraging specialist of C. arvensis, 692 

which blooms for a brief period during the morning, a pattern described for another 693 

closely related species (S. planidens: Gonzalez et al. 2014). A rigorous internal clock 694 

is important to be able to anticipate the time when resources are available. For 695 

example, the immediate development of Osmia bicornis’ circadian rhythm (Beer and 696 

Helfrich-Förster 2020) may be related to nurishment accessibility, as it has been 697 

shown in the past that large quantities of pollen are the key to proper larvae 698 

development rather than diversity of pollen (Radmacher and Strohm 2010). All three 699 

of these species (S. curvicornis, S. planidens and O. bicornis) lead solitary lifestyles 700 
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and consequently must assure the survival of their progeny in an individual manner. 701 

A strong circadian rhythm can ensure that a female may find sufficient resources 702 

efficiently to feed its young.  703 

All three species of Lasioglossum examined were shown to have more than 704 

one distinct pattern of circadian activity. The most diverse of the three was the 705 

facultatively eusocial L. malachurum (Figure 7.A) with 5 distinct circadian behaviors. 706 

Two of the sub-categories of these behaviors fall under the strongly rhythmic 707 

category, which we are calling binomial and unimodal. These rhythmic categories 708 

are characterized for having an easy-to-distinguish pattern in the actogram, clear 709 

rest/activity periods in the average activity plot, and an RS higher than one. Another 710 

two of the subcategories fall under the weakly rhythmic umbrella. This umbrella, just 711 

like the strongly rhythmic category, can be divided into bimodal and unimodal. These 712 

categories can be identified by an actogram with no clear pattern, an average activity 713 

plot with more or less clear rest/activity pattern, and an RS larger than one. Lastly, 714 

there is the arrhythmic category where no discernible pattern can be pinpointed in 715 

the actogram nor in the average activity plot and its RS is less than one. A 716 

conceptual map on how these categories are identified can be found in Figure 3.A.  717 

To make descriptions comparable across species, we used the same metrics 718 

to categorize the other two bees examined in this study. In categorizing L. ferrerii 719 

and L. enatum, our categories worked as a good basis. L. ferrerii only had two 720 

distinguishable patterns: rhythmic and noisy rhythmic (Figure 7.A). We decided to 721 

change the name from weakly rhythmic to noisy rhythmic because it is a better 722 
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descriptor (Figure 3.B).  Similarly, L. enatum, which lives in the same environment as 723 

L. ferrerii, has 3 distinguishable categories (Figure 7.A). These categories are 724 

rhythmic, noisy, rhythmic and arrhythmic. In contrast to L. ferrerii, L. enatum 725 

expressed 5 individuals in the arrhythmic category. Taking into consideration that 726 

both of these species of bees were caught in the same environment, and that they 727 

belong to the same genus, the results suggest that something other than 728 

environmental variables are behind these differences. 729 

The difference in expression of circadian patterns between L. ferrerii and L. 730 

enatum could be explained by competition. Both of these species share the same 731 

niche in Luquillo, to the point of being caught in the same flowers during the same 732 

range of time. Having a slight difference in rhythmicity can lower the possibility of 733 

temporal competition when foraging. L. ferrerii on average would be active from 5:00 734 

am to 10:00 am, while average time of activity for L. enatum would be from 3:00 am 735 

to 8:00 am. Due to that two-hour disphase, it would appear to be less likely that bees 736 

from these two species try to visit a flower simultaneously, yet their schedules still 737 

have some overlap.  These observations are echoed by another study conducted in 738 

Greece where they demonstrated that 3 species of carpenter bees (Xylocopa spp.) 739 

that share the same resources have different circadian rhythms when measured 740 

under natural field conditions and also in artificial constant and oscillating conditions 741 

(Ortiz-Alvarado et al. in rev.). While the solitary, Xylocopa species have interspecies 742 

variation in their circadian rhythms, two out of the three examined in Ortiz-Alvarado 743 

et al. follow a similar pattern as S. curvicornis, where there isn’t much, if any 744 

individual differences in the populations examined. Therefore, in that particular case, 745 
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competitor effects can explain the differences in rhythm across species, but in the 746 

case of L. ferrerii and L. enatum, it cannot explain the individual differences observed 747 

at the species level.  748 

At a higher level looking at the statistical analysis of all four halictid bees 749 

(Figure 7), some interesting patterns can be noted. In terms of average activity 750 

(Figure 7.B), there was only a difference between L. ferrerii and L. malachurum, 751 

none of the other possible combinations of differences occurred. However, the length 752 

of the whiskers in the box plots for both L. enatum and L. malachurum does suggest 753 

a level of diversity at the intraspecies level and could be reflective of the number of 754 

circadian behaviors observed in these species.  755 

When analyzing the circadian period, the observed differences were between 756 

L. ferrerii and L. malachurum as well as S. curvicornis and L. malachurum (Figure 757 

7.C). The latter of these pairs have shared environmental conditions when the former 758 

pair does not. It is also interesting to note that L. ferrerii and S. curvicornis cannot be 759 

found in the same locations, and yet, they do not appear to have significantly 760 

different circadian periods. In fact, for the populations examined, they appear to be 761 

comparable. 762 

The picture becomes clearer still when observing the differences in rhythm 763 

strength (Figure 7.D). Where those species with a lesser number of circadian 764 

phenotypes are more similar to each other, and likewise, those with the most 765 

diversity are more similar to each other. In other words, S. curvicornis and L. ferrerii 766 

were both significantly different to L. enatum and L. malachurum, but not to each 767 
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other. Likewise, there was no significant difference between L. enatum and L. 768 

malachurum. Because there is this consistency of differences that is not associated 769 

with differences in environments, we believe that the key to explaining the difference 770 

in diversity of behaviors may not lay in competition, but in something more 771 

endogenous of the species. Nevertheless, more data is needed.  772 

As we mentioned before, Lasioglossum as a genus is well-known for having a 773 

large diversity in social behaviors. This diversity in sociality may also be reflected in 774 

other types of behaviors, and could be the key to explaining the individual 775 

differences in circadian rhythm we observed at the interspecies level. A limitation of 776 

our work was the sample size and the number of the evaluated populations (one 777 

population for each species and low number of individuals, particularly for L. 778 

enatum), thus, it definitely merits repetition of the work to see if our results can be 779 

replicated. Furthermore, in the one species whose population was close to a 780 

hundred, more time than usual was needed to evaluate the data, due to the diversity 781 

found within it. In future studies we will focus on streamlining the process of 782 

describing a species with diverse circadian behaviors such that it will facilitate 783 

studies with a higher volume of observations. Additionally, we will continue 784 

describing the circadian rhythm of more species of Lasioglossum who present social 785 

behaviors not evaluated in this study, and will evaluate if there is a relationship 786 

between sociality and rhythm, causal or otherwise.  787 

 788 

 789 
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Figure Legends: 790 

Figure 1: Habitat (A-B) and Species Observed (C-F). A) Puerto Rico study site in 791 

which L. ferrerii and L. enatum were captured. B) Some of the vegetation the bees 792 

were observed visiting, with flowers belonging to the families: Commelinaceae, 793 

Cucurbitaceae and Euphorbiaceae. C) Female of L. ferrerii distinguished from the 794 

male by its short antenna and pointed abdomen. D) Male of L. ferrerii, distinguished 795 

by its long antennae and flat abdomen. This species is known for its long head 796 

shape and metallic metasoma (Gibbs 2018). E) Female of L. enatum distinguished 797 

from the male by its short antenna and pointed abdomen. F) Male of L. enatum, 798 

distinguished by its long antennae and flat abdomen. This species is distinguished 799 

by: “tegula punctate, extended posteriorly to form a small angle, mesepisternum 800 

punctate and metasoma brown” (Gibbs 2018). 801 

Figure 2: Female S. curvicornis exhibit short period phenotype under constant 802 

darkness (<24 h endogenous circadian rhythm). (i) Double-plotted actogram 803 

showing the locomotor activity pattern of: (A) The average of all 4 individuals 804 

examined of S. curvicornis. (B) A representative individual randomly selected from 805 

the population. In a double plotted actogram, each row represents locomotor activity 806 

(counts per 30 min) of two consecutive days and the second is repeated such that it 807 

is always the beginning of the next row. The x-axis shows the time of day under 808 

constant darkness expressed as circadian time (CT). (ii) Average of the locomotor 809 

activity patterns of the five days observed into one. The y-axis represents activity 810 

over time and the x-axis represents CT (iii) Autocorrelation plots used to determine 811 
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the period (p), rhythm index (RI) and rhythm strength (RS). The oscillations indicate 812 

periodicity. The asterisk at the third peak of the autocorrelation plot indicates the 813 

particular time point used for the determination of the rhythm parameters. 814 

Figure 3: A summary of the variations in the circadian rhythm as observed in: 815 

A) Lasioglossum malachurum, B) Lasioglossum enatum and Lasioglossum ferreirii. 816 

The circle represents the root of the flowchart, squares represent nodes that branch 817 

off and rhombuses represent leaves.  In total for malachurum, 5 distinct behaviors 818 

were observed.  819 

Figure 4: L. malachurum exhibits a variety of circadian phenotypes under 820 

constant dark conditions. (i) Double-plotted actogram showing the locomotor 821 

activity pattern for 5 days of: (A) The average of all 98 individuals examined and 822 

representatives for the following categories: (B) Bimodal Rhythmic (C)Weakly 823 

Rhythmic Bimodal, (D) Unimodal Rhythmic, (E) Weakly Rhythmic Unimodal, (F) and 824 

Arrhythmic circadian behaviors. (ii) An average activity plot for the five days of 825 

observation (iii) Autocorrelation plots used to determine the period (p), rhythm index 826 

(RI) and rhythm strength (RS).  827 

Figure 5: Description of the circadian behaviors exhibited by L. ferrerii under 828 

constant dark conditions. (i) Double-plotted actogram of the locomotor activity 829 

from the five-day observational period for: A) All 22 individuals from the data set 830 

averaged out into one representative individual. B) A representative individual out of 831 

the 11 from the category Strongly Rhythmic. C) A representative individual out of the 832 

11 from the category Noisy Rhythmic. (ii)An average activity plot for the five days of 833 
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observation (iii) Autocorrelation plots used to determine the period (p), rhythm index 834 

(RI) and rhythm strength (RS). 835 

Figure 6:  Description of the circadian behaviors exhibited by L. enatum under 836 

constant dark conditions. (i) Double-plotted actogram of the locomotor activity 837 

from the five-day observational period for: A) All 8 individuals from the data set 838 

averaged out into one representative individual. B) The only individual from the 839 

category Strongly Rhythmic. C) A representative individual out of the 2 from the 840 

category Noisy Rhythmic. D) A representative individual out of the 5 from the 841 

Arrhythmic category.  (ii)An average activity plot for the five days of observation (iii) 842 

Autocorrelation plots used to determine the period (p), rhythm index (RI) and rhythm 843 

strength (RS).  844 

Figure 7: Summary of descriptive and inferential statistics. A) Number of 845 

circadian categories observed by species. B) Box plot illustrating the difference in 846 

average locomotor activity between species. S. curvicornis has a minimum of 8.200, 847 

25% percentile of 8.900, mean of 13.63, 75% percentile of 20.28 and a maximum of 848 

22.90. L. ferrerii has a minimum of 0.7000, 25% percentile of 2.675, mean of 4.950, 849 

75% percentile of 7.100 and a maximum of 11.20. L.enatum has a minimum of 850 

1.000, 25% percentile of 2.875, mean of 8.113, 75% percentile of 6.650 and a 851 

maximum of 36.00. L. malachurum has a minimum of 6.700, 25% percentile of 852 

10.35, mean of 8.201, 75% percentile of 10.35 and a maximum of 26.30. There was 853 

only a statistical difference between L. ferrerii and L. malachurum with a p-value of 854 

0.0016, DF of 61.66 and t of 3.867.  C) Box plot illustrating the difference in circadian 855 
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period between species. S. curvicornis has a minimum of 22.20, 25% percentile of 856 

22.35, mean of 22.75, 75% percentile of 23.10 and a maximum of 23.20. L. ferrerii 857 

has a minimum of 21.80, 25% percentile of 21.95, mean of 22.69, 75% percentile of 858 

23.20 and a maximum of 24.200. L. enatum has a minimum of 20.00, 25% percentile 859 

of 22.40, mean of 23.31, 75% percentile of 24.60 and a maximum of 25.50. L, 860 

malachurum has a minimum of 20.20, 25% percentile of 23.50, mean of 24.00, 75% 861 

percentile of 24.50 and a maximum of 27.80. Both S. curvicornis and L. ferrerii were 862 

significantly different from L. malachurum with p-values of; 0.0102 and <0.0001, DFs 863 

of; 5.652 and 52.94 and, t of; 5.179 and 6.565, respectively.  D) Box plot illustrating 864 

rhythm strength among species.  S. curvicornis has a minimum of 3.000, 25% 865 

percentile of 3.250, mean of 4.000, 75% percentile of 4.500 and a maximum of 866 

4.500. L. ferrerii has a minimum of 0.6000, 25% percentile of 1.700, mean of 2.691, 867 

75% percentile of 4.125 and a maximum of 4.600. L. enatum has a minimum of -868 

2.500, 25% percentile -0.4250, mean of 0.2125, 75% percentile of 1.200 and a 869 

maximum of 2.200. L. malachurum has a minimum of -2.100, 25% percentile of 870 

0.7250, mean of 1.754, 75% percentile of 2.800 and a maximum of 4.500. The 871 

solitary, S. curivcornis, and communal L. ferrerii, were significantly different from the 872 

eusocial species, but not each other. Likewise, L. enatum and L. malachurum were 873 

not significantly different. S. curvicornis vs. L. enatum ; p-value of 0.0014, df of 7.932 874 

and t of 6.226. S. curvicornis vs. L. malachurum; p-value of 0.0177, df 4.04 of and t 875 

of 5.895. L. ferrerii vs. L. enatum; p-value of 0.0056, df of 17.09 and t of 3.982. L. 876 

ferrerii vs. L. malachurum; p-value of 0.0259, df of 33.42 and t of 3.054. 877 
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Tables and Figures 879 

 880 

Figure 1: Habitat (A-B)  and Species Observed (C-F). 881 
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Figure 2: Female S.curvicornis exhibit short period phenotype under constant 883 

darkness (<24 h endogenous circadian rhythm) 884 

 885 

Figure 3: A summary of the variations in the circadian rhythm as observed in: 886 

A) Lasioglossum malachurum, B) Lasioglossum enatum and Lasioglossum 887 

ferreirii 888 

 889 
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 891 

Figure 4: L.malachurum exhibits a variety of circadian phenotypes under 892 

constant dark conditions. 893 
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 894 

Figure 5: Description of the circadian behaviors exhibited by L. ferreirii under 895 

constant dark conditions 896 
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  897 

Figure 6:  Description of the circadian behaviors exhibited by L. enatum under 898 

constant dark conditions. 899 
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Figure 7: Summary of descriptive and inferential statistics 902 
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A Machine Learning Pipeline for the Classification of Inter-individual Behaviors 941 

in Circadian Rhythms of Lasioglossum Bees 942 

Abstract: 943 

 Traditionally, model organisms are used for the study of daily activity patterns. 944 

Because the genetics of these organisms are well-known, there has been no need to 945 

do systematic a priori sorting of the individuals into groups, the categories are built 946 

into the analysis pipeline. Recently, there has been a rising interest in using non 947 

model organisms in studies, and with them comes unexplored diversity. To facilitate 948 

the a priori sorting of individuals for analysis, we designed a machine learning 949 

pipeline using individuals of Lasioglossum malachurum as a case study. We tested 950 

both supervised and unsupervised algorithms, and evaluated how well they 951 

separated the individuals of the population in discrete groups based on the 952 

phenotype of their daily activity patterns. Decision Trees with Symbolic Aggregate 953 

approXimation (SAX) transformation achieved the best results. K Nearest Neighbors 954 

with Symbolic Aggregate approXimation was a close second. In the future, we aim to 955 

test the transferability of this pipeline using insects of the same genus, but different 956 

expressions of behavior.  957 

Introduction:  958 

The study of circadian rhythms focuses on characterizing the daily activity 959 

patterns of populations. These daily activity patterns are constrained to a period of 960 

time that approximates 24 hours and are consistent with the rotation of Earth. 961 

Traditionally, model systems, such as fruit flies, mice, rats, and E. coli cell lines, are 962 

used to evaluate circadian rhythms. Because these models are well-known in terms 963 
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of phenotype, no a priori systematic sorting of the data sets is usually done, the 964 

scientist already knows which individuals have which genotypes and can sort them 965 

accordingly.  966 

Recent works in behavioral biology and circadian rhythms have evaluated the 967 

use of non-model systems, such as varying species of bees and have found them to 968 

be ideal systems to study due to the diversity of behaviors exhibited (Bloch and 969 

Grozinger 2011). In particular, halictid bees have been suggested for studies that 970 

evaluate the impact of sociality on other behaviors, for example circadian rhythms 971 

(Toth and Rehan 2016, Bloch and Grozinger 2011, Danforth et al. 2003). However, 972 

because bees express a high diversity of behaviors, they present an added layer of 973 

difficulty in terms of systematic evaluation. For example, Gianoni-Guzman and 974 

collaborators (2014) saw social insects in comparison to Drosophila melanogaster 975 

(the fruit fly) displayed a significant amount of variance in terms of period. This 976 

means that the length of the internal clock of these social insects (which includes 977 

honey bees)  varied from individual to individual. In a different work, Gianoni-978 

Guzman (2020) tracked the foraging schedules of honey bees. He found three 979 

distinct temporal shift behaviors. The variance in the first study, where one of the 980 

populations evaluated was of honey bee foragers, can be explained by the behaviors 981 

observed in the second. Studies like Gianoni-Guzman 2014, where there is no prior 982 

knowledge of the phenotypes present in a population being evaluated, may benefit 983 

from a priori sorting based on similarity found within subsets of the population. 984 

Studies like that of Gianoni-Guzman (2020) may be of use to train a classification 985 

pipeline and serve as a sorting tool for future studies. In cases where no prior labels 986 
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are available, a clustering pipeline in conjunction with expert validation can inform 987 

the labeling process. Expert validation is defined as having an expert evaluate the 988 

clusters and validate their biological significance.   989 

In this work, we evaluate the addition of a grouping step to the circadian 990 

evaluation pipeline, as to facilitate the determination of the groups in the non-model 991 

systems. To achieve this, we applied both clustering (K-mean and Partitioning 992 

Around Medoids) and classification (K Nearest Neighbors, Decision Trees and 993 

Random Forest) on a locomotion activity dataset for the halictid bee Lasioglossum 994 

malachurum (L. malachurum). In addition, we transformed the time series of each 995 

individual using Symbolic Aggregate approXimation (SAX) to reduce dimensionality 996 

in the data set, so that the computational resources needed to evaluate this data set 997 

are minimized. Given how circadian activity is traditionally analyzed, we expect that 998 

the methods that best capture the shape of daily activity patterns will be the most 999 

effective at grouping the bees in groups of circadian significance. 1000 

High Level View of the data: 1001 

 The following 3 sets of graph panels in Figure 1 are examples of what the 1002 

data looks like after it’s analyzed with a traditional circadian pipeline. Visually, their 1003 

activity patterns do not look similar. The individual in Figure 1. A is extremely 1004 

rhythmic, which makes it so the graph of the average daily activity looks fairly similar 1005 

to the activity of any one day in the actogram. This individual appears to have a 1006 

bimodal pattern of activity, where the main bout of activity occurs in between the 1007 

sixth and twelfth hours of the day, and the minor one occurs about an hour later after 1008 

a period of inactivity.  The Lomb Scargle Periodogram suggests that a day for this 1009 
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individual last about 23.77 hours, and the autocorrelation oscillates, which indicates 1010 

strong rhythmicity.  1011 

In contrast, the individual in Figure 1. B appears to be a repeated yet spread 1012 

out bimodal pattern. That spreading of the locomotor activity already makes it 1013 

different from the individual in Figure 1. A. They also differ in the time of day in which 1014 

they are active. The average activity plot in Figure 1. B has a similar shape to the 1015 

days of observation, but there is a distinct difference between it and Figure 1.A.. One 1016 

can see that the gap in activity isn’t exactly the same for every day. The 1017 

Periodogram suggests that this individual’s day lasts 22.85 hours, which is slightly 1018 

shorter than the previous individual’s day. The autocorrelation graph does not have 1019 

as well-defined undulations as the previous individual, which suggests that the 1020 

individual Figure 1. B, although rhythmic, is not as strongly rhythmic as the subject in 1021 

Figure 1. A. 1022 

Lastly, Figure 1. C is an example of an individual whose rhythm is not 1023 

circadian (24h), but might be ultradian (12h). Different from the other two Figures, it’s 1024 

difficult to determine a pattern from looking at the actogram, and by consequence, 1025 

it’s not easy to tell if the average is in any way representative of the individual. This 1026 

makes us rely on the autocorrelation to determine rhythm. As one can see in the 1027 

autocorrelation plot, this one has a smaller undulations pattern, although it rarely 1028 

reaches significance. Those small undulations can lead one to believe that this 1029 

individual might have a much shorter internal day than what we are accustomed to 1030 

analyzing. Therefore, the periodogram might not be useful to determine the period 1031 

for these cases.  1032 
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In all, these three individuals demonstrate that there exists a level of diversity 1033 

within the data set that might be lost if we evaluate it only using averages. In Figure 1034 

2, this theory is illustrated with a single plotted actogram, which represents the 1035 

activity of all 98 individuals present in this data set. The activity of any one of the 1036 

days in Figure 2  is not representative of any one day illustrated in the individuals in 1037 

Figure 1.  1038 

To report averages as representative of the species in terms of circadian 1039 

rhythm, in this case, is misleading. Nevertheless, describing each individual is 1040 

tedious work. As an alternative, we should be able to group together individuals with 1041 

similar characteristics and use them to describe the daily activity patterns of the 1042 

species. To achieve this, we explored the use of both unsupervised and supervised 1043 

machine learning with an abstract knowledge representation of time series. Because 1044 

the methods used to evaluate circadian data are dependent on the mean and shape 1045 

of the activity, we expect that methods that utilize centroids will be the most effective, 1046 

and we chose SAX for its ability to cluster and classify univariate time series by 1047 

shape.  1048 

Methods: 1049 

Animal Model: 1050 

Lasioglossum malachurum (L. malachurum)(Kirby, 1802) 1051 

 L. malachurum is an obligately eusocial halictid bee, also known as sweat 1052 

bees. They typically nest underground in complex colonies (Wyman, L. M., &amp; 1053 

Richards, M. H. 2003).   1054 

Data collection: 1055 
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Site description: 1056 

The specimens were collected on Lesvos (39°10’N 26°20’E), a Greek island 1057 

in the northern Aegean Sea off the coast of Turkey. It was summer during the time of 1058 

collection, and the specimens were captured after being observed between the 1059 

hours of 0600 and 0900 (Cordero-Martínez, C.S., et al. 2017). 1060 

Capture methods 1061 

 The bees were hand captured as they visited the flowers of Convolvulus 1062 

arvensis, colloquially known as morning glories (Cordero-Martínez, C.S., et al. 2017).  1063 

Housing and observation 1064 

 Each bee was housed individually in a modified centrifuge tube, first in 1065 

oscillating conditions and later in constant conditions. Oscillating conditions were 1066 

meant to mimic the changes of light, temperature and humidity in their natural 1067 

environment, while constant conditions kept all environmental cues constant. While 1068 

in constant conditions, the bees were not exposed to light.  At the bottom of the tube 1069 

that housed the bee, there was a cotton ball soaked in water for hydration that was 1070 

refilled every 2-3 days. The body of the tube had small holes to allow for air 1071 

circulation. On the cap, there was a paste that would function as food for the bee. 1072 

The paste was composed of a modified version of ApiYen brand bee feed that had 1073 

no protein, but kept the same amount of sugar.  1074 

 These tubes were placed into TriKinetics’ Locomotion Activity monitors (LAM), 1075 

which in turn were put inside GRW-20 CMP3/TBLIN incubators. The incubators were 1076 

set to mimic the environmental conditions in which L. malachurum was captured 1077 

(Cordero-Martínez, C.S., et al. 2017). 1078 
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Data exploration: 1079 

The code for this process is available at: 1080 

https://github.com/ComplejoC/CircadianThesis 1081 

Data formatting  1082 

 The data is outputted by the LAM as a data frame contained within a tabular 1083 

separated value file (.tsv),  as specified by the manufacturer  in the  user manual 1084 

(https://www.trikinetics.com/Downloads/DAMSystem3%20Software%20Data%20She1085 

et.pdf). In this data sheet, columns 11-42 are representative of one individual, and 1086 

each row is the number of times that the subject moved, as detected by the sensor in 1087 

one minute.  1088 

 The LAM system is prone to a number of errors, of which we must account for 1089 

while analyzing the data. If a subject were to fall asleep or otherwise become 1090 

immobile directly on top of the beam, the system may display the individual as more 1091 

active than they are in actuality. If someone were to open the doors of the incubator, 1092 

the sudden entrance of an outside light source can break the beam, and it will count 1093 

as activity. In our case, we do not need to worry about the lights inside the incubator 1094 

due to the observations being done in Dark-Dark conditions (DD). Nevertheless, it’s 1095 

important to keep in mind that turning on the lights inside the incubator may cause 1096 

false activity counts. 1097 

Data processing 1098 

 To be able to properly represent the data, we had to remove dead individuals. 1099 

Including them in the study would influence the shape of the data, and might not 1100 

accurately represent the actual behavior of the individual. We used the death 1101 

https://github.com/ComplejoC/CircadianThesis
https://www.trikinetics.com/Downloads/DAMSystem3%20Software%20Data%20Sheet.pdf
https://www.trikinetics.com/Downloads/DAMSystem3%20Software%20Data%20Sheet.pdf
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detection algorithm from the Rethomics framework of R packages (Geissmann Q, 1102 

Garcia Rodriguez L, Beckwith EJ, Gilestro GF. 2019). 1103 

 When graphing autocorrelations, it is common to detrend to reduce the 1104 

influence of distortion that is inherent in this type of data. To do this, we used the 1105 

detreand function from the pracma R package (Hans W. Borchers 2019).  Because 1106 

we wanted to see how the data correlated with itself in both directions, we used the 1107 

cross correlation function from base R (ccf)(R Core Team 2019) and plotted it using 1108 

the autoplot function from ggfortify (Yuan Tang 2016), resulting in a bidirectional 1109 

autocorrelation instead of the unidirectional autocorrelation available in base R.  1110 

Visualization: 1111 

 The double plotted actogram, and the Lomb–Scargle Periodograms were all 1112 

generated using the Rethomics pipeline (Geissmann Q, Garcia Rodriguez L, 1113 

Beckwith EJ, Gilestro GF. 2019).  1114 

 Double Plotted Actogram: 1115 

This type of visualization is typically used to represent the Circadian 1116 

locomotor activity rhythms. Each vertical bar is representative of 1117 

activity, in our case the number of times the bee broke the sensor laser. 1118 

The higher the bar, the more active the individual. It’s called double 1119 

plotted, because with the exception of the first day (and maybe the 1120 

last), every day is plotted twice, two consecutive days are plotted one 1121 

next to each other, and the second day being re-plotted in the right half 1122 

right under (Jud, C. et al., 2005). 1123 

 Lomb-Scargle Periodograms:  1124 
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 Lomb-Scargle is an algorithm that can be used to describe the period 1125 

of unevenly sampled time series data sets. It allows for approximation 1126 

of a power spectrum estimator, similar to that of a Fourier transform. 1127 

The resulting estimators can be used to determine the period of 1128 

oscillation of a data set (Jacob T. VanderPlas, 2018). In our case, those 1129 

periods are representative of the length of the day in the internal clocks 1130 

of our subjects.  For ease of visualization, the data was downsampled 1131 

from 1 minute bins to 30 minute bins. This down-sampled data was 1132 

used to make average activity plots using ggplot2 (H. Wickman. 2016) 1133 

and the autocorrelation plots.  1134 

 Average Activity plots: 1135 

These plots are representative of the average activity done by each 1136 

individual for the duration of the study. We added all days together into 1137 

one representative day, and divided it by the total time accumulated to 1138 

get the average. 1139 

 Autocorrelation plots: 1140 

The autocorrelation of a time-series measures how similar a  time-1141 

series is with a forward or backward shifted version of itself. For signals 1142 

that oscillate perfectly, the graph of this function oscillates between +1 1143 

and -1, t=0 is the highest value registered. To create our 1144 

autocorrelation plots, we detrended our data using pracma (Hans W. 1145 

Borchers 2019) and did a self-cross correlation using the stats ccf 1146 



 

 

 

 

57 

 

function (R Core Team 2019) to see how the data matched itself in both 1147 

directions. 1148 

Clustering Methodology:  1149 

 Clustering is a type of unsupervised machine learning, in which the data 1150 

analyzed is unlabeled. That is to say, the machine does not have a reference of how 1151 

the data groups together, and must learn to do so without input from a user (Géron, 1152 

2018). The purpose of this study is to optimize the already existing pipeline for 1153 

circadian analysis. Therefore, the data transformations used to reduce 1154 

dimensionality for clustering are those that are already used in circadian science: 1155 

The Lomb Scargle (LS) Periodogram, Average Daily Activity and Autocorrelations.  1156 

Consensus Clustering 1157 

 Before attempting to cluster, we did a procedure known as consensus 1158 

clustering. It is a “method to represent the consensus across multiple runs of a 1159 

clustering algorithm to assess the stability of the discovered clusters” (Monti, S., 1160 

2003). The use of the word stability in these instances refers to how much the 1161 

composition of each cluster changes over repetitions. 1162 

We wanted to input a number of clusters for our unsupervised algorithm that 1163 

were not arbitrary. By doing various repetitions of the clustering procedure and 1164 

observing which number of clusters has the minimum error, we are allowing the data 1165 

to speak for itself instead of using our prejudice. For this, we used Wilkerson and 1166 

Niel’s R package consensusclusterplus that can be found in bioconductor 1167 

(Wilkerson, D. M and Hayes, Neil D 2010). We used a maximum k of 10 and 10,000 1168 
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repetitions, using both Euclidean and Manhattan distances. Ultimately, the 1169 

Manhattan distance was used to minimize cluster collisions.  1170 

K-means clustering 1171 

 In one instance, we use K-means to cluster our data. The algorithm takes an 1172 

n number of observations or individuals in our case, and divides it into K clusters. K 1173 

is the number of clusters as provided by the user. The original centroids around 1174 

which the data clusters are randomly set and require a seed for replicability in the 1175 

code. We used the set.seed function from Base R (R Core Team 2019) to generate 1176 

the centroids, and ran the kmeans function from the stats package (R Core Team 1177 

2019). Once the first centroids are set, each individual becomes a member of the 1178 

cluster with the nearest mean, serving as a prototype of the cluster. Then the 1179 

algorithm continues, by adjusting the centroids until a partition of the data that 1180 

minimizes the sum of squares deviation is found (H.-P. Kriegel et al. 2017).  1181 

PAM (K-Medoids) 1182 

 In two instances, to cluster our data, we used the PAM algorithm, also known 1183 

as k-Medoids, from the R package cluster (Maechler, M et al., 2019). This algorithm 1184 

is considered a more robust version of K-means, because it minimizes a sum of 1185 

dissimilarities instead of a sum of squared euclidean distances. Just like in K-means, 1186 

the algorithm is given a K number of centers, the difference being that centers or 1187 

medoids are actual points within the data set (L. Kaufman  P. J. Rousseeuw, 1990 ).  1188 

 We clustered the data using 3 different transformations: Average Daily 1189 

Activity, the AutoCorrelation Coefficient and The Lomb–Scargle periodogram. 1190 

Cluster visualization 1191 
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 Because we have 97 individuals with 5 days’ worth of locomotion data, 1192 

graphing the clusters means we have to reduce dimensions to make them human 1193 

readable. To do this, we used the R package factoextra (Alboukadel Kassambara 1194 

and Fabian Mundt, 2020), which graphs data by using the two most representative 1195 

dimensions of the whole and using them as the x/y-axis.  1196 

Classification Pipeline: 1197 

Phase 1: Creating the Gold Standard Part 1 Building the Baseline 1198 

1. Naive Classification: 1199 

a. Teach a group of non-experts how to interpret the graphs usually used 1200 

for circadian analysis.  1201 

b. Separate them into smaller groups and give them a stack of graphs 1202 

that they will divide into 3 groups: Rhythmic(R), Arhythmic (AR) and 1203 

Weakly Rhythmic (WR). 1204 

c. Measure the percentage of classification coincidence between the 1205 

groups.  1206 

2. Experienced (Round two using the same people): 1207 

a. Give a review on how to classify the graphs. 1208 

b. Separate them once again into smaller groups and give them the same 1209 

stack of graphs that they will divide into the same 3 groups as last time. 1210 

c. Measure the percentage of classification coincidence between the 1211 

groups.  1212 

d. Compare the percentages of coincidence of the groups between 1213 

rounds. 1214 
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Phase 3: Data Transformation 1215 

Time series data is famously noisy and unevenly sampled. To remedy the 1216 

pitfall of using this type of data, one may use transformation methods to make it more 1217 

manageable, such as Fourier Transformations, Discrete Wavelets, and Lomb Scargle 1218 

periodograms (Refienetti et al. 2007). We decided to use Symbolic Aggregate 1219 

ApproXimation or SAX for short. Our choice was based on the capacity of this 1220 

algorithm to do dimensionality reduction while still staying true to the data. This goes 1221 

in hand with the other advantage of using SAX, which is that it has lower bounds (J. 1222 

Lin, 2007). This means that it has the capacity to represent our time series while 1223 

using a minimum amount of resources.  1224 

1. Z-normalization 1225 

 Z-normalization, also known as z-score normalization and 1226 

“Normalization to Zero Mean and Unit of Energy” is a normalization method 1227 

first mentioned by Goldin & Kanellakis (1995). The functionality of this method 1228 

of time series normalization is to take the elements of an input vector and 1229 

transform them into an output vector whose mean is approximately 0 with a 1230 

standard deviation close to 1. The formula to achieve z-normalization is: 1231 

      
𝑥−𝜇

𝜎
 1232 

  Were x is an element within the time series, 𝜇is the mean value within 1233 

the time series and 𝜎 is the standard deviation of the time series. 1234 

2. Symbolic Aggregate ApproXimation (SAX) 1235 

 This algorithm takes a z-normalized time series and transforms it into 1236 
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symbolic representation to create words. Typically, any function using this 1237 

method will have four parameters: The size of the window of time being 1238 

observed, the length of the words that represent the data within that window, 1239 

the size of the alphabet from which the words are built, and the type of 1240 

numerosity reduction (P. Ordoñez et al., 2011). This data representation 1241 

captures the shape of a time series, while also simplifying and facilitating 1242 

pattern detection (J. Lin and Y. Li, 2009). For the purposes of implementation 1243 

in this work, PAA size will be the equivalent of word size, size of the window of 1244 

time being observed will be referred to as sliding window, and number of 1245 

letters being used is alphabet size. In Figure 3, is a cartoon of how the 1246 

transformation would look like for a sliding window of 180, PAA size of 7 and 1247 

an alphabet size of 4. The time series in Figure 3 would be represented by the 1248 

symbolic word CBDCCCC.   1249 

3. Bag of words (BoW) 1250 

 Once the data is transformed, it is necessary to quantify it. BoW does 1251 

this by quantizing each extracted word and then counting the frequency of 1252 

each individual word contained in the time series (Senin & Malinchik, 2013). 1253 

The final output of this is a table for each individual subject of study for whom 1254 

we have a “count” of how many words represent them, and how often those 1255 

words repeat. This by itself is not enough, as it does not highlight how much 1256 

every word contributes to the overall shape of the time series.  1257 

4. Term frequency–inverse document frequency (TF-IDF) 1258 

 This is a type of numerical statistic that measures how much a word 1259 
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contributes to the overall shape of the data (Neto. J, et al., 2000). Words that 1260 

are unique within the data set are considered to weigh more and have a 1261 

stronger effect on the shape of the data. For example, many bees in a hive 1262 

may display highly rhythmic behaviours, but a group of them may only be 1263 

active in the morning, another only in the afternoon, while a third group may 1264 

be active all day long. The time series for a unique bee will be similar in shape 1265 

to those who are active in the same shift. Therefore, all of the morning bees 1266 

will have a distinct shape from the afternoon bees and in turn those two will 1267 

have a different shape from the constant workers, even though all these bees 1268 

may exhibit rhythmic behaviour.  1269 

Data Sets: 1270 

 Once transformed using SAX, the data set was separated into the training and 1271 

testing data sets. 90% of the individuals were randomly assigned to the training set, 1272 

while the rest were used for the testing set.  1273 

Phase 4: Supervised Learning 1274 

Supervised machine learning is a type of machine learning where some of the 1275 

data being analyzed already has the desired solutions (labels). The type of 1276 

algorithms that use labels to learn an established pattern typically have one of two 1277 

uses. One is to predict a target value based on a given set of numerical 1278 

characteristics (features), this type of task is called regression. The other is the most 1279 

common use for supervised learning, which is classification, or separating data into 1280 

categories. In our case, the algorithm learns the patterns from the labeled data set 1281 
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and uses this information to classify new data into the same categories (Géron, 1282 

2018). 1283 

5. K Nearest Neighbors (KNN) 1284 

 The KNN algorithm, as used for classification purposes, is a non-1285 

parametric method that uses plurality to determine membership within a group 1286 

(Bezdek et al., 1986). The user assigns a number K of minimum nearest 1287 

neighbors that an individual being evaluated must have to be assigned a label 1288 

(Bhatia, 2010) (Figure 4). The distances between neighbors are measured 1289 

with Euclidean distances. 1290 

Decision Trees 1291 

 Decision Trees consist of a unique central node that branches out into 1292 

edges depending on the answer to binary questions. The binary questions 1293 

represent a test on an attribute for a classification, each branch represents an 1294 

outcome of the test which eventually ends in terminal nodes or leaves 1295 

representative of the labels (Leonard, 2017). On the left-hand side on Figure 5 1296 

there is an example of how a decision tree could look like using our labels. 1297 

6. Random Forest  1298 

 This algorithm is derived from Decision Trees. By definition, it is a 1299 

combination of tree predictors, or the “forest”. Each tree depends on the 1300 

values of a random vector sampled independently, and with the same 1301 

distribution, for all other trees in the forest (Breiman, L. 2001). Based on a 1302 

measurement of error, the best tree is chosen from the forest as the predictive 1303 

model (Figure 5 right).   1304 



 

 

 

 

64 

 

All the code for phases 3 and 4 can be found in: 1305 

https://github.com/ComplejoC/CircadianSAX.  1306 

Results: 1307 

Clustering: 1308 

Clustering by Lomb Scargle Periodogram 1309 

 An intuitive way to start is by separating individuals by the length of their day 1310 

or periods. We reasoned that individual with similar lengths of day would cluster 1311 

together. After doing consensus clustering, it was determined that 4 clusters was the 1312 

optimal way to minimize errors and to have zero overlap between the clusters. 1313 

Figure 6 is an illustration on how those clusters look like after using the PAM 1314 

algorithm.  1315 

Some clusters notably have more individuals than others, which illustrates 1316 

that some mean lengths of days are more common than others. The requirements 1317 

for cluster membership appear to be wider or shorter depending on the cluster. A 1318 

closer inspection of the clusters, as illustrated in Figures 7 and 8, shows the 1319 

characteristics of membership for each cluster. 1320 

One may be tempted to look at all four graphs while looking for a pattern in 1321 

clustering. Normally, the way to tell this story would be to only show the 1322 

periodogram, because having all things together may seem confusing. Nevertheless, 1323 

it’s important to see all four graphs while validating the clusters for the biological 1324 

interest, because that is how the circadian expert would evaluate the individuals.    1325 

All these clusters in Figures 7 and 8 have in common the shape of the power 1326 

spectrum, and not the length of their day per se. This leads to bees with different 1327 

https://github.com/ComplejoC/CircadianSAX
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rhythms, but similarly shaped periodograms being put together. In some cases, like 1328 

in Figure 7 B, the Lomb Scargle Periodogram could not determine a period for one of 1329 

the individuals, but could determine it for the other. Furthermore, the period did not 1330 

have to be similar for the individuals to group together. In some cases, we had 1331 

individuals in the same cluster, for whom the difference in period would be 5 hours.  1332 

Clustering by Autocorrelation  1333 

The next intuitive step is to cluster based on autocorrelation, as it is one of the 1334 

most commonly used measures of rhythmicity. Because of its typical use, it stands to 1335 

reason that the algorithm would cluster based on rhythm, which is what we are 1336 

looking to describe. After using Consensus clustering, we determined that PAM with 1337 

a K of 3 would work best to cluster the bees (Figure 9). 1338 

We found no form of collision between the clusters (Figure 9). The dimensions 1339 

of this plot do not appear to be representative of the data. Similarly, to a PCA, the 1340 

sum of the percentages of both principal components should be as close to 100% as 1341 

possible. There also seems to be an over-representation of individuals in cluster 1 1342 

and few individuals both in cluster 2 and 3. Because it is known that this data set is 1343 

diverse, it is worrying to see that most of the individuals grouped together.  1344 

Contrary to our hypothesis, rhythmicity is not the feature on which the data is 1345 

being clustered. It would appear that shape is once again the driving force behind 1346 

our clusters. In the case of autocorrelation, it would appear to be the thickness of the 1347 

autocorrelation plot.  1348 

The second and third cluster appear to group things together by the thickness 1349 

of the autocorrelation, where cluster 3 is thicker than 2. Nevertheless, contrary to 1350 
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what one would expect, it does not appear that all the individuals from these clusters 1351 

have similar rhythms. To exemplify, in Figure 10. B., the thickness in the 1352 

autocorrelation of both individuals is similar, but it’s clear that the strength of their 1353 

rhythms is contrasting.  1354 

Clustering by Average Activity  1355 

For this group we choose to do clustering in a different manner. By using 1356 

consensus, we determined that the K-means algorithm with a K of 3 was the best 1357 

approach for this transformation (Figure 11. D.). 1358 

 The clusters for average daily activity are separated by magnitude of activity, 1359 

with no consideration as to when the activity is being done. Neither of the locomotion 1360 

plots (Figure 11. A. and B.) give the impression that any of the clusters have a 1361 

common period of inactivity. The apparent lack of inactivity is the result of averaging 1362 

individuals that are active in different times of the day. Figure 11. C illustrates that 1363 

definitely, is the magnitude of activity that distinguishes all 3 clusters.  1364 

Classification: 1365 

K Nearest Neighbors (KNN): 1366 

 To explore which transformation parameters optimized accurate classification, 1367 

we explored all possible combinations of PAA size and Alphabet Size, as seen in 1368 

Table 1, where PAA could be equal to: 3,4,6,8,12 or 24, and Alphabet Size could be: 1369 

3,4,5,6 or 7. Additionally, we kept Sliding Window Size equal to 48, as we wanted 1370 

our results to be analyzed in the circadian 24 hours. The best overall scores were 1371 

achieved with a combination PAA of 4 and Alphabet Size of 3 (Table 1). Overall, no 1372 
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trend is evident when we experiment with the SAX parameters, i.e the alphabet size 1373 

and PAA were typified by the combination of data set and classification algorithm.   1374 

Often precision for the weakly rhythmic category was NA, which also reflected 1375 

on the F1 measure. Contrastingly, the rhythmic category was the one which most 1376 

often had any form of measurement, but it was the arrhythmic category that kept the 1377 

better scores, although it has a larger amount of NAs than rhythm.  1378 

Decision Trees and Random Forest: 1379 

 With the intention of improving upon the results achieved from KNN, we 1380 

tested the use of Decision Trees. After fitting the model using the rpart method from 1381 

caret, we examined which Complexity Parameters were best for creating our 1382 

predictions. Similarly, we build a Random Forest model using the same SAX 1383 

parameters and the rf method for caret. In this case, we observed the number of 1384 

randomly selected predictors to use in our prediction.  1385 

 Overall, both of the models are consistently better than KNN, and in one 1386 

instance with  PAA 6 and Alphabet 3, Random Forest performed the best with an 1387 

accuracy of 0.889 (Table 2). Nevertheless, although both tree algorithms had better 1388 

accuracy, whenever PAA or Alphabet size got larger than 4, the process became 1389 

more computationally intensive. KNN on the other hand was not as computationally 1390 

intensive, and on one occasion with PAA 4 and alphabet size of 3, achieved an 1391 

accuracy of 0.8.  1392 

Just like in KNN, tree methods had a large occurrence of NAs in precision, 1393 

recall and F1 for the weakly rhythmic category. In Figure 12, we illustrate how those 1394 

NAs happen. In the example, we are using the case of PAA = 4 and Alphabet Size = 1395 
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5 for KNN, but the same should apply for the other combinations of parameters and 1396 

classification algorithms.  1397 

We calculated accuracy by taking the sum of all correctly classified individuals 1398 

from Figure 12.A. and divide them by the total number of individuals evaluated. 1399 

Figure 12.C. illustrates how we calculate Precision, Recall and F-score. Precision 1400 

was calculated by dividing all the True Positives (TP) by the sum of the TP and the 1401 

False Positives (FP). In the example, for the WR category, both the total of TP and 1402 

the sum of TP and FP equals zero, and therefore the calculation leads to an 1403 

undefined value. Recall is the TP divided by the TP plus the False Negatives (FN). 1404 

This is illustrated in  our example for WR, where there is zero TP and four FN, and 1405 

when plugged into our formula, it results in recall equal zero. Lastly, F-Score is 1406 

calculated by doubling the product of Precision and Recall, and dividing it by the sum 1407 

of Precision and Recall. This last calculation is highly dependent on the results of the 1408 

two before it, and if both values equal zero, for example, or is even an undefined 1409 

value, then F-score will not be defined. This is the case in those instances where the 1410 

results for all possible evaluation metrics for one label is equal to NA.   1411 

Discussion: 1412 

Clustering: 1413 

Clustering by Lomb Scargle Periodogram: 1414 

 Using the Lomb Scargle periodogram to cluster our data resulted in clusters 1415 

separated by the shape of the graph instead of the periodicity of each individual. This 1416 

happened because periodograms are a power spectrum estimator and are usually 1417 

used to evaluate the presence of oscillations within a dataset. While it does provide a 1418 
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measurement of periodicity, that is one isolated point within the periodogram, and we 1419 

were providing to the clustering algorithms all of the data points within the graph. 1420 

That is to say that in this case, more information about the shape and oscillation of 1421 

the data did not, in fact, give a clear circadian set of instructions to the clustering 1422 

algorithm. At least not in terms of the length of the biological clock.   1423 

 That being said, the clusters appear to have a loose sense of modality. In 1424 

many cases like in Figure 7.A., the number of curves in the periodogram seem to be 1425 

reflective of the number of peaks of activity of the bee. This sense of shape is likely 1426 

what is informing the clusters and should be explored further with proper parameter 1427 

tuning for the Lomb Scargle transformation. 1428 

Clustering by Autocorrelation: 1429 

 Clustering by autocorrelation resulted in clusters that were either informed by 1430 

the thickness of the autocorrelation or by simply not having a discernible pattern. The 1431 

autocorrelation has its usefulness to circadian science in calculating period and 1432 

rhythmicity. Knowing this, one would expect that rhythm would be the main informing 1433 

feature to the clustering algorithm in this experiment. However, in reality, what best 1434 

informed the composition of the clusters was once again the shape of the data. This 1435 

is why there exist individuals within groups with different rhythmicities, but with a 1436 

similar shape to their activity pattern.  1437 

Clustering by Average Activity: 1438 

 In this last attempt, we not only managed to cluster in such a way that no 1439 

collision was detected, but additionally, the characteristics of each cluster was clear 1440 

and easy to define. Unfortunately, even though the individuals clustered 1441 
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appropriately by average activity, the groups did not share circadian similarities, 1442 

which was our goal. For example, the individuals in any given cluster may have the 1443 

same amount of activity over time, but did not necessarily share the same length of 1444 

day (period) or even be active during the same hours of the day, among other key 1445 

aspects.  1446 

 For all three univariate clustering, successful clustering does not equate to 1447 

significant positive results in terms of a practical question. The fact that all three 1448 

clustering applications did not yield a circadian significance does not imply a failure 1449 

in part of the algorithms, but instead, it shines a light on how complex time series 1450 

questions can be, and more so if we take the biological significance into 1451 

consideration. The way a circadian scientist would divide individuals in a population 1452 

into discrete groups is a multivariate process that would take into consideration all of 1453 

the transformations of the data that we evaluated individually with clustering. 1454 

Although other types of transformations could be considered for univariate clustering, 1455 

a multivariate approach should also be considered. However, multivariate clustering 1456 

is not a trivial pursuit.  Using transformations that can inform the shape and intensity 1457 

of the activity may definitely inform a good multivariate approach but developing the 1458 

mathematical and architectural tools necessary for this is a thesis in itself. This is 1459 

due to the size of time series data. We transform the data to reduce dimensionality, 1460 

but that does not mean we eliminate the continuous time component when we 1461 

transform, in fact we accentuate it. To reduce dimensionality further for the sake of 1462 

clustering may do an injustice to the data set. Therefore, the best way to group this 1463 

type of data set is one that conserves the fidelity of the data while also minimizing 1464 
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the amount of computational resources necessary to achieve the task, which is why 1465 

we did classification.    1466 

Classification: 1467 

 When we validated the results of the clustering analysis, we noticed a number 1468 

of patterns that appeared to be of circadian nature. Because multivariate clustering is 1469 

a more complex problem than what we were equipped to handle, these patterns 1470 

offered an alternative for analyzing these data. We created a user defined set of 1471 

labels and had a group of experienced and naive users assigned those labels to the 1472 

data set.  1473 

For all three classification algorithms, the weakly rhythmic category was the 1474 

one that caused the most difficulties. Consistently, it was the category that most 1475 

often returned NA in the evaluation metrics. This suggests that we should re-1476 

evaluate what makes an individual weakly rhythmic, or even subdivide it into smaller 1477 

categories still. On the other hand, we could also consider that none of the three 1478 

algorithms used may be appropriate for the type of data we are using. Nevertheless, 1479 

for the Rhythmic and Arrhythmic categories, all three classification methods 1480 

performed adequately, which leads us to believe that more appropriate labels are 1481 

needed.  1482 

K Nearest Neighbors (KNN): 1483 

 Our results suggest that combinations of smaller PAA size and Alphabet size 1484 

parameters in SAX transformation yield better results when evaluating the model. 1485 

More often than not, KNN did not return a model with accuracy higher than 0.5, 1486 
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which suggests that the use of this classification algorithm requires fine-tuning for it 1487 

to return correctly classified results.  1488 

Decision Trees and Random Forest: 1489 

 In contrast, both tree algorithms consistently got an accuracy over 0.5, 1490 

although only once did they outperform the highest KNN result. The optimal 1491 

parameters for the best model using Decision Trees follows the tendency in the 1492 

literature of smaller PAA and Alphabet size being the most optimal (J. Lin, 2007). 1493 

Although one could argue that PAA 6 and Alphabet 3 are still relatively small. The 1494 

better model came at the cost of computational power and took considerably longer 1495 

to build.  1496 

Conclusions: 1497 

 Clustering, although a good first step to gaining intuition for the behavior of 1498 

the data, does not result in strong conclusions. For all three attempts, the algorithm 1499 

used the parameter given in a way we did not expect. For example, for periods using 1500 

the shape of the data rather than its values. While these experiments gave us a good 1501 

intuition for the data set, the ultimately did not satisfy our need of grouping bees by 1502 

circadian phenotypes. The next steps would be to attempt clustering with other 1503 

transformations or even a multivariate analysis. Because our goal was to facilitate 1504 

circadian analysis, we decided it would be simpler to group using methods that 1505 

mimic how a circadian expert evaluates multiple parameters of an individual to 1506 

describe its characteristics.  1507 

In our classification experiments for all possible combinations of parameters 1508 

evaluated, the Weakly Rhythmic label caused the most difficulty in classification. 1509 
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Often returning zeros and NAs for precision and recall. At this moment, we have not 1510 

noticed any common patterns in the WR classifications. Nevertheless, this persistent 1511 

difficulty in classification does inspire a reconsideration on how we are labeling these 1512 

individuals. Because the individuals are not consistently being misclassified as 1513 

rhythmic or arrhythmic, it stands to reason that the errors are not necessarily caused 1514 

by the users mislabeling the individuals, but that just using three generalized labels 1515 

could be obfuscating certain behaviors in a category. Therefore, experimenting with 1516 

separating the weakly rhythmic category into further categories may facilitate the 1517 

classification process. Furthermore, these more in-depth classifications can help 1518 

reflect the biological reality of L. malachurum.   1519 

All is not lost, as we did build two different classification models with 0.80 1520 

accuracy or more. This demonstrated that at least two of the categories built with 1521 

user input were adequate to inform a model. Of the two models The KNN one paired 1522 

with SAX transformation parameters of PAA 3 and alphabet size 4 (Table 1) is the 1523 

less accurate at 0.80, nevertheless it was the one that ran the fastest and used the 1524 

least amount of computation resources. While the Decision Tree model with PAA 6 1525 

and Alphabet size 3 (Table 2) had an accuracy at 0.89 but took longer to run and 1526 

more computational resources. Therefore, the choice of the best model is arguably 1527 

determined by the resources available to the user and having more than one model 1528 

from which to choose is beneficial for those who may not have much computing 1529 

power available to them. 1530 

Ultimately, we successfully set the basis for an evaluation pipeline for 1531 

circadian data that isn’t heterogeneous. This will undoubtedly facilitate the evaluation 1532 
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of organisms that naturally express multiple phenotypes of circadian rhythms. The 1533 

next steps are to test this pipeline with other organisms to observe whether or not it 1534 

is indeed generalizable.  1535 
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 1560 

Figure Legends: 1561 

Figure 1: Locomotor activity over time data from L. malachurum displays 1562 

heterogeneity.  All the 3 figures contain a Double plotted Actogram, a Daily Average 1563 

activity plot, a Lomb Scargle Periodogram and an Autocorrelation. A double plotted 1564 

actogram is a  visualization typically used to represent the Circadian locomotor 1565 

activity rhythms. The daily average activity plot is representative of the average 1566 

activity done by each individual for the duration of the study. Lomb Scargle 1567 

periodogram is an algorithm that can be used to describe the period of unevenly 1568 

sampled time series data sets. The autocorrelation of a time-series measures how 1569 

similar a time-series is with a forward or backwards shifted version of itself. In A, B, 1570 

and C, is a sample of the diversity of behaviours displayed in the data set.   1571 

Figure 2: Average of all 98 individuals in the dataset is not representative of 1572 

any one individual due to heterogeneity. The single plotted actogram illustrated 1573 

was created by taking the average of the activity for all 98 individuals done in the 1574 

four day observational period. 1575 

Figure 3 A mock-up of a normalized time series transformed with SAX. A sliding 1576 

window of 180, PAA size of 7 and an alphabet size of 4 together make the symbolic 1577 

word CBDCCCC. 1578 

Figure 4: A mock-up of how KNN works. The pentagon is a new piece of data 1579 

plotted into n-dimensional space here simplified as two-dimensional space. By 1580 

consensus, the pentagon is closest to the group labeled AR and therefore will be 1581 

classified as such. 1582 
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Figure 5 Mock-up illustrating Decision Trees (left) and Random Forest (right). 1583 

For Decision trees only one chart is considered as a classifier, whereas in Random 1584 

Forest many trees are considered and the best tree is chosen based on a 1585 

measurement of error 1586 

Figure 6: PAM with K = 4 for the Lomb Scargle Periodogram resulted in highly 1587 

representative discrete clusters. We used principal components to plot the 1588 

clusters, where the X and Y Axes are the principal components of the data set 1589 

Figure 7: Clusters resulting from L. S are separated by the shape of the 1590 

periodogram Part 1.  In green A) are examples of membership from cluster 1, 1591 

characterized by two peaks in the periodogram that cross the horizontal line or the 1592 

first barely does. In orange  B) are examples of membership from cluster 2, where 1593 

the individuals have no peak, or if they have one, it barely touches the horizontal line 1594 

of the periodogram 1595 

Figure 8: Clusters resulting from L. S are separated by the shape of the 1596 

periodogram Part 2. In purple A) are examples of the membership in cluster 3. 1597 

Where individuals either have two peaks in the periodogram, where the first is far 1598 

from touching the horizontal line, or just the one peak. In fuchsia B) are examples of 1599 

membership of cluster 4. The individuals in this group have two peaks in their 1600 

periodograms, but the first peak is small and sometimes unstable in terms of shape. 1601 

Figure 9: PAM with K =3 for Autocorrelation coefficient clusters of low 1602 

representation power. Utilizing the same form of dimensionality reduction in Figure 1603 

3, we plotted the clusters resulting from PAM. Most of the individuals in the data set 1604 

are clustered into cluster 1, while the rest divided into the other two clusters. 1605 
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Figure 10: PAM with K =3 for Autocorrelation coefficient clusters by thickness 1606 

of Autocorrelation. In green, A) are examples of the membership in cluster 1. 1607 

Individuals in this cluster have a thinner autocorrelation graph than that of clusters 2 1608 

and 3, passing the horizontal line at most once. Nevertheless, the thickness does not 1609 

seem to be consistent across the membership of cluster 1. In orange, B) are 1610 

examples of the membership in cluster 2, where the individuals observed pass the 1611 

horizontal line more than once and show larger density than cluster 1, but less than 1612 

cluster 3. In purple, c) are examples of the membership in cluster 3, where the 1613 

individuals observed have the thickest autocorrelation plot. 1614 

Figure 11: K-means with K= 3 for Average Daily Activity clusters by frequency. 1615 

A) and B) show the shape of the activity contained within the clusters. In A), the 1616 

graph shows the clusters individually, while B) shows them together. C) Illustrates 1617 

the distribution of average activity within each cluster. D) Principal components 1618 

illustration of the clusters.   1619 

Figure 12: Prevalence in NAs is due to poor consistent classification. Here we 1620 

illustrate the process of calculating Accuracy, Precision, Recall and F-score, all 1621 

measurements that we used to test how good our model is. These are the values 1622 

taken from Table 1 for PAA = 4 and alphabet size = 5. On A is the test labels 1623 

matched to the predicted labels, in red are the incorrectly classified individuals and in 1624 

blue are the correctly classified individuals. In B. are the calculations for accuracy, 1625 

which is the sum of all correctly classified individuals divided by the total of 1626 

individuals, in addition there is also a confusion matrix. True positives (TP) are the 1627 

values within each cell or the correctly classified individuals, false positives (FP) and 1628 
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false negatives (FN) are the incorrectly classified individuals, which are indirectly 1629 

viewed in the sum of columns or rows. Lastly, in C., a table illustrating the 1630 

calculations for the rest of the measurements were Pre = Precision and Re = Recall. 1631 

Tables and Figures:1632 

 1633 

Figure 1: Locomotor activity over time data from L. malachurum displays 1634 

heterogeneity.   1635 
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1636 

Figure 2: Average of all 98 individuals in the dataset is not representative of any one 1637 

individual due to heterogeneity.  1638 
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1640 

Figure 3 A mock-up of a normalized time series transformed with SAX.  1641 
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 1642 

Figure 4: A mock-up of how KNN works.  1643 
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Figure 5 Mock-up illustrating Decision Trees (left) and Random Forest (right). 1644 

 1645 

 1646 

 Figure 6: PAM with K = 4 for the Lomb Scargle Periodogram resulted in 1647 

highly representative discrete clusters. 1648 
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 1649 

 Figure 7: Clusters resulting from L. S are separated by the shape of the 1650 

periodogram Part 1. 1651 
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 Figure 8: Clusters resulting from L. S are separated by the shape of the 1653 

periodogram Part 2  1654 
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 1656 

1657 

Figure 9: PAM with K =3 for Autocorrelation coefficient clusters of low representation 1658 

power. 1659 
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Figure 10: PAM with K =3 for Autocorrelation coefficient clusters by thickness 1661 

of  Autocorrelation. 1662 

 1663 

 1664 

 Figure 11: K-means with K= 3 for Average Daily Activity clusters by 1665 

frequency. 1666 
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Table 1:Results of KNN by varying PAA Size (PAA) and Alphabet Size (Alphabet). 1668 

Sliding Window (SW) was continually equal to 48.  1669 

Parameters Precision Recall F1 Accuracy 

PAA Alphabet SW R WR AR R WR AR R WR AR  

3 3 48 0.5 0 0.25 1 0 0.25 0.67 NA 0.25 0.30 

3 4 48 1 0 0.375 0.5 0 0.75 0.5 0.67 NA 0.40 

3 5 48 0.5 0 0.4 1 0 0.5 0.67 NA 0.4 0.40 

3 6 48 0.5 NA 0.5 1 0 0.75 0.67 NA 0.6 0.50 

3 7 48 1 0.67 0.5 0.5 0.5 0.75 0.67 0.57 0.6 0.60 

4 3 48 0.67 0.75 1 1 0.75 0.75 0.8 0.75 0.86 0.80 

4 4 48 1 0.5 0.6 1 0.25 0.75 0.67 0.4 0.67 0.60 

4 5 48 0.67 NA 0.57 1 0 1 0.8 NA 0.73 0.60 

4 6 48 1 1 0.57 0.5 0.5 1 0.67 0.67 0.2 0.70 

4 7 48 0.3 0 0.5 0.5 0 0.75 0.4 NA 0.6 0.40 

6 3 48 0.5 NA 0.5 0.5 0 1 0.5 NA 0.67 0.50 

6 4 48 0.33 0.33 0.5 0.5 0.25 0.5 0.4 0.29 0.5 0.40 

6 5 48 1 NA 0.5 1 0 1 1 NA 0.67 0.60 

6 6 48 NA NA 0.4 0 0 1 NA NA 0.57 0.40 

6 7 48 0.67 NA 0.57 1 0 1 0.8 0.73 NA 0.60 

8 3 48 NA 0.4 NA 0 1 0 NA 0.57 NA 0.40 

8 4 48 0.26 NA 0.67 1 0 0.5 0.4 NA 0.57 0.40 

8 5 48 0.17 NA 0.75 0.5 0 0.75 0.25 NA 0.75 0.40 

8 6 48 NA NA 0.4 0 0 1 NA NA 0.57 0.40 

8 7 48 0.5 0.5 0.57 0.5 0.25 1 0.5 0.4 0.73 0.60 

12 3 48 NA NA 0.4 0 0 1 NA NA 0.57 0.40 

12 4 48 0.2 NA NA 1 0 0 0.33 NA NA 0.20 

12 5 48 0.2 NA NA 1 0 0 0.33 NA NA 0.20 

12 6 48 0.25 0.5 0.5 0.5 0.5 0.25 0.33 0.5 0.33 0.40 

12 7 48 0.2 NA NA 1 0 0 0.33 NA NA 0.20 

24 3 48 0.25 0.5 0.5 0.5 0.5 0.25 0.33 0.5 0.33 0.40 
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24 4 48 0.2 NA NA 1 0 0 0.33 NA NA 0.20 

24 5 48 0.2 NA NA 1 0 0 0.33 NA NA 0.20 

24 6 48 0.2 NA NA 1 0 0 0.33 NA NA 0.20 

24 7 48 0.2 NA NA 1 0 0 0.33 NA NA 0.20 

 1670 

Table 2: Results Trees by varying PAA Size (PAA) and Alphabet size (Alphabet). 1671 

Sliding Window (SW) was continually equal to 48.  1672 

Parameters Precision Recall F1 Accuracy Algorithm 

PAA Alphab
et 

SW 
R WR AR R WR AR R WR AR   

3 3 48 1 NA 0.5 0.75 0 1 0.8571 NA 0.667 0.667 DT 

3 3 48 1 0.5 0.667 1 0.5 0.667 1 0.5 0.667 0.778 RF 

4 3 48 1 NA 0.5 0.75 0 1 0.75 NA 0.667 0.667 DT 

4 3 48 1 0 0.5 1 0 0.667 1 NA 0.571 0.667 RF 

6 3 48 1 NA 0.6 1 0 1 1 NA 0.75 0.778 DT 

6 3 48 1 1 0.75 1 0.5 1 1 0.667 0.8571 0.889 RF 

3 4 48 1 NA 
0.428
6 0.5 0 1 0.667 0.6 NA 0.556 DT 

3 4 48 1 NA 0.5 0.75 0 1 0.8571 0.667 NA 0.667 RF 

4 4 48 0.8 NA 0.5 1 0 0.667 0.889 NA 0.5714 0.667 DT 

4 4 48 0.8 NA 0.5 1 0 0.667 0.889 NA 0.5714 0.667 RF 

6 4 48 0.5 NA 0 1 0 0 0.667 NA NA 0.444 DT 

6 4 48 1 NA 0.6 1 0 1 1 NA 0.75 0.778 RF 

3 5 48 1 NA 
0.428
6 0.5 0 1 0.667 NA 0.6 0.556 DT 

3 5 48 1 1 0.6 0.75 0.5 1 0.8571 0.667 0.5 0.778 RF 

4 5 48 1 1 0.6 0.75 0.5 1 0.8571 0.667 0.75 0.778 DT 

4 5 48 1 0.5 1 0.75 1 0.667 0.8571 0.667 0.8 0.778 RF 

6 5 48 0.6 NA 0.75 0.75 0 1 0.667 NA 0.8571 0.667 DT 

3 6 48 0.667 NA 0.667 1 0 0.667 0.8 NA 0.667 0.667 DT 

3 6 48 1 0 0.5 0.75 . 0.667 0.8571 NA 0.5714 0.556 RF 
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4 6 48 0.8 NA 0.5 1 0 0.667 0.889 NA 0.5714 0.667 DT 

4 6 48 0.8 NA 0.5 1 0 0.667 0.889 NA 0.5714 0.778 RF 

3 7 48 0.8 NA 0.75 1 0 1 0.889 NA 0.8571 0.778 DT 

3 7 48 1 NA 0.6 1 0 1 1 NA 0.75 0.778 RF 

4 7 48 0.8 NA 0.75 1 0 1 0.889 NA 0.8571 0.778 DT 

4 7 48 1 NA 0.6 1 0 1 1 NA 0.75 0.778 RF 

3 8 48 1 NA 0.6 1 0 1 1 NA 0.75 0.778 DT 

3 8 48 1 NA 0.6 1 0 1 1 NA 0.75 0.778 RF 

4 8 48 0.75 NA 0.4 0.75 0 0.667 0.75 NA 0.5 0.556 DT 

4 8 48 1 Na 0.6 1 0 1 1 NA 0.75 0.778 RF 
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1674 

Figure 12: Prevalence in NAs is due to poor consistent classification. 1675 
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Discussion/Conclusion 1708 

When describing the phenotypic expression of circadian rhythms in our four 1709 

Halictid bees, we noted that rhythm variability is parallel to that of levels of sociality. 1710 

From least to most varied in behaviors: S. curvicornis; Solitary and with one activity 1711 

pattern, L. ferreirii;  Communal with two activity patterns, L. enatum: Primitively 1712 

eusocial with three activity patterns and L. malachurum; Facultatively eusocial with 1713 

five activity patterns. Out of the four species evaluated, S. curvicornis is the only 1714 

specialist, and its relationship to Campanula arvensis could explain its rigorous 1715 

biological clock. However, within the context of this work, that explanation falls short, 1716 

because all three of the Lasioglossum species are generalists, yet they express a 1717 

significant difference across their circadian parameters, not to mention that L. 1718 

malachurum was caught in the same time place and flower as S. curvicornis, yet 1719 

their patterns for daily locomotion are polar opposites. This is similarly reflected in L. 1720 

enatum and L. ferreirii sharing the same exact niche and still displaying a different 1721 

number of activity patterns. It stands to be seen if these results hold up when 1722 

considering sexual dimorphism and seasonality. Notwithstanding, our observations 1723 

set the foundation for asking more complex questions about the influences of 1724 

sociality in the expression of circadian rhythms in Hymenopterans. It is our belief that 1725 

these observed differences in rhythm are related to shift work and that understanding 1726 

circadian rhythms may give a strong insight into the mechanisms that lead to the 1727 

evolution of complex social organizations. Therefore, we find it worthwhile to look 1728 

further into this relationship and identify if there is a correlation between the task 1729 

being done by a bee and their circadian phenotype.  1730 
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While describing the Lasioglossum species, we created a labeling scheme 1731 

that highly resembles a classification decision tree. Similarly, the original process for 1732 

exploring the reproducibility of the categories observed in the data set was 1733 

reminiscent of KNN, where a consensus of users separated the data into discrete 1734 

pre-established groups. We divided the data this way, because the time series 1735 

behavior being displayed by the Lasioglossum bees was highly heterogeneous. To 1736 

streamline the a priori grouping process, we used clustering analysis as well as 1737 

classification on the L. malachurum dataset. A systematic and replicable 1738 

methodology for preprocessing locomotor activity data will not only make data 1739 

analysis faster and easier, but it will also strengthen the reliability of the results. 1740 

Clustering proved to be a successful method for grouping individual bees. 1741 

However, the groups were not of circadian significance, as they were not grouped by 1742 

rhythm. Nevertheless, the process was pivotal in creating a deeper understanding of 1743 

the behavior of the data set. Classification, on the other hand, was a complete 1744 

success. We transformed the data using SAX with the intent of reducing the 1745 

dimensions of the data set while still keeping its shape. Once the data was 1746 

transformed, we applied three different classification algorithms, with decision trees 1747 

being the algorithm that best classified the data, KNN achieving the second-best 1748 

results, and random forest coming in last place. These findings are reflective of how 1749 

intuition gained by understanding a data set is the most valuable step in any ML 1750 

workflow. Using methods that approximate how a user may separate data into 1751 

discrete functional groups was the key to success.  1752 
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That being said, some systematic difficulties were encountered when 1753 

evaluating the efficacy of the classification models. To simplify the classification 1754 

problem, we did not use all five patterns of activity identified in our grouping scheme. 1755 

Instead, we used the three larger categories (Rhythmic, Weakly Rhythmic and 1756 

Arrhythmic) to surmise if that was the minimum amount of labels necessary for an 1757 

effective classification strategy. For both the rhythmic and arrhythmic categories, the 1758 

minimum amount of information was enough to properly classify the individuals. The 1759 

weakly rhythmic category, on the other hand, was consistently misclassified in every 1760 

experiment. There was no perfect combination of SAX parameters and classification 1761 

algorithms that would result in the consistent correct classification of the weakly 1762 

rhythmic individuals. Therefore, the minimum amount of information was not 1763 

sufficient to inform a proper classification model for the entirety of the L. malachurum 1764 

dataset. Thus, in the future it would be advisable to divide the weakly rhythmic 1765 

classification into smaller categories for better results, as they are probably 1766 

obfuscated by the simplification of the data. 1767 

 The approach that we have developed for preprocessing a circadian data set 1768 

before evaluation is the first of its kind to our knowledge, and as such, cannot be 1769 

compared to past studies in the field. Our use of SAX for this data set is unique, 1770 

since in circadian science, it is more common to use techniques like averages/rolling 1771 

averages, self/auto correlations and Fourier based transformations (Refinetti et al. 1772 

2007). Our results from experimenting with optimal transformation parameters using 1773 

SAX were not only successful in yielding proper classifications, but also consistent 1774 

with the findings in other fields, where this transformation worked best with smaller 1775 
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values for its parameters (Lin and Li 2009). In the future, it would be interesting to 1776 

replicate these experiments and compare the use of SAX transformations with those 1777 

of wavelets, as wavelets are a commonly used tool in circadian analysis. 1778 

Furthermore, there is still the question of transferability. Other species of 1779 

Lasioglossum should be classified using the SAX transformed data with either 1780 

decision trees or KNN to confirm how generalizable is the use of our pipeline.  1781 

 This work sets the basis for the use of a novel subject of study and an 1782 

innovative systematic approach to preprocessing circadian data. We characterized 1783 

the circadian behaviors of four never before described species of halictid bees. The 1784 

results from analyzing the bees suggests that circadian behavior may have a 1785 

complementary relationship with sociality. In addition, we developed and tested a 1786 

unique preprocessing pipeline utilizing machine learning for the purpose of 1787 

facilitating the description of organisms for whom their circadian phenotypes are 1788 

unknown. Future endeavors should focus on testing the transferability of the tool. 1789 

Furthermore, if we wish to strongly conclude that sociality may serve as a zeitgeber 1790 

for Halictid bees, we would benefit from replications of our study with larger sample 1791 

sizes and consideration of sex and seasonality, as well as a larger pool of described 1792 

species.  1793 
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 2038 

Figure A.1: Methods for capturing and husbandry of the bees. A.1.A) 2039 

Shows a tube that will house an individual bee, with the agar/sucrose food gel. 2040 

A.1.B) A bee specimen visiting Phyla nodiflora, where they will be captured as 2041 

illustrated in A.1.C) with cotton instead of a cap. A.1.D) The bees in their final 2042 

destination in the incubator placed in their monitors.  2043 

 2044 

 2045 

 2046 


