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Abstract

The fluctuation potential problem in the modified Poisson-Boltzmann approach to
charged fluids is analyzed to obtain an approximate analytic solution for a symmetric
valency restricted primitive model electrolyte. The solution is valid for all ranges of inter-
ionic distances, including contact values. The structure of the electrolyte is described using
radial distribution functions determined through the implementation of the fluctuation
potential solution in the theory. Aspects of thermodynamics of the solution, viz.,
configurational reduced energies and osmotic coefficients are also calculated. Results have
been obtained for symmetric valency 1:1 electrolyte system with the following physical
parameters: ionic diameter d = 4.25x1071° m, relative permittivity & =78.5, absolute
temperature T = 298 K, and molar concentrations ¢ = 0.1038 M, 0.425 M, 1.00 M, and
1.968M. The ion-ion radial distribution functions are compared with the corresponding
results from the symmetric Poisson-Boltzmann and the conventional modified Poisson-
Boltzmann theories. Contact values of the radial distributions, reduced configurational
energies, and osmotic coefficients have also been compared, as functions of electrolyte
concentration, with these theories, and additionally with the Debye-Hdckel theory and
Monte Carlo simulation data from the literature. The results show very good agreement
with the Monte Carlo data, and some improvement for radial distribution contact values
and osmotic coefficients relative to these theories. The reduced energy curve shows
excellent agreement with Monte Carlo data for molarities up to 1 mol/dm?3. Radial
distribution contact values for the charge asymmetric RPM 2:1 valency system at the same
physical parameters of the 1:1 ,except for valence, case were also calculated and compared

with the corresponding hypernetted chain theory from the literature. Good agreement was

viii



found for all concentrations considered. An ion size asymmetric primitive model extension
to the theory is also presented. Osmotic coefficients are calculated and compared to
simulation data from the literature for a primitive model electrolyte at the physical
parameters: diameter of the large negative ion is 4.25x10"%m, the temperature T=298K,
the dielectric constant of the electrolyte & = 78.5, electrolyte concentration 0.425mol/dm?,
and the size asymmetry parameter a = 0.4, 0.6, and 0.8. Good agreement between the

results and the MC simulation was found.
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Chapter 1

Introduction

The field of coulomb fluids have been a consistently active area of research in
statistical mechanics over the years. The area includes among others, ionic liquids,
electrolytes, molten salts, colloids and polyelectrolytes. For recent reviews on the subject
The reader is referred to the following articles [1, 2, 3]. Theoretical progress in this area
was limited until the development of statistical mechanics based liquid state theory [4, 5,
6,7, 8].

A widely used model used in the development of formal statistical mechanical
theories of ionic solutions treats the solvent as a structureless, continuous dielectric
medium with a relative permittivity ¢, and the solute particles as charged hard spheres of
diameters di and charges Zses, with Zs being the valence of species s, satisfying the global

charge neutrality condition,

> Ze =Ze, +Ze =0 (1)

s
This is the so called primitive model (PM) of ionic solutions. When the ions are of the
same size, it is called the restricted primitive model (RPM). Computer simulations of the
RPM and PM over the years (see for example, references [9, 10, 11, 12, 13, 14]) have
shown the usefulness of these models in interpreting experimentally determined structures
and thermodynamics of charged fluid systems. Furthermore, the simulation data has proved
invaluable in theoretical development.

A subdivision in the PM is related to the magnitude of the charges of the anions

and cations. If all the charges have the same magnitude it is referred as valence symmetric,
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and valence asymmetric otherwise. The notation (g:q) or (g:p) refers to charge symmetric,

and charge asymmetric, respectively. For example, RPM (1:2) refers to same size ions with
charges 1+ and 2-.

In statistical mechanics, the PM in liquid state physics has been studied using two
main approaches: The first is the Ursell-Mayer cluster expansion [1, 2, 5] or the distribution
function method [2-4]. This method is based on separating the N-body partition function

of the system into a kinetic component and a configurational integral given by,

Zg =~ [0L- AP (01, )12 @

where @ is the molecular potential energy function, and then expanding equation 2 in terms
of topologically distinct set of graphs representing integrals of the so called Mayer-
functions [3-5]. The cluster expansion method was developed as an extension of the
MacMillan Mayer theory of non-electrolyte solutions [15]. The essential result of the Mc
Millan Mayer theory is that establishes a rigorous one-to-one correspondence between the
equations of imperfect gas theory and a dilute solution of non-electrolytes. The long range
coulomb interaction of ions in the solutions causes the virial coefficients to diverge when
the Mc Millan-Mayer theory is applied to electrolyte solutions [4]. This problem was
solved by Mayer [16]. He showed that although individual cluster integrals diverged, it is
possible to combine the infinite parts of all the virial coefficients Bn for n > 2, so that they
mutually cancel giving a finite result. lonic solution theory based on the cluster expansion

is detailed in reference [1].
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The distribution function approach to ionic solutions is based in distribution

functions giving probabilities of configurational groupings of two, three, and more

particles. Correlation functions for n fixed particles are given by

Q"N! I J.e ﬁdernH '
N"(N —m)! Z,

9”0 (1 T,) =

, (3)

where Zj is the configurational integral. This function gives the probability of a particular
configuration of n fixed particles [4]. Of particular importance is the g®(r1,r2) = g(1,2) pair
correlation function since it can be determined experimentally, and thermodynamic
functions can be calculated from it [2-4].

In order to obtain the pair correlation function g(1,2) from the molecular pair
potential ®(1,2), two main routes are used, Viz.,

1. The Kirkwood, Bogolubov, Born, Green, Yvon (KBBGY) herarchies [3]

2. The Ornstein-Zernike (OZ) equation [2, 3, 5].
The KBBGY hierarchies is an infinite set of equations relating correlation functions for n
and n+1 fixed particles, and also the molecular potential, and the so called charge parameter
€ [3, 4, 5]. To determine the pair correlation function, using the KBBGY hierarchy, a
closure relation between the pair correlation function g(1,2) and the triplet correlation
9(1,2,3) must be provided to break the hierarchy. One such relation is the superposition
approximation [5] given by

9(1.2,3)=9(1,2)9(23)9(31) , (4)

which is tantamount to saying that the triplet distribution is equal to the product of the pair
distributions. Physically, this implies that the correlation of particles one and two is

independent of the presence of the third particle [5].
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The OZ method for calculating the pair correlation function from the pair potential

is based on the definition of a new correlation function, called the direct correlation
function c(1,2). In the OZ approach the total correlation between two ions may be
considered to be comprised of two parts: the direct correlation between the two particles,
and the indirect correlation due to the presence of a third particle. The total correlation
function h(1,2) is then written as the sum of the direct correlation ¢(1,2) and the indirect
correlation averaged over all positions of the third particle. This is clearly shown by the
OZ equation [5] given by

h(L,2) =c(L2) + p j c(1,3)h(2,3)d3, (5)

which may be regarded as a definition for the direct correlation function c¢(1,2) [5]. The
total correlation function is related to the pair correlation function by
h(L2)=9(@.2)-1, (6)

and so the OZ equation can be regarded as an integral equation for the pair correlation
function in terms of the unknown function c(1,2). To solve the OZ equation a closure
relation between the direct ¢(1,2) and the total correlation h(1,2) functions must be
provided. Among well-known closures are: the Percus-Yevick (PY) [17], the Hyper-
netted chain (HNC) [18], and the mean spherical approximation (MSA) [19]. Some early
studies by Rasiah and Friedman [20, 21, 22] have shown that the HNC gives rather good
results in ionic solution theory.

The second broad approach, which is our interest in this thesis, rests on obtaining
the same pair correlation function g(1,2) through a potential approach based on the
Poisson’s equation. The first theory for ionic solutions along this line is the celebrated

classical theory of Debye and Huckel (DH) [23]. The DH theory is obtained by the
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linearization of the Poisson-Boltzmann (PB) equation which relates the mean electrostatic

potential of the solution, with the ionic charge density given by the Boltzmann’s statistical

distribution of ions [23].

The DH equation’s solution gives the mean electrostatic potential ¥(1,2) around a

central ion. This potential is used to construct pair correlation functions given by

g(1,2) = ne #*2 (7)
where n is the bulk density and W¥(1,2) is the mean electrostatic potential. The theory
predicts that each ion in a solution will be surrounded by a neutralizing atmosphere of
opposite charged counter-ions [4]. It is known that DH theory is a low concentration exact
limiting law in ionic solution theory, meaning that the theory correctly describes the
thermodynamic properties of all solutions as the concentration tends to zero [4]. Potential
theories of ionic solutions are based on the PB equation or the DH theory. In this theories
the pair correlation function is given by

g(1.2) =™ 8)
where the function W(1,2) is called the potential of mean force. It includes all the forces in
the models, including electrostatic forces and volume exclusion effects [2, 3, 4]. DH theory
is a mean field theory, incapable of describing interionic correlations, so is only valid for
very low concentrations [4]. So in order to make progress in the potential theory of
solutions, ion correlations must be included. Kirkwood showed through a rigorous
statistical mechanical analysis [24], that the main approximations in the classical theories
are the omission of (i) ionic exclusion volume effects, and (ii) the fluctuation potential

term, which involves the inter-ionic correlations. There have been many attempts since
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Kirkwood to improve upon the PB/DH theory notable among which has been the extensive

work done by Outhwaite and co-workers (see for example, references [25, 26, 27, 28, 29,
30, 31, 32, 33, 34]), who within the framework of the PM, have analyzed Kirkwood’s
methods and obtained estimates for the fluctuation term. These efforts have resulted in
what is known in the literature as the modified Poisson-Boltzmann (MPB) approach to the
ionic solution theory.

In the modified Poisson-Boltzmann (MPB) theory, which is our interest in the
present work, the classical mean electrostatic approach of the DH theory is extended to
include inter-ionic correlations by expressing the KBBGY hierarchies in terms of
electrostatic mean potentials. In this theory, the mean electrostatic potential is expressed in
terms of the fluctuation potential #(1, 2; 3) (see for example, reference [33]) 3 is the field
point, while there are fixed ions at 1 and 2), which measures deviations from the
superposition principle of Kirkwood [24], and therefore contains information on the
interionic correlations in the theory. The superposition principle, in terms of the fluctuation
potential, is then given by

¥(1,2;3) = Y(1;3) + W(2;3) + D(1,2;3) . (9)
This equation states that the mean potential at field point 3 is the sum of the direct potentials
of particles 1 and 2, and the correlated potential contribution at field point 3 from the
simultaneous presences of particles 1 and 2 [14]. Expressed in terms of the mean potentials,

the fluctuation potential is given by [30, 33]

*1.2;0)-p°19) - p°(2;9)]d
1 Zespf[p( q)-p Ga)-p°(29)] rq,

Fy

$(1,2:3) = (10)

Are gy 5
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where e;s is the charge and ps({n}; q) is the number density of the sth species of ions at rq

with n fixed particles at ri (i = 1, ..n) with the sum being over all species, ¢ is the vacuum
permittivity, and - the relative permittivity (dielectric constant) of the solvent. In the
simplest language the fluctuation potential is the inter-ionic correlations expressed in
potential form. Essentially, the MPB improves upon the classical PB theory by
incorporating (i) ionic exclusion volume effects, and (ii) inter-ionic correlation effects. This
potential procedure solves for the mean electrostatic potential w(r) as opposed to the
integral equations that attempt to solve directly for the radial distribution function

gij(ri, rj ). Outhwaite and co-workers [27, 28, 29, 30, 31, 32, 33] have further symmetrized
the classical PB theory and the MPB theory so that the Onsager relation, gj(r) = g;i(r) is
satisfied for a homogeneous fluid. They have also coupled an exclusion volume term to the
symmetrized PB theory, and call it the symmetric Poisson-Boltzmann (SPB) theory [30,
31, 32].

The fluctuation potential in MPB theory obeys a system of linearized partial
differential equations given by equations 19-22 of reference [26]. An approximate solution
is also given, that is valid only for large interionic separations where approximate spherical
symmetry is valid [26, 33]. As explained by Outhwaite, one of the main problems in present
MPB theory is the restriction of the fluctuation potential solution to large interionic
separations [33]. The problem has also been mentioned in reference [35], as a possible
cause of a small discrepancy between MPB osmotic coefficients and the corresponding
Monte Carlo values of Card and Valleau [9], and Rasiah, Card, and Valleau [10]. The
fluctuation potential problem is also mentioned by Outhwaite, Molero, and Bhuiyan [32]

in the context of the PM of ionic solutions.
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A clear statement of the aforesaid problem can be found in the paper by Outhwaite

[33]. This paper presents a clear pedagogical introduction to MPB theory for bulk ionic
solutions. The paper introduces the symmetric and asymmetric formulations of MPB and,
presents a clear exposition to the fluctuation potential problem for RPM electrolytes. A
detailed account for the setting of the fluctuation potential linearized system of equations
is presented, and is followed by the approximate solution for ¢(1,2;3) that is valid for
approximate spherical symmetry, and large interionic separations. The solution can also be
found in an earlier paper [26]. The basic equation for RPM MPB are then given in terms
of the reduced potential « = ry(1,2) in reference [33]. This version of MPB was not used
in this research, since it includes the approximate solution of the fluctuation potential.
Instead we started our treatment of the fluctuation potential problem starting from equation
36 of reference [33]. Outhwaite pointed at the two main problems of MPB theory:

(a) the linearization of equation 36 outside the exclusion volumes,

(b) the restriction of the solution of the fluctuation potential to large separations of

the ions.

After a detailed study of this paper [33] we realized that to properly address the
problem of the fluctuation potential a different system of equations was needed. In this
work, a formulation based on pair correlation functions, as sources of the fluctuation
potential was preferred, Instead of reformulation based on mean electrostatic potential.
This paper [33] was invaluable, as a main source for our project. The main purpose of this
work is to find a solution to the fluctuation potential system of equations that is valid for
all range of ionic separations, including small distances and contact. This solution has the

advantage of simplicity that can provide insight into the eventual fully numerical methods
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for solving this kind of problems. The approximate analytical solution for ¢(1, 2; 3) can

serve as a guide to solving the problem numerically without using the approximations of
this research.

For calculating thermodynamic properties like reduced configurational energies —
U/NKT, and osmotic coefficients ¢, the theory presented in the excellent reference [35] was
used. In that reference thermodynamic properties, and radial distribution function contact
values where calculated, and compared with the Monte Carlo data from Card and Valleau
[9], and Rasiah, Card, and Valleau [10]. The essential results in this paper [35] are
summarized in tables 5-7 of this reference, where radial distribution function’s (RDF)
contact values for like ga(a), and unlike gs(a) ions, configurational energies —U/NKT, and
osmotic coefficients are compared for theories DH, PB, MPB, with the corresponding Card
Valleau (CV), and Rasiah, Card Valleau (RCV) values for RPM (1:1) electrolyte solution
with parameters: ¢ = 4.25A, €=78.5, T=298K, and molar concentrations of 0.00911,
0.1038, 0.425, 1.00, and 1.968. The method presented in reference [35] was instrumental,
in this work, for the calculation of configurational energy, and osmotic coefficients. An
improvement in the agreement between the MPB values calculated with the fluctuation
potential obtained in this research (MPBtis-work) and traditional MPB from this reference is
the first step in the validation of the fluctuation potential solution presented here.

An important paper by Outhwaite, Molero, and Bhuiyan [32], addresses the
application of MPB to the calculation of PM radial distribution functions (RDFs) and
thermodynamic properties for size-asymmetric, and valence asymmetric electrolytes, and
a comparison with the Monte Carlo simulations of Valleau and Cohen [11], Valleau,

Cohen, and Card [12] for same size electrolytes, and Abramo et al. [14], and Rodge [13]
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for unequal size electrolytes. The results agree well with the MC results but discrepancies

began appearing at high concentrations for large variations of ion size or unsymmetrical
valences. At the conclusion of the paper, the authors attributed this limitations to the
inadequate treatment of the fluctuation potential problem. An expressed that they expected
a full numerical solution of the fluctuation potential problem to overcome these restrictions
[32].

The fluctuation potential approximate solution presented in this dissertation,
expresses the sources of ionic charge in the fluctuations potential system of equations in
terms of the radial distribution functions (RDFs) from the Debye-Hiickel theory (Appendix
B) which is valid only for ions of equal sizes (RPM) so a future extension of the solution
to unequal ion sizes will require the extension of DH theory to ionic size asymmetry.

The model developed in this dissertation also incorporates the possibility of an
iterative solution. The MPB pair correlations functions from this work are use as initial
functions in an iterative algorithm where ionic volume effects, size and charge asymmetry
are considered from the beginning. This approach incorporates the best features of this
research but does not suffer from the limitations of the approximations made for the sake
of analytical progress.

The organization of this thesis is as follows. Chapter 2 presents a brief introduction
to MPB theory for the PM model. This chapter is based in the paper entitled “A modified
Poisson-Boltzmann approach to homogeneous ionic solutions” which presents a clear
pedagogical introduction to MPB theory for bulk ionic solutions [33]. We start by giving
details of the interaction potentials of the model, a brief introduction to the PB equation

and the MPB theory approach. The dimensionless formulation of MPB as well as the
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definition of the dimensionless parameters in this work is presented in Appendix A and B.

We then proceed to the main theoretical development of this work based on the restrictive
primitive models. In this part the set of differential equations for the fluctuation potential
in dimensionless form is developed and an approximate solution is found using ordinary
electrostatics.

In chapter 3 of this thesis a model for asymmetric size DH based on reference [36]
is presented. In reference 36 Zuckerman, Fisher and Bekiranov presents an extension of
the DH theory primarily on the 1:1 additive hard-sphere electrolyte with, say, negative ion
diameters, o-., larger than positive ion diameters o++. The treatment highlights the crucial
importance of the charge-unbalance “border zones” around each ion into which other ions
of only one species may penetrate. The symmetrical formulation of MPB required to treat
unequal ion sizes requires the calculation of discharge potentials ¥° [33]. This potentials
represents the mean potential of a discharged central ion at a field point in the solution. It’s
mentioned by Outhwaite in reference [33] that this discharge potential is cero for ions of
equal sizes, so in order to account for discharge potentials within the framework of DH
theory, size exclusion effects must be implemented. Although the main subject of this work
is the fluctuation potential for RPM, the calculation of the fluctuation potential including
size and/or charge asymmetry represents a very important project for the future. The
approximate solution to the fluctuation potential for the PM use the definition of these
“border zones” to set DH equations that takes into account charge and/or size asymmetry.

In chapter 4 we utilize solution of the fluctuation potential to present structural and
thermodynamic results for a 1:1 valence RPM electrolyte. We start by showing three-

dimensional plots of the fluctuation potential solution. The plots show the fluctuation
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potential at a planar slice passing through the center of the ions for two ionic separations

and for the like and unlike ion cases. A physical interpretation of the results in terms ionic
correlation energy is presented. To further test the solution’s validity, configurational
energies, and osmotic coefficients are calculated and compared to the Monte Carlo (MC)
simulation data of Card and Valleau [21], and Rasiah, Card, and Valleau [22].

The following publication has come out of this thesis,
"An analysis of the fluctuation potential in the modified Poisson-Boltzmann theory for
restricted primitive model electrolytes”, E. O. Ulloa-Davila and L. B. Bhuiyan, Condens.

Matter Phys., 20, 43801 (2017) ; DOI: 10.5488/CMP.20.43801
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Chapter 2

Model and Theory
In this Chapter we will be describing the physical model of the electrolyte that we used in

this research and the modified Poisson-Boltzmann theory employed to solve the model.

2.1 Molecular Model
As indicated in the Introduction, the model electrolyte system used in this study
consists of a binary, symmetric valence RPM electrolyte at room temperature. The total

potential energy in the Hamiltonian is thus

i<j (11)
00, vvees enes r <o
Uy =4 e°Z,Z, (12)
ol > 0
e, ¥

where uijj is the ion-ion interaction potential, Zs is the valence of ion species s, e is the
magnitude of the fundamental charge, r is the distance between the centers of two ions of
typesiand j, and aij = ai + aj = (0i+0j)/2 is obtained by adding the ionic radii ai = ai/2
and aj = gj/2, where oi and oj are the diameters of ions i and j respectively. The relative
permittivity ¢ is assumed to be uniform throughout the entire system.
2.2 Theory

The formulation of the SPB and the (traditional) MPB have appeared in the
literature (see for example, references [27, 30, 31, 32]). Here we will restrict ourselves to
outlining the principal ideas of the MPB theory, the main steps leading to the equations

governing the fluctuation potential, and their solution.
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In the canonical ensemble, the mean electrostatic potential y({n};q) at the field

point rqfor fixed ions at ri... rn is given by

vy - (Seoti)-

=Y ew(k,q) e, [on+1a)p" @nkin+1)d(n +1) (13)

+e [u(n+1,0)p {n}n+1d(n+1),

where n<<N,
1
kJ)=—""—, H
olk.D) Areye, Ny 0
and
a - [e™d(n+2)..dN
n};n+1)=(N,—n
p {nkn+1)=(N,-n,) e ™Md(n+1)..dN (15)

is the number density of ions of charged state o at rn+1 for n fixed ions, and gk is the charge

of the k-th species ion. We note that in terms of valence Z of the species, ex = eZx.
Equation (14) for the mean electrostatic potential y({n};q) at the field point q can

be represented diagrammatically by representing potentials to the field point using solid

lines and ionic correlation by dotted lines. For example for the case of n=1,
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w(i1}.9)

_ q-
p ({1}:2)

Figure 1 Mean electrostatic potential diagram for one fixed ion

or for the case of two fixed ions,

w({2}.9)

Figure 2 Mean electrostatic potential diagram for two fixed ions.

Applying the Laplacian operator to equation (13) gives the generalized Poisson equation

L S e ( ~ 1) -——e,p"(n}0), (16)

o€t k=1 &€t a

Var({n},q) =~
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where 9(F) s the 3-D Dirac delta function. The first term on the right gives the direct

potential contribution from the n fixed ions, while the second term gives the mean potential
from the correlated ion density in the liquid.

For n=1 we have

: e P (1 a)dq
1,2) = - « 17
vk2) Arg,e, 1, 472'50 L ° I (17)
Vi (12) = - -5)-— Zeapa (12), (18)
0=r Eoér o

For n=2, we have

pa2g -3y L1 e [LLENN )
Areye Ny  Ameye Ny, Arngys, 5 M

Vap(L23) =———ed(F, — 1) - ——&,0(F, - ) - Zeapa (12:3)  (20)

EoE, o0&} &Er S
The application of equations (17-20) relies upon the implementation of a closure
relationship between conditional densities and mean electrostatic potentials. The Kirkwood
charging process provides such a relationship [13]. In the Kirkwood charging process an
ion i at ry has a charge Aigi, where the charge coupling parameter A; Satisfies 0 <A < 1, so

that

U =3+ DU )+ D0 @

i<j j# j<k
where u%j represents the short range interaction and uSj is the electric interaction between
ions. Taking the natural logarithm of the number densities {n} and {n+1}, differentiating

each with respect to the charge coupling parameter, and subtracting gives
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p ({nkin+1) = p*{n}in +A‘ﬂ¢ =0)x exp{— pe, [limly ({m+3;) -y {m}; q)]dﬂi} (22)

g1

For n=1, we have
p*(12) = p* (1,24, =0) EXD{— B, I limfy(1,2;0) ” w(L; q)]d/%} : (23)

Writing

y(L2,0) =y (€a)+y(29)+¢L2q), (24)
where ¢(1,2;q) is the fluctuation potential that describes the departure from linear
superposition of the mean electrostatic potential at the field point g from that of the two
individual ions. This equation is generally taken as the definition of fluctuation potential.

Thus equation (23) gives,
9, = 9, (4, = 0) exp{—/&, [w(21) + i¢(1,2;1>d@]} (25)
where we have used ps(1,2) = psgii. Alternatively,
9; = 95 (4, =0)exp{-Le;[w (L2) + Jj ¢(1,2;2)d2, 1}, (26)

when charging ion 2 instead of ion 1.

The MPB Poisson’s equation for the (q:q) same size problem is given by

1

0“r ‘905r S

Vi) =~ e3(f - 1) - Tepd, exp{— ﬂe{l//(l;Z) o ¢(1,2;2)d12}} (27)

where (jsare the excluded volume term, and ¢ the fluctuation potential.

The Poisson — Boltzmann theories can be derived from equation (27) by setting ¢ = 0, and
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[0 F <oy
gi,s :{ . . (28)

As shown before the radial distribution functions gij can be expressed in an unsymmetrical

way either by Kirkwood charging ion 1 or ion 2 respectively

95 = ¢y (4 = 0)exp{—Le,[w(21) + i $(1,21)dA 1}, (29)
or

95 = & (4, =0)exp{—/Se;[w(1;2) + i¢(1,2;2)d/12]}- (30)

This unsymmetrical formulation restricts the theory to equal size and valence case. The
unsymmetrical formulation of equations (29) and (30) can be overcome by deriving a
symmetrical MPB equation. A symmetrical formulation of the MPB equation is derived by
putting gi= 0 in equation (29) and g; = 0 in equation (30), substituting for ;j;, i j in equations

(29) and (30), respectively, and then combining the results we get

0 P, 0 [
9; =9 exp{— T[l//i +y, +.|.(¢(1,2i2) +¢(1,2;2le; = 0))d4,]

Pe;

~Eyy +v) + [(9020) + 912, = 0)dA ]}

(31)
where gi® = gj(@=0,0=0),  yi® = y(1:2|¢i=0), and yi® = y(2:1]¢;=0).

The superscript zero in equation (31) represents the corresponding quantity for a particular
uncharged ion. The discharged mean potentials y° and discharged fluctuation potential ¢°
are due to ionic charge imbalances created by size asymmetric effects and therefore are

zero for the RPM which is the main focus of this research.
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Equation (31) with the fluctuation potential neglected gives the pair correlation

function in the SPB theory, valid for symmetric or asymmetric ion sizes and valences,
expressed in terms of the excluded volume term gi® = {jj and the mean potentials v, y°.

To calculate pair correlation functions using the MPB theory we need a procedure to
calculate the fluctuation potential ¢(1,2;3). We begin by formulating the fluctuation
potential problem in the RPM for a symmetric valence electrolyte, viz., |Z+| = |Z-],
consisting of N ions and satisfying global electro neutrality XsZsps = 0. We will follow
closely the notations used in reference [28].

The equations (17-20) can be expressed in terms of the radial distribution (or pair
correlation) functions. For example, gi«(1,q) = pa(1,9)/ps is related to the probability of
finding an ion of species o of mean number density p, , given an ion at 1, and so on and so

forth. The Poisson equations follow (cf. equations 18, 20)

€; S 1
Vzl//(l,s) == I §(r1 - r3) - Zespsgis (1'3) ’ (35)
&oy €08y s
2 . € F _TF 1
\% W(2’3) == 5(r2 - r3) - < zespsgjs (2!3) ) (36)
0&r 0¢r s

1

Vip(123) = - 5(F ~ ) -~ 5(F ) - —— 3 e.p,0, (12:3) 37)

EoE, oér Eobr s
The distributions can, in turn, can be defined in terms of the potentials of mean force W
viz., the doublet

9; (1,2) = exp(-AW; (1.2)) (38)
or the triplet

Ojj (L23) = eXp(_ﬂWijk 12,3)) (39)
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where Wij, Wijk, are the pair and triplet potentials of mean force, respectively. Here,

B=1/(keT) with kg the Boltzmann constant and T the temperature. Hence the

conditional relation obtains as
i 1,2:3) = AW (1.3)+W;, (2,340 (1,2:3)] (40)

The term wijk is the potential of mean force associated with the departure from linear
superposition of the pair potentials. A hierarchy of such equations can be constructed
for higher order correlations. At the lowest order the classical PB theory follows upon
neglecting wij(1,2;3), and to improve upon the PB, we need a procedure to estimate
this term.

In the MPB formulation the hierarchy is broken at the triplet level by a closure

condition that relates the wijx with the fluctuation potential ¢ij [33].
Wy (1,2;3) = €, ¢; (1,2;3). (41)
It is of interest to contrast this MPB closure with the Debye-Hiickel closure
W, (L2) =e,p(L2) (42)

For the RPM system with finite ion diameter 2aii = 20j; = o, the Poisson equations 35-

37 can be expressed in terms of the potentials of mean force as

Vi3 = - Ye p,e M0
Gofr s , (43)

Vip(23) = - Y, pe e
ol s , (44)

VZW(1,2?3):_ 1 Zespse-ﬁ[w(1,3)+W(2,3)+e5¢(1,2;3)]
Eobr s (45)
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where the MPB closure (equation 41) has been use in equation 45. Equations 43 and

44 are exact, for one fixed ion in position 1 and 2, but equation 45 incorporates the
deviation of the superposition principle in the form of the fluctuation potential term.
To obtain and equation for the fluctuation potential, we subtract equations 43 and 44

from 45,

Vi[w(L2:3) - (13) -y (2.3)] = V?4(12:3)

1 _ _ : _ _
——=Ye.p, {e I 1.3)W (2,3)=6,6(1.28)] _ o=V (L3) _ o= (23) } (46)
& S

or more compactly

1

VL23) = ——— e [9L)g(23e 0 —g(13) - g(23)]  (47)

0¢r s
Equation 47 is the basic nonlinear equation in the fluctuation potential problem. The
corresponding equation for the fluctuation potential in terms of pair and triplet
correlation function illustrates an important concept concerning the nature of the

fluctuation potential. Subtracting equations 35 and 36 from 37 we have,

Viw(1,2:3) -w(13)-w(23)] =

= V?$(1,2;3)
€ s = ei 7w 1 -
=- 5(r1 - rS)_ §(r2 - r3)__Zespsgijs (1’2!3)
Eoéy Eoéy 0ér s
+ 5(r1 - rs) + Zespsgis (1!3)
508r 8ogr S
ej o 1
+ 5(r2 - rS) + _Zespsgjs (213)
£4E, £08, 5
1

> e.04]05 (L23) - 9, (13) - 9, (2.3)]

gogr S
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Vip(L23) = ——— e.p [0, (123 - 0, (13) — 0, (2.3)]. (48)

0“r s
It is clear from equation 48 that the charge density source for fluctuation potential is
associated with the charge atmospheres of the triplet and doublet densities.

Defining,

g (l!3+) = exp[_ ﬂq+W(l!3)]
9(2.3") =exp[- a9, (2.3)]

(49)
9(13") =exp|- Sy (13)]
9(237) =exp|- Ay (2.3)]
we can expand the summation over species as
Vig(1.2:3) = -——e,p.[0(13)g(2.3)e #4) — g(13") — g(23")]
Ogr
re p [9(13)9(23 )2 —g(13) - 9(2.3)) (50)

where a number with the superscript notation with a positive or negative sign represents

the presence of the corresponding ion at the referred position in space.

Figure 3 Fluctuation potential geometry for the restricted primitive model
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Figure 3 shows the geometry of the fluctuation potential set of equations. Q represents

the total volume of the ionic solution, ®1 and w2 represent the exclusion volumes of ion
1 and 2 respectively. 1 and 2 are the centers of the ions, 3 is the field point in space,
and o* is the overlap volume. Region I (2 - o1 - ®) is the bulk volume defined as the
total volume minus the exclusion volumes of ions 1 and 2. Region Il and Il are the
interior of the exclusion volume of ion1 and 2 minus the overlap volume. These regions
are represented as m1- o=, and w2 - o~ respectively. No ions of species 1 can penetrate
region | so g(1,3") = g(1,3)=0 in region I, and no ions of species 2 can penetrate region
I1'so g(2,3") = g(2,3)=0 in region Il. Region IV is the overlap volume. The nonlinear
system of equations governing the fluctuation potential are then given by the following
expressions
1:Q— (0, —,)

V2g(1,2:3) = ——

—le.p. [0037)g(237)e #4029 g3 ) -g(237)] (52

+e p [0(137)g(237)e #4029 _g(1,37) - g(2.3)]]

*

| OXE)
, 52
V3123 =~ [e.p.0(23) +e p.9(23 )] 2
H:w, -
53
VZ2$(1,2;3) 2_815 [e,0.0(13")+e_p g(@37)] 3
IV : o

V2¢(1,2,3) = O’ (54)
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After expressing the Laplacian in ionic diameter scale, and imposing the global electro-

neutrality condition equations (Appendix A) we have the set of dimensionless

fluctuation potential equations for the size symmetric case

(e IB JV [eﬁ¢(123)] [ij[g(l 3+)g(2 3+)e ~Z,ep4(1,2;3)

- g(1,3 )9(2’3—)e—z_eﬂ¢(l,2;3) - g(l!3+) - g(2,3+) + 9(113_) + 9(213_)]
Defining the dimensionless fluctuation potential as follows
O(1,23) =efp(1.2,3) ,

we have

—( s jvz[cb(l.z;s)] : [—ZZ*_ 5 ][9(1,3*)9(2,3+)e“’m

e’ fpo

- g (1137)9 (2,37)6_211)(1'2:3) - g (1’3+) - g (2!3+) + g (1’37) + g (2’37 )]

(55)

(56)

(57)

Finally we express the parameters of the model in the dimensionless packing fraction

n, the plasma coupling T, and y, = /245T" (appendix A), to get the set of dimensionless

fluctuation potential equations for the size symmetric case

1:Q— (o, +®,)

_%V2®(1,2;3):( Z,Z J[g(]_’y)g(2’3+)e—z+m(1,2;3)
y Z -Z

0 - +

- 9(1137)9 (213—)e—Z,®(l,2;3) - g (1’3+) - g (213+) + 9(1’37) + g (2’37 )]

I:w

1 oo [ 2.2 .
-—VD(1,2,3) = (Z : J[ 9(23)+9(23)]

0 Bt
o,

—%Vzcb(l,z;s):(zz—Z][ 00.3)+g3)]’

0 Ty

(58)

(59)

(60)
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IV:o
ViD(1,2;3) =0

(61)

The boundary conditions are that the fluctuation potential and its normal derivative
are continuous across boundaries.
To find an approximate solution to the system of equations we define the quantity

P from equations (58-61) as follows
ViO(L23) = -y, P[®,9(13),9(23)] |, (62)

with formal solution given by [37, 38]
2
(.23 = [ 2P0, 913). g(23)N0r (63)
Q

we can now write equations 58-61 in terms of P as follows,

1:Q— (0, + ®,)
—izv2q>(1,2;3) =
Yo (64

P, [®,9(113),9(2,3)]:[ZZ ZZ J[g(13+)g(2 3")e 20029

- +

- g (1'3—)g(2’3—)e72,®(1,2;3) - g (113+) - g (2!3+) + g (1!3_) + g (2!3_ )]

Il: o
- veo23)=P,[9(13).023)], (65)
2,7 N
(Z = ][ 0(23")+9(23)]
1l : o,
- L vior23) =P, (903,923, (66)

0

2,7 .
(Z = J[ 9(137)+9(3")]
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IV:o
VZDd(L,2;3) =P, . (67)
P, =0

It’s important to note that the P in regions II and III are not explicit functions of the
fluctuation potential. The radial distribution functions g(1,3) and g(2,3) are implicit
functions of the fluctuation potential.

In order to make progress in the solution to the fluctuation potential problem our
first step is to approximate the radial distribution functions g(1,3) and g(2,3), in the
source functions, with exponentials of the linearized dimensionless Boltzmann
equation’s solutions. For the RPM, and later for the PM, this linearized solutions of the
Boltzmann takes the form of linear combinations of screened Yukawa potentials of the

form

—4 (n.Ta)r

¥ =2e 0 na S — (68)

where the ¢ coefficients and the screening scales p are functions of the parameters of
the dimensionless model. This choice is consistent with the boundary conditions for
the fluctuation potential, which requires the decay of the fluctuation potential as we
move away from ion’s centers 1 and 2. For simplicity, we use the Debye-Huckel

potentials (Appendix B) instead of the summation of Yukawa potentials

w.(r)=TZ, -
A+ y)r (69)

Y =kpo =+ V2.2 =+[-24TZ,Z_

where «p is the usual Debye-Hiickel parameter (Appendix B). Exponentiation of these

potentials defines our approximation for the radial distribution functions, we get
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9(13)(= Gpn (13")) =exp[- Z, ¥, (1.3)]
0(23")(= gpn (23")) =exp[- Z, ¥, (2.3)]
0(137)(= gy (137)) =exp[- Z_¥,(L3)]
9(23)(= Gpn (23)) =exp[-Z ¥,(23)]

(70)

where the subscripts in the Yukawa potentials refers to the charged state of the central
ion, and the signs in the Z represents the charged state of the ion at field point 3.
Inserting the radial distribution functions (equation 70) in the integral of equation 63
will render the contribution to the fluctuation potential from charge in regions | and |1
as an ordinary integral in space.

The next step is to obtain an approximation for the P in the bulk region, outside
ions 1 and 2. In this region the function P is non-linear in the fluctuation potential.
Inserting the radial distribution functions 70 with DH functions (equation 69), and

linearizing, gives for the P in region |

P[®,g(13),g(23)] = [ ZZ+ZZ j[g(1,3+)g(2,3+)(1— Z.0)

- +

- 9(1’37)9(2!37)(1_ Z—(D) - g(l’3+) - g(2,3+) + 9(1’37) + 9(2,37)]

= (ZZiZZ j[Z+g(1,3+)g(2,3+) ~Z 9(1,3)g(2,3)]P(1,2:3) + (71)

[ ZZ+_22+ J[g(1,3+)g(2,3+) ~g3)9(23)
-9(13")-9(23")+9(13)+9(23)]

For small fluctuation potential, we neglect the right hand side of equation 71. For

example for a symmetric valency 1:1 RPM electrolyte, the theme of this work, we have

noted that the DH radial distributions in equation 71 are of order of unity for the

physical parameters and the range of concentrations used. If the fluctuation potential is

of order of 10" or less then the right hand of equation 71 will be of similar order and
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can be neglected as a first approximation for such a system. Under this approximation

the Fluctuation potential is given by,

D(12:3) =y_§[j Rl9(2.47).9(2.a7)dV, [ Fl9q7),g(L.q7)dV,
dr o

‘ro-q - f;’a‘ 2 ‘ﬁl B F3‘
(72)
f F3[g(1,q*),g(l,q‘),g(Z,q*),9(2,q‘)]dvq]
Q—(o+w,) ‘Fq B E‘
, Where the F are defined by,
. - 2,2 . -

Flo(2.a’).9(2.a)]=———-[-9(2a)+9(2a7)], (73)
RO ) 00 a )] =575 [-9.a") + 9@l (74)

and

Fl9(L97),9(La),9(2,07),9(2,9)]=

(ZZ:Zi ][g(l,q+)g(2,q+)—g(l,q-)g(z,q-)—g(Lq*)—g(z,q*) (75)

+9(a7)+9(2,97)]

In this work the integral of equation 72 is calculated by discretization of space,

which is discussed in the next Chapter in connection with the numerical solution.
The calculation of the MPB pair correlation functions utilizes the symmetric
formulation (31) in reduced variables, with zero discharge mean potentials ¥° = 0 and zero

discharge fluctuation potentials ®° = 0 (size symmetric), given by,
Z i Z i
9(1,2) = ¢, exp{— Y2+ [oa22e, =2,2,)d2,]1- SEn+ [o@21e, = zizl)dzj]}
0 0

(76)

We note that equation (76) reduces to the simpler expression,
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1
9(12) =&y, exp{— Z,[Y®2) + j (12,2, = ﬂ,zzz)d/zz]} (77)
0
for the 1:1 RPM electrolyte.
DH functions are used for ¥(1;2) and an analytic expression for the Percus-Yevick

(PY) radial distribution functions for of hard spheres [4] have been used for the excluded

volume term, which can be used up to ~ 2M concentration, given by

élij :glgszo r<o
HS 3(r 1(rY
é/ij:gﬂ :1+877 1—Z — —E — c<r<2c
o o
gij :g1|-2|s =1 r>2c (78)

A useful way of testing the fluctuation potential solution is through subsequent
evaluation of structure and thermodynamics of the electrolyte solution. For the calculation
of osmotic coefficients ¢ and reduced configurational energy U we used equation 12 from
reference [15], written in dimensionless reduced variables as,

¢—1=U/3NKT +27n7[g, (D) +9; D] (79)

And

U INkGT =2 9,0 + 3. (DA (80)

where y = r/o (reduced radial distance), gaand gg are radial distribution functions for like
and unlike ions respectively, and the argument of 1 in ga and gs in equation (79) refers to

contact value.
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Chapter 3

Size/Charge Asymmetric Fluctuation Potential
The effects of size asymmetry enters the symmetric MPB equation through the
potentials ¥ and the discharge potentials !//0. In this thesis we confine ourselves with the

two-species size-asymmetric primitive model (SAPM), which consists of equal numbers,

N, = N_, of positive and negative ions with hard-core diameters _ > o, and charges of
equal magnitudes q, = —q_ = z_e. The complementary case o, > o_follows trivially by

symmetry. We assume additivity of the diameters

o, +0
——_+ T 81
o, 5 (81)

The degree of size asymmetry will be described by the fractional deviation froms,

namely
5 =2="9 (82)
O
5 =9-"9 (83)
O

The diameter ratio is given in terms of the asymmetry as,

o, 1-6
o 1+6

(84)

The asymmetric size model, is naturally more complicated than the symmetrical size case.
To set the PB or linearized PB equation for a system of different size ions in a solution,
three distinct concentric spherical shells or zones must be accounted for. Hard sphere ion
volume exclusion effects will result in the existence of regions around the central ion where

only the smaller ionic species will be able to penetrate. Let suppose, for example, that we
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have the situation of a central positive ion with diameter ordering in size according to

o, <o, <o . Following reference [36], we term this case the “inner” case since like-
like diameter of the central ion is less than &, _. No ion center can enter the interior zone
0<r<o,. The sub-border zone is defined bys, <r <o, . This zone can only be
populated with the center of the smaller positive ions. Finally the exterior zone r > &, can
be populated by the charged centers of both ionic species. When a larger negative ion is
chosen to be the central ion there is also a “super-border” zone, o, <r < o_, iNto which
only positive charges may enter.

The starting point in this asymmetric size DH model is the Poisson equation that
relates the electrostatic averaged potential with the corresponding averaged charge density.
Here we consider a two species model with hard sphere charges g, = z, e located at the
spheres center. With the collisional diameter restricted ases,, <o =0, <o__

Following [36] we define y, to be the average electrostatic potential at a fixed
central ion due to all other ions. The superscripts < and > will serve as reminders of the

relative ions sizes. The subscript o will refer to ionic + or — charge (ionic species).
Calculation of the potential ¥/, (T, p) begins by fixing ion of species o at the origin. The

induced electrostatic potential, ¢(f)and corresponding charge density, o(¥) are then

related by the averaged Poisson equation, namely,

VEH(E)), =———(p(F)), (8)

505r
, where the subscript a indicates that the average is taken with a charge of species a at the

origin. The ion potential follows from the limit
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v, (T,p)= Iim{<¢(F)>a - } (86)

r>0 4re

, Which eliminates the self-interaction of the fixed charge at the origin.
We now approximate the average charge density, (p(F)) by the linearization of the

exponential in the Boltzmann factor, yielding

I

> q.p, expl- A, (#(F)) |, (87)

S=+,—

(p(M),

= 3 a.p,L- Ao, (7). |, (88)

S=+,—
, Where g =1/k,T . In the size asymmetric model, the approximate charge density must

be allowed to take a different form in each of the three distinct zones around the central

ion. Thus, for example, for a fixed positive smaller ion at the center one has

(Pe(n), =a.5(n r<o., (89)
=q.p,1- 40, ()| 0. <r<o (90)
= (k2 )(r)). (>0 (91)

Here the inverse Debye length is defined the usual way via

eZ
=2y, (©2)

&€,
It can be seen in this expression that the sub-border zone (o,, <r <o =0, )can be
populated only by the smaller positive ions, so only g, appears at the right-hand side of the

equation. The exterior zone (I > 0') can be populated by both species so the the equation
follows the standard Debye-Hickel form. Equations (89-91) represent the complete

reduction of the linearized Poisson equation to the asymmetric Debye-Hickel theory
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(ADH). For the case of the larger central negative ion a complementary “super-border

zone” (o, <r < o__) into which + charges may penetrate must be included.

The symmetric MPB formulation for ions of asymmetric sizes (equation 76) requires the

calculation of the electrostatic potential terms ¥/; and ¥/ for central positive and negative

ions respectively. Also “discharge potentials” !,Vio andw?, that represents the mean

electrostatic potentials for the central ions considered as neutral hard spheres with the rest
of the ions in the solution with the usual charges, need to be included in the symmetric
MPB equation 76. In this chapter the ADH model system of equations is set in unit less

form and solved exactly, for standard electrostatic boundary conditions of continuity of the

potential ¥ and the radial derivative of the potential aa—‘// , at the boundaries of the different
r

charged zones.

We start by casting the ADH equation in unit-less variables. We take the negative
ion as the larger diameters . The opposite case follows by symmetry. The spatial
dimension is scaled with respect to the larger ion, in the present case, the negative one. The
parameters of the model are the packing fraction n the plasma coupling I', and the size

parameter a. The ADH equation is

2
vapo Y fezy _gzv 93
Z_Z+[ ] (93)
, Where
Z -7
2= 24T — = 2.2 94
y g (Za3—2+j T (%4)

(Appendix A). For central positive smaller ion the ADH equations are
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V() =—+L -~ % 50, r<o,. (95)
Eogr Eogr

Vi =-—L-=-2LNpy()],  o.<r<o (96)
Eo&y Eo&:

Vi (r) = xiw(r). r>o 97)

This equations are written in dimensionless units. Starting with the innermost region we

have

%v?(i}— L 7 e50r)
o ep Eoy

, Where we have defined the dimensionless potential as
Y =epBy(r)

Then after some manipulation we get

VAW =-44dZ,5(r), O<r<a (98)
, with standard solution
W (r) = er@dBF
T ZT ic, (99)

, Where ¢, is the first constant of integration to be evaluated later from the boundary
conditions.
The second sub-border zone can only be populated by the smaller species, in this case the

positive ions. We start by writing equation (96) in unit-less dimensions

1d d y? 1
V¥ ==—|r’—V¥|= 1-Z.¥ a+1 100
rdr[ dr j Z—Z+[ Yl a<rs 2 (100)
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The solution to equation (100) was obtained to be

1 e’ er"
Y, (r) :Z_++C2 ; +C, wt (101)
Where ¢ is given by
Z
= S 102
=y 7 7 (102)

The equation for the outer zone is the standard DH equation with solution given by

e—)’o'r
Corsatl (103)
r 2

¥,(r)=C,
To evaluate the constants Cy, C», C3, and Cy, standard electrostatic boundary conditions of

continuity of potential function ¥, and its normal derlvatlvea—, are implemented at the
r

borders of each zone. The result is the following linear system of equations

At boundary ' =a, we have

Y (a) =Y, (),

Z —$a +&a
ré,c-c,® 4c 1 (104)
a a a L,
, and
0,¥1(2)=0,%,(a),
Z, e (1 e~ 1
-I'— =-C, (—+§j+C3 (——+§j, (105)
(04 a a (04 o
Jat r=2t
2
v, (O = w (21, (106)

2 2
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() ) A
Lo, et T et (107)
Z, oa+1 a+1 a+1
, and

anLPZ (T) = anLIJS (T) !

(%) A

e 2 e 2

a+l (a+1+§j+2C3 a+l (_a+1+§j
a+l

)

2
=-2C —+
Y a+l (a+1 yj

To solve for the constants C1, C2, Cs and Cs, we express equations (104-109) in matrix

—2C,

(109)

form
A-C =B, (110)
, Where
C,
C = <. :
C,
C,
[« g reu 0 ]
A 1) (%)
A= ei‘“(l+§J —e*f”’[—l+§) 0 ,
(04 a
0 e (TJ( 2 . éj . '(“f)(_i+ 5) . (”z”)(i+ yj
L a+l a+l a+1 ]
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The explicit expressions for the matrix of the coefficients was obtained by solving the

linear system of equations. The results, for central smaller positive ion, are as follows

a-§+%(l+a)§ a-§+%(1+a)§

F, =62y, + et aly y e2ég 1 eake 2 E-e y

1
reiyas et ygs ey s gt yzirg gt kyzore

_ e2a-§a§2 + e(1+a)§a§2 + eZa»ngrgz _ e(l+a)§zfl—~§2

G =2, [eza-gy _ e(1+a)§y _ ezagg _ e(1+a)§§ _ e2a-§ya§ _ e(1+a)§ya§ 4 e2a~§a§2 _ e(1+a)§a§2]

(111)
¢, F
GZ
1
F2 _ ea-§+5(l+a)¢f y
1(1+a)§ 2 2 1(1+a)§ 2
2% +e* y+e” ya+2e2  yZ I -2e“ aé-e“yal—-e“ ya’E+2e2 T ZUE

G,=2Z, x

[_ eZafy + e(1+a)§y + eszg + e(l+a)§§ 4 20 yal& + e(1+a)§ya§ _ ezagaéz + e(1+a)§a§2]

(112)
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b
GS
Yook e Lo, " "
1
_e2(1 )gya2§+2ea~§zfré:

G3 _ ZZ+[e2"“5y . e(1+a)§y _ eza.gé _ e(l+a)§§ _ ezagyag _ e(1+a)§ya§ n eZafaéZ _ e(1+a)§a§2]

(113)
¢, F
G,
l+a
F, = ey( R j[2e2a-§ _pglt+a)s e2a-§§ + e(1+a)~§§ _ e2a-§a§ _ e(““)éag (114)
1
N 4eo:.e:+§(1+o:)ﬁzfrég _ e2a<§a§2 n e(l+a)§a§2 _ eza»gazéz " e(1+a)§a2§2]

G4 — ZZ+(_eZa§y + e(l+a)§y + e2a§§ + e(1+a)§§ + e2a§yaé;_ eZa§a§2 + e(l+a)¢fa§2)

For central negative (larger ion) there are three boundary zones

Zone |:
r<——,

This region is populated by the central ion only. We will called this region the “interior
zone”.
Zone II:

1+—Ol<r<1
2

This region can only be populated by the center of the smaller positive ions due to volume
exclusion effects. We will call this region the “super border zone”. This a charge imbalance
Zone.

Zone llI:



r>1
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This region can be populated by both ionic species. We will call this region the exterior

zone. It follows standard DH theory.

The ADH equations for central negative larger ion are

Vo (r) =——3=5(r) r<o.

0“r

V() =—2L - gay)] o<1, <o

Ogr
sz/(r) = KEZ,(//(r) r>o

, or in unit-less dimensions

V2 = 407 5(r) r< “T“
2
vz\yzli rzi‘P Y [1—Z+‘P], 1Jr0{<r<1
rdr{ dr_ Z -7, 2
yZ
VY = [e‘“’ - e‘”] r>1
Z -7

The solutions for this system of equations was found to be

Z
Y, (r)=T—+D,, r<1+—a
r 2
1 er" e’
an(r)ZZ_"'Dz r +D3 r “Ta<r<1

+

—yr

‘Plll(r):D4er , r>1

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)
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As before, to obtain the D coefficients, standard electrostatic boundary conditions of

continuity of the potentials and their normal derivatives are implemented. The column

matrix of the coefficients satisfies the matrix equation

A, -D=B,,
, Where
Dl
D= D,
D3
D,
, and
__a+l g2 e—é‘%l 0 |
2
0 et et —e
_ ot e
RSl 2| e 2], 2t . |
a+1 a+1 a+1 a+1
| 0 e’(£-1) e (&+1) e (y, +1)]
_a_+1+l"z_
27,
1
B, = Z,
ar—% :
1+a)
L O -

The solution of the above system gives for the D coefficients
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a)é 1(1+0( 1 l+a)é 1(1+a).§
e2

62627 4 s ™ | oot 2
H, =2e°(2e +2e y+2eyZ ZI-e - y&é

1(1—¢-0¢)‘§

1

~(+a)é £
—e? al—e? yaé+2e°Z,.2 T'¢)
I, =Z, (-1-a)(2e*y — 26y 4+ 2e° & 4 e £ 2y E ety &
4% yal+ e(l+a)§yaé: n ezgéz _ e(l+a)§§2 n ezgagz _ e(l+a)§aé;2)

1 1 1
J=2e2" )5(—2e§ —2e°y — 2e2""* VyZ,Z T —eé—eyé—eyaé+ 2¢2" )§Z+Z_F§)
K=2Z, (-1-a)(2e*y - 26"y + 2% £ + 28 ¢ 1 ey & + ey £y e¥ yaé
+elr iy g g4 et _plrai g2 | g2 g2 pltad g £2)

(124)

1 1
H,=-2¢° —2efy—2e? " “yZ.Z T —eff—eyé—efac—eyac+2e?  Z.Z.T¢&
l,=2Z,(2e%y—2e""%y +26%¢ + 260 ¢ 1 e*y & + ey £+ e¥ yal +eM yal

" ezggz _ e(1+a)§§2 " ezgagz _e(1+a)§a§2)

(125)
p, e
|3
1 1 1 1 1 1
E+=(l+a)é ~(l+a)é =(1+a) ~(+a)é ~(+a)é —(1+a)¢
H,=e 2 (2e2 +282 y+2e°yZ Z T —e? yE—e2 & g2 yE
1 1
Z(1+a)é “+a)é
—e2 af-e?  yal+2e°Z,ZTE)

|, =2, (26%y - 26"y + 2675 + 204 E 1 ey £ + ey E + e yad +eM I yas
e2§§2 _ e(l+a)§§2 n e2§a§2 _ e(1+a)§a§2)

(126)
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1
S+-(l+a)é
H, =e”(2e% —2e™ —e*¢& —eWg 1 e¥q s+ e igé—4e 2

n e(1+a)§§2 _ ez§a§2 + e(1+a)§a§2)
|, =2, (2e%y — 2600y 4 2e% g 4 e @i g2y £y gy sy p2iy g s 4 ety o s
n 62552 _ e(1+a)§§2 i ezg*aggz _ e(l+a)§a§2)

ZZTE-e*&8

(127)
Discharge potentials Wio and t//?represents the mean potential function of a charged

solution where the central ions i and j respectively are uncharged. This is

‘//io =V, (1;2|ei =0) (129)
v) =y, (2l =0)
If all the ions have the same size then the discharge potentials are zero. The reason for this

is that discharge potentials are the result of charge imbalance zones due to ionic exclusion

volume effects. Setting the central smaller ion charge to zero, we have

(py(n) =0 r<o.. (129)
=q.p.i- Ao, (g(0),| o <r<o (130)
= (k2 Kg(r)). >0 (131)

, or in ionic scale dimensionless units

Vi (r)=——+--o, r<o,, (132)
E4E,
V() =—L =L fpay()], o, <r<o (133)
gogr 0“r
Vi (r) = kg (r) r>o (134)

For central larger negative ion we have



VZW(r):Oa r<o,_
VZW(0==—E%fﬁﬂi—lh+w(n], 0. <r<o
VA (r)=-xp(r), r>o.
or in unit-less dimensions
VAP:O r<l+a
2
1d d y* 1+
Vi ==—Ir’—V¥|= 1-2.9], 1
I’dr( dl’ J Z_—Z+[ + ] 5 <r<
2
v2y y [e—zp{f _ e—z;{f] (51

"7 7

+

Analytical exact solutions for the above systems of equations are given by

Yp(r)=1J,, r<a
1 e e a+1
Y, (r)=—+1] +J , <r<>2-=
2D( ) Z. 2 Sy o >
e /! 1
Y(r)=J,—, rs&t2
3D 4 r 2
for smaller central discharged ion, and
Yp(r)=K,, r<1+a
1 e’ e’
lP||D(r):Z_‘|'K2 +K, r l+a<r<1
e’
¥ (r) =K, r>1

r )

o2

for larger central discharged ion.
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(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)
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To obtain the J and K coefficients, standard electrostatic boundary conditions of continuity

of the discharged potentials and their normal derivatives are implemented. The column

matrix of the coefficients satisfies the matrix equations

A,-J =B,, (147)
A, -K =B,
, Where
‘]1
J= %2 :
‘]3
J
—a e f e@1 0 ]
%) %) )
1o s i
A=l 0 e —+¢& —e" - =+ 0 ,
(04 a
A2, 0 T2 ol 2
_0 e 2 (a+1+§j e 2 (_a—+l+§j e 2 [eryoj_
__i_
Z+
a+l
57z )
0
L 0 .

, for central smaller positive ion, and

=

AR

~



_a+l «l o e 0
2
0 e* e ¢ —e7
ax _ear
S IR T Y I T D .
a+1 a+1 a+1 a+1
Y e’(£-1) e (£+1) e’ (y+1)
_a+1]
27.
1
B, = —Z
0
- 0 -

The solution of the above systems gives for the J and K coefficients

V.
=4
1 01

a/§+£(l+a)§ a§+1(l+a)§
2 e 2

Vl — _eZaéy + e(1+a).§y + e2a§§ + e(1+a)§§ _ Ze

5_
yaé_ e2a§a§2 + e(l+a)§a§2

91 — Z+ (_e2a§y + e(1+a)§y + eZaé"é; + e(l+af)r§ég + eZafyag + e(l+a)§ya§
_ eZafaé;Z + e(l+a)§a§2)

ye

2a+£(l+a)§
+e*Cyas+et P yal—e 2

V.
J. =—2
2 62
Lita
v, =2 Qhy 1 ya)as-1)

0,=27 (—e**y+et oy y 2L 1 oM E L2yl + M yal
_ ezagagz n e(1+a)§a§2)

v
1.=%
3 6,
%(lﬂx)ﬁ
v, =€ Q+y+ya)(as+l)

03 — ZZ+ (e2a§y _ e(l+a)y _ e2a§§ _ e(l+a)§§ _ e2a§ya§ _ e(1+a)§ya§ + e2a§a§2
_ e(l+a)§a§2)
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(148)

(149)

(150)
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V.
J, = -4
94
y(_1+l+7a) ) )
v,=e 2 (-2e%% 4287 —glrg — Wl g L el g 1 oM g s ¥y
4

_ e(1+a)§a{§2 " e2a§a2§2 _ e(1+a)§a2§2) (151)
94 _ ZZ+ (eZagy _ e(l+oz)§y _ e2a§§ _ e(l+a)§§ _ eZa§ yaé: _ e(l+a)¢f yaf + e2a§aé;2

_ e(l+a)£ja§2)

K, =2
51

§+%(1+a)§

v =—2y +2eW Dy —2e¥ ¢ - 2eW L 4 4 —eys—eMDye

1
+ 4e¢+§(1+“)5y§ _ ezfyaf _ e(1+a)§ya§ _ e2§§2 4 e(l+a)§§2 _ ezgafz " e(1+a)§a§2 (152)
¢ =2, (-2e*y+ 26y g2 f el g2y s My s _e¥ygf

_ e(1+a)§ yag _ ezééz + e(l+a)§§2 _ ez‘fagz + e(1+a)§a§2)

K =_Y2
? S
v, =" (L+y)2+ &+ aé) (153)

G, =Z,(2e*y -2y 4 2% £ + 28I E 4 e¥yE 4 ey E L e¥ yaé
+ e2§ya§ + e(l+a)§ya§+ e2§§2 _ e(1+a)§§2 _ e(l+a)§§2 + e2§a§2 _ e(l+a)§a§2)

Vs
52 (154)

vy =e U (L y) (¢ -2+ ad)

K, =

1%
K,=2
Gy
v, =67 (2e% — 2eM¢ g g et iE L e gE 4 oM gE —e* E?
pelralig? _g2f | g2y p2 | a2 (155)

G, =2, (-2ey+2e" 7y —2e*E Mg gty s ey E ey

_ e(l+a)§yaé; _ eZg“égZ + e(l+a)§§2 _ e2§a§2 + e(l+a)§a§2)
Having obtained electrostatic potentials for charged ¥(1;2), and discharged ¥°(1,2)

central charges, we use equations 80 for the pair correlation functions. The source functions



47
Fi, F2, and F3 are calculated with equations 73, 74, and 75 with the asymmetric Debye-

Huckel radial distribution functions calculated here. From equation 71 we define function

G as follows

P [®,9(10),9(2,0)]

‘(ZZ_ZZ J[Z 9L 9")9(2.9")-Z_9(q7)g(2,97)]®L2;q) +

(ZZ_ZZ J[g(lq )9(2.4)-9Lq)g2a) (156)

-9(1a")-9(2,9)+9a)+9(2,9)]
=G[g(L97),9(1,97),9(2,0),9(2,9)]1P(L2;q)
+F[9(L97),9(1,d7),9(2,97),9(2,97)]

, with G given by
Glg(a").9(La7).9(2,97),9(2,9)]

157
(ZZ j[Zg(lq)g(2q>+29<1q)g<2q>] (157)

Z -7

Including the term linear in @(1,2;q) in the integral of equation 72 we get,

o23) < Yo[920a).0(2.a)1dV, - Flada’).glta)dv,
4

= A
Flo@a’).gtq7).9(2.9"), g(Z,q‘)]qu]
O-(orrar) d (158)
( | GEg(l, p),9(L p),9(2 p).9(2p )]
x{j Rlo@a)] g, +fF L9@a gy Floa%). 92971, } Yy
@ |rq - rp| | -F | Q—(@y+y) |r - | |r |

This represents the fluctuation potential for symmetric asymmetric valences and sizes in
this model. For the pair correlation functions, we use the symmetric formulation MPB,

(equation 76) given, in dimensionless reduced variables by,
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Z. 1
9; =0; exp{— 7’[‘& + ! +I(®(1,2;2) +®(1,2;2Z; =0))d4,]
0

. (159)
Z, 0 . :
S [(@@21) +4(1242; = 0))dA]}
0
, Where the excluded volume term can be approximated by
gi?:gij(zi :Zj ZO)ZH(ra_Gij) (160)

, Where gjj is the contact separation, and H(r, - aij ) is the Heaviside unit step function. This
completes the MPBiis-work Solution for the primitive model.
Osmotic coefficients for the primitive model electrolyte can be calculated using

equation 5 from reference [32],

$=1+(27/3p)). > n,ng,(a,)a; + fE/3p (161)
S t

expressed in dimensionless form using the parameters defined in this work as

p=1e 1N 4, 0. e+ g (@ g @ (162)
with energy given by
PEIN=U_,+U_+U ) (163)
where
U, == [g.,.(Ordr (164)
8 a

2 ®
Yo

U =24 Nrdr 165

_ 8'1[9__() (165)



2 [e'e]
_ Ve
U, === [g.(nrdr

(a+1)/2
with

o—

4dre £,0

V.. =+24n, T _

Where o is the larger negative ion diameter and r represents the scaled distance #/o- .
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(166)

(167)

(168)

(169)
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Chapter 4

Numerical solution

The calculation of the fluctuation potential ®(1,2;3) was achieved by creating a
Cartesian grid in space with scaled distance of 10% of the ionic diameter, which in our
dimensionless units is 1, so in this calculations the grid spacing is 0.1. This grid was created
to represent the physical regions in the fluctuation potential problem as shown in figure 3.
Those regions consist in the spherical regions o1 and w2 that correspond to the boundaries
of the physical ions 1 and 2, and the rest of the solution which is denoted by Q — (w1 + ®2)
and represents the ionic excluded volume. The functions F1 and F2, (equations 73 and 74
respectively), represent the charge density associated with regions o1 and 2 in the integral
of equation 63. The boundary of the rectangular Cartesian grid representing figure 3 was
defined by a parameter A, which represents the distance scale between the ionic boundaries
o1, 02 to the boundary of the volume Q. This parameter was chosen in such a way that the
fluctuation potential solutions tend to zero at the exterior boundary of the grid. We call this
parameter the fluctuation potential spatial decay parameter. It should be large enough to
allow the fluctuation potential to decay to zero, in order to fulfill the electrostatics boundary
conditions. Usually this parameter was between three and five ionic diameters for the
highest concentration but was found to be considerably larger than for small
concentrations. The ionic solution’s volume Q is represented by a grid space with the

dimensionless spatial scale h, expressed in ionic diameters. Grid vectors are represented by
R=(i.5.k) (170)

, Where i, j, k are integers. Coordinates in ionic diameter space are then given by



o1

x, =h(i-1)
Y, =h(j-1)
z, =h(k-1). (171)
The integral in equation 72 is then represented by a summation in grid space as,
R, -#]
d 172)
, where P is the source function, and A is the cell unit volume in ionic diameter grid
space. That is
A=h? (173)

The fluctuation potential solution was an integral over regions w1 and w2. The summation
used to numerically calculate the integral included approximately eight thousand terms,
one for each point inside regions ol and ®2. To produce figures 4-6 the fluctuation
potential was calculated at each point in a planar slice passing through the centers of ®1
and m2. For contact distance between the regions w1 and w2, and A = 5, this planar slice
contains approximately ten thousand points. The simplicity of equation 72, and the
approximation of the gjj in equation 70 with DH functions, are what make the calculations
fairly tenable.

The calculations of the pair correlation functions were performed in a similar grid
as the one used for the three-dimensional figures but the fluctuation potential was only
calculated at the center of region w2 (figure 3), and used in equation 81, where the
Kirkwood charge integral of the fluctuation potential is calculated. The calculation of
reduced configurational energies and osmotic coefficients was achieved from formulas 79

and 80 for the RPM (1:1). For the PM (1:1) case the osmotic coefficient was calculated
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from equation (162). Radial distribution contact values for the charge asymmetric RPM

(1:2) case were calculated using equation (76).
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Chapter 5
Results and Discussion

In this work the fluctuation potential was obtained numerically by solving the
integral of equation 72 for the restricted primitive model case (1:1), neglecting ionic charge
in region Q — (w1t ®2). The physical parameters for the RPM used were ---- common ionic
diameter of 4.25A, dielectric constant (relative permittivity) er = 78.5, which is tantamount
to having a water-like solvent, and absolute temperature T = 298K. The concentrations
used were, in moles per liter, of 0.1038, 0.425, 1.00, and 1.968. One reason for using these
physical parameters is that these have been used earlier in the literature and for which MC
simulation data exist [9, 10]. Radial distribution functions were calculated with equation
(77). Osmotic coefficients ¢ and reduced configurational energies -U/NkgT have been
calculated with equations 79 and 80. The numerical procedure involved is described briefly
in chapter 4. In what follows we discuss the results for RPM (1:1), RPM (2:1) and PM (1:1)
cases studied in this research. Sections 5.1 and 5.2 refers to RPM (1:1) case which was the

main focus of this work.

5.1 Fluctuation potential

Three-dimensional representations of the fluctuation potential ®(1,2;3) for various
configurations of the monovalent ions are shown in figures (4-6), which are calculated on
a planar slice passing through the centers of ions 1 and 2 (figure 3). To our best knowledge
such representation of the fluctuation potential does not exist in the literature. The plots

shows the fluctuation potential ¢(1,2;3) obtained from equation 72 as mentioned before,
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following the linearization of the fluctuation potential in the bulk region I and the smallness

of ®(1,2;3), the P function in bulk region I is taken as zero, neglecting charge density for
that region.

The behavior of the fluctuation potential in figures (4-6) can be understood in terms
of the charge density associated with the functions F1 and F2, inside regions o1 and ®2.
Figure 4 shows the fluctuation potential for a planar slice passing through the centers of
two positive ions of charge +1 each. The charge density contributed by the spherical region
1 associated to the positive ion in region ®; iS calculated using function F1 (equation 73)
which is a function of g(2,3) , where the point 3 is bounded to be inside region w1 The
positive sign in the fluctuation potential in region 1 is given by the sign of -g(2,3")+g(2,3"
). Since the charge in position 2 is positive the second term associated with unlike charges
is greater in magnitude than the first term in F1 causing an overall positive fluctuation
potential in region 1. The positive sign in region 2 can be understood in similar terms.

Figure 5 shows the fluctuation potential for a positive ion +1 in region ®1 and a
negative ion -1 in region w2, For this case the functions g(1,3) and g(2,3) in F1 and F2
conspire to cause the sign of the fluctuation potential around region 1 to be opposite in sign
to the charge of ion 1 and vice versa for ion 2. To see this first we look at -g(2,3%)+g(2,3")
for F1. If the ion in region 2 is negative then the first term associated with unlike charge is
giving a negative sign in region 1 where the positive physical ion is located. On the other
hand the fluctuation potential in region 2 is calculated using F2 where the charge density
is given by -g(1,3%)+g(1,3). It can clearly be seen that the second positive term in this
expression is the larger one because it is linked to unlike charges. So it can generally be

stated that the fluctuation potential for like ions near the vicinity of the ions is of the same
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polarity of that of the physical ions and is of opposite polarity for unlike ions. This peculiar

behavior is a consequence of the fluctuation potential in region w1 (equations 65) being
related to the g(2,3) centered at region w2, and that the fluctuation potential in region ®2
(equations 66) being related to the g(1,3) centered at the opposite region w1. This combined
with the relative magnitudes of like and unlike ions g’s in functions F1 and F2 explain the
behavior of the polarities of ®(1,2;3).

The smallness of ®(1,2;3), specially for large inter-ionic separations, can be
understood in terms of the dominant charge density in equations 65 and 66. The charge
density in 1 is a function of the g(2,3) where the point 3 is in region ®1 and the point 2 is
in the center of region @2, and the charge density of region ®2 is a function of g(1,3) where
point 3 is inside region ®2 and point 1 is at the center of region w1. As interionic separation
is increased, the dominant functions in F1 and F2 associated with unlike ions decrease,
while the g’s associated with like charges tend to one. It is apparent from Eqgns. 73 and 74
that F1 and F2 both tend to zero for large distances, and increase for contact distances, as
in figure (6), where the fluctuation potential for similar charges is seen to become quite
large compared with that in figure (4). This means that for small separation of the ions the
fluctuation potential term becomes important for the calculation of the gij. Figures (4-6)
show that the fluctuation potential is largest near the regions of ions 1 and 2.

In figure (4) we have ions of the same sign, and it is clear that the fluctuation
potential is manifested as an increase in electrostatic energy of the ions since the fluctuation
potential is of the same sign as the ions. For ions of opposite sign, we can see from
figure (5) that the sign of the fluctuation potential is opposite to that of the ion in the

vicinity. This leads to a decrease in potential electrostatic energy giving rise to attractive
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inter-ionic correlation interaction in this case. This implies, and from what has been known

in the literature, that the sign of the fluctuation potential in the vicinity of ion 1 is mostly
due to the cloud of counter ion (from ion 2) and vice versa. The results further show that
the fluctuation potential increases with electrolyte concentration. It can be seen from figure
4 and 5, that the fluctuation potential increases as the separation of the ions is decreased,
establishing the importance of having a solution that is valid at short distances. Figure 6 is
the fluctuation potential calculated at contact distance »/o = 1. The results show that
fluctuation potential increases with molarity, meaning that as molarity increases the short
distance behavior of the theory is affected by not only by the excluded volume effects, but

also by the fluctuation potential.
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Figure 4 Fluctuation potential ¢(1,2;3) for Z1=2>
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Figure 5 Fluctuation potential ¢(1,2:3) for Z1=+1, Zo=-1, 6=4.25A, £=78.5, T=298K,
c=1.968M. Reduce interionic distance r/c: (a) 1 (contact), (b) 3.
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Figure 6 Fluctuation potential ¢(1,2;3) for Z1=Z,=+1, 0=4.25A, £=78.5, T=298K,
c=1.968M. Reduce interionic distance r/o=1 (contact) for concentrations: (a) c=1.968M,
(b) c=0.1038M.
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5.2 Structure and Thermodynamics

In Tables 1-3 we show the contact values, the reduced configurational energies,
and the osmotic coefficients for the Debye-Hickel (DH), the symmetric-Poisson-
Boltzmann (SPB) , the traditional modified Poisson-Boltzmann (MPB), the Card and
Valleau Monte Carlo (MC)[9], the Rasiah, Card, and Valleau Monte Carlo (MC) [10],

and the modified Poisson-Boltzmann from this work (MPBihis-work).

g..(1)=g..(1) g+ (1)
3 MPB MPB
C(IHOI/dIH ) DH SPB MPB s work MC DH SPB MPB thisrork) MC
0.1038 -0.158 0.321 0.311 0.302 0.31% 2.16 3.19 3.30 3.33 3.25
0.425 0.121 0.443 0.417 0.399 0.418 1.88 2.50 2.66 2.62 2.62
1.000 0.299 0.573 0.530 0.500 0.505 1.70 2.14 2.42 2.23 2.23
1.968 0.433 0.752 0.686 0.633 0.706 1.57 2.20 2.40 2.38 2.38

Table 1 Contact values of the radial distribution functions gij(d) from different theories.
The common diameter of the ions is4.25x107°m, the temperature T = 298 K, and the
dielectric constant of the electrolyte e = 78.5. The MC values are from reference [9].

MPB MC

(this-work)

C(mol/dm’) DH SPB MPB

0.1038 0.261 0.267 0.274 0.274 0.274
0.425 0.400 0.407 0.436 0.439 0.434
1.000 0.480 0.500 0.555 0.550 0.552
1.968 0.556 0.572 0.663 0.699 0.651

Table 2 Reduced configurational energy -U/(NkgsT) from different theories. The common
diameter of the ions is4.25x10°m, the temperature T = 298 K, and the dielectric
constant of the electrolyte ¢r = 78.5. The MC values are from reference [10].
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MPB MC

(this-work)

C(mol/dm?) SPB MPB

0.1038  0.946 0.945 0.944 0.945
0.425 0.985 0.981 0.98 0.977
1.000 1.11 1.10 1.10 1.094
1.968 1.37 1.37 1.33 1.364

Table 3 Osmotic coefficient ¢ from different theories. The common diameter of the ions
i54.25x10™"°m , the temperature T = 298 K, and the dielectric constant of the electrolyte
er = 78.5. The MC values are from reference [9]

Table 1 shows contact values for the three models, and the Card -Valleau MC for
concentration 1 M [9]. For the radial distribution at contact distance, the values from this
work and the corresponding ones from traditional MPB are very close to the generally
Rasiah-Card-Valleau MC [10], but the SPB shows a tendency to be smaller than the MC
for unlike ions, and larger than the MC values for like ions. Results from Table 1 show that
MPBthis-work and MPB are closest to the MC results than the corresponding SPB values for
both like and unlike ions. The contact values for the radial distribution functions for like
ions, from the present theory, are slightly closer to the MC result [9] than that from the
SPB and MPB. This is probably due to a better treatment of the fluctuation potential in this
work. Overall, the contact values from the present theory are consistent with the other
theories and show very good agreement with the MC simulation data.

Figure 7 shows the radial distribution functions obtained in this research along with
the corresponding SPB and the traditional MPB theories at 1 M electrolyte concentration.

The results are very similar for distances bigger than 2 ionic diameters. But importantly,
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the present results and that from the conventional MPB theory are almost identical. This

testifies to the viability of the present treatment.

g,(r/d)

3.0
] 1:1,c=1M,d=4.25A, T=298K
2.5
] \
il
2.0 \
- Wg,
1.54 W\
A\
) .\"-"‘;_.
1.0- T e
] ; d;/’)‘r MPBthis-wark
0.5- y g++: g - SPB
) MPB
0.0 . : : .

r/d

Figure 7 Cation-cation and cation-anion radial distribution functions for Symmetric-
Boltzmann (SPB), modified Poisson Boltzmann (MPB), and the theory presented in this
work (M PBthis-work)

Tables 2 and 3 show the reduced configurational energies, and the osmotic

coefficients from the DH, SPB, MPB, MC [9, 10], and this work. These values are also

presented in graphic form as in figures 8 and 9, respectively. The reduced configurational

energy curves (figure 8) show excellent agreement between the MPB and this work, and

with the MC curve up to 1 M concentration. At the highest 1.968 M concentration the MPB

is a little closer to the MC. Figure (9) shows osmotic coefficients for the theories and the

relevant MC data [9, 10]. These curves show a generally very good agreement between the

MC results and the theories.
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Figure 8 The reduced configurational energy for a 1:1 restricted primitive model
electrolyte at ionic diameter d = 4.25x10'°m, dielectric constant ¢ = 78.5, and
temperature T = 298 K, versus the square root of the electrolyte concentration c, for the
Debye-Hiickel, theory, the symmetric Poisson-Boltzmann theory, the modified Poisson-
Boltzmann theory, and the theory presented in this work. Legend as given in the figure.
The Monte Carlo results are from references [9] and [10].
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Figure 9 The osmotic coefficient for a 1:1 restricted primitive model electrolyte at ionic

diameter d =4.25x107°m  dielectric constant ¢ = 78.5, and temperature T = 298 K,
versus the square root of the electrolyte concentration c, for the Debye-Hiickel, theory,
the symmetric Poisson-Boltzmann theory, the modified Poisson-Boltzmann theory, and

the theory presented in this work. Legend as given in the figure. The Monte Carlo results
are from references [9] and [10].
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5.3 Charge Asymmetric Case Radial Distribution Contact values

g..(1) g..(1) g..(1)
c(mol/d mg) HNC MBP this-work HNC MPBihis-work HNC MPBhiswork
0.00067 24.65 24.049 0.0017 0.0023 0.2318 0.2271
0.005 18.29 18.4 0.0033 0.0035 0.2712 0.2666

0.05 9.31 9.28 0.0106 0.0097 0.3894 0.4002
0.1 7.287 7.37 0.0157 0.015 0.4311 0.4722
0.2 5.623 5.73 0.0258 0.0241 0.479 0.5618
0.26667 5.06 5.14 0.0286 0.0297 0.5025 0.6381
0.4 4.389 4.416 0.0376 0.0406 0.5419 0.66689
0.6 3.855 3.801 0.0505 0.056 0.5932 0.6921
0.8 3.562 3.431 0.0636 0.072 0.6413 0.7251

1 3.383 3.576 0.0772 0.0886 0.6888 0.7483
1.3333 3.229 3.26708 0.1019 0.1174 0.7706 0.77453

Table 4 Comparison of the radial distribution functions contact values gij(d) from HNC
and this work for RPM 2-1 case. The common diameter of the ions is4.25x10*°m, the

temperature T = 298 K, and the dielectric constant of the electrolyte ¢ = 78.5. The HCN
values are from reference [20].

Table 4 shows radial distribution functions contact values calculated for the
charge asymmetric case RPM (2:1), using equation (76). The corresponding HCN values
were obtained from the results of Rasiah and Friedman [20] , which are considered to
give the best results for ionic solution theory [20, 21, 22]. The results shows good

agreement for all concentrations considered.
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a g++(a) g+_(a+1) g'-(l)

2
0.2 0.000521989 7.3112 0.398237
04 0.0320528 5.14152 0.39079
0.6 0.123494 3.974470 0.381779
0.8 0.240527 3.26284 0.371116

Table 5 Radial distribution contact values for primitive model 1:1 electrolyte. The
diameter of the large negative ion is 4.25x10%m, the temperature T=298K, the dielectric
constant of the electrolyte &, and the size asymmetry parameter a. = 0.2, 0.4, 0.6, and 0.8.

a cDan.s—wm‘k q)MC
0.2 0.9437
0.4 0.9143 0.904+0.003
0.6 0.9276 0.925+0.002
0.8 0.9419 0.948+0.003

Table 6. Comparison of osmotic coefficient ¢ for primitive model 1:1 electrolyte and MC
simulations. The diameter of the large negative ion is 4.25x10"°m, the temperature
T=298K, the dielectric constant of the electrolyte &, and the size asymmetry parameter a

=0.2,0.4, 0.6, and 0.8.MC simulation data from Abrano et al [14].

Table 5 and 6 shows calculation results of radial distribution contact values and

osmotic coefficients for the size asymmetric primitive model electrolytes with physical

parameters: molar concentration ¢=0.425mol/dm?, absolute temperature T=298K, relative

dielectric permittivity =78.5, and ionic size ratio o (=6+/c.) with . = 4.25x107°m of

0=0.4, 0.6, and 0.8.
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Table 5 Shows contact values for the radial distribution functions where

calculated using equation (159) using the potentials y and discharge potentials y° given
by equations (99-103), (121-123), and (141-143). For the volume exclusion term a step
function (equation 160) was used.

Table 6 shows osmotic coefficients calculated using equation (161). A
comparison with the MC osmotic coefficients from reference [14] shows good agreement

for the concentration studied.
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Chapter 6

Conclusion

In this thesis we have made an approximate analysis of the fluctuation potential in
the modified Poisson-Boltzmann theory of bulk electrolyte solutions. An analytical
solution of the fluctuation potential equation, albeit approximate, was obtained for
symmetric valency 1:1 electrolytes in the RPM. This solution was later employed to obtain
the structure and thermodynamics of the electrolyte in terms of ion-ion radial distribution
functions, reduced excess energy, and the osmotic coefficients, respectively.

One of the main problems in the present MPB theory is the use of an approximate
solution to the fluctuation potential problem that is restricted to large inter-ionic
separations, where approximate spherical symmetry is valid [33]. This work is an attempt
to overcome the separation restriction through an approximate analytical solution for the
fluctuation potential. The solution is represented as an integral over ionic charge density in
space. The integral was numerically implemented for the simplest case, a RPM (1:1)
electrolyte. The resultant radial distribution functions, configurational energies, and
osmotic coefficients were compared and contrasted with the corresponding results from the
PB, SPB, traditional MPB and MC simulation data.

The fluctuation potential is a central ingredient in a potential approach to the theory
(of charged fluids) such as the modified Poisson-Boltzmann theory. The fluctuation
potential solution developed in this work, with approximations to make analytical progress
and for symmetric systems, is a preliminary attempt to assess the implications of such a
solution. In such cases due to the linearization of the fluctuation potential in the bulk region

| (equation (72)) and the small magnitude of ®(1, 2; 3), the P function in bulk region I can
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be taken to be zero, thus neglecting charge density for that region. A less approximate and

nearly full treatment could be achieved by solving for the fluctuation potential in region I
using equation (64) with P, being given by equation (72) in conjunction with equation (71).
An intermediate procedure (between the above two situations) to obtain a better, viable,
and still feasible approximation for ®(1, 2; 3) in region | would be to solve equation (64)
(with PI given by equation (72)) by writing it in the form

V2D (1,2;3) = CD(1,2;3) (174)
where the quantity C contains the valencies Z+, Z—, and has spatial dependence through
g(1, 3) and g(2, 3). Thus although C is not a constant per se, it can be assumed to be
approximately constant for the purposes of solution to equation (174). An approximate
analytic form of ®(1, 2; 3) in region I, whose value is not necessarily zero, would then be
available. Equation (174) has some parallels to a similar equation for the fluctuation
potential in the MPB formalism in the planar electric double layer [39]. Such procedure
will be useful for higher and multivalent electrolytes when the magnitude of the fluctuation
potential in region | is likely to be significant and hence PI can no longer be neglected.
This will be a focus of our future work.

The three-dimensional plots of the fluctuation potential give valuable insight into
the correlations between ions. Furthermore, the present structural and thermodynamic
results point in the right direction and are indicative of the potential usefulness of a full
solution of the fluctuation potential. The radial distribution functions, especially at contact
distance separation between the ions, the reduced excess energy, and osmotic coefficients
show an improvement over that from the PB (or SPB), and an overall very good agreement

with the predictions from the traditional MPB theory and Monte Carlo results.
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Future work, will also include, the numerical evaluation of the third term in

equation 72, and the calculation of the full fluctuation potential solution from equation
(158) and the implementation of some form of hard spheres RDF for binary solutions,
instead of the use of a Heaviside function in equation (160), to calculate accurate radial
distribution functions, and thermodynamic properties, for size asymmetric cases.

The MPB description of the electric double layer phenomenon is an area where the
present techniques might have some significance since the fluctuation potential plays an
equally important role in the theoretical framework for the inhomogeneous fluid at the
interface. In the MPB approach to the double layer theory in planar [39, 40], cylindrical
[41, 42, 43], and spherical [44, 45] symmetries, the form of the corresponding fluctuation
potential used is rather approximate and generally suffers from similar defects as those vis-
a-vis the traditional MPB theory for the bulk. The statistical mechanical methods used in
this paper are quite general and can be extended and adapted to interfacial double layer
geometry where an analogous fluctuation potential analysis might prove useful.

Another area of possible relevance for this study is in the theoretical analysis of
charged fluid systems with variable dielectric constant (relative permittivity). The topic has
attracted a lot of recent research attention (see for example, references [46, 47, 48]) and
has been shown to be relevant for important technological systems, viz., super-capacitors
[49, 50]. In the electric double layer the MPB has been found to be capable of dealing with
systems having an inhomogeneous dielectric constant [39, 40]. Very recently, the MPB
was applied to a double layer system with three different dielectric constants [51], although

the associated fluctuation potential problem could only be solved for point ions. Thus again
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a fluctuation analysis in such situations along the lines of the present work could be

valuable.

The complete solution of the fluctuation potential equation, valid for a general case
and for asymmetry in ionic size and/or valency will involve a numerical solution
comprising an iterative algorithm. Our solution here might prove useful in such a

procedure. Such a project is contemplated in the future.
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Appendix A

The Dimensionless Poisson-Boltzmann Equation

The Poisson equation for the spherically symmetrical field of an ion is given by

g i 28] =2
rror\ or £ (A1)

Where ¢ is the electrostatic potential, r the radial distance from the ion’s center, ¢ is the
liquid’s dielectric constant, and p the density of charge.

In the Poisson-Boltzmann theory it is assumed that ions are distributed in space following

the Boltzmann’s distribution. The charge density is then given by:

,0 — qupse_qs¢ — q+p+efq+ﬂ¢ + q_p_equﬂ¢

(A.2)
Where 9+, 9- | - and #- are the ions respective charges and particle concentrations.
Inserting equation A.2 in equation A.1 we get:
1
V2¢ _ _Zg(rz %j _ qupse—qsw
reor or S (A.3)
The condition of global charge neutrality is given by,
D 0P =00, +0p =0
5 (A.4)
The global particle concentration is given by,
poNoAN N N
@ o o 7 (A5)

Using the global charge neutrality conditions (A.4), the ions concentrations can be

expressed in terms of the global ionic concentration as follows,



P, = i P
g.-q,
p.= 9. p
g, -
, or in terms of the ion valences,
Q+ = Z+e
q =2Z_e
— Z_
Jon z -7 P
— Z+
p- 7 7 P

To cast the Poisson Boltzmann equation in dimensionless form we define the

dimensionless electrostatic potential,
W =efp(r).

The packing fraction,

7 E%(pﬁf +p,of)=%p0

, and the plasma parameter

2
I'= ep
Are.g,0

Where we have used equal ionic diameters,

3
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(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
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Defining,
Yo =240 (A.15)
we have,
2 2
y; = 2ayr = T2
&réo (A.16)
, finally obtain,
ZZ
VZ\P - _ 2 G+ =Z,¥(r) _ A=Z¥(r) . A17
G y{—z_ _Zj(e e?¥0) (A1)

The PB equation for the asymmetrical size case is the same form as equation 14 but the
distance scale is set to the larger ion diameter and the packing fraction and plasma

coupling parameters are then given by

T , Za’-Z,
=— —_ A.18
N=g9-P 7 _ Z. (A.18)
e2
r-_ % (A.19)
Argye,0
The PB equation for asymmetric size ions is given by
2
V2¥(r) = # (e‘“’(” - e‘“’(”) (A.20)

+

Where y is given by

+
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Appendix B

Dimensionless Debye-Hiuickel Potentials
The Poisson-Boltzmann equation is a nonlinear elliptical partial differential
equation. Being nonlinear, this equation is generally difficult to solve. The Debye-Hiickel
theory approximation consists of the linearization of the PB equation by expanding the

exponential in the Boltzmann term. Thus, keeping only terms linear in ¥, we write

V2P (r) = —yg(iJ(e—ZﬁF(r) _e2v0)
=—y,Z,.Z_¥(r)
So the dimensionless linearized PB equation becomes the dimensionless Debye-Hickel

equation
VAP(r)=-yZ.2 9(r). (B.1)
, defining

y=\-Y22.Z =\[-24rnZ.Z_. (B.2)

Debye-Huckel equation in reduced dimensionless variables is then given by,

VAP (r) =y (r) (B.3)
, With solution,
w(ry=rZe 2y 0<r<l (B.4)
r y+1
, and
-y(r-1)
w12t r>1 (B.5)

@+yr
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the structure of the electrolyte in terms of the radial distribution functions, and to calculate some aspects of
thermodynamics, viz., configurational reduced energies, and osmotic coefficients. The calculations have been
made for symmetric valence 1:1 systems at the physical parameters of ionic diameter 4.25 X 10710 m, relative
permittivity 78.5, absolute temperature 298 K, and molar concentrations 0.1038, 0.425, 1.00, and 1.968. Radial
distribution functions are compared with the corresponding results from the symmetric Poisson-Boltzmann,
and the conventional and modified Poisson-Boltzmann theories. Comparisons have also been done for the con-
tact values of the radial distributions, reduced configurational energies, and osmotic coefficients as functions
of electrolyte concentration. Some Monte Carlo simulation data from the literature are also included in the
assessment of the thermodynamic predictions. Results show a very good agreement with the Monte Carlo re-
sults and some improvement for osmotic coefficients and radial distribution functions contact values relative to
these theoriis. The reduced energy curve shows excellent agreement with Monte Carlo data for molarities up
to 1 mol/dm-.
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1. Introduction

One of the more consistently active areas of research in the statistical mechanics of fluids over the years
has been in the field of Coulomb fluids. These encompass among others, electrolytes, ionic liquids, molten
salts, colloids, and polyelectrolytes, the practical relevance of which extend from biological systems to
industrial chemical processes. The literature on this is vast and theoretical progress was limited until the
application of liquid state theory [1H5] based on classical statistical mechanics. We would like to cite
here a few of the recent reviews on the subject [6H8]].

A widely used model used in the development of formal statistical mechanical theories of ionic
solutions treats the solvent as a structureless, continuous dielectric medium with a relative permittivity e,
and the solute particles as charged hard spheres of arbitrary diameters d; and charges Zze with Zj
being the valence of species s. This is the so-called primitive model (PM) of ionic solutions. When
the ions are of the same size, it is called the restricted primitive model (RPM). Computer simulations
of the RPM and PM over the years (see for example, references [9H14]) have shown the usefulness of
these models in interpreting experimentally determined structures and thermodynamics of charged fluid
systems. Furthermore, the simulation data have proved to be invaluable in theoretical development.
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The statistical mechanics of primitive models in liquid state physics has followed two broad paths: In
the first, the focus is on computing the pair correlation function or the radial distribution function g;;(r;, ;)
from the inter-molecular pair potential u;;(r;, ;) starting from the Ursell-Mayer cluster expansion [1H3],
or the distribution function method [3} I5]. Two main routes are used,viz., the Kirkwood, Bogolubov,
Born, Green, Yvon (KBBGY) hierarchies (see for example, reference [5]]) and the Ornstein-Zernike (OZ)
equation [2, 13| 15]. The KBBGY hierarchies relate correlation functions for n and n + 1 fixed particles,
the molecular potential, and a charge parameter £. To evaluate the pair correlation function, for example,
a closure relation between the pair correlation function g;;(r;, ;) and the next higher order correlation
function, that is, the triplet correlation g;jx(r;, rj, rx) must be provided to break the hierarchy. One such
relation is the superposition approximation [3]. In the OZ approach, the total correlation between two ions
is considered to consist of two parts: the direct correlation function c;;(r;, r;) between the two particles,
and the indirect correlation h;;(r;, r;), which takes into account the presence of a third particle. This is
clearly shown by the OZ equation (see for example, reference [3]]), which is often regarded as a definition
of the direct correlation function. To solve the OZ equation, a closure relation between the direct and
the total correlation functions is required. Among the more well known closures are: the Percus-Yevick
(PY) [IL3]], the Hyper-netted chain (HNC) [[16]], and the mean spherical approximation (MSA) [17]].

In the second method, which is our interest in the present work, the focus is on obtaining the same
gij(ri, r;), but through a potential approach to the theory based on the Poisson’s equation. The classical
theoretical analysis of electrolyte solutions in this regard is that of Debye and Hiickel (DH) [18], which is
a linearized version of the corresponding non-linear Poisson-Boltzmann (PB) equation. A key theoretical
paper on an assessment of the inherent approximations in the Poisson-Boltzmann (PB) equation, and
hence in the linearized DH equation is due to Kirkwood [19]]. Kirkwood showed through a statistical
mechanical analysis that the main approximations in the classical theories are the omission of (i) ionic
exclusion volume effects, and (ii) the fluctuation potential term, which involves the inter-ionic correlations.
There have been many attempts since Kirkwood to improve upon the PB/DH theory notable among which
has been the extensive work done by Outhwaite and co-workers (see for example, references [20-29]),
who within the framework of the PM, have analyzed Kirkwood’s methods and obtained estimates for
the fluctuation term. The resulting modified Poisson-Boltzmann (MPB) approach to ionic solutions is
thus based on extending the classical mean electrostatic potential approach of DH theory by expressing
the distribution functions in the Kirkwood, Bogolubov, Born, Green, Yvon (KBBGY) hierarchies in
terms of mean electrostatic potentials. Essentially, the MPB improves upon the classical PB theory by
incorporating (i) ionic exclusion volume effects, and (ii) inter-ionic correlation effects. This potential
procedure solves for the mean electrostatic potential y(r) as opposed to the integral equations that
attempt to solve directly for the radial distribution function g;; (ri, rj). Outhwaite and co-workers [22-28]]
have further symmetrized the classical PB theory and the MPB theory so that the Onsager relation,
gij(r) = g;i(r) is satisfied for a homogeneous fluid. They have also coupled an exclusion volume term to
the symmetrized PB theory, and call it the symmetric Poisson-Boltzmann (SPB) theory [25H27].

In the MPB theory, the mean electrostatic potential is expressed in terms of the fluctuation potential
¢(1,2;3) (see for example, reference [28]]) (3 is the field point, while there are fixed ions at 1 and 2),
which measures deviations from the superposition principle of Kirkwood [19]], and, therefore, contains
information on the interionic correlations in the theory. Expressed in terms of the mean potentials, the
fluctuation potential is given by [25} 28]

¥(1,2:3) = ¢(1,3) +¢(2,3) + ¢(1, 2;3). 6]

This equation is a statement that the mean potential at field point 3 is the sum of the direct potentials of
particles fixed at 1 and 2, and the correlated potential contribution at the field point from the simultaneous
presence of particles at 1 and 2. As we will see in the next section, the fluctuation potential can be written
in terms of distributions functions as

1 Zesf[ps(l,z;q)—px(l;q)_ps(z;q) N

dneye r,

$(1,2;3) =

a (@)

where e is the charge and ps({n}; ¢) is the number density of the s-th species of ions at r, with n fixed
particles atr; (i = 1,...,n) with the sum being over all species, € is the vacuum permittivity, and ¢, the
relative permittivity (dielectric constant) of the solvent.
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In the simplest language, the fluctuation potential is the inter-ionic correlations expressed in potential
form. The fluctuation potential ¢(1,2;3) obeys a system of partial, non-linear, differential equations,
and for the RPM case, the linearized version of the equations is given in reference (see for example,
reference [28} 29]). An approximate solution, valid for large inter-ionic separation, under the assumption
of spherical symmetry, was found by Outhwaite [21]]. One of the main problems in present MPB theory
is the restriction of the fluctuation potential for large inter-ionic separations, where approximate spherical
symmetry is valid. In the present work, an approximate analytical solution to the fluctuation potential
problem is found, that is valid for the whole range of interionic distances. This solution has an advantage
of simplicity that can provide insight into the eventual fully numerical methods for solving this kind of
problems. The approximate analytical solution for ¢(1,2;3) can serve as a guide to solving the problem
numerically without using the approximations of this research.

The organization of this paper is as follows. In the following section (section [2) we start by giving
details of the interaction potentials of the model, a brief introduction to the PB equation and the MPB
theory approach. We then proceed to the main theoretical development of this work based on the primitive
models. In this part, the set of differential equations for the fluctuation potential in dimensionless form is
developed and an approximate solution is found using ordinary electrostatics.

In section [3| we utilize solution of the fluctuation potential to present structural and thermodynamic
results for a 1:1 valence RPM electrolyte. We start by showing three-dimensional plots of the fluctuation
potential solution. The plots show the fluctuation potential at a planar slice passing through the center
of the ions for two ionic separations and for the like and unlike ion cases. A physical interpretation
of the results in terms of ionic correlation energy is presented. To further test the solution’s validity,
configurational energies, and osmotic coefficients are calculated and compared to the Monte Carlo (MC)
simulation data of Card and Valleau [9], and Rasiah, Card, and Valleau [[10].

In section[d] we present some conclusions out of this work and stress the importance of the approach
for future work that may involve a full iterative process using the solution presented here but without the
approximations made.

2. Model and theory

2.1. Molecular model

As indicated in the introduction, the model electrolyte system used in this study consists of a binary,
symmetric valence RPM at room temperature.
The ion-ion interaction potential in the Hamiltonian is thus

0, r <d,
uij(r) = eZZ,‘Z_,‘ > d (3)
Aneper’ ’

where Z; is the valence of ion species s, e is the magnitude of the fundamental charge, r is the distance
between the centres of two ions of types i and j, respectively, and d is the common ionic diameter. The
relative permittivity € is assumed to be uniform throughout the entire system.

2.2. Theory

The formulation of the SPB and the (traditional) MPB have already appeared elsewhere in the literature
(see for example, references [22} 25H27]]), and will not be repeated here. We will restrict ourselves to
outlining the main steps leading to the equations governing the fluctuation potential and their solution.

We begin by formulating the fluctuation potential problem in the restricted primitive model for a sym-
metric valence electrolyte, viz., |Z,| = |Z_|, consisting of N ions and satisfying global electroneutrality
>s Zsps = 0. We will closely follow the notations used in reference [28]. In the defining relation for the
fluctuation potential in equation , the mean electrostatic potentials ¥ (1;3), ¥(2;3), and ¥(1,2; 3) can
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Figure 1. Diagrammatic representation of the mean electrostatic potential at field point g due to n
fixed charges. Solid lines represents direct potential, and dotted lines represent potential due to ionic
correlation. (a)n =1, (b) n = 2.

be formally written as

el 1 pd(l’ 61)
1;3) = + dg, 4

el 1 Pa(2,9)
2;3) = + dg, >

and,
el e 1 pa(l,2;q)

1,2;3) = dg. 6
W( ) Anepe 13 * Aneggrs * drege, ; \[ Car 3q 7 ©

where e;, e, are the charges of the fixed ions at 1 and 2, respectively, and the sum runs over all the
ionic species. Figure [T shows the mean electrostatic potential at a field point ¢ due to 1 and 2 fixed ions,
respectively. Subtracting the equations (@) and (5)) from equation (6) leads to the earlier equation (2)). The
Poisson equations follow

e 1
V2U(133) = ——=6(r1 = 13) = — > eapa(l,3), )
E0Er E0Er P
e 1
VA(2:3) = ———(rs —13) = — > eapa(2.3), 8)
E0Er E0Er

(o7

and,

1 1 1
V2(1,2;3) = ———e16(r) —13) — ——e26(r2 — 13) —
&€ E0&Er E0&;

D Capall,2:3). ©)

r (o7

Here, the operator V is understood to operate on the coordinates of the field point. These equations can
also be expressed in terms of the distribution functions using for example, g1(1, ¢) = po(1, ¢)/ 0, and
so on and so forth, with p, being the mean number density of ion species @. The distributions can, in
turn, be defined in terms of the potentials of mean force W, viz., the doublet

gij(1,2) = exp[-BW;;(1,2)] (10)

or the triplet
giji(1,2,3) = exp[-BWijr(1,2,3)], (11)
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where W;;, W;;i are the pair and triplet potentials of mean force, respectively. Also, 8 = 1/(kgT) with
kg the Boltzmann constant and T the absolute temperature. Hence, the conditional distribution,

gijk(1,2;3) = exp{=B[Wir(1,3) + W;r(2,3) + wijx(1,2;3)]}. (12)

The term w;jx is the potential of mean force associated with the departure from linear superposition of
the pair potentials. A hierarchy of such equations can be constructed for higher order correlations. At the
lowest order, the classical PB theory follows upon neglecting w;;jx(1,2; 3), and to improve upon the PB,
we need a procedure to estimate this term.

In the MPB formulation, the hierarchy is broken at the triplet level by a closure condition that relates
the w;jx with the fluctuation potential ¢;; [28]

wijx(1,2;3) = ex¢ij(1,2;3). (13)
It is of interest to contrast this MPB closure with the Debye-Hiickel closure
Wij(1,2) = e;y(1;2). (14)

For the RPM system with a finite ion diameter d, the Poisson equations (7)-(9) can be expressed in
terms of the potentials of mean force as

I
V(133) = ——— > egpie PV, (15)
&0&r 5

1
V2lﬁ(2; 3)=—-— Z espseiﬁwj"(z’w’ (16)
E0Er 3

1
Vzl!/(l’ 2;3) = T oE Z €5 PsCXp {_,8 [Wis(L 3) + Wis(2,3) + es9(1,2; 3)] }, (17)

I

where the MPB closure (I3)) has been used in equation (I7). The equations (I3)) and (I6) are exact, for
one fixed ion in position 1 and 2, but equation (I7) incorporates the deviation from the superposition
principle in the form of the fluctuation potential term. To obtain an equation for the fluctuation potential
[equation (I)], we subtract equations (7) and (8) from (9),

V0(1,2:3) =~ 3 eupu o1 g2 PN —g(1.3) - 9(2.3)]. (18)

Equation (I8) is the base nonlinear equation in the fluctuation potential problem. The equation also
suggests that the charge density source for fluctuation potential is associated with the charged atmospheres
of the triplet and doublet densities.

To illustrate the geometry of the fluctuation potential problem, one can expand the summation over
species as

V2(1,2;3) = ———e1p [g(1,37)g(2,37)e Pe?023) _ 4(1,3%) - g(2,37)]

E0&r
+e_p_ [g(l, 37)g(2,37)e P23 _ 4(1,37) — g(2, 3_)], (19)

where a number with a superscript notation with a positive or negative sign represents the presence of
the corresponding ion at the referred position in space.

Figure 2] represents the geometry of the fluctuation potential system of equations with Q being the
total volume of the ionic solution, w; and w, represent the exclusion volumes of ion 1 and 2, respectively,
w™ is the overlap volume, and 3 is the field point. Region I [Q — (w; + w3)] is the bulk volume defined as
the total volume minus the exclusion volumes of ions 1 and 2. Region II (w| — w*) and Il (w, — w™) are
the interior of the exclusion volumes of ionl and 2 minus the overlap volume. Region IV is the overlap
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Figure 2. Geometry of the ionic exclusion volumes within the restricted primitive model showing the
various regions of validity of the fluctuation potential equation (see text).

volume. The nonlinear system of equations governing the fluctuation potential are then given by the
following expressions

0 Q- (wi+w) V2(1,2;3) = ———erpi[g(1,37)g(2,37)e P23 — g(1,37) - g(2,3")]

E0Er

+e_p_[g(1,37)g(2, 37)ePe-223) _ 5(1,37) — g(2, 39). (20)

I wi-w V6(L,23) = -—epg(237) + e pg(237)) 1)
0&r

1

III : wy — W* V2¢(1,2;3) = - lesp+g(1,37) +e_p_g(1,37)], (22)
E0Er

v : w* V24(1,2;3) = 0. (23)

At this point it is convenient to work in terms of reduced (dimensionless) quantities. Here, the
relevant ones are the reduced mean electrostatic potential ¥ = ¢Sy, the reduced fluctuation potential
® = ef¢, and yy = 24Z,Z nT. Also, n = (n/6) Y psd’ is the volume or packing fraction and
I = Z,Z_e?/(4nepekpTd) is the plasma coupling parameter. After expressing the Laplacian in ionic
diameter scale, and imposing global electro-neutrality, we have a set of dimensionless fluctuation potential
equations for the size symmetric case

. 1 o2 : Z:Z
I: Q- (a)l +w2) ——ZVdCD(l,Z,?)) = ﬁ

[9(1,3%)g(2,3%)e %21 23)

0 - +

-9(1,37)g(2,37)e %P2 — 4(1,3%) — g(2,3") + g(1,37) + ¢(2,37)]. (24)

1 Z.7_

I: wi-e —5V0(1L2%3) = - [-g(2.3%) +¢(2,3)], (25)
yo Z_ - Z+
1, Z.Z_ . -

I : wy — w* ——ZVd(D(l,Z;?)) = [—9(1,37) +g(1,37)], (26)
yo Z_ - Z+

IV : w* V2d(1,2;3) = 0. (27)

The boundary conditions are that the fluctuation potential and its normal derivative are continuous across
the boundaries. Denoting the right-hand sides of these equations by P, we can write them in a general
form

V2d(1,2;3) = —y3P[®, g(1,3), 9(2,3)], (28)
with a formal solution [30, 31]]
yz
(1,2:3) =J % b, g(1,3), (2. 3)dra. (29)
rd
Q
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Specifically, we have in the various regions

1 Z.7_ _ .
Q- (wi+w) 5701 23) = Pil®.(1.3).9(2.3)] = 777 [9(1,37)g(2, 302
0 - = Lt
~g(1,37)g(2,37)e #P03) — g(1,37) = g(2.37) +9(1,37) +9(2.37)].  (30)
1 Z.7_
I:  w-w -=5V30(1,2;3) = Pulg(1,3),9(2.3)] = 5——[-9(23") +9(237)], (3D
yO Z_ - Z+
* 1 2 Z+Z_ + -
m: w-w ~—V2®(1,2:3) = Pm[g(1.3), 9(2.3)] = [-9(1,3%) +g(1,3)],  (32)
yO Z_ - Z+
I w* V2d(1,2;3) = Py, Prv = 0. (33)

In order to make analytical progress, we approximate the radial distribution functions ¢g(1,3) and
g(2,3), in the various P’s appearing in the above equations by their DH values

9(1,3%)(= gou(1,3") = exp [-Z, ¥P1(1,3)],
9(2.3%)(= gou(2.3) = exp [-Z, ¥3"(2.3)] .
9(1,37)(= gpu(1,37)) = exp [-Z-¥P7(1,3)]
9(2.37)(= gon(2.37)) = exp [-Z-¥2"(2.3)], (34)

where the subscript in Z represents the sign of the charge state of the ion at the field point 3. Inserting
the radial distribution functions in the integrals in equation (29) will render the contribution to the
fluctuation potential in regions II and III as ordinary integrals in space.

To obtain an approximation for P in the bulk region I, outside ions 1 and 2, we use the properties
of the radial distribution functions in the various regions, and expand the exponents up to linear terms,
leading to

PD.9(1.3).9(2.3)] = 575-[9(1.3)9(2.3)(1 = Z,0) - (1.3 )g(2.3)(1 - 2.0)
-9(1,3%) = 9(2,3%) +9(1,37) +9(2,37)]
- 29139230 - Zg(L QIO 2D, ()

For a small fluctuation potential, we neglect the right-hand side of equation (35). For example, for a
symmetric valence 1:1 RPM electrolyte, the theme of this work, we have noted that the DH radial distri-
butions in equation (34)) are of the order unity for the physical parameters and the range of concentrations
used. If the fluctuation potential is of the order 1072 or less, then the right-hand side of equation (35])
will be of a similar order and can be neglected as a first approximation for such a system. Under these
approximations, the fluctuation potential is given by,

2 + _ + _
(I)(1,2; 3) _ @ J Fl[g(zsq )’ g(2,q )]qu + J FZ[g(l’q )’ g(lvq )]qu , (36)
47 o |rqd — I‘3d| |rqd - I'3d|
where 7
Filg(2.4"),9(2.47)] = 7= 7 924" +92.a7)) 37)
and 7
Rlg(l,g%).g(1,¢7)] = =———[-g(1,¢") + g(1,g7)]. (38)

Z_ -7,

The integral in equation (36) needs to be calculated numerically. This was done by discretization of
space, and will be discussed in the next section.
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A useful way of testing the fluctuation potential solution is through subsequent evaluation of the
structure and thermodynamics of the electrolyte solution. We have utilized the MPB formulation in
reference [28] to calculate the pair correlation functions,

1
g9(1,2) = iz exp { - L[¥Y(1;2) + J‘D(L 2;2) d/lz]}, (39)
0
where the DH functions are used for W(1;2) and an analytic expression for the Percus-Yevick (PY)
radial distribution functions for hard spheres [4] have been used for the excluded volume term, {1,. The
integral implies charging up of the ion at r».
For the calculation of osmotic coefficients ¢ and the reduced configurational energy U/(NkgT), we
use equation @I) from reference [32]], written in dimensionless reduced variables as,

¢ —1=U/3NkgT +2n[ga(1) + g(1)], (40)
and

U/NkgT = [ga(r’) +ga(r)]r'dr’, 41)

»|S,
—3

where r’ = r/d with ga and gg corresponding to like and unlike ions, respectively, and the argument 1
of ga and gg in (@0) refers to the contact value.

3. Results

All calculations in this work pertain to (1:1) symmetric valence RPM electrolyte for ions of common
diameter d = 4.25 x 1071° m, in a continuum dielectric medium of relative permittivity € = 78.5, and
at temperature 7 = 298 K, which is akin to a water-like solvent at room temperature. We have utilized
electrolyte concentrations of 0.1038, 0.425, 1.00, and 1.968 mol/dm?>. One reason for using these physical
parameters is that these have been used earlier in the literature (see for example, reference [29] and for
which MC simulation data exist [9} [10]. The SPB and the conventional MPB equations were solved
numerically using a quasi-linearization iteration scheme [33[]. The procedure has been used with much
success in earlier works [24-27]] and we refer the reader to these references for further details.

The fluctuation potential was obtained numerically by solving the integral in equation (36)). The radial
distribution functions g, ;(r) were then calculated using the fluctuation potential solution in equation ,
while the osmotic coefficient ¢, and the reduced configurational energy —U /(N kgT) have been determined
through equations {@0) and @I)), respectively. In what follows we will briefly describe the numerical
procedure involved before taking up the discussion of the results.

3.1. Numerical solution

The calculation of the fluctuation potential ®(1,2;3) was achieved by creating a Cartesian grid in
space with scaled distance of 10% of the ionic diameter, which in our dimensionless units is 1, so that
in the present context, the grid spacing is 0.1. This grid was created to represent the physical regions
involved in the fluctuation potential problem as shown in figure 2] Those regions consist of the spherical
regions w; and wy, which correspond to the boundaries of the ions 1 and 2 , and the rest of the solution
region, which is denoted by Q — (w; + w;). The region (w; + wy) is denoted as the ionic excluded
volume. The quantities F; and F, [equations and (38), respectively] represent the charge densities
associated with the regions w; and ws in the integral of equation (36). The boundary of the rectangular
Cartesian grid representing figure 2] was defined by a parameter A, which represents the distance from
the boundary of the ions to the edge of the grid. This parameter was chosen in such a way that the
fluctuation potential solutions tend to zero at the exterior boundary of the grid. Usually this parameter
was between 3 and 5 ionic diameters for the highest concentration but was found to a lot larger than at
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the lower concentrations. The fluctuation potential solution is an integral over the regions w; and w;.
The summation used to numerically calculate the integral included approximately eight thousand terms
for a point inside regions w; and w,. To produce the figures [3H3] the fluctuation potential was calculated
at each point in a planar slice passing through the centers of w; and w,. For contact distance between
the regions w; and wj, and A = 5, this planar slice contains approximately ten thousand points. The
simplicity of equation @) and the approximation of the g;; in equation @) in terms of the corresponding
DH functions are what makes the calculations fairly tenable.

The evaluation of the pair correlation functions was performed in a similar grid as the one used for
the three-dimensional figures but now the fluctuation potential was only required to be calculated at
the center of region w, (figure 2)), and the solution used in equation (39), where the Kirkwood charge
integral over the fluctuation potential is calculated. The calculation of osmotic coefficient and the reduced
configurational energy was achieved using the formulae {@0) and (1)), respectively.

3.2. Fluctuation potential

We begin this discussion with the analysis of the three-dimensional representations of the fluctuation
potential ®(1,2;3) shown in figures To our best knowledge, such representation of the fluctuation
potential does not presently exist in the literature. The plots show the fluctuation potential ®(1,2;3)
obtained from equation (36) with the various g’s approximated through equations (34). The behaviour
pattern of the fluctuation potential in these figures can be understood in terms of the charge density
associated with the quantities F; and F,, inside the regions w; and w,. Figure El shows the fluctuation
potential for a planar slice passing through the centers of two positive ions of valence +1 each. The charge
density contributed by the spherical region w; due to the positive ion in this region is calculated using
Fy [equation (37)], which is a function of g(2, 3), where the point 3 is inside region w;. The positive sign
in the fluctuation potential in region w is given by the sign of —g(2,3%) + ¢g(2,37). Since the charge at
position 2 is positive, the second term associated with unlike charges is greater in magnitude than the

(a) bl

a = q" e,
(01 | SRS ‘??"'
e s
——g 0.-'%‘.

(b) )

Figure 3. (Color online) Fluctuation potential ¢(1,2;3) for Z; = Z, = +1 at ionic diameter d =
4.25x 10710 m, dielectric constant & = 78.5, temperature 7 = 298 K, and electrolyte concentration
¢ = 1.968 mol/dm3. Reduced interionic distance r/d: (a) 1.5, (b) 3.
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(a) X123

(b) @123)

Figure 4. (Color online) Fluctuation ¢(1,2; 3) for Z; = 1, Z, = —1 at ionic diameter d = 4.25 X 10710,
dielectric constant & = 78.5, temperature 7 = 298 K, and electrolyte concentration ¢ = 1.968 mol/dm?>.
Reduced interionic distance r/d: (a) 1 (contact), (b) 3. Note that r/d = 1 corresponds to the contact
distance.

first term in F] causing an overall positive fluctuation potential in region w;. The positive sign in region
w3 has similar origins and thus analogous interpretations.

Figure [] shows the fluctuation potential for a positive ion (valence +1) in region w; and a negative
ion (valence —1) in region w;. In contrast to the situation in figure[3] in this case the functions g(1, 3) and
g(2,3) in F} and F; lead to the sign of the fluctuation potential in regions w; and w, to be opposite to
the signs of the ions 1 and 2, respectively. To see this, we first look at the fluctuation potential in region
wq calculated through F; with the charge density given by —g(2,3%) + ¢g(2,37). As the ion in region w;
is negative, the first term associated with this unlike charge dominates giving an overall negative sign to
the fluctuation potential in region w; where the positive ion is located. On the other hand, the fluctuation
potential in region wy is calculated using F, where the charge density is given by —g(1,3") + g(1,37).
The second (positive) term here is the larger one in magnitude again being linked to the unlike charge,
and hence the positive sign of the fluctuation potential in region w;. So, it can generally be stated that the
fluctuation potential for like ions near the vicinity of these ions is of the same sign as that of the physical
ions and is of the opposite sign for unlike ions. This peculiar behavior is a consequence of the fluctuation
potential in w; being related to the g(2, 3) centred at 2, and that the fluctuation potential in region w,
being related to the g(1, 3) centred at the opposite region w;. This combined with the relative magnitudes
of the ¢’s in functions F; and F, explain the behavior of the polarities in ®(1,2; 3).

The magnitude of the ®(1,2;3) that we have noted in the course of the present calculations, is
generally small, especially for large inter-ionic separations. The reasons for this can again be traced to
the dominant charge density appearing in equation (36)). For instance, the charge density in region w; is a
function of g(2, 3) where the field point 3 is in region w) and the point 2 is at the center of region w,, and
similarly the charge density in region w; is a function of g(1, 3) where the field point 3 is in region w; and
point 1 is at the center of region w;. As the inter-ionic separation is increased, the dominant functions in
F) and F; associated with the unlike ions decrease, while the g’s associated with the like charges tend
to 1. It is clear from equations @) and @) that both F and F, tend to zero at large distances but increase
at contact distances, as evident in figure [5] Significantly, the fluctuation potential for similar charges is
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Figure 5. (Color online) Fluctuation ¢(1,2;3) for Z; = Zp = +1 at ionic diameter d = 4.25 X 10710 m,
dielectric constant ¢ = 78.5, temperature T = 298 K, and reduced interionic distance r/d = 1, and
electrolyte concentration: (a) c = 1.968 mol/dm?3, (b)c =0.1038 mol/dm?. Note that r /d = 1 corresponds
to the contact distance.

seen to become quite large compared with that in figure 3] This suggests that for small separation of the
ions, the fluctuation potential term becomes important in evaluating g;;. Figures |§H§] indeed show that
the fluctuation potential is the largest in the immediate vicinity of ions 1 and 2.

Another point regarding the fluctuation potential worthy of note is the relationship between the
fluctuation potential and the electrostatic energy of the jons. In figure [3] we have ions of the same sign,
and clearly the fluctuation potential manifests as an increase in electrostatic energy of the ions since the
fluctuation potential is of the same sign as the ions. For ions of opposite sign as in figure 4] the sign of the
fluctuation potential is opposite to that of the ion in the vicinity. This leads to a decrease in electrostatic
potential energy leading to attractive inter-ionic correlation in this case. This implies, consistent with
what has been known in the literature, that the sign of the fluctuation potential in the vicinity of ion 1 is
mostly due to the cloud of counter ion (from ion 2) and vice versa. It can be seen further from figures 3|
and [4] that the fluctuation potential increases as the separation of the ions decreases, establishing the
importance of having a solution that is valid at short distances. Our results also show that the fluctuation
potential increases with electrolyte concentration.

3.3. Structure and thermodynamics

In figure [6] we present the radial distribution functions obtained in this work along with the corre-
sponding curves for the SPB and MPB theories at 1 mol/dm> concentration. It is clear that the curves
are very similar for distances larger than 2 ionic diameters. Importantly, the present results and the MPB
results are almost identical. The contact values for the radial distribution functions for like ions, from
the present theory, are slightly closer to the MC result [9] than that from the SPB and MPB. This is
probably due to a better treatment of the fluctuation potential in this work. Table [ shows contact values
g;j(1) and for comparison purposes, the corresponding results from the SPB, the MPB, and the MC
[, 10] data are also included. The contact values from the present theory are consistent with the other
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Figure 6. (Color online) The radial distribution functions g;;(r) for a 1:1 restricted primitive model

electrolyte at ionic diameter d = 4.25 x 1071 m, dielectric constant ¢ = 78.5, temperature 7 = 298 K
in the symmetric-Boltzmann theory, the modified Poisson Boltzmann theory, and the theory presented
in this work. The legend as given in the figure.

Table 1. Contact values of the radial distribution functions g;;(1) from different theories. The common

diameter of the ions is d = 4.25 x 10710 m, the temperature 7 = 298 K, and the dielectric constant of
the electrolyte € = 78.5. The MC values are from reference [9].

. 3 g++(1) = g-—(1) g+-(1)

¢ (mol/dm*) |5 —T"SPB | MPB | MPBuywes | MC | DH | SPB [ MPB | MPBgoerc | MC
0.1038 | —0.158 | 0321 | 0311 0302 0319 | 2.16 | 3.10 | 330 333 325
0425 0.121 | 0443 | 0.417 0.399 0418 | 1.88 | 2.50 | 2.66 2.68 262
1.000 0299 | 0573 | 0.530 0.500 0505 | 170 | 2.14 | 242 2.40 223
1.968 0433 | 0.752 | 0.686 0.633 0706 | 157 | 2.20 | 2.40 231 238

theories and show a very good agreement with the MC simulation data. Tables [2] and [3] show reduced
configurational energies, and osmotic coefficients from the Debye-Hiickel, SPB, MPB, and MC [9, [10],
and this work. These values are also presented in a graphic form as in figures[7]and [8] respectively. The
reduced configurational energy curves (figure[7) show an excellent agreement between the MPB and this
work with the MC curve up to 1 mol/dm® concentration. At the highest 1.968 mol/dm? concentration,
the MPB is a little closer to the MC. Figure §|shows osmotic coefficients for the theories and the relevant
MC data [9, [10]]. These curves show a generally very good agreement between the MC results and the
theories.

Table 2. Reduced configurational energy —U/(NkgT) from different theories. The common diameter of
the fons is d = 4.25 x 10710 m, the temperature 7 = 298 K, and the dielectric constant of the electrolyte
& = 78.5. The MC values are from reference [[10].

¢ (mol/dm®) | DH | SPB | MPB | MPBysyor | MC |
0.1038 [ 0.261 | 0.267 | 0274 | 0274 | 0274
0425 | 0.400 | 0.407 | 0436 | 0439 | 0.434
1.000 | 0490 | 0.500 | 0.555 | 0550 | 0.552
1968 | 0556 | 0.572 | 0.663 |  0.699 | 0.651
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Table 3. Osmotic coefficient ¢ from different theories. The common diameter of the ions is d =
4.25x 10710 m, the temperature 7 = 298 K, and the dielectric constant of the electrolyte ¢ = 78.5. The
MC values are from reference [9].

¢ (mol/dm®) | SPB | MPB | MPByycorc | MC |

0.1038 0.946 | 0.945 0.944 0.945
0.425 0.985 | 0.981 0.980 0.977

1.000 1.11 1.10 1.10 1.094
1.968 1.37 1.37 1.33 1.364
07] 11,d=425A, T =298 K
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Figure 7. (Color online) The reduced configurational energy for a 1:1 restricted primitive model electrolyte
at ionic diameter d = 4.25 x 10710 m, dielectric constant € = 78.5, and temperature 7 = 298 K, versus
the square root of the electrolyte concentration c, for the Debye-Hiickel, theory, the symmetric Poisson-
Boltzmann theory, the modified Poisson-Boltzmann theory, and the theory presented in this work. Legend
as given in the figure. The Monte Carlo results are from references (9] and [10].
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Figure 8. (Color online) The osmotic coefficient for a 1:1 restricted primitive model electrolyte at ionic
diameter d = 4.25x 10710 m, dielectric constant & = 78.5, and temperature 7 = 298 K, versus the square
root of the electrolyte concentration ¢, for the Debye-Hiickel theory, the symmetric Poisson-Boltzmann
theory, the modified Poisson-Boltzmann theory, and the theory presented in this work. Legend as given
in the figure. The Monte Carlo results are from references [9]] and [10].

4. Conclusions

In this study we have made an analysis of the fluctuation potential in the modified Poisson-Boltzmann
theory of bulk electrolyte solutions. An approximate analytical solution of the fluctuation potential
equation was obtained for symmetric valence 1:1 electrolytes in the RPM. This solution was later
utilized to obtain structural and thermodynamic descriptions of the electrolyte in terms of ion-ion radial
distribution functions, reduced excess energy, and the osmotic coefficients, respectively.
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The fluctuation potential is a central ingredient in a potential approach to the theory (of charged
fluids) such as the modified Poisson-Boltzmann theory. The fluctuation potential solution developed in
this work, albeit with approximations to make analytical progress and for symmetric 1:1 valence systems,
is a preliminary attempt to assess the implications of such a solution. In such cases, due to the linearization
of the fluctuation potential in the bulk region I [equation (35)] and the small magnitude of ®(1,2;3),
the P function in bulk region I can be taken to be zero, thus neglecting charge density for that region.
A less approximate and nearly full treatment could be achieved by solving for the fluctuation potential
in region I using equation (29) with P; being given by equation (33) in conjunction with equation (34).
An intermediate procedure (between the above two situations) to obtain a better, viable, and still feasible
approximation for ®(1, 2; 3) in region I would be to solve equation [with Py given by equation (33))]
by writing it in the form

V2d(1,2;3) = CO(1,2;3), (42)

where the quantity C contains the valencies Z,, Z_, and has spatial dependence through g(1,3) and
g(2,3). Thus, although C is not a constant per se, it can be assumed to be approximately constant for the
purposes of solution to equation (42)). An approximate analytic form of ®(1, 2; 3) in region I, whose value
is not necessarily zero, would then be available. Equation has some parallels to a similar equation for
the fluctuation potential in the MPB formalism in the planar electric double layer [34]]. Such a procedure
will be useful for higher and multivalent electrolytes when the magnitude of the fluctuation potential in
region I is likely to be significant and hence Py can no longer be neglected. This will be a focus of our
future work.

The MPB description of the electric double layer phenomenon is an area where the present techniques
might have some significance since the fluctuation potential plays an equally important role in the
theoretical framework for the inhomogeneous fluid at the interface. In the MPB approach to the double
layer theory in planar [34, 35, cylindrical [36H38]], and spherical [39, 40] symmetries, the form of the
corresponding fluctuation potential used is rather approximate and generally suffers from similar defects
as those vis-a-vis the traditional MPB theory for the bulk. The statistical mechanical methods used in
this paper are quite general and can be extended and adapted to interfacial double layer geometry where
an analogous fluctuation potential analysis might prove useful.

Another area of possible relevance for this study is in the theoretical analysis of charged fluid
systems with a variable dielectric constant (relative permittivity). The topic has attracted a lot of recent
research attention (see for example, references [41H43]) and has been shown to be relevant for important
technological systems, viz., super-capacitors [44} 45]. In the electric double layer, the MPB has been
found to be capable of dealing with systems having an inhomogeneous dielectric constant [34} 35]. Very
recently, the MPB was applied to a double layer system with three different dielectric constants [40],
although the associated fluctuation potential problem could only be solved for point ions. Thus, again a
fluctuation analysis in such situations along the lines of the present work could be valuable.

The three-dimensional plots of the fluctuation potential give a valuable insight into the correlations
between ions. Furthermore, the present structural and thermodynamic results point in the right direction
and are indicative of the potential usefulness of a full solution of the fluctuation potential. The radial
distribution functions, especially at contact distances between the ions, the reduced excess energy, and
osmotic coefficients show an expected improvement over that from the PB (or SPB), and overall, tend
to be in a very good agreement with the predictions from the traditional MPB theory and Monte Carlo
simulations.

The fluctuation potential problem is a challenging one. A complete solution of the fluctuation potential
equation, valid for a general case and for asymmetry in ionic size and/or valence will involve a numerical
solution comprising an iterative algorithm. Our solution here might prove useful in such an involved
procedure. Such a project is contemplated in the near future.
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AHanis ¢nykryauiiiHoro noteHuiany B MoandikoBaHii Teopii
MyacoHa-bonbumaHa o6MeXXeHOoi NPUMITUBHOI Moaeni
eneKkTponiTie

E.O. ¥Ynnoa-flasing, J1.b. bysH

JNlabopaTtopis TeopeTnyHOi ismku, Biaain ¢isnkn, A/c 70377, YHiBepcuteT MyepTo-Piko,
CaH XyaH, lNyeprto-Piko, CLLA

MpeAcTaBneHO HabAVKEHWNIA aHANITUYHWIA PO3B'A30K NpobnemMmn ¢GaykTyaliliHOro noteHuiany B MogudikoBa-
Hil Teopii MyacoHa-bonbLumaHa Ans o6MexeHoi NPUMITUBHOI MOAeNi enekTponiTie. Lieli po3B'a30K € AiicHUM
ANA BCIX MDKIOHHUX BifCTaHe, BKIOYAOUM KOHTAKTHI 3HaYeHHs. Po3B'A30k ana ¢aykTyauiliHoro noteHuiany
iMnnemMeHTOBaHO y aHy TeOpito 3 MeTO OMNMCY CTPYKTYPY enekTposiTa B TepMiHax pagianbHUX GyHKLIA pos-
noZiny, a TakoX 3 MeTOK 06YMCNEHHS AeaKMX acnekTiB TepMOAMHaMIKK, a came, KOHirypawLiiHoi peaykoBa-
HOT eHeprii Ta 0CMOTUYHKX KoediLieHTiB. O6YMCNEHHS NPOBEAEHO AN CUCTEM i3 CUMETPUYHOI BaNeHTHICTHO
1:1 npun $iznyHMX NnapameTpax ioHHoro giametpy 4.25 X 10710 M, NpU BiAHOCHI NpOHUKHOCTI 78.5, npn a6-
CONOTHIN TemnepaTypi 298 K, i npn monsipHUx KoHueHTpauisx 0.1038, 0.425, 1.00 i 1.968. PagianbHi ¢pyHKLiT
pO3MoAiny NOpiBHIOIOTLCA 3 BiAMOBIAHUMU pe3yabTaTamy CMeTpUYHoi Teopii lMyacoHa-bonbLMaHa Ta CTaH-
JapTHOI | MogudikoBaHoi Teopili MyacoHa-bonbLmaHa. MpoBeeHO NOPIBHAHHSA KOHTaKTHUX 3Ha4YeHb pajianb-
HWX PO3MOAiNiB, pesykoBaHNX KOHIrypaLifiHUX eHeprili i 0CMOTUYHNX KOediLLiEHTIB AK GYHKL, KOHLeHTpaLi
enekTposnita. Jeski gaHi MoHTe Kapno cumynsuiii 3 nitepaTypy BKIOYEHO B OLiHIOBaHHS TePMOAVHAMIYHNX
nepeabaveHb. Pe3ynbTaTvi MOKasyoTb Ayxe fobpe y3rofxeHHs 3 pesynbTaTamMu MoHTe Kapno Ta geske mo-
KPaLLLeHHA ANs OCMOTUYHUX KOeQILliEHTIB Ta KOHTAKTHMX 3HaYeHb pajianbHNX GYHKLi pO3MOAiny CTOCOBHO
BULLe3ragaHnx Teopili. KprBa pesykoBaHOI eHeprii Moka3ye YyAoBe y3rofkeHHs 3 gaHumn MoHTe Kapno ans
MonsipHoCTe ax Ao 1 MOﬂb/AM3.

KntouoBi cnoBa: eniekTposity, 06MexeHa npuMITUBHa MOAe b, AYKTyauiiHVi noTeHyian, MogngikoBaHa
Teopisi [lyacoHa-bosbymaHa
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