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Abstract 

 

The fluctuation potential problem in the modified Poisson-Boltzmann approach to 

charged fluids is analyzed to obtain an approximate analytic solution for a symmetric 

valency restricted primitive model electrolyte. The solution is valid for all ranges of inter-

ionic distances, including contact values. The structure of the electrolyte is described using 

radial distribution functions determined through the implementation of the fluctuation 

potential solution in the theory.  Aspects of thermodynamics of the solution, viz., 

configurational reduced energies and osmotic coefficients are also calculated. Results have 

been obtained for symmetric valency 1:1 electrolyte system with the following physical 

parameters: ionic diameter d = 4.25×10-10 m, relative permittivity εr =78.5, absolute 

temperature T = 298 K, and molar concentrations c = 0.1038 M, 0.425 M, 1.00 M, and 

1.968M. The ion-ion radial distribution functions are compared with the corresponding 

results from the symmetric Poisson-Boltzmann and the conventional modified Poisson-

Boltzmann theories. Contact values of the radial distributions, reduced configurational 

energies, and osmotic coefficients have also been compared, as functions of electrolyte 

concentration, with these theories, and additionally with the Debye-Hückel theory and 

Monte Carlo simulation data from the literature. The results show very good agreement 

with the Monte Carlo data, and some improvement for radial distribution contact values 

and osmotic coefficients relative to these theories. The reduced energy curve shows 

excellent agreement with Monte Carlo data for molarities up to 1 mol/dm3. Radial 

distribution contact values for the charge asymmetric RPM 2:1 valency system at the same 

physical parameters of the 1:1 ,except for valence, case were also calculated and compared 

with the corresponding hypernetted chain theory from the literature. Good agreement was 
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found for all concentrations considered. An ion size asymmetric primitive model extension 

to the theory is also presented. Osmotic coefficients are calculated and compared to 

simulation data from the literature for a primitive model electrolyte at the physical 

parameters: diameter of the large negative ion is 4.25×10-10m, the temperature T=298K, 

the dielectric constant of the electrolyte εr = 78.5, electrolyte concentration 0.425mol/dm3, 

and the size asymmetry parameter α = 0.4, 0.6, and 0.8. Good agreement between the 

results and the MC simulation was found. 
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1  
Chapter 1 

 Introduction 

 

The field of coulomb fluids have been a consistently active area of research in 

statistical mechanics over the years. The area includes among others, ionic liquids, 

electrolytes, molten salts, colloids and polyelectrolytes. For recent reviews on the subject 

The reader is referred to the following articles [1, 2, 3]. Theoretical progress in this area 

was limited until the development of statistical mechanics based liquid state theory [4, 5, 

6, 7, 8].   

A widely used model used in the development of formal statistical mechanical 

theories of ionic solutions treats the solvent as a structureless, continuous dielectric 

medium with a relative permittivity ϵr, and the solute particles as charged hard spheres of 

diameters di and charges Zses, with Zs being the valence of species s, satisfying the global 

charge neutrality condition, 

                                     0  eZeZeZ
S

ss
                                            (1)                        

 This is the so called primitive model (PM) of ionic solutions. When the ions are of the 

same size, it is called the restricted primitive model (RPM). Computer simulations of the 

RPM and PM over the years (see for example, references [9, 10, 11, 12, 13, 14]) have 

shown the usefulness of these models in interpreting experimentally determined structures 

and thermodynamics of charged fluid systems. Furthermore, the simulation data has proved 

invaluable in theoretical development. 

A subdivision in the PM is related to the magnitude of the charges of the anions 

and cations. If all the charges have the same magnitude it is referred as valence symmetric, 



2  
and valence asymmetric otherwise. The notation (q:q) or (q:p) refers to charge symmetric, 

and charge asymmetric, respectively. For example, RPM (1:2) refers to same size ions with 

charges 1+ and 2-. 

 In statistical mechanics, the PM in liquid state physics has been studied using two 

main approaches: The first is the Ursell-Mayer cluster expansion [1, 2, 5] or the distribution 

function method [2-4]. This method is based on separating the N-body partition function 

of the system into a kinetic component and a configurational integral given by, 

  dqqq
N

Z NNQ )],...,,(exp[
!

1
21  ,                                         (2) 

where Φ is the molecular potential energy function, and then expanding equation 2 in terms 

of topologically distinct set of graphs representing integrals of the so called Mayer-

functions [3-5]. The cluster expansion method was developed as an extension of the 

MacMillan Mayer theory of non-electrolyte solutions [15]. The essential result of the Mc 

Millan Mayer theory is that establishes a rigorous one-to-one correspondence between the 

equations of imperfect gas theory and a dilute solution of non-electrolytes. The long range 

coulomb interaction of ions in the solutions causes the virial coefficients to diverge when 

the Mc Millan-Mayer theory is applied to electrolyte solutions [4]. This problem was 

solved by Mayer [16]. He showed that although individual cluster integrals diverged, it is 

possible to combine the infinite parts of all the virial coefficients Bn for n ≥ 2, so that they 

mutually cancel giving a finite result. Ionic solution theory based on the cluster expansion 

is detailed in reference [1].  
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 The distribution function approach to ionic solutions is based in distribution 

functions giving probabilities of configurational groupings of two, three, and more 

particles. Correlation functions for n fixed particles are given by 

            
N

Nn

U

n

n

n

n

Z

drdre

mNN

N
rrg

W  








,...1

1

)(
....

)!(

!
),...,(



 ,                                 (3) 

where Zn is the configurational integral. This function gives the probability of a particular 

configuration of n fixed particles [4]. Of particular importance is the g(2)(r1,r2) = g(1,2) pair 

correlation function since it can be determined experimentally, and thermodynamic 

functions can be calculated from it [2-4]. 

 In order to obtain the pair correlation function g(1,2) from the molecular pair 

potential Φ(1,2), two main routes are used, viz., 

1.  The Kirkwood, Bogolubov, Born, Green, Yvon (KBBGY) herarchies [3] 

2.  The Ornstein-Zernike (OZ) equation [2, 3, 5]. 

The KBBGY hierarchies is an infinite set of equations relating correlation functions for n 

and n+1 fixed particles, and also the molecular potential, and the so called charge parameter 

ξ [3, 4, 5].  To determine the pair correlation function, using the KBBGY hierarchy, a 

closure relation between the pair correlation function g(1,2) and the triplet correlation 

g(1,2,3) must be provided to break the hierarchy. One such relation is the superposition 

approximation [5] given by 

               )1,3()3,2()2,1()3,2,1( gggg   ,                                               (4) 

which is tantamount to saying that the triplet distribution is equal to the product of the pair 

distributions. Physically, this implies that the correlation of particles one and two is 

independent of the presence of the third particle [5].  
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 The OZ method for calculating the pair correlation function from the pair potential 

is based on the definition of a new correlation function, called the direct correlation 

function c(1,2). In the OZ approach the total correlation between two ions may be 

considered to be comprised of two parts: the direct correlation between the two particles, 

and the indirect correlation due to the presence of a third particle. The total correlation 

function h(1,2) is then written as the sum of the direct correlation c(1,2) and the indirect 

correlation averaged over all positions of the third particle. This is clearly shown by the 

OZ equation [5] given by 

              3)3,2()3,1()2,1()2,1( dhcch  ,                                               (5) 

 which may be regarded as a definition for the direct correlation function c(1,2) [5]. The 

total correlation function is related to the pair correlation function by 

                                           1)2,1()2,1(  gh ,                                                       (6) 

and so the OZ equation can be regarded as an integral equation for the pair correlation 

function in terms of the unknown function c(1,2). To solve the OZ equation a closure 

relation between the direct c(1,2) and the total correlation h(1,2) functions must be 

provided. Among well-known closures are: the Percus-Yevick (PY) [17], the Hyper-

netted chain (HNC) [18], and the mean spherical approximation (MSA) [19]. Some early 

studies by Rasiah and Friedman [20, 21, 22] have shown that the HNC gives rather good 

results in ionic solution theory. 

 The second broad approach, which is our interest in this thesis, rests on obtaining 

the same pair correlation function g(1,2) through a potential approach based on the 

Poisson’s equation. The first theory for ionic solutions along this line is the celebrated 

classical theory of Debye and Hückel (DH) [23]. The DH theory is obtained by the 
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linearization of the Poisson-Boltzmann (PB) equation which relates the mean electrostatic 

potential of the solution, with the ionic charge density given by the Boltzmann’s statistical 

distribution of ions [23].  

The DH equation’s solution gives the mean electrostatic potential Ψ(1,2) around a 

central ion. This potential is used to construct pair correlation functions given by 

)2,1(2)2,1(



Z

neg


.                                                    (7) 

where n is the bulk density and Ψ(1,2) is the mean electrostatic potential. The theory 

predicts that each ion in a solution will be surrounded by a neutralizing atmosphere of 

opposite charged counter-ions [4]. It is known that DH theory is a low concentration exact 

limiting law in ionic solution theory, meaning that the theory correctly describes the 

thermodynamic properties of all solutions as the concentration tends to zero [4]. Potential 

theories of ionic solutions are based on the PB equation or the DH theory. In this theories 

the pair correlation function is given by 

 )2,1()2,1( Weg                                                         (8) 

where the function W(1,2) is called the potential of mean force. It includes all the forces in 

the models, including electrostatic forces and volume exclusion effects [2, 3, 4]. DH theory 

is a mean field theory, incapable of describing interionic correlations, so is only valid for 

very low concentrations [4]. So in order to make progress in the potential theory of 

solutions, ion correlations must be included. Kirkwood showed through a rigorous 

statistical mechanical analysis [24], that the main approximations in the classical theories 

are the omission of (i) ionic exclusion volume effects, and (ii) the fluctuation potential 

term, which involves the inter-ionic correlations. There have been many attempts since 
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Kirkwood to improve upon the PB/DH theory notable among which has been the extensive 

work done by Outhwaite and co-workers (see for example, references [25, 26, 27, 28, 29, 

30, 31, 32, 33, 34]), who within the framework of the PM, have analyzed Kirkwood’s 

methods and obtained estimates for the fluctuation term. These efforts have resulted in 

what is known in the literature as the modified Poisson-Boltzmann (MPB) approach to the 

ionic solution theory.  

 In the modified Poisson-Boltzmann (MPB) theory, which is our interest in the 

present work, the classical mean electrostatic approach of the DH theory is extended to 

include inter-ionic correlations by expressing the KBBGY hierarchies in terms of 

electrostatic mean potentials. In this theory, the mean electrostatic potential is expressed in 

terms of the fluctuation potential ϕ(1, 2; 3) (see for example, reference [33]) 3 is the field 

point, while there are fixed ions at 1 and 2), which measures deviations from the 

superposition principle of Kirkwood [24], and therefore contains information on the 

interionic correlations in the theory. The superposition principle, in terms of the fluctuation 

potential, is then given by  

)3;2,1()3;2()3;1()3;2,1(  .                                       (9) 

This equation states that the mean potential at field point 3 is the sum of the direct potentials 

of particles 1 and 2, and the correlated potential contribution at field point 3 from the 

simultaneous presences of particles 1 and 2 [14]. Expressed in terms of the mean potentials, 

the fluctuation potential is given by [30, 33] 





q

q

sss

s

s

r r

drqqq
e

)];2();1();2,1([

4

1
)3;2,1(

0





 ,                    (10) 
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where es is the charge and ρs({n}; q) is the number density of the sth species of ions at rq 

with n fixed particles at ri (i = 1, ..n) with the sum being over all species, ϵ0 is the vacuum 

permittivity, and ϵr the relative permittivity (dielectric constant) of the solvent. In the 

simplest language the fluctuation potential is the inter-ionic correlations expressed in 

potential form. Essentially, the MPB improves upon the classical PB theory by 

incorporating (i) ionic exclusion volume effects, and (ii) inter-ionic correlation effects. This 

potential procedure solves for the mean electrostatic potential ψ(r) as opposed to the 

integral equations that attempt to solve directly for the radial distribution function  

gij(ri, rj ). Outhwaite and co-workers [27, 28, 29, 30, 31, 32, 33] have further symmetrized 

the classical PB theory and the MPB theory so that the Onsager relation, gij(r) = gji(r) is 

satisfied for a homogeneous fluid. They have also coupled an exclusion volume term to the 

symmetrized PB theory, and call it the symmetric Poisson-Boltzmann (SPB) theory [30, 

31, 32]. 

The fluctuation potential in MPB theory obeys a system of linearized partial 

differential equations given by equations 19-22 of reference [26]. An approximate solution 

is also given, that is valid only for large interionic separations where approximate spherical 

symmetry is valid [26, 33]. As explained by Outhwaite, one of the main problems in present 

MPB theory is the restriction of the fluctuation potential solution to large interionic 

separations [33]. The problem has also been mentioned in reference [35], as a possible 

cause of a small discrepancy between MPB osmotic coefficients and the corresponding 

Monte Carlo values of Card and Valleau [9], and Rasiah, Card, and Valleau [10]. The 

fluctuation potential problem is also mentioned by Outhwaite, Molero, and Bhuiyan [32] 

in the context of the PM of ionic solutions.  
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A clear statement of the aforesaid problem can be found in the paper by Outhwaite 

[33]. This paper presents a clear pedagogical introduction to MPB theory for bulk ionic 

solutions. The paper introduces the symmetric and asymmetric formulations of MPB and, 

presents a clear exposition to the fluctuation potential problem for RPM electrolytes. A 

detailed account for the setting of the fluctuation potential linearized system of equations 

is presented, and is followed by the approximate solution for ϕ(1,2;3) that is valid for 

approximate spherical symmetry, and large interionic separations. The solution can also be 

found in an earlier paper [26]. The basic equation for RPM MPB are then given in terms 

of the reduced potential u = rψ(1,2) in reference [33]. This version of MPB was not used 

in this research, since it includes the approximate solution of the fluctuation potential. 

Instead we started our treatment of the fluctuation potential problem starting from equation 

36 of reference [33]. Outhwaite pointed at the two main problems of MPB theory:  

(a) the linearization of equation 36 outside the exclusion volumes, 

(b) the restriction of the solution of the fluctuation potential to large separations of 

the ions. 

After a detailed study of this paper [33] we realized that to properly address the 

problem of the fluctuation potential a different system of equations was needed. In this 

work, a formulation based on pair correlation functions, as sources of the fluctuation 

potential was preferred, Instead of reformulation based on mean electrostatic potential. 

This paper [33] was invaluable, as a main source for our project. The main purpose of this 

work is to find a solution to the fluctuation potential system of equations that is valid for 

all range of ionic separations, including small distances and contact. This solution has the 

advantage of simplicity that can provide insight into the eventual fully numerical methods 
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for solving this kind of problems. The approximate analytical solution for ϕ(1, 2; 3) can 

serve as a guide to solving the problem numerically without using the approximations of 

this research. 

 For calculating thermodynamic properties like reduced configurational energies –

U/NkT, and osmotic coefficients ϕ, the theory presented in the excellent reference [35] was 

used. In that reference thermodynamic properties, and radial distribution function contact 

values where calculated, and compared with the Monte Carlo data from Card and Valleau 

[9], and Rasiah, Card, and Valleau [10]. The essential results in this paper [35] are 

summarized in tables 5-7 of this reference, where radial distribution function’s (RDF) 

contact values for like gA(a), and unlike gB(a) ions, configurational energies –U/NkT, and 

osmotic coefficients are compared for theories DH, PB, MPB, with the corresponding Card 

Valleau (CV), and Rasiah, Card Valleau (RCV) values for RPM (1:1) electrolyte solution 

with parameters: σ = 4.25Ả, ε=78.5, T=298K, and molar concentrations of 0.00911, 

0.1038, 0.425, 1.00, and 1.968. The method presented in reference [35] was instrumental, 

in this work, for the calculation of configurational energy, and osmotic coefficients. An 

improvement in the agreement between the MPB values calculated with the fluctuation 

potential obtained in this research (MPBthis-work) and traditional MPB from this reference is 

the first step in the validation of the fluctuation potential solution presented here.  

 An important paper by Outhwaite, Molero, and Bhuiyan [32], addresses the 

application of MPB to the calculation of PM radial distribution functions (RDFs) and 

thermodynamic properties for size-asymmetric, and valence asymmetric electrolytes, and 

a comparison with the Monte Carlo simulations of Valleau and Cohen [11], Valleau, 

Cohen, and Card [12] for same size electrolytes, and Abramo et al. [14], and Rodge [13] 
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for unequal size electrolytes. The results agree well with the MC results but discrepancies 

began appearing at high concentrations for large variations of ion size or unsymmetrical 

valences. At the conclusion of the paper, the authors attributed this limitations to the 

inadequate treatment of the fluctuation potential problem. An expressed that they expected 

a full numerical solution of the fluctuation potential problem to overcome these restrictions 

[32]. 

 The fluctuation potential approximate solution presented in this dissertation, 

expresses the sources of ionic charge in the fluctuations potential system of equations in 

terms of the radial distribution functions (RDFs) from the Debye-Hückel theory (Appendix 

B) which is valid only for ions of equal sizes (RPM) so a future extension of the solution 

to unequal ion sizes will require the extension of DH theory to ionic size asymmetry.  

The model developed in this dissertation also incorporates the possibility of an 

iterative solution. The MPB pair correlations functions from this work are use as initial 

functions in an iterative algorithm where ionic volume effects, size and charge asymmetry 

are considered from the beginning. This approach incorporates the best features of this 

research but does not suffer from the limitations of the approximations made for the sake 

of analytical progress.   

The organization of this thesis is as follows. Chapter 2 presents a brief introduction 

to MPB theory for the PM model. This chapter is based in the paper entitled “A modified 

Poisson-Boltzmann approach to homogeneous ionic solutions” which presents a clear 

pedagogical introduction to MPB theory for bulk ionic solutions [33]. We start by giving 

details of the interaction potentials of the model, a brief introduction to the PB equation 

and the MPB theory approach. The dimensionless formulation of MPB as well as the 
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definition of the dimensionless parameters in this work is presented in Appendix A and B. 

We then proceed to the main theoretical development of this work based on the restrictive 

primitive models. In this part the set of differential equations for the fluctuation potential 

in dimensionless form is developed and an approximate solution is found using ordinary 

electrostatics. 

In chapter 3 of this thesis a model for asymmetric size DH based on reference [36] 

is presented. In reference 36 Zuckerman, Fisher and Bekiranov presents an extension of 

the DH theory primarily on the 1:1 additive hard-sphere electrolyte with, say, negative ion 

diameters, σ--, larger than positive ion diameters σ++. The treatment highlights the crucial 

importance of the charge-unbalance “border zones” around each ion into which other ions 

of only one species may penetrate. The symmetrical formulation of MPB required to treat 

unequal ion sizes requires the calculation of discharge potentials Ψ0 [33]. This potentials 

represents the mean potential of a discharged central ion at a field point in the solution. It’s 

mentioned by Outhwaite in reference [33] that this discharge potential is cero for ions of 

equal sizes, so in order to account for discharge potentials within the framework of DH 

theory, size exclusion effects must be implemented. Although the main subject of this work 

is the fluctuation potential for RPM, the calculation of the fluctuation potential including 

size and/or charge asymmetry represents a very important project for the future. The 

approximate solution to the fluctuation potential for the PM use the definition of these 

“border zones” to set DH equations that takes into account charge and/or size asymmetry. 

In chapter 4 we utilize solution of the fluctuation potential to present structural and 

thermodynamic results for a 1:1 valence RPM electrolyte. We start by showing three-

dimensional plots of the fluctuation potential solution. The plots show the fluctuation 
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potential at a planar slice passing through the center of the ions for two ionic separations 

and for the like and unlike ion cases. A physical interpretation of the results in terms ionic 

correlation energy is presented. To further test the solution’s validity, configurational 

energies, and osmotic coefficients are calculated and compared to the Monte Carlo (MC) 

simulation data of Card and Valleau [21], and Rasiah, Card, and Valleau [22]. 

The following publication has come out of this thesis,  

"An analysis of the fluctuation potential in the modified Poisson-Boltzmann theory for 

restricted primitive model electrolytes", E. O. Ulloa-Dávila and L. B. Bhuiyan, Condens. 

Matter Phys., 20, 43801 (2017) ; DOI: 10.5488/CMP.20.43801 
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Chapter 2 

 

Model and Theory 
 

In this Chapter we will be describing the physical model of the electrolyte that we used in 

this research and the modified Poisson-Boltzmann theory employed to solve the model. 

 

2.1 Molecular Model 

 

As indicated in the Introduction, the model electrolyte system used in this study 

consists of a binary, symmetric valence RPM electrolyte at room temperature. The total 

potential energy in the Hamiltonian is thus 


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ijuU

                                                            (11) 
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where uij is the ion-ion interaction potential, Zs is the valence of ion species s, e is the 

magnitude of the fundamental charge, r is the distance between the centers of two ions of 

types i and j, and     σij = ai + aj = (σi+σj)/2 is obtained by adding the ionic radii ai = σi/2 

and aj = σj/2, where σi and σj are the diameters of ions i and j respectively. The relative 

permittivity ϵr is assumed to be uniform throughout the entire system. 

2.2 Theory 

The formulation of the SPB and the (traditional) MPB have appeared in the 

literature (see for example, references [27, 30, 31, 32]). Here we will restrict ourselves to 

outlining the principal ideas of the MPB theory, the main steps leading to the equations 

governing the fluctuation potential, and their solution. 
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In the canonical ensemble, the mean electrostatic potential ψ({n};q) at the field 

point rq for fixed ions at r1… rn  is given by 

),1()1};({),1(
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                               (15) 

is the number density of ions of charged state α at rn+1 for n fixed ions, and qk is the charge 

of the k-th species ion. We note that in terms of valence Zk of the species, ek = eZk. 

Equation (14) for the mean electrostatic potential ψ({n};q) at the field point q can 

be represented diagrammatically by representing potentials to the field point using solid 

lines and ionic correlation by dotted lines. For example for the case of n=1, 
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Figure 1 Mean electrostatic potential diagram for one fixed ion 

 

 or for the case of two fixed ions, 

 

Figure 2  Mean electrostatic potential diagram for two fixed ions. 

 

Applying the Laplacian operator to equation (13) gives the generalized Poisson equation 
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where )(r


 is the 3-D Dirac delta function. The first term on the right gives the direct 

potential contribution from the n fixed ions, while the second term gives the mean potential 

from the correlated ion density in the liquid. 

 For n=1 we have 
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For n=2, we have 
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The application of equations (17-20) relies upon the implementation of a closure 

relationship between conditional densities and mean electrostatic potentials. The Kirkwood 

charging process provides such a relationship [13]. In the Kirkwood charging process an 

ion i at r1 has a charge λiqi, where the charge coupling parameter λi satisfies 0 ≤ λi ≤ 1, so 

that 
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where us
ij represents the short range interaction and ue

ij is the electric interaction between 

ions. Taking the natural logarithm of the number densities {n} and {n+1}, differentiating 

each with respect to the charge coupling parameter, and subtracting gives 
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For n=1, we have 
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Writing 

);2,1();2();1();2,1( qqqq   ,                                     (24) 

where ϕ(1,2;q) is the fluctuation potential that describes the departure from linear 

superposition of the mean electrostatic potential at the field point q from that of the two 

individual ions. This equation is generally taken as the definition of fluctuation potential. 

Thus equation (23) gives, 
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where we have used ρs(1,2) = ρsgij. Alternatively, 

]},)2;2,1()2;1([exp{)0( 2

1

0

2  degg jijij                          (26) 

 when charging ion 2 instead of ion 1. 

The MPB Poisson’s equation for the (q:q) same size problem is given by 
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where ζi,s are the excluded volume term, and ϕ the fluctuation potential. 

The Poisson – Boltzmann theories can be derived from equation (27) by setting ϕ = 0, and  
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As shown before the radial distribution functions gij can be expressed in an unsymmetrical 

way either by Kirkwood charging ion 1 or ion 2 respectively  
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This unsymmetrical formulation restricts the theory to equal size and valence case. The 

unsymmetrical formulation of equations (29) and (30) can be overcome by deriving a 

symmetrical MPB equation. A symmetrical formulation of the MPB equation is derived by 

putting qi = 0 in equation (29) and qj = 0 in equation (30), substituting for ζj,i, ζi,j in equations 

(29) and (30), respectively, and then combining the results we get 
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where gij
0 = gij(qi=0,qj=0),      ψi

0 = ψ(1;2|qi=0),  and    ψi
0 = ψ(2;1|qj=0). 

The superscript zero in equation (31) represents the corresponding quantity for a particular 

uncharged ion. The discharged mean potentials ψ0 and discharged fluctuation potential ϕ0 

are due to ionic charge imbalances created by size asymmetric effects and therefore are 

zero for the RPM which is the main focus of this research.    
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Equation (31) with the fluctuation potential neglected gives the pair correlation 

function in the SPB theory, valid for symmetric or asymmetric ion sizes and valences, 

expressed in terms of the excluded volume term gij
0

 = ζij and the mean potentials ψ, ψ0. 

To calculate pair correlation functions using the MPB theory we need a procedure to 

calculate the fluctuation potential ϕ(1,2;3). We begin by formulating the fluctuation 

potential problem in the RPM for a symmetric valence electrolyte, viz., |Z+| = |Z−|, 

consisting of N ions and satisfying global electro neutrality ΣsZsρs = 0. We will follow 

closely the notations used in reference [28].  

The equations (17-20) can be expressed in terms of the radial distribution (or pair 

correlation) functions. For example, g1α(1,q) = ρα(1,q)/ρα  is related to the probability of 

finding an ion of species α of mean number density ρα , given an ion at 1, and so on and so 

forth. The Poisson equations follow (cf. equations 18, 20) 
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The distributions can, in turn, can be defined in terms of the potentials of mean force W 

viz., the doublet 

))2,1(exp()2,1( ijij Wg                                                        (38) 

or the triplet 

))3,2,1(exp()3,2,1( ijkij Wg                                                    (39) 
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where Wij, Wijk, are the pair and triplet potentials of mean force, respectively.  Here, 

 β=1/(kBT) with kB the Boltzmann constant and T the temperature. Hence the 

conditional relation obtains as 

)]3;2,1()3,2()3,1([
)3;2,1( ijkjkik wWW

ijk eg
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                                       (40) 

The term wijk is the potential of mean force associated with the departure from linear 

superposition of the pair potentials. A hierarchy of such equations can be constructed 

for higher order correlations. At the lowest order the classical PB theory follows upon 

neglecting wijk(1,2;3), and to improve upon the PB, we need a procedure to estimate 

this term. 

 In the MPB formulation the hierarchy is broken at the triplet level by a closure 

condition that relates the wijk with the fluctuation potential ϕij [33]. 
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It is of interest to contrast this MPB closure with the Debye-Hückel closure 

)2,1()2,1( jij eW                                                       (42) 

 For the RPM system with finite ion diameter 2σii = 2σjj = σ, the Poisson equations 35-

37 can be expressed in terms of the potentials of mean force as 
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where the MPB closure (equation 41) has been use in equation 45. Equations 43 and 

44 are exact, for one fixed ion in position 1 and 2, but equation 45 incorporates the 

deviation of the superposition principle in the form of the fluctuation potential term. 

To obtain and equation for the fluctuation potential, we subtract equations 43 and 44 

from 45, 
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or more compactly 
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Equation 47 is the basic nonlinear equation in the fluctuation potential problem. The 

corresponding equation for the fluctuation potential in terms of pair and triplet 

correlation function illustrates an important concept concerning the nature of the 

fluctuation potential. Subtracting equations 35 and 36 from 37 we have, 
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It is clear from equation 48 that the charge density source for fluctuation potential is 

associated with the charge atmospheres of the triplet and doublet densities.  

Defining, 
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we can expand the summation over species as 
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where a number with the superscript notation with a positive or negative sign represents 

the presence of the corresponding ion at the referred position in space.  

 

Figure 3 Fluctuation potential geometry for the restricted primitive model 
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Figure 3 shows the geometry of the fluctuation potential set of equations. Ω represents 

the total volume of the ionic solution, ω1 and ω2 represent the exclusion volumes of ion 

1 and 2 respectively. 1 and 2 are the centers of the ions, 3 is the field point in space, 

and ω* is the overlap volume. Region I (Ω - ω1 - ω2) is the bulk volume defined as the 

total volume minus the exclusion volumes of ions 1 and 2. Region II and III are the 

interior of the exclusion volume of ion1 and 2 minus the overlap volume. These regions 

are represented as ω1- ω*, and ω2 - ω* respectively. No ions of species 1 can penetrate 

region I so g(1,3+) = g(1,3-)=0 in region I, and no ions of species 2 can penetrate region 

II so g(2,3+) = g(2,3-)=0  in region II. Region IV is the overlap volume. The nonlinear 

system of equations governing the fluctuation potential are then given by the following 

expressions 
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After expressing the Laplacian in ionic diameter scale, and imposing the global electro-

neutrality condition equations (Appendix A) we have the set of dimensionless 

fluctuation potential equations for the size symmetric case 
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Defining the dimensionless fluctuation potential as follows 
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we have 
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Finally we express the parameters of the model in the dimensionless packing fraction 

η, the plasma coupling Γ, and  240y (appendix A), to get the set of dimensionless 

fluctuation potential equations for the size symmetric case 
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The boundary conditions are that the fluctuation potential and its normal derivative 

are continuous across boundaries.  

To find an approximate solution to the system of equations we define the quantity 

P from equations (58-61) as follows 
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with formal solution given by [37, 38] 
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 we can now write equations 58-61 in terms of P as follows, 
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It’s important to note that the P in regions II and III are not explicit functions of the 

fluctuation potential. The radial distribution functions g(1,3) and g(2,3) are implicit 

functions of the fluctuation potential. 

In order to make progress in the solution to the fluctuation potential problem our 

first step is to approximate the radial distribution functions g(1,3) and g(2,3), in the 

source functions, with exponentials of the linearized dimensionless Boltzmann 

equation’s solutions. For the RPM, and later for the PM, this linearized solutions of the 

Boltzmann takes the form of linear combinations of screened Yukawa potentials of the 

form 
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where the c coefficients and the screening scales μ are functions of the parameters of 

the dimensionless model. This choice is consistent with the boundary conditions for 

the fluctuation potential, which requires the decay of the fluctuation potential as we 

move away from ion’s centers 1 and 2. For simplicity, we use the Debye-Hückel 

potentials (Appendix B) instead of the summation of Yukawa potentials 
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where κD is the usual Debye-Hückel parameter (Appendix B). Exponentiation of these 

potentials defines our approximation for the radial distribution functions, we get 
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where the subscripts in the Yukawa potentials refers to the charged state of the central 

ion, and the signs in the Z represents the charged state of the ion at field point 3. 

Inserting the radial distribution functions (equation 70) in the integral of equation 63 

will render the contribution to the fluctuation potential from charge in regions I and II 

as an ordinary integral in space.  

The next step is to obtain an approximation for the P in the bulk region, outside 

ions 1 and 2. In this region the function P is non-linear in the fluctuation potential. 

Inserting the radial distribution functions 70 with DH functions (equation 69), and 

linearizing, gives for the P in region I 
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For small fluctuation potential, we neglect the right hand side of equation 71. For 

example for a symmetric valency 1:1 RPM electrolyte, the theme of this work, we have 

noted that the DH radial distributions in equation 71 are of order of unity for the 

physical parameters and the range of concentrations used. If the fluctuation potential is 

of order of 10-2 or less then the right hand of equation 71 will be of similar order and 
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can be neglected as a first approximation for such a system. Under this approximation 

the Fluctuation potential is given by, 
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, where the F are defined by, 
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and 
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In this work the integral of equation 72 is calculated by discretization of space, 

which is discussed in the next Chapter in connection with the numerical solution.                                                                                                        

 The calculation of the MPB pair correlation functions utilizes the symmetric 

formulation (31) in reduced variables, with zero discharge mean potentials Ψ0 = 0 and zero 

discharge fluctuation potentials Φ0 = 0 (size symmetric), given by, 
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We note that equation (76) reduces to the simpler expression, 
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for the 1:1 RPM electrolyte. 

 

 DH functions are used for Ψ(1;2) and an analytic expression for the Percus-Yevick 

(PY) radial distribution functions for of hard spheres [4] have been used for the excluded 

volume term, which can be used up to ~ 2M concentration, given by 
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 A useful way of testing the fluctuation potential solution is through subsequent 

evaluation of structure and thermodynamics of the electrolyte solution. For the calculation 

of osmotic coefficients ϕ and reduced configurational energy U we used equation 12 from 

reference [15], written in dimensionless reduced variables as, 
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where y = r/σ (reduced radial distance), gA and gB are radial distribution functions for like 

and unlike ions respectively, and the argument of 1 in gA and gB in equation (79) refers to 

contact value. 
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Chapter 3 

Size/Charge Asymmetric Fluctuation Potential 

The effects of size asymmetry enters the symmetric MPB equation through the 

potentials   and the discharge potentials
0 . In this thesis we confine ourselves with the 

two-species size-asymmetric primitive model (SAPM), which consists of equal numbers,

  NN , of positive and negative ions with hard-core diameters 
   , and charges of 

equal magnitudes eZqq   . The complementary case 
   follows trivially by 

symmetry. We assume additivity of the diameters 

2
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The degree of size asymmetry will be described by the fractional deviation from
 , 

namely 
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The diameter ratio is given in terms of the asymmetry as, 
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The asymmetric size model, is naturally more complicated than the symmetrical size case. 

To set the PB or linearized PB equation for a system of different size ions in a solution, 

three distinct concentric spherical shells or zones must be accounted for. Hard sphere ion 

volume exclusion effects will result in the existence of regions around the central ion where 

only the smaller ionic species will be able to penetrate. Let suppose, for example, that we 
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have the situation of a central positive ion with diameter ordering in size according to 

    . Following reference [36], we term this case the “inner” case since like-

like diameter of the central ion is less than
 . No ion center can enter the interior zone

 r0 . The sub-border zone is defined by
   r . This zone can only be 

populated with the center of the smaller positive ions. Finally the exterior zone 
 r can 

be populated by the charged centers of both ionic species. When a larger negative ion is 

chosen to be the central ion there is also a “super-border” zone, 
   r , into which 

only positive charges may enter. 

The starting point in this asymmetric size DH model is the Poisson equation that 

relates the electrostatic averaged potential with the corresponding averaged charge density.  

Here we consider a two species model with hard sphere charges eZq   located at the 

spheres center. With the collisional diameter restricted as
   .  

Following [36] we define ψα to be the average electrostatic potential at a fixed 

central ion due to all other ions. The superscripts < and > will serve as reminders of the 

relative ions sizes. The subscript α will refer to ionic + or – charge (ionic species).  

Calculation of the potential ),(   T  begins by fixing ion of species α at the origin. The 

induced electrostatic potential, )(r


 and corresponding charge density, )(r


  are then 

related by the averaged Poisson equation, namely, 
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, where the subscript α indicates that the average is taken with a charge of species α at the 

origin. The ion potential follows from the limit 
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, which eliminates the self-interaction of the fixed charge at the origin. 

We now approximate the average charge density,

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 by the linearization of the 

exponential in the Boltzmann factor, yielding 
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, where TkB/1 . In the size asymmetric model, the approximate charge density must 

be allowed to take a different form in each of the three distinct zones around the central 

ion. Thus, for example, for a fixed positive smaller ion at the center one has 
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Here the inverse Debye length is defined the usual way via 
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It can be seen in this expression that the sub-border zone     r can be 

populated only by the smaller positive ions, so only 
q appears at the right-hand side of the 

equation. The exterior zone ( r ) can be populated by both species so the the equation 

follows the standard Debye-Hückel form. Equations (89-91) represent the complete 

reduction of the linearized Poisson equation to the asymmetric Debye-Hückel theory 
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(ADH). For the case of the larger central negative ion a complementary “super-border 

zone”     r  into which + charges may penetrate must be included.  

The symmetric MPB formulation for ions of asymmetric sizes (equation 76) requires the 

calculation of the electrostatic potential terms i  and j for central positive and negative 

ions respectively. Also “discharge potentials”  
0

i  and
0

j , that represents the mean 

electrostatic potentials for the central ions considered as neutral hard spheres with the rest 

of the ions in the solution with the usual charges, need to be included in the symmetric 

MPB equation 76. In this chapter the ADH model system of equations is set in unit less 

form and solved exactly, for standard electrostatic boundary conditions of continuity of the 

potential   and the radial derivative of the potential
r


, at the boundaries of the different 

charged zones. 

We start by casting the ADH equation in unit-less variables. We take the negative 

ion as the larger diameter
 . The opposite case follows by symmetry. The spatial 

dimension is scaled with respect to the larger ion, in the present case, the negative one. The 

parameters of the model are the packing fraction η the plasma coupling Γ, and the size 

parameter α. The ADH equation is 
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, where  
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(Appendix A). For central positive smaller ion the ADH equations are 
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This equations are written in dimensionless units. Starting with the innermost region we 

have 
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Then after some manipulation we get 
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, with standard solution 
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, where 
1C  is the first constant of integration to be evaluated later from the boundary 

conditions. 

The second sub-border zone can only be populated by the smaller species, in this case the 

positive ions. We start by writing equation (96) in unit-less dimensions 
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The solution to equation (100) was obtained to be 
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Where   is given by 
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The equation for the outer zone is the standard DH equation with solution given by 
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To evaluate the constants C1, C2, C3, and C4, standard electrostatic boundary conditions of 

continuity of potential function Ψ, and its normal derivative
r


, are implemented at the 

borders of each zone. The result is the following linear system of equations 
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To solve for the constants C1, C2, C3 and C4, we express equations (104-109) in matrix 

form 
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The explicit expressions for the matrix of the coefficients was obtained by solving the 

linear system of equations. The results, for central smaller positive ion, are as follows 
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For central negative (larger ion) there are three boundary zones 

Zone I: 

2

1 
r , 

This region is populated by the central ion only. We will called this region the “interior 

zone”. 

Zone II: 

1
2

1



r


 

This region can only be populated by the center of the smaller positive ions due to volume 

exclusion effects. We will call this region the “super border zone”. This a charge imbalance 

zone. 

Zone III: 
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This region can be populated by both ionic species. We will call this region the exterior 

zone. It follows standard DH theory. 

The ADH equations for central negative larger ion are 
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The solutions for this system of equations was found to be 
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As before, to obtain the D coefficients, standard electrostatic boundary conditions of 

continuity of the potentials and their normal derivatives are implemented. The column 

matrix of the coefficients satisfies the matrix equation 

22 BDA  , 
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The solution of the above system gives for the D coefficients 
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Discharge potentials 
0

i and
0

j represents the mean potential function of a charged 

solution where the central ions i and j respectively are uncharged. This is 
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If all the ions have the same size then the discharge potentials are zero. The reason for this 

is that discharge potentials are the result of charge imbalance zones due to ionic exclusion 

volume effects. Setting the central smaller ion charge to zero, we have 
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For central larger negative ion we have 
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Analytical exact solutions for the above systems of equations are given by 
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for smaller central discharged ion, and 
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for larger central discharged ion. 
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To obtain the J and K coefficients, standard electrostatic boundary conditions of continuity 

of the discharged potentials and their normal derivatives are implemented. The column 

matrix of the coefficients satisfies the matrix equations 

33 BJA  ,                                                          (147) 
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The solution of the above systems gives for the J and K coefficients 
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Having obtained electrostatic potentials for charged Ψ(1;2), and discharged Ψ0(1,2) 

central charges, we use equations 80 for the pair correlation functions. The source functions 
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F1, F2, and F3 are calculated with equations 73, 74, and 75 with the asymmetric Debye-

Hückel radial distribution functions calculated here.  From equation 71 we define function 

G as follows 
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, with G given by 
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Including the term linear in Φ(1,2;q) in the integral of equation 72 we get,
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This represents the fluctuation potential for symmetric asymmetric valences and sizes in 

this model. For the pair correlation functions, we use the symmetric formulation MPB, 

(equation 76) given, in dimensionless reduced variables by, 
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, where the excluded volume term can be approximated by  

)()0(0

ijjiijij rHZZgg                                                   (160) 

, where σij is the contact separation, and H(rσ - σij ) is the Heaviside unit step function. This 

completes the MPBthis-work solution for the primitive model. 

Osmotic coefficients for the primitive model electrolyte can be calculated using 

equation 5 from reference [32], 
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expressed in dimensionless form using the parameters defined in this work as 
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with energy given by 
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Where σ- is the larger negative ion diameter and r represents the scaled distance r/σ- .  

 

 

  



50  
Chapter 4 

Numerical solution 

The calculation of the fluctuation potential Φ(1,2;3) was achieved by creating a 

Cartesian grid in space with scaled distance of 10% of the ionic diameter, which in our 

dimensionless units is 1, so in this calculations the grid spacing is 0.1. This grid was created 

to represent the physical regions in the fluctuation potential problem as shown in figure 3. 

Those regions consist in the spherical regions ω1 and ω2 that correspond to the boundaries 

of the physical ions 1 and 2, and the rest of the solution which is denoted by Ω – (ω1 + ω2) 

and represents the ionic excluded volume. The functions F1 and F2, (equations 73 and 74 

respectively), represent the charge density associated with regions ω1 and ω2 in the integral 

of equation 63. The boundary of the rectangular Cartesian grid representing figure 3 was 

defined by a parameter Λ, which represents the distance scale between the ionic boundaries 

ω1, ω2 to the boundary of the volume Ω. This parameter was chosen in such a way that the 

fluctuation potential solutions tend to zero at the exterior boundary of the grid. We call this 

parameter the fluctuation potential spatial decay parameter. It should be large enough to 

allow the fluctuation potential to decay to zero, in order to fulfill the electrostatics boundary 

conditions.  Usually this parameter was between three and five ionic diameters for the 

highest concentration but was found to be considerably larger than for small 

concentrations. The ionic solution’s volume Ω is represented by a grid space with the 

dimensionless spatial scale h, expressed in ionic diameters. Grid vectors are represented by 

kjiR ,,


                                                       (170) 

, where i, j, k are integers. Coordinates in ionic diameter space are then given by 
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The integral in equation 72 is then represented by a summation in grid space as, 
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, where P is the source function, and Δ is the cell unit volume in ionic diameter grid 

space. That is 

3h .                                                             (173) 

The fluctuation potential solution was an integral over regions ω1 and ω2. The summation 

used to numerically calculate the integral included approximately eight thousand terms, 

one for each point inside regions ω1 and ω2. To produce figures 4-6 the fluctuation 

potential was calculated at each point in a planar slice passing through the centers of ω1 

and ω2. For contact distance between the regions ω1 and ω2, and Λ = 5, this planar slice 

contains approximately ten thousand points. The simplicity of equation 72, and the 

approximation of the gij in equation 70 with DH functions, are what make the calculations 

fairly tenable.  

The calculations of the pair correlation functions were performed in a similar grid 

as the one used for the three-dimensional figures but the fluctuation potential was only 

calculated at the center of region  ω2 (figure 3), and used in equation 81, where the 

Kirkwood charge integral of the fluctuation potential is calculated. The calculation of 

reduced configurational energies and osmotic coefficients was achieved from formulas 79 

and 80 for the RPM (1:1). For the PM (1:1) case the osmotic coefficient was calculated 
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from equation (162). Radial distribution contact values for the charge asymmetric RPM 

(1:2) case were calculated using equation (76). 
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Chapter 5 

Results and Discussion 

In this work the fluctuation potential was obtained numerically by solving the 

integral of equation 72 for the restricted primitive model case (1:1), neglecting ionic charge 

in region Ω – (ω1+ ω2). The physical parameters for the RPM used were ---- common ionic 

diameter of 4.25Ả, dielectric constant (relative permittivity) εr = 78.5, which is tantamount 

to having a water-like solvent, and absolute temperature T = 298K. The concentrations 

used were, in moles per liter, of 0.1038, 0.425, 1.00, and 1.968. One reason for using these 

physical parameters is that these have been used earlier in the literature and for which MC 

simulation data exist [9, 10]. Radial distribution functions were calculated with equation 

(77). Osmotic coefficients ϕ and reduced configurational energies -U/NkBT have been 

calculated with equations 79 and 80. The numerical procedure involved is described briefly 

in chapter 4. In what follows we discuss the results for RPM (1:1), RPM (2:1) and PM (1:1) 

cases studied in this research. Sections 5.1 and 5.2 refers to RPM (1:1) case which was the 

main focus of this work. 

 

5.1 Fluctuation potential 

Three-dimensional representations of the fluctuation potential Φ(1,2;3) for various 

configurations of the monovalent ions are shown in figures (4-6), which are calculated on 

a planar slice passing through the centers of ions 1 and 2 (figure 3). To our best knowledge 

such representation of the fluctuation potential does not exist in the literature. The plots 

shows the fluctuation potential ϕ(1,2;3) obtained from equation 72 as mentioned before, 
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following the linearization of the fluctuation potential in the bulk region I and the smallness 

of Φ(1,2;3), the P function in bulk region I is taken as zero, neglecting charge density for 

that region.  

The behavior of the fluctuation potential in figures (4-6) can be understood in terms 

of the charge density associated with the functions F1 and F2, inside regions ω1 and ω2. 

Figure 4 shows the fluctuation potential for a planar slice passing through the centers of 

two positive ions of charge +1 each. The charge density contributed by the spherical region 

1 associated to the positive ion in region ω1 is calculated using function F1 (equation 73) 

which is a function of g(2,3) , where the point 3 is bounded to be inside region ω1. The 

positive sign in the fluctuation potential in region 1 is given by the sign of -g(2,3+)+g(2,3-

). Since the charge in position 2 is positive the second term associated with unlike charges 

is greater in magnitude than the first term in F1 causing an overall positive fluctuation 

potential in region 1. The positive sign in region 2 can be understood in similar terms.  

Figure 5 shows the fluctuation potential for a positive ion +1 in region ω1 and a 

negative ion -1 in region ω2. For this case the functions g(1,3) and g(2,3) in F1 and F2 

conspire to cause the sign of the fluctuation potential around region 1 to be opposite in sign 

to the charge of ion 1 and vice versa for ion 2. To see this first we look at -g(2,3+)+g(2,3-) 

for F1. If the ion in region 2 is negative then the first term associated with unlike charge is 

giving a negative sign in region 1 where the positive physical ion is located. On the other 

hand the fluctuation potential in region 2 is calculated using F2 where the charge density 

is given by -g(1,3+)+g(1,3-). It can clearly be seen that the second positive term in this 

expression is the larger one because it is linked to unlike charges. So it can generally be 

stated that the fluctuation potential for like ions near the vicinity of the ions is of the same 
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polarity of that of the physical ions and is of opposite polarity for unlike ions. This peculiar 

behavior is a consequence of the fluctuation potential in region ω1 (equations 65) being 

related to the g(2,3) centered at region ω2, and that the fluctuation potential in region ω2 

(equations 66) being related to the g(1,3) centered at the opposite region ω1. This combined 

with the relative magnitudes of like and unlike ions g’s in functions F1 and F2 explain the 

behavior of the polarities of Φ(1,2;3).  

The smallness of Φ(1,2;3), specially for large inter-ionic separations, can be 

understood in terms of the dominant charge density in equations 65 and 66. The charge 

density in ω1 is a function of the g(2,3) where the point 3 is in region ω1 and the point 2 is 

in the center of region ω2, and the charge density of region ω2 is a function of g(1,3) where 

point 3 is inside region ω2 and point 1 is at the center of region ω1. As interionic separation 

is increased, the dominant functions in F1 and F2 associated with unlike ions decrease, 

while the g’s associated with like charges tend to one. It is apparent from Eqns. 73 and 74 

that F1 and F2 both tend to zero for large distances, and increase for contact distances, as 

in figure (6), where the fluctuation potential for similar charges is seen to become quite 

large compared with that in figure (4). This means that for small separation of the ions the 

fluctuation potential term becomes important for the calculation of the gij. Figures (4-6) 

show that the fluctuation potential is largest near the regions of ions 1 and 2.   

In figure (4) we have ions of the same sign, and it is clear that the fluctuation 

potential is manifested as an increase in electrostatic energy of the ions since the fluctuation 

potential is of the same sign as the ions. For ions of opposite sign, we can see from  

figure (5) that the sign of the fluctuation potential is opposite to that of the ion in the 

vicinity. This leads to a decrease in potential electrostatic energy giving rise to attractive 
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inter-ionic correlation interaction in this case. This implies, and from what has been known 

in the literature, that the sign of the fluctuation potential in the vicinity of ion 1 is mostly 

due to the cloud of counter ion (from ion 2) and vice versa. The results further show that 

the fluctuation potential increases with electrolyte concentration. It can be seen from figure 

4 and 5, that the fluctuation potential increases as the separation of the ions is decreased, 

establishing the importance of having a solution that is valid at short distances. Figure 6 is 

the fluctuation potential calculated at contact distance r/σ = 1. The results show that 

fluctuation potential increases with molarity, meaning that as molarity increases the short 

distance behavior of the theory is affected by not only by the excluded volume effects, but 

also by the fluctuation potential.  
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Figure 4 Fluctuation potential ϕ(1,2;3) for Z1=Z2=+1, σ=4.25Ả, ε=78.5, T=298K, 

c=1.968M. Reduce interionic distance r/σ: (a) 1.5, (b) 3. 
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Figure 5 Fluctuation potential ϕ(1,2;3) for Z1=+1, Z2=-1, σ=4.25Ả, ε=78.5, T=298K, 

c=1.968M. Reduce interionic distance r/σ: (a) 1 (contact), (b) 3. 
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Figure 6 Fluctuation potential ϕ(1,2;3) for Z1=Z2=+1, σ=4.25Ả, ε=78.5, T=298K,    

c=1.968M. Reduce interionic distance r/σ=1 (contact) for concentrations: (a) c=1.968M, 

(b) c=0.1038M. 
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5.2 Structure and Thermodynamics 

In Tables 1-3 we show the contact values,  the reduced configurational energies, 

and the osmotic coefficients for the Debye-Hückel (DH), the symmetric-Poisson-

Boltzmann (SPB) , the traditional modified Poisson-Boltzmann (MPB), the Card and 

Valleau Monte Carlo (MC)[9], the Rasiah, Card, and Valleau Monte Carlo (MC) [10], 

and the modified Poisson-Boltzmann from this work (MPBthis-work).  

 

 

Table 1 Contact values of the radial distribution functions gij(d) from different theories. 

The common diameter of the ions is m101025.4  , the temperature T = 298 K, and the 

dielectric constant of the electrolyte ϵr = 78.5. The MC values are from reference [9]. 

 

 

 

 
 

Table 2 Reduced configurational energy -U/(NkBT) from different theories. The common 

diameter of the ions is m101025.4  , the temperature T = 298 K, and the dielectric 

constant of the electrolyte ϵr = 78.5. The MC values are from reference [10]. 
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Table 3 Osmotic coefficient ϕ from different theories. The common diameter of the ions 

is m101025.4   , the temperature T = 298 K, and the dielectric constant of the electrolyte 

ϵr = 78.5. The MC values are from reference [9] 

 

 

 

Table 1 shows contact values for the three models, and the Card -Valleau MC for 

concentration 1 M [9]. For the radial distribution at contact distance, the values from this 

work and the corresponding ones from traditional MPB are very close to the generally 

Rasiah-Card-Valleau  MC [10], but the SPB shows a tendency to be smaller than the MC 

for unlike ions, and larger than the MC values for like ions. Results from Table 1 show that 

MPBthis-work and MPB are closest to the MC results than the corresponding SPB values for 

both like and unlike ions. The contact values for the radial distribution functions for like 

ions, from the present theory, are slightly closer to the MC result [9] than that from the 

SPB and MPB. This is probably due to a better treatment of the fluctuation potential in this 

work. Overall, the contact values from the present theory are consistent with the other 

theories and show very good agreement with the MC simulation data.  

Figure 7 shows the radial distribution functions obtained in this research along with 

the corresponding SPB and the traditional MPB theories at 1 M electrolyte concentration. 

The results are very similar for distances bigger than 2 ionic diameters. But importantly, 
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the present results and that from the conventional MPB theory are almost identical. This 

testifies to the viability of the present treatment. 

 

Figure 7 Cation-cation and cation-anion radial distribution functions for Symmetric-

Boltzmann (SPB), modified Poisson Boltzmann (MPB), and the theory presented in this 

work (MPBthis-work) 

 

Tables 2 and 3 show the reduced configurational energies, and the osmotic 

coefficients from the DH, SPB, MPB, MC [9, 10], and this work. These values are also 

presented in graphic form as in figures 8 and 9, respectively. The reduced configurational 

energy curves (figure 8) show excellent agreement between the MPB and this work, and 

with the MC curve up to 1 M concentration. At the highest 1.968 M concentration the MPB 

is a little closer to the MC. Figure (9) shows osmotic coefficients for the theories and the 

relevant MC data [9, 10]. These curves show a generally very good agreement between the 

MC results and the theories. 
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Figure 8 The reduced configurational energy for a 1:1 restricted primitive model 

electrolyte at ionic diameter md 101025.4  , dielectric constant ϵr = 78.5, and 

temperature T = 298 K, versus the square root of the electrolyte concentration c, for the 

Debye-Hückel, theory, the symmetric Poisson-Boltzmann theory, the modified Poisson-

Boltzmann theory, and the theory presented in this work. Legend as given in the figure. 

The Monte Carlo results are from references [9] and [10]. 

 

 

Figure 9 The osmotic coefficient for a 1:1 restricted primitive model electrolyte at ionic 

diameter md 101025.4  , dielectric constant ϵr = 78.5, and temperature T = 298 K, 

versus the square root of the electrolyte concentration c, for the Debye-Hückel, theory, 

the symmetric Poisson-Boltzmann theory, the modified Poisson-Boltzmann theory, and 

the theory presented in this work. Legend as given in the figure. The Monte Carlo results 

are from references [9] and [10]. 
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5.3 Charge Asymmetric Case Radial Distribution Contact values 

 

 

Table 4 Comparison of the radial distribution functions contact values gij(d) from HNC 

and this work for RPM 2-1 case. The common diameter of the ions is m101025.4  , the 

temperature T = 298 K, and the dielectric constant of the electrolyte ϵr = 78.5. The HCN 

values are from reference [20]. 

 

 

 

Table 4 shows radial distribution functions contact values calculated for the 

charge asymmetric case RPM (2:1), using equation (76). The corresponding HCN values 

were obtained from the results of Rasiah and Friedman [20] , which are considered to 

give the best results for ionic solution theory [20, 21, 22]. The results shows good 

agreement for all concentrations considered. 
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5.4 Size asymmetric Case Osmotic Coefficients  

 

 

 
Table 5 Radial distribution contact values for primitive model 1:1 electrolyte. The 

diameter of the large negative ion is 4.25×10-10m, the temperature T=298K, the dielectric 

constant of the electrolyte εr, and the size asymmetry parameter α = 0.2, 0.4, 0.6, and 0.8. 

 

 

 
 

Table 6. Comparison of osmotic coefficient ϕ for primitive model 1:1 electrolyte and MC 

simulations. The diameter of the large negative ion is 4.25×10-10m, the temperature 

T=298K, the dielectric constant of the electrolyte εr, and the size asymmetry parameter α 

= 0.2, 0.4, 0.6, and 0.8.MC simulation data from Abrano et al [14]. 

 

 

Table 5 and 6 shows calculation results of radial distribution contact values and 

osmotic coefficients for the size asymmetric primitive model electrolytes with physical 

parameters: molar concentration c=0.425mol/dm3, absolute temperature T=298K, relative 

dielectric permittivity εr=78.5, and ionic size ratio α (=σ+/σ-) with σ- = 4.25x10-10m of 

α=0.4, 0.6, and 0.8.  
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 Table 5 Shows contact values for the radial distribution functions where 

calculated using equation (159) using the potentials ψ and discharge potentials ψ0 given 

by equations (99-103), (121-123), and (141-143). For the volume exclusion term a step 

function (equation 160) was used. 

Table 6 shows osmotic coefficients calculated using equation (161). A 

comparison with the MC osmotic coefficients from reference [14] shows good agreement 

for the concentration studied.  
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Chapter 6 

Conclusion 

In this thesis we have made an approximate analysis of the fluctuation potential in 

the modified Poisson-Boltzmann theory of bulk electrolyte solutions. An analytical 

solution of the fluctuation potential equation, albeit approximate, was obtained for 

symmetric valency 1:1 electrolytes in the RPM. This solution was later employed to obtain 

the structure and thermodynamics of the electrolyte in terms of ion-ion radial distribution 

functions, reduced excess energy, and the osmotic coefficients, respectively. 

One of the main problems in the present MPB theory is the use of an approximate 

solution to the fluctuation potential problem that is restricted to large inter-ionic 

separations, where approximate spherical symmetry is valid [33].  This work is an attempt 

to overcome the separation restriction through an approximate analytical solution for the 

fluctuation potential. The solution is represented as an integral over ionic charge density in 

space.  The integral was numerically implemented for the simplest case, a RPM (1:1) 

electrolyte. The resultant radial distribution functions, configurational energies, and 

osmotic coefficients were compared and contrasted with the corresponding results from the 

PB, SPB, traditional MPB and MC simulation data. 

The fluctuation potential is a central ingredient in a potential approach to the theory 

(of charged fluids) such as the modified Poisson-Boltzmann theory. The fluctuation 

potential solution developed in this work, with approximations to make analytical progress 

and for symmetric systems, is a preliminary attempt to assess the implications of such a 

solution. In such cases due to the linearization of the fluctuation potential in the bulk region 

I (equation (72)) and the small magnitude of Φ(1, 2; 3), the P function in bulk region I can 
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be taken to be zero, thus neglecting charge density for that region. A less approximate and 

nearly full treatment could be achieved by solving for the fluctuation potential in region I 

using equation (64) with PI being given by equation (72) in conjunction with equation (71). 

An intermediate procedure (between the above two situations) to obtain a better, viable, 

and still feasible approximation for Φ(1, 2; 3) in region I would be to solve equation (64) 

(with PI given by equation (72)) by writing it in the form 

)3;2,1()3;2,1(2  C                                                (174) 

 

where the quantity C contains the valencies Z+, Z−, and has spatial dependence through 

g(1, 3) and g(2, 3). Thus although C is not a constant per se, it can be assumed to be 

approximately constant for the purposes of solution to equation (174). An approximate 

analytic form of Φ(1, 2; 3)  in region I, whose value is not necessarily zero, would then be 

available. Equation (174) has some parallels to a similar equation for the fluctuation 

potential in the MPB formalism in the planar electric double layer [39]. Such procedure 

will be useful for higher and multivalent electrolytes when the magnitude of the fluctuation 

potential in region I is likely to be significant and hence PI can no longer be neglected. 

This will be a focus of our future work. 

The three-dimensional plots of the fluctuation potential give valuable insight into 

the correlations between ions. Furthermore, the present structural and thermodynamic 

results point in the right direction and are indicative of the potential usefulness of a full 

solution of the fluctuation potential. The radial distribution functions, especially at contact 

distance separation between the ions, the reduced excess energy, and osmotic coefficients 

show an improvement over that from the PB (or SPB), and an overall very good agreement 

with the predictions from the traditional MPB theory and Monte Carlo results.  
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Future work, will also include, the numerical evaluation of the third term in 

equation 72, and the calculation of the full fluctuation potential solution from equation 

(158) and the implementation of some form of hard spheres RDF for binary solutions, 

instead of the use of a Heaviside function in equation (160), to calculate accurate radial 

distribution functions, and thermodynamic properties, for size asymmetric cases. 

The MPB description of the electric double layer phenomenon is an area where the 

present techniques might have some significance since the fluctuation potential plays an 

equally important role in the theoretical framework for the inhomogeneous fluid at the 

interface. In the MPB approach to the double layer theory in planar [39, 40], cylindrical 

[41, 42, 43], and spherical [44, 45] symmetries, the form of the corresponding fluctuation 

potential used is rather approximate and generally suffers from similar defects as those vis-

a-vis the traditional MPB theory for the bulk. The statistical mechanical methods used in 

this paper are quite general and can be extended and adapted to interfacial double layer 

geometry where an analogous fluctuation potential analysis might prove useful. 

 Another area of possible relevance for this study is in the theoretical analysis of 

charged fluid systems with variable dielectric constant (relative permittivity). The topic has 

attracted a lot of recent research attention (see for example, references [46, 47, 48]) and 

has been shown to be relevant for important technological systems, viz., super-capacitors 

[49, 50]. In the electric double layer the MPB has been found to be capable of dealing with 

systems having an inhomogeneous dielectric constant [39, 40]. Very recently, the MPB 

was applied to a double layer system with three different dielectric constants [51], although 

the associated fluctuation potential problem could only be solved for point ions. Thus again 
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a fluctuation analysis in such situations along the lines of the present work could be 

valuable. 

The complete solution of the fluctuation potential equation, valid for a general case 

and for asymmetry in ionic size and/or valency will involve a numerical solution 

comprising an iterative algorithm. Our solution here might prove useful in such a 

procedure. Such a project is contemplated in the future. 
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Appendix A 

 

The Dimensionless Poisson-Boltzmann Equation 

 

The Poisson equation for the spherically symmetrical field of an ion is given by 
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Where φ is the electrostatic potential, r the radial distance from the ion’s center, ε is the 

liquid’s dielectric constant, and ρ the density of charge.  

In the Poisson-Boltzmann theory it is assumed that ions are distributed in space following 

the Boltzmann’s distribution. The charge density is then given by: 
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Where q , q ,  and  are the ions respective charges and particle concentrations. 

Inserting equation A.2 in equation A.1 we get: 
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The condition of global charge neutrality is given by, 

  

s

ss qqq 0
                                                                                (A.4) 

The global particle concentration is given by, 
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Using the global charge neutrality conditions (A.4), the ions concentrations can be 

expressed in terms of the global ionic concentration as follows, 
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, or in terms of the ion valences,  
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To cast the Poisson Boltzmann equation in dimensionless form we define the 

dimensionless electrostatic potential, 

)(re ,                                                    (A.12) 

The packing fraction, 
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, and the plasma parameter 
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Where we have used equal ionic diameters, 

   , 
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Defining, 
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we have, 
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, finally obtain, 
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The PB equation for the asymmetrical size case is the same form as equation 14 but the 

distance scale is set to the larger ion diameter and the packing fraction and plasma 

coupling parameters are then given by 
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The PB equation for asymmetric size ions is given by 
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Where y is given by 
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Appendix B 

Dimensionless Debye-Hückel Potentials 

 The Poisson-Boltzmann equation is a nonlinear elliptical partial differential 

equation. Being nonlinear, this equation is generally difficult to solve. The Debye-Hückel 

theory approximation consists of the linearization of the PB equation by expanding the 

exponential in the Boltzmann term. Thus, keeping only terms linear in Ψ, we write 
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So the dimensionless linearized PB equation becomes the dimensionless Debye-Hückel 

equation  
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Debye-Hückel equation in reduced dimensionless variables is then given by, 
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, with solution, 
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An approximate analytical solution to the fluctuation potential problem in the modified Poisson-Boltzmann the-
ory of electrolyte solutions in the restricted primitive model is presented. The solution is valid for all inter-ionic
distances, including contact values. The fluctuation potential solution is implemented in the theory to describe
the structure of the electrolyte in terms of the radial distribution functions, and to calculate some aspects of
thermodynamics, viz., configurational reduced energies, and osmotic coefficients. The calculations have been
made for symmetric valence 1:1 systems at the physical parameters of ionic diameter 4.25 × 10−10 m, relative
permittivity 78.5, absolute temperature 298 K, and molar concentrations 0.1038, 0.425, 1.00, and 1.968. Radial
distribution functions are compared with the corresponding results from the symmetric Poisson-Boltzmann,
and the conventional and modified Poisson-Boltzmann theories. Comparisons have also been done for the con-
tact values of the radial distributions, reduced configurational energies, and osmotic coefficients as functions
of electrolyte concentration. Some Monte Carlo simulation data from the literature are also included in the
assessment of the thermodynamic predictions. Results show a very good agreement with the Monte Carlo re-
sults and some improvement for osmotic coefficients and radial distribution functions contact values relative to
these theories. The reduced energy curve shows excellent agreement with Monte Carlo data for molarities up
to 1 mol/dm3.
Key words: electrolytes, restricted primitive model, fluctuation potential, modified Poisson-Boltzmann theory

PACS: 82.45.Fk, 61.20.Qg, 82.45.Gj

1. Introduction

One of themore consistently active areas of research in the statistical mechanics of fluids over the years
has been in the field of Coulomb fluids. These encompass among others, electrolytes, ionic liquids, molten
salts, colloids, and polyelectrolytes, the practical relevance of which extend from biological systems to
industrial chemical processes. The literature on this is vast and theoretical progress was limited until the
application of liquid state theory [1–5] based on classical statistical mechanics. We would like to cite
here a few of the recent reviews on the subject [6–8].

A widely used model used in the development of formal statistical mechanical theories of ionic
solutions treats the solvent as a structureless, continuous dielectric medium with a relative permittivity εr,
and the solute particles as charged hard spheres of arbitrary diameters di and charges Zse with Zs

being the valence of species s. This is the so-called primitive model (PM) of ionic solutions. When
the ions are of the same size, it is called the restricted primitive model (RPM). Computer simulations
of the RPM and PM over the years (see for example, references [9–14]) have shown the usefulness of
these models in interpreting experimentally determined structures and thermodynamics of charged fluid
systems. Furthermore, the simulation data have proved to be invaluable in theoretical development.

This work is licensed under a Creative Commons Attribution 4.0 International License . Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
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The statistical mechanics of primitive models in liquid state physics has followed two broad paths: In
the first, the focus is on computing the pair correlation function or the radial distribution function gi j(ri, rj)
from the inter-molecular pair potential ui j(ri, rj) starting from the Ursell-Mayer cluster expansion [1–3],
or the distribution function method [3, 5]. Two main routes are used,viz., the Kirkwood, Bogolubov,
Born, Green, Yvon (KBBGY) hierarchies (see for example, reference [5]) and the Ornstein-Zernike (OZ)
equation [2, 3, 5]. The KBBGY hierarchies relate correlation functions for n and n + 1 fixed particles,
the molecular potential, and a charge parameter ξ. To evaluate the pair correlation function, for example,
a closure relation between the pair correlation function gi j(ri, rj) and the next higher order correlation
function, that is, the triplet correlation gi jk(ri, rj, rk) must be provided to break the hierarchy. One such
relation is the superposition approximation [3]. In the OZ approach, the total correlation between two ions
is considered to consist of two parts: the direct correlation function ci j(ri, rj) between the two particles,
and the indirect correlation hi j(ri, rj), which takes into account the presence of a third particle. This is
clearly shown by the OZ equation (see for example, reference [3]), which is often regarded as a definition
of the direct correlation function. To solve the OZ equation, a closure relation between the direct and
the total correlation functions is required. Among the more well known closures are: the Percus-Yevick
(PY) [15], the Hyper-netted chain (HNC) [16], and the mean spherical approximation (MSA) [17].

In the second method, which is our interest in the present work, the focus is on obtaining the same
gi j(ri, rj), but through a potential approach to the theory based on the Poisson’s equation. The classical
theoretical analysis of electrolyte solutions in this regard is that of Debye and Hückel (DH) [18], which is
a linearized version of the corresponding non-linear Poisson-Boltzmann (PB) equation. A key theoretical
paper on an assessment of the inherent approximations in the Poisson-Boltzmann (PB) equation, and
hence in the linearized DH equation is due to Kirkwood [19]. Kirkwood showed through a statistical
mechanical analysis that the main approximations in the classical theories are the omission of (i) ionic
exclusion volume effects, and (ii) the fluctuation potential term,which involves the inter-ionic correlations.
There have been many attempts since Kirkwood to improve upon the PB/DH theory notable among which
has been the extensive work done by Outhwaite and co-workers (see for example, references [20–29]),
who within the framework of the PM, have analyzed Kirkwood’s methods and obtained estimates for
the fluctuation term. The resulting modified Poisson-Boltzmann (MPB) approach to ionic solutions is
thus based on extending the classical mean electrostatic potential approach of DH theory by expressing
the distribution functions in the Kirkwood, Bogolubov, Born, Green, Yvon (KBBGY) hierarchies in
terms of mean electrostatic potentials. Essentially, the MPB improves upon the classical PB theory by
incorporating (i) ionic exclusion volume effects, and (ii) inter-ionic correlation effects. This potential
procedure solves for the mean electrostatic potential ψ(r) as opposed to the integral equations that
attempt to solve directly for the radial distribution function gi j(ri, rj). Outhwaite and co-workers [22–28]
have further symmetrized the classical PB theory and the MPB theory so that the Onsager relation,
gi j(r) = gji(r) is satisfied for a homogeneous fluid. They have also coupled an exclusion volume term to
the symmetrized PB theory, and call it the symmetric Poisson-Boltzmann (SPB) theory [25–27].

In the MPB theory, the mean electrostatic potential is expressed in terms of the fluctuation potential
φ(1, 2; 3) (see for example, reference [28]) (3 is the field point, while there are fixed ions at 1 and 2),
which measures deviations from the superposition principle of Kirkwood [19], and, therefore, contains
information on the interionic correlations in the theory. Expressed in terms of the mean potentials, the
fluctuation potential is given by [25, 28]

ψ(1, 2; 3) = ψ(1, 3) + ψ(2, 3) + φ(1, 2; 3). (1)

This equation is a statement that the mean potential at field point 3 is the sum of the direct potentials of
particles fixed at 1 and 2, and the correlated potential contribution at the field point from the simultaneous
presence of particles at 1 and 2. As we will see in the next section, the fluctuation potential can be written
in terms of distributions functions as

φ(1, 2; 3) =
1

4πε0εr

∑
s

es

∫ [
ρs(1, 2; q) − ρs(1; q) − ρs(2; q)

rq

]
drq , (2)

where es is the charge and ρs({n}; q) is the number density of the s-th species of ions at rq with n fixed
particles at ri (i = 1, . . . , n) with the sum being over all species, ε0 is the vacuum permittivity, and εr the
relative permittivity (dielectric constant) of the solvent.
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In the simplest language, the fluctuation potential is the inter-ionic correlations expressed in potential
form. The fluctuation potential φ(1, 2; 3) obeys a system of partial, non-linear, differential equations,
and for the RPM case, the linearized version of the equations is given in reference (see for example,
reference [28, 29]). An approximate solution, valid for large inter-ionic separation, under the assumption
of spherical symmetry, was found by Outhwaite [21]. One of the main problems in present MPB theory
is the restriction of the fluctuation potential for large inter-ionic separations, where approximate spherical
symmetry is valid. In the present work, an approximate analytical solution to the fluctuation potential
problem is found, that is valid for the whole range of interionic distances. This solution has an advantage
of simplicity that can provide insight into the eventual fully numerical methods for solving this kind of
problems. The approximate analytical solution for φ(1, 2; 3) can serve as a guide to solving the problem
numerically without using the approximations of this research.

The organization of this paper is as follows. In the following section (section 2) we start by giving
details of the interaction potentials of the model, a brief introduction to the PB equation and the MPB
theory approach.We then proceed to the main theoretical development of this work based on the primitive
models. In this part, the set of differential equations for the fluctuation potential in dimensionless form is
developed and an approximate solution is found using ordinary electrostatics.

In section 3 we utilize solution of the fluctuation potential to present structural and thermodynamic
results for a 1:1 valence RPM electrolyte. We start by showing three-dimensional plots of the fluctuation
potential solution. The plots show the fluctuation potential at a planar slice passing through the center
of the ions for two ionic separations and for the like and unlike ion cases. A physical interpretation
of the results in terms of ionic correlation energy is presented. To further test the solution’s validity,
configurational energies, and osmotic coefficients are calculated and compared to the Monte Carlo (MC)
simulation data of Card and Valleau [9], and Rasiah, Card, and Valleau [10].

In section 4 we present some conclusions out of this work and stress the importance of the approach
for future work that may involve a full iterative process using the solution presented here but without the
approximations made.

2. Model and theory

2.1. Molecular model

As indicated in the introduction, the model electrolyte system used in this study consists of a binary,
symmetric valence RPM at room temperature.

The ion-ion interaction potential in the Hamiltonian is thus

ui j(r) =

∞, r < d,
e2ZiZ j

4πε0εrr
, r > d,

(3)

where Zs is the valence of ion species s, e is the magnitude of the fundamental charge, r is the distance
between the centres of two ions of types i and j, respectively, and d is the common ionic diameter. The
relative permittivity εr is assumed to be uniform throughout the entire system.

2.2. Theory

The formulation of the SPB and the (traditional)MPBhave already appeared elsewhere in the literature
(see for example, references [22, 25–27]), and will not be repeated here. We will restrict ourselves to
outlining the main steps leading to the equations governing the fluctuation potential and their solution.

We begin by formulating the fluctuation potential problem in the restricted primitive model for a sym-
metric valence electrolyte, viz., |Z+ | = |Z− |, consisting of N ions and satisfying global electroneutrality∑

s Zsρs = 0. We will closely follow the notations used in reference [28]. In the defining relation for the
fluctuation potential in equation (1), the mean electrostatic potentials ψ(1; 3), ψ(2; 3), and ψ(1, 2; 3) can
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Figure 1. Diagrammatic representation of the mean electrostatic potential at field point q due to n
fixed charges. Solid lines represents direct potential, and dotted lines represent potential due to ionic
correlation. (a) n = 1, (b) n = 2.

be formally written as

ψ(1; 3) =
e1

4πε0εrr13
+

1
4πε0εr

∑
α

∫
eα
ρα(1, q)

r3q
dq, (4)

ψ(2; 3) =
e1

4πε0εrr23
+

1
4πε0εr

∑
α

∫
eα
ρα(2, q)

r3q
dq, (5)

and,

ψ(1, 2; 3) =
e1

4πε0εrr13
+

e2
4πε0εrr23

+
1

4πε0εr

∑
α

∫
eα
ρα(1, 2; q)

r3q
dq, (6)

where e1, e2 are the charges of the fixed ions at 1 and 2, respectively, and the sum runs over all the
ionic species. Figure 1 shows the mean electrostatic potential at a field point q due to 1 and 2 fixed ions,
respectively. Subtracting the equations (4) and (5) from equation (6) leads to the earlier equation (2). The
Poisson equations follow

∇2ψ(1; 3) = −
e1
ε0εr

δ(r1 − r3) −
1
ε0εr

∑
α

eαρα(1, 3), (7)

∇2ψ(2; 3) = −
e2
ε0εr

δ(r2 − r3) −
1
ε0εr

∑
α

eαρα(2, 3), (8)

and,
∇2ψ(1, 2; 3) = −

1
ε0εr

e1δ(r1 − r3) −
1
ε0εr

e2δ(r2 − r3) −
1
ε0εr

∑
α

eαρα(1, 2; 3). (9)

Here, the operator ∇ is understood to operate on the coordinates of the field point. These equations can
also be expressed in terms of the distribution functions using for example, g1α(1, q) = ρα(1, q)/ρα, and
so on and so forth, with ρα being the mean number density of ion species α. The distributions can, in
turn, be defined in terms of the potentials of mean force W , viz., the doublet

gi j(1, 2) = exp[−βWi j(1, 2)] (10)

or the triplet
gi jk(1, 2, 3) = exp[−βWi jk(1, 2, 3)], (11)

43801-4



Fluctuation potential in the modified Poisson-Boltzmann theory

where Wi j , Wi jk are the pair and triplet potentials of mean force, respectively. Also, β = 1/(kBT) with
kB the Boltzmann constant and T the absolute temperature. Hence, the conditional distribution,

gi jk(1, 2; 3) = exp{−β[Wik(1, 3) +Wjk(2, 3) + wi jk(1, 2; 3)]}. (12)

The term wi jk is the potential of mean force associated with the departure from linear superposition of
the pair potentials. A hierarchy of such equations can be constructed for higher order correlations. At the
lowest order, the classical PB theory follows upon neglecting wi jk(1, 2; 3), and to improve upon the PB,
we need a procedure to estimate this term.

In the MPB formulation, the hierarchy is broken at the triplet level by a closure condition that relates
the wi jk with the fluctuation potential φi j [28]

wi jk(1, 2; 3) = ekφi j(1, 2; 3). (13)

It is of interest to contrast this MPB closure with the Debye-Hückel closure

Wi j(1, 2) = ejψ(1; 2). (14)

For the RPM system with a finite ion diameter d, the Poisson equations (7)–(9) can be expressed in
terms of the potentials of mean force as

∇2ψ(1; 3) = −
1
ε0εr

∑
s

esρse−βWis (1,3), (15)

∇2ψ(2; 3) = −
1
ε0εr

∑
s

esρse−βWj s (2,3), (16)

∇2ψ(1, 2; 3) = −
1
ε0εr

∑
s

esρsexp
{
−β

[
Wis(1, 3) +Wjs(2, 3) + esφ(1, 2; 3)

]}
, (17)

where the MPB closure (13) has been used in equation (17). The equations (15) and (16) are exact, for
one fixed ion in position 1 and 2, but equation (17) incorporates the deviation from the superposition
principle in the form of the fluctuation potential term. To obtain an equation for the fluctuation potential
[equation (1)], we subtract equations (7) and (8) from (9),

∇2φ(1, 2; 3) = −
1
ε0εr

∑
s

esρs
[
g(1, 3)g(2, 3)e−βesφ(1,2;3) − g(1, 3) − g(2, 3)

]
. (18)

Equation (18) is the base nonlinear equation in the fluctuation potential problem. The equation also
suggests that the charge density source for fluctuation potential is associated with the charged atmospheres
of the triplet and doublet densities.

To illustrate the geometry of the fluctuation potential problem, one can expand the summation over
species as

∇2φ(1, 2; 3) = −
1
ε0εr

e+ρ+
[
g(1, 3+)g(2, 3+)e−βe+φ(1,2;3) − g(1, 3+) − g(2, 3+)

]
+ e−ρ−

[
g(1, 3−)g(2, 3−)e−βe−φ(1,2;3) − g(1, 3−) − g(2, 3−)

]
, (19)

where a number with a superscript notation with a positive or negative sign represents the presence of
the corresponding ion at the referred position in space.

Figure 2, represents the geometry of the fluctuation potential system of equations with Ω being the
total volume of the ionic solution, ω1 and ω2 represent the exclusion volumes of ion 1 and 2, respectively,
ω∗ is the overlap volume, and 3 is the field point. Region I [Ω− (ω1 +ω2)] is the bulk volume defined as
the total volume minus the exclusion volumes of ions 1 and 2. Region II (ω1 − ω

∗) and III (ω2 − ω
∗) are

the interior of the exclusion volumes of ion1 and 2 minus the overlap volume. Region IV is the overlap
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Figure 2. Geometry of the ionic exclusion volumes within the restricted primitive model showing the
various regions of validity of the fluctuation potential equation (see text).

volume. The nonlinear system of equations governing the fluctuation potential are then given by the
following expressions

I : Ω − (ω1 + ω2) ∇
2φ(1, 2; 3) = −

1
ε0εr

e+ρ+
[
g(1, 3+)g(2, 3+)e−βe+φ(1,2;3) − g(1, 3+) − g(2, 3+)

]
+e−ρ−

[
g(1, 3−)g(2, 3−)e−βe−φ(1,2;3) − g(1, 3−) − g(2, 3−)

]
, (20)

II : ω1 − ω
∗ ∇2φ(1, 2; 3) = −

1
ε0εr
[e+ρ+g(2, 3+) + e−ρ−g(2, 3−)], (21)

III : ω2 − ω
∗ ∇2φ(1, 2; 3) = −

1
ε0εr
[e+ρ+g(1, 3+) + e−ρ−g(1, 3−)], (22)

IV : ω∗ ∇2φ(1, 2; 3) = 0. (23)

At this point it is convenient to work in terms of reduced (dimensionless) quantities. Here, the
relevant ones are the reduced mean electrostatic potential Ψ = eβψ, the reduced fluctuation potential
Φ = eβφ, and y0 =

√
24Z+Z−ηΓ. Also, η = (π/6)

∑
s ρsd3 is the volume or packing fraction and

Γ = Z+Z−e2/(4πε0εrkBTd) is the plasma coupling parameter. After expressing the Laplacian in ionic
diameter scale, and imposing global electro-neutrality, we have a set of dimensionless fluctuation potential
equations for the size symmetric case

I : Ω − (ω1 + ω2) −
1
y2

0
∇2
dΦ(1, 2; 3) =

Z+Z−
Z− − Z+

[
g(1, 3+)g(2, 3+)e−Z+Φ(1,2;3)

−g(1, 3−)g(2, 3−)e−Z−Φ(1,2;3) − g(1, 3+) − g(2, 3+) + g(1, 3−) + g(2, 3−)
]
, (24)

II : ω1 − ω
∗ −

1
y2

0
∇2
dΦ(1, 2; 3) =

Z+Z−
Z− − Z+

[−g(2, 3+) + g(2, 3−)], (25)

III : ω2 − ω
∗ −

1
y2

0
∇2
dΦ(1, 2; 3) =

Z+Z−
Z− − Z+

[−g(1, 3+) + g(1, 3−)], (26)

IV : ω∗ ∇2
dΦ(1, 2; 3) = 0. (27)

The boundary conditions are that the fluctuation potential and its normal derivative are continuous across
the boundaries. Denoting the right-hand sides of these equations by P, we can write them in a general
form

∇2
Φ(1, 2; 3) = −y2

0P[Φ, g(1, 3), g(2, 3)], (28)
with a formal solution [30, 31]

Φ(1, 2; 3) =
∫
Ω

y2
0

rd
P[Φ, g(1, 3), g(2, 3)]drd . (29)
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Specifically, we have in the various regions

I : Ω − (ω1 + ω2) −
1
y2

0
∇2
dΦ(1, 2; 3) = PI[Φ, g(1, 3), g(2, 3)] =

Z+Z−
Z− − Z+

[
g(1, 3+)g(2, 3+)e−Z+Φ(1,2;3)

−g(1, 3−)g(2, 3−)e−Z−Φ(1,2;3) − g(1, 3+) − g(2, 3+) + g(1, 3−) + g(2, 3−)
]
, (30)

II : ω1 − ω
∗ −

1
y2

0
∇2
dΦ(1, 2; 3) = PII[g(1, 3), g(2, 3)] =

Z+Z−
Z− − Z+

[−g(2, 3+) + g(2, 3−)], (31)

III : ω2 − ω
∗ −

1
y2

0
∇2
dΦ(1, 2; 3) = PIII[g(1, 3), g(2, 3)] =

Z+Z−
Z− − Z+

[−g(1, 3+) + g(1, 3−)], (32)

IV : ω∗ ∇2
dΦ(1, 2; 3) = PIV, PIV = 0. (33)

In order to make analytical progress, we approximate the radial distribution functions g(1, 3) and
g(2, 3), in the various P’s appearing in the above equations by their DH values

g(1, 3+)(= gDH(1, 3+)) = exp
[
−Z+ΨDH

1 (1, 3)
]
,

g(2, 3+)(= gDH(2, 3+)) = exp
[
−Z+ΨDH

2 (2, 3)
]
,

g(1, 3−)(= gDH(1, 3−)) = exp
[
−Z−ΨDH

1 (1, 3)
]
,

g(2, 3−)(= gDH(2, 3−)) = exp
[
−Z−ΨDH

2 (2, 3)
]
, (34)

where the subscript in Z represents the sign of the charge state of the ion at the field point 3. Inserting
the radial distribution functions (34) in the integrals in equation (29) will render the contribution to the
fluctuation potential in regions II and III as ordinary integrals in space.

To obtain an approximation for P in the bulk region I, outside ions 1 and 2, we use the properties
of the radial distribution functions in the various regions, and expand the exponents up to linear terms,
leading to

PI[Φ, g(1, 3), g(2, 3)] =
Z+Z−

Z− − Z+
[g(1, 3+)g(2, 3+)(1 − Z+Φ) − g(1, 3−)g(2, 3−)(1 − Z−Φ)

− g(1, 3+) − g(2, 3+) + g(1, 3−) + g(2, 3−)]

=
Z+Z−

Z+ − Z−
[Z+g(1, 3+)g(2, 3+) − Z−g(1, 3−)g(2, 3−)]Φ(1, 2; 3). (35)

For a small fluctuation potential, we neglect the right-hand side of equation (35). For example, for a
symmetric valence 1:1 RPM electrolyte, the theme of this work, we have noted that the DH radial distri-
butions in equation (34) are of the order unity for the physical parameters and the range of concentrations
used. If the fluctuation potential is of the order 10−2 or less, then the right-hand side of equation (35)
will be of a similar order and can be neglected as a first approximation for such a system. Under these
approximations, the fluctuation potential is given by,

Φ(1, 2; 3) =
y2

0
4π


∫
ω1

F1[g(2, q+), g(2, q−)]��rqd − r3d
�� dVq +

∫
ω2

F2[g(1, q+), g(1, q−)]��rqd − r3d
�� dVq

 , (36)

where
F1[g(2, q+), g(2, q−)] =

Z+Z−
Z− − Z+

[−g(2, q+) + g(2, q−)], (37)

and
F2[g(1, q+), g(1, q−)] =

Z+Z−
Z− − Z+

[−g(1, q+) + g(1, q−)]. (38)

The integral in equation (36) needs to be calculated numerically. This was done by discretization of
space, and will be discussed in the next section.
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A useful way of testing the fluctuation potential solution is through subsequent evaluation of the
structure and thermodynamics of the electrolyte solution. We have utilized the MPB formulation in
reference [28] to calculate the pair correlation functions,

g(1, 2) = ζ12 exp

{
− Z2[Ψ(1; 2) +

1∫
0

Φ(1, 2; 2) dλ2]

}
, (39)

where the DH functions (34) are used for Ψ(1; 2) and an analytic expression for the Percus-Yevick (PY)
radial distribution functions for hard spheres [4] have been used for the excluded volume term, ζ12. The
integral implies charging up of the ion at r2.

For the calculation of osmotic coefficients φ and the reduced configurational energy U/(NkBT), we
use equation (12) from reference [32], written in dimensionless reduced variables as,

φ − 1 = U/3NkBT + 2η[gA(1) + gB(1)], (40)

and

U/NkBT =
y2

0
4

∞∫
1

[gA(r ′) + gB(r ′)]r ′dr ′, (41)

where r ′ = r/d with gA and gB corresponding to like and unlike ions, respectively, and the argument 1
of gA and gB in (40) refers to the contact value.

3. Results

All calculations in this work pertain to (1:1) symmetric valence RPM electrolyte for ions of common
diameter d = 4.25 × 10−10 m, in a continuum dielectric medium of relative permittivity εr = 78.5, and
at temperature T = 298 K, which is akin to a water-like solvent at room temperature. We have utilized
electrolyte concentrations of 0.1038, 0.425, 1.00, and 1.968 mol/dm3. One reason for using these physical
parameters is that these have been used earlier in the literature (see for example, reference [29] and for
which MC simulation data exist [9, 10]. The SPB and the conventional MPB equations were solved
numerically using a quasi-linearization iteration scheme [33]. The procedure has been used with much
success in earlier works [24–27] and we refer the reader to these references for further details.

The fluctuation potential was obtained numerically by solving the integral in equation (36). The radial
distribution functions gi j(r)were then calculated using the fluctuation potential solution in equation (39),
while the osmotic coefficient φ, and the reduced configurational energy−U/(NkBT) have been determined
through equations (40) and (41), respectively. In what follows we will briefly describe the numerical
procedure involved before taking up the discussion of the results.

3.1. Numerical solution

The calculation of the fluctuation potential Φ(1, 2; 3) was achieved by creating a Cartesian grid in
space with scaled distance of 10% of the ionic diameter, which in our dimensionless units is 1, so that
in the present context, the grid spacing is 0.1. This grid was created to represent the physical regions
involved in the fluctuation potential problem as shown in figure 2. Those regions consist of the spherical
regions ω1 and ω2, which correspond to the boundaries of the ions 1 and 2 , and the rest of the solution
region, which is denoted by Ω − (ω1 + ω2). The region (ω1 + ω2) is denoted as the ionic excluded
volume. The quantities F1 and F2 [equations (37) and (38), respectively] represent the charge densities
associated with the regions ω1 and ω2 in the integral of equation (36). The boundary of the rectangular
Cartesian grid representing figure 2 was defined by a parameter Λ, which represents the distance from
the boundary of the ions to the edge of the grid. This parameter was chosen in such a way that the
fluctuation potential solutions tend to zero at the exterior boundary of the grid. Usually this parameter
was between 3 and 5 ionic diameters for the highest concentration but was found to a lot larger than at
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the lower concentrations. The fluctuation potential solution is an integral over the regions ω1 and ω2.
The summation used to numerically calculate the integral included approximately eight thousand terms
for a point inside regions ω1 and ω2. To produce the figures 3–5, the fluctuation potential was calculated
at each point in a planar slice passing through the centers of ω1 and ω2. For contact distance between
the regions ω1 and ω2, and Λ = 5, this planar slice contains approximately ten thousand points. The
simplicity of equation (36) and the approximation of the gi j in equation (34) in terms of the corresponding
DH functions are what makes the calculations fairly tenable.

The evaluation of the pair correlation functions was performed in a similar grid as the one used for
the three-dimensional figures but now the fluctuation potential was only required to be calculated at
the center of region ω2 (figure 2), and the solution used in equation (39), where the Kirkwood charge
integral over the fluctuation potential is calculated. The calculation of osmotic coefficient and the reduced
configurational energy was achieved using the formulae (40) and (41), respectively.

3.2. Fluctuation potential

We begin this discussion with the analysis of the three-dimensional representations of the fluctuation
potential Φ(1, 2; 3) shown in figures 3–5. To our best knowledge, such representation of the fluctuation
potential does not presently exist in the literature. The plots show the fluctuation potential Φ(1, 2; 3)
obtained from equation (36) with the various g’s approximated through equations (34). The behaviour
pattern of the fluctuation potential in these figures can be understood in terms of the charge density
associated with the quantities F1 and F2, inside the regions ω1 and ω2. Figure 3 shows the fluctuation
potential for a planar slice passing through the centers of two positive ions of valence +1 each. The charge
density contributed by the spherical region ω1 due to the positive ion in this region is calculated using
F1 [equation (37)], which is a function of g(2, 3), where the point 3 is inside region ω1. The positive sign
in the fluctuation potential in region ω1 is given by the sign of −g(2, 3+) + g(2, 3−). Since the charge at
position 2 is positive, the second term associated with unlike charges is greater in magnitude than the

Figure 3. (Color online) Fluctuation potential φ(1, 2; 3) for Z1 = Z2 = +1 at ionic diameter d =
4.25 × 10−10 m, dielectric constant εr = 78.5, temperature T = 298 K, and electrolyte concentration
c = 1.968 mol/dm3. Reduced interionic distance r/d: (a) 1.5, (b) 3.
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Figure 4. (Color online) Fluctuation φ(1, 2; 3) for Z1 = 1, Z2 = −1 at ionic diameter d = 4.25× 10−10 m,
dielectric constant εr = 78.5, temperature T = 298 K, and electrolyte concentration c = 1.968 mol/dm3.
Reduced interionic distance r/d: (a) 1 (contact), (b) 3. Note that r/d = 1 corresponds to the contact
distance.

first term in F1 causing an overall positive fluctuation potential in region ω1. The positive sign in region
ω2 has similar origins and thus analogous interpretations.

Figure 4 shows the fluctuation potential for a positive ion (valence +1) in region ω1 and a negative
ion (valence −1) in region ω2. In contrast to the situation in figure 3, in this case the functions g(1, 3) and
g(2, 3) in F1 and F2 lead to the sign of the fluctuation potential in regions ω1 and ω2 to be opposite to
the signs of the ions 1 and 2, respectively. To see this, we first look at the fluctuation potential in region
ω1 calculated through F1 with the charge density given by −g(2, 3+) + g(2, 3−). As the ion in region ω2
is negative, the first term associated with this unlike charge dominates giving an overall negative sign to
the fluctuation potential in region ω1 where the positive ion is located. On the other hand, the fluctuation
potential in region ω2 is calculated using F2 where the charge density is given by −g(1, 3+) + g(1, 3−).
The second (positive) term here is the larger one in magnitude again being linked to the unlike charge,
and hence the positive sign of the fluctuation potential in region ω2. So, it can generally be stated that the
fluctuation potential for like ions near the vicinity of these ions is of the same sign as that of the physical
ions and is of the opposite sign for unlike ions. This peculiar behavior is a consequence of the fluctuation
potential in ω1 being related to the g(2, 3) centred at 2, and that the fluctuation potential in region ω2
being related to the g(1, 3) centred at the opposite region ω1. This combined with the relative magnitudes
of the g’s in functions F1 and F2 explain the behavior of the polarities in Φ(1, 2; 3).

The magnitude of the Φ(1, 2; 3) that we have noted in the course of the present calculations, is
generally small, especially for large inter-ionic separations. The reasons for this can again be traced to
the dominant charge density appearing in equation (36). For instance, the charge density in region ω1 is a
function of g(2, 3) where the field point 3 is in region ω1 and the point 2 is at the center of region ω2, and
similarly the charge density in region ω2 is a function of g(1, 3)where the field point 3 is in region ω2 and
point 1 is at the center of region ω1. As the inter-ionic separation is increased, the dominant functions in
F1 and F2 associated with the unlike ions decrease, while the g’s associated with the like charges tend
to 1. It is clear from equations (37) and (38) that both F1 and F2 tend to zero at large distances but increase
at contact distances, as evident in figure 5. Significantly, the fluctuation potential for similar charges is
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Figure 5. (Color online) Fluctuation φ(1, 2; 3) for Z1 = Z2 = +1 at ionic diameter d = 4.25 × 10−10 m,
dielectric constant εr = 78.5, temperature T = 298 K, and reduced interionic distance r/d = 1, and
electrolyte concentration: (a) c = 1.968mol/dm3, (b) c = 0.1038mol/dm3. Note that r/d = 1 corresponds
to the contact distance.

seen to become quite large compared with that in figure 3. This suggests that for small separation of the
ions, the fluctuation potential term becomes important in evaluating gi j . Figures 3–5 indeed show that
the fluctuation potential is the largest in the immediate vicinity of ions 1 and 2.

Another point regarding the fluctuation potential worthy of note is the relationship between the
fluctuation potential and the electrostatic energy of the ions. In figure 3 we have ions of the same sign,
and clearly the fluctuation potential manifests as an increase in electrostatic energy of the ions since the
fluctuation potential is of the same sign as the ions. For ions of opposite sign as in figure 4, the sign of the
fluctuation potential is opposite to that of the ion in the vicinity. This leads to a decrease in electrostatic
potential energy leading to attractive inter-ionic correlation in this case. This implies, consistent with
what has been known in the literature, that the sign of the fluctuation potential in the vicinity of ion 1 is
mostly due to the cloud of counter ion (from ion 2) and vice versa. It can be seen further from figures 3
and 4, that the fluctuation potential increases as the separation of the ions decreases, establishing the
importance of having a solution that is valid at short distances. Our results also show that the fluctuation
potential increases with electrolyte concentration.

3.3. Structure and thermodynamics

In figure 6, we present the radial distribution functions obtained in this work along with the corre-
sponding curves for the SPB and MPB theories at 1 mol/dm3 concentration. It is clear that the curves
are very similar for distances larger than 2 ionic diameters. Importantly, the present results and the MPB
results are almost identical. The contact values for the radial distribution functions for like ions, from
the present theory, are slightly closer to the MC result [9] than that from the SPB and MPB. This is
probably due to a better treatment of the fluctuation potential in this work. Table 1 shows contact values
gi j(1) and for comparison purposes, the corresponding results from the SPB, the MPB, and the MC
[9, 10] data are also included. The contact values from the present theory are consistent with the other
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Figure 6. (Color online) The radial distribution functions gi j (r) for a 1:1 restricted primitive model
electrolyte at ionic diameter d = 4.25 × 10−10 m, dielectric constant εr = 78.5, temperature T = 298 K
in the symmetric-Boltzmann theory, the modified Poisson Boltzmann theory, and the theory presented
in this work. The legend as given in the figure.

Table 1. Contact values of the radial distribution functions gi j (1) from different theories. The common
diameter of the ions is d = 4.25 × 10−10 m, the temperature T = 298 K, and the dielectric constant of
the electrolyte εr = 78.5. The MC values are from reference [9].

c (mol/dm3)
g++(1) = g−−(1) g+−(1)

DH SPB MPB MPBthis-work MC DH SPB MPB MPBthis-work MC
0.1038 −0.158 0.321 0.311 0.302 0.319 2.16 3.19 3.30 3.33 3.25
0.425 0.121 0.443 0.417 0.399 0.418 1.88 2.50 2.66 2.68 2.62
1.000 0.299 0.573 0.530 0.500 0.505 1.70 2.14 2.42 2.40 2.23
1.968 0.433 0.752 0.686 0.633 0.706 1.57 2.20 2.40 2.31 2.38

theories and show a very good agreement with the MC simulation data. Tables 2 and 3 show reduced
configurational energies, and osmotic coefficients from the Debye-Hückel, SPB, MPB, and MC [9, 10],
and this work. These values are also presented in a graphic form as in figures 7 and 8, respectively. The
reduced configurational energy curves (figure 7) show an excellent agreement between the MPB and this
work with the MC curve up to 1 mol/dm3 concentration. At the highest 1.968 mol/dm3 concentration,
the MPB is a little closer to the MC. Figure 8 shows osmotic coefficients for the theories and the relevant
MC data [9, 10]. These curves show a generally very good agreement between the MC results and the
theories.

Table 2. Reduced configurational energy −U/(NkBT) from different theories. The common diameter of
the ions is d = 4.25 × 10−10 m, the temperature T = 298 K, and the dielectric constant of the electrolyte
εr = 78.5. The MC values are from reference [10].

c (mol/dm3
) DH SPB MPB MPBthis-work MC

0.1038 0.261 0.267 0.274 0.274 0.274
0.425 0.400 0.407 0.436 0.439 0.434
1.000 0.490 0.500 0.555 0.550 0.552
1.968 0.556 0.572 0.663 0.699 0.651
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Table 3. Osmotic coefficient φ from different theories. The common diameter of the ions is d =
4.25 × 10−10 m, the temperature T = 298 K, and the dielectric constant of the electrolyte εr = 78.5. The
MC values are from reference [9].

c (mol/dm3
) SPB MPB MPBthis-work MC

0.1038 0.946 0.945 0.944 0.945
0.425 0.985 0.981 0.980 0.977
1.000 1.11 1.10 1.10 1.094
1.968 1.37 1.37 1.33 1.364

Figure 7. (Color online) The reduced configurational energy for a 1:1 restricted primitivemodel electrolyte
at ionic diameter d = 4.25 × 10−10 m, dielectric constant εr = 78.5, and temperature T = 298 K, versus
the square root of the electrolyte concentration c, for the Debye-Hückel, theory, the symmetric Poisson-
Boltzmann theory, the modified Poisson-Boltzmann theory, and the theory presented in this work. Legend
as given in the figure. The Monte Carlo results are from references [9] and [10].

Figure 8. (Color online) The osmotic coefficient for a 1:1 restricted primitive model electrolyte at ionic
diameter d = 4.25×10−10 m, dielectric constant εr = 78.5, and temperatureT = 298 K, versus the square
root of the electrolyte concentration c, for the Debye-Hückel theory, the symmetric Poisson-Boltzmann
theory, the modified Poisson-Boltzmann theory, and the theory presented in this work. Legend as given
in the figure. The Monte Carlo results are from references [9] and [10].

4. Conclusions

In this study we have made an analysis of the fluctuation potential in the modified Poisson-Boltzmann
theory of bulk electrolyte solutions. An approximate analytical solution of the fluctuation potential
equation was obtained for symmetric valence 1:1 electrolytes in the RPM. This solution was later
utilized to obtain structural and thermodynamic descriptions of the electrolyte in terms of ion-ion radial
distribution functions, reduced excess energy, and the osmotic coefficients, respectively.
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The fluctuation potential is a central ingredient in a potential approach to the theory (of charged
fluids) such as the modified Poisson-Boltzmann theory. The fluctuation potential solution developed in
this work, albeit with approximations to make analytical progress and for symmetric 1:1 valence systems,
is a preliminary attempt to assess the implications of such a solution. In such cases, due to the linearization
of the fluctuation potential in the bulk region I [equation (35)] and the small magnitude of Φ(1, 2; 3),
the P function in bulk region I can be taken to be zero, thus neglecting charge density for that region.
A less approximate and nearly full treatment could be achieved by solving for the fluctuation potential
in region I using equation (29) with PI being given by equation (35) in conjunction with equation (34).
An intermediate procedure (between the above two situations) to obtain a better, viable, and still feasible
approximation for Φ(1, 2; 3) in region I would be to solve equation (30) [with PI given by equation (35)]
by writing it in the form

∇2
Φ(1, 2; 3) = CΦ(1, 2; 3), (42)

where the quantity C contains the valencies Z+, Z−, and has spatial dependence through g(1, 3) and
g(2, 3). Thus, although C is not a constant per se, it can be assumed to be approximately constant for the
purposes of solution to equation (42). An approximate analytic form ofΦ(1, 2; 3) in region I, whose value
is not necessarily zero, would then be available. Equation (42) has some parallels to a similar equation for
the fluctuation potential in the MPB formalism in the planar electric double layer [34]. Such a procedure
will be useful for higher and multivalent electrolytes when the magnitude of the fluctuation potential in
region I is likely to be significant and hence PI can no longer be neglected. This will be a focus of our
future work.

TheMPB description of the electric double layer phenomenon is an area where the present techniques
might have some significance since the fluctuation potential plays an equally important role in the
theoretical framework for the inhomogeneous fluid at the interface. In the MPB approach to the double
layer theory in planar [34, 35], cylindrical [36–38], and spherical [39, 40] symmetries, the form of the
corresponding fluctuation potential used is rather approximate and generally suffers from similar defects
as those vis-a-vis the traditional MPB theory for the bulk. The statistical mechanical methods used in
this paper are quite general and can be extended and adapted to interfacial double layer geometry where
an analogous fluctuation potential analysis might prove useful.

Another area of possible relevance for this study is in the theoretical analysis of charged fluid
systems with a variable dielectric constant (relative permittivity). The topic has attracted a lot of recent
research attention (see for example, references [41–43]) and has been shown to be relevant for important
technological systems, viz., super-capacitors [44, 45]. In the electric double layer, the MPB has been
found to be capable of dealing with systems having an inhomogeneous dielectric constant [34, 35]. Very
recently, the MPB was applied to a double layer system with three different dielectric constants [46],
although the associated fluctuation potential problem could only be solved for point ions. Thus, again a
fluctuation analysis in such situations along the lines of the present work could be valuable.

The three-dimensional plots of the fluctuation potential give a valuable insight into the correlations
between ions. Furthermore, the present structural and thermodynamic results point in the right direction
and are indicative of the potential usefulness of a full solution of the fluctuation potential. The radial
distribution functions, especially at contact distances between the ions, the reduced excess energy, and
osmotic coefficients show an expected improvement over that from the PB (or SPB), and overall, tend
to be in a very good agreement with the predictions from the traditional MPB theory and Monte Carlo
simulations.

The fluctuation potential problem is a challenging one. A complete solution of the fluctuation potential
equation, valid for a general case and for asymmetry in ionic size and/or valence will involve a numerical
solution comprising an iterative algorithm. Our solution here might prove useful in such an involved
procedure. Such a project is contemplated in the near future.
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Аналiз флуктуацiйного потенцiалу в модифiкованiй теорiї

Пуасона-Больцмана обмеженої примiтивної моделi

електролiтiв

E.O. Уллоа-Давiля, Л.Б. Буян
Лабораторiя теоретичної фiзики, вiддiл фiзики, А/с 70377, Унiверситет Пуерто-Рiко,
Сан Хуан, Пуерто-Рiко, США
Представлено наближений аналiтичний розв’язок проблеми флуктуацiйного потенцiалу в модифiкова-
нiй теорiї Пуасона-Больцмана для обмеженої примiтивної моделi електролiтiв. Цей розв’язок є дiйсним
для всiх мiжiонних вiдстаней, включаючи контактнi значення. Розв’язок для флуктуацiйного потенцiалу
iмплементовано у дану теорiю з метою опису структури електролiта в термiнах радiальних функцiй роз-
подiлу, а також з метою обчислення деяких аспектiв термодинамiки, а саме, конфiгурацiйної редукова-
ної енергiї та осмотичних коефiцiєнтiв. Обчислення проведено для систем iз симетричною валентнiстю
1:1 при фiзичних параметрах iонного дiаметру 4.25 × 10−10 м, при вiдноснiй проникностi 78.5, при аб-
солютнiй температурi 298 K, i при молярних концентрацiях 0.1038, 0.425, 1.00 i 1.968. Радiальнi функцiї
розподiлу порiвнюються з вiдповiдними результатами симетричної теорiї Пуасона-Больцмана та стан-
дартної i модифiкованої теорiй Пуасона-Больцмана. Проведено порiвняння контактних значень радiаль-
них розподiлiв, редукованих конфiгурацiйних енергiй i осмотичних коефiцiєнтiв як функцiй концентрацiї
електролiта. Деякi данi Монте Карло симуляцiй з лiтератури включено в оцiнювання термодинамiчних
передбачень. Результати показують дуже добре узгодження з результатами Монте Карло та деяке по-
кращення для осмотичних коефiцiєнтiв та контактних значень радiальних функцiй розподiлу стосовно
вищезгаданих теорiй. Крива редукованої енергiї показує чудове узгодження з даними Монте Карло для
молярностей аж до 1 моль/дм3.
Ключовi слова: електролiти, обмежена примiтивна модель, флуктуацiйний потенцiал, модифiкована

теорiя Пуасона-Больцмана
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